JP4754888B2 - Emission spectroscopy analysis method and emission spectroscopy analyzer - Google Patents

Emission spectroscopy analysis method and emission spectroscopy analyzer Download PDF

Info

Publication number
JP4754888B2
JP4754888B2 JP2005185949A JP2005185949A JP4754888B2 JP 4754888 B2 JP4754888 B2 JP 4754888B2 JP 2005185949 A JP2005185949 A JP 2005185949A JP 2005185949 A JP2005185949 A JP 2005185949A JP 4754888 B2 JP4754888 B2 JP 4754888B2
Authority
JP
Japan
Prior art keywords
measurement
wavelength
concentration
interference
target element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005185949A
Other languages
Japanese (ja)
Other versions
JP2007003428A (en
Inventor
敬久 大森
伸彦 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005185949A priority Critical patent/JP4754888B2/en
Publication of JP2007003428A publication Critical patent/JP2007003428A/en
Application granted granted Critical
Publication of JP4754888B2 publication Critical patent/JP4754888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析装置をはじめとする各種の発光分光分析装置に関し、特に、マルチチャンネル型の構成を備えた発光分光分析装置及び発光分光分析方法に関する。   The present invention relates to various emission spectroscopic analysis apparatuses including an inductively coupled plasma (ICP) emission spectroscopic analysis apparatus, and more particularly to an emission spectroscopic analysis apparatus and an emission spectroscopic analysis method having a multi-channel configuration. .

ICP発光分光分析装置では、霧状の試料をICPトーチの中のプラズマ内に導入して励起発光させる。その発光光を分光器に導入し、分光器において波長分散させて検出器で検出することにより発光スペクトルを作成し、その発光スペクトルに現れているスペクトル線の波長から試料に含まれる元素の定性分析を行い、スペクトル線の強度からその元素の定量分析を行う(例えば特許文献1参照)。このようなスペクトルの例を図3に示す。   In the ICP emission spectroscopic analyzer, a mist-like sample is introduced into plasma in an ICP torch to cause excitation light emission. The emission light is introduced into the spectrometer, and the emission spectrum is created by wavelength dispersion in the spectrometer and detected by the detector, and the qualitative analysis of the elements contained in the sample from the wavelength of the spectral line appearing in the emission spectrum And quantitative analysis of the element is performed from the intensity of the spectral line (see, for example, Patent Document 1). An example of such a spectrum is shown in FIG.

ICP発光分光分析装置の構成は光の検出方法によって大別することができ、モノクロメータを回転させることにより異なる波長のスペクトル線を順次検出するシーケンシャル型と、微小な受光素子を多数並べた検出器を用いて多数のスペクトル線を同時に検出するマルチチャンネル型とがある。マルチチャンネル型の発光分光分析装置は、シーケンシャル型と比較して、短時間で多数のスペクトル線を検出することができるという利点があるが、一方で、ダイナミックレンジが狭いという問題があった。   The configuration of the ICP emission spectroscopic analyzer can be broadly classified according to the light detection method. A sequential type that sequentially detects spectral lines of different wavelengths by rotating a monochromator and a detector in which a large number of minute light receiving elements are arranged. There is a multi-channel type in which a large number of spectral lines are detected at the same time. The multi-channel type emission spectroscopic analyzer has an advantage that a large number of spectral lines can be detected in a short time compared to the sequential type, but there is a problem that the dynamic range is narrow.

通常、一種の元素のスペクトル線は一本だけではなく多数存在する(図3参照)。そこで従来より、先に述べたようなダイナミックレンジが狭い装置の場合には、ピーク高さの異なる(すなわち、感度の異なる)複数種類の測定波長を用いることによって、低濃度において測定感度を確保しつつ、広い濃度範囲における測定をも可能とする方策が採られてきた。   Usually, there are not only one spectral line of one kind of element but many (see FIG. 3). Therefore, in the past, in the case of a device with a narrow dynamic range as described above, measurement sensitivity can be ensured at low concentrations by using multiple types of measurement wavelengths with different peak heights (ie, different sensitivities). However, measures have been taken to enable measurement in a wide concentration range.

上記方策の一例を、測定波長の濃度測定領域を表す図4により説明する。この例では、ある発光分光分析装置において、高い感度(精度)で測定することができるが最大測定濃度が低い低濃度用の測定波長Lと、感度は低いがより高い濃度まで測定することができる高濃度用の測定波長Hとが設定されている。本例では、測定波長Lの濃度測定領域は下限値が0.1ppm、上限値が2.0ppmとなっており、測定波長Hの濃度測定領域は下限値が0.5ppm、上限値が10ppmである。測定波長Lと測定波長Hのいずれを用いて定量値を算出するかは、実試料の濃度によって自動的に切り換えが行われる(測定波長の切り換えについては後述。)。なお、測定波長L及び測定波長Hの濃度測定領域は、所定濃度測定領域において重なり合うように設定されている(図4の場合は0.5〜2.0ppmの範囲。)。   An example of the above measure will be described with reference to FIG. 4 showing the concentration measurement region of the measurement wavelength. In this example, in a certain emission spectroscopic analyzer, it is possible to measure with high sensitivity (accuracy), but with a measurement wavelength L for low concentration where the maximum measurement concentration is low and to a higher concentration with low sensitivity. A measurement wavelength H for high concentration is set. In this example, the concentration measurement region of the measurement wavelength L has a lower limit value of 0.1 ppm and an upper limit value of 2.0 ppm, and the concentration measurement region of the measurement wavelength H has a lower limit value of 0.5 ppm and an upper limit value of 10 ppm. Whether to use the measurement wavelength L or the measurement wavelength H to calculate the quantitative value is automatically switched depending on the concentration of the actual sample (the switching of the measurement wavelength will be described later). In addition, the density | concentration measurement area | region of the measurement wavelength L and the measurement wavelength H is set so that it may overlap in a predetermined density | concentration measurement area | region (in the case of FIG. 4, the range of 0.5-2.0 ppm).

特開平10-253540号公報Japanese Patent Laid-Open No. 10-253540

発光分光分析装置においては、目的元素のスペクトル線に、それに近い波長を有する共存元素のスペクトル線が重なってしまうことがある(分光干渉)。分光干渉が発生した場合には、目的元素のスペクトル強度が実際よりも見かけ上大きくなってしまうため、分析感度及び精度が低下してしまう。   In an emission spectroscopic analyzer, the spectral line of a coexisting element having a wavelength close to the spectral line of the target element may overlap (spectral interference). When spectral interference occurs, the spectral intensity of the target element is apparently larger than it actually is, so that analysis sensitivity and accuracy are reduced.

しかし、上述したような、実試料の濃度によって自動的に測定波長が切り換わる構成を有する従来の発光分光分析装置では、選択された測定波長において分光干渉が生じていたとしても、その分光干渉に関係なくそのまま測定が実行されてしまっていた。この結果、精度の低い分析しか行うことができなかったり、再測定の必要が生じることがあった。   However, in the conventional emission spectroscopic analyzer having the configuration in which the measurement wavelength is automatically switched depending on the concentration of the actual sample as described above, even if the spectral interference occurs at the selected measurement wavelength, The measurement was executed as it was regardless. As a result, only analysis with low accuracy can be performed, or remeasurement may be required.

このような従来の発光分光分析装置の動作を具体的に説明する。例えば、図4に示す例において、測定波長Lと測定波長Hの切り換え濃度が1.0ppmと設定されており、測定波長Lによって(ここでは測定波長Lを使用しているが、測定波長Hを使用しても構わない。)求めた測定値が1.0ppm以下の場合には測定波長Lを使用し、測定値が1.0ppmを超えた場合には測定波長Hが使用されるように自動的に判断されるとする。
このとき、測定波長Lを用いて測定した試料の濃度が0.6ppmであったとする。この値は設定されている切換濃度の1.0ppm以下であるために、測定波長Lを用いて測定が実行されてしまう。しかし、この測定波長Lでは分光干渉の影響を受けて測定精度が低下し、濃度測定領域が狭くなっているため、分光干渉の影響がなく、より高精度な分析が可能な測定波長Hを用いて測定を行う方が好ましい。
The operation of such a conventional emission spectroscopic analyzer will be specifically described. For example, in the example shown in FIG. 4, the switching concentration between the measurement wavelength L and the measurement wavelength H is set to 1.0 ppm. Depending on the measurement wavelength L (the measurement wavelength L is used here, the measurement wavelength H is used) If the measured value obtained is 1.0 ppm or less, the measured wavelength L is used. If the measured value exceeds 1.0 ppm, the measured wavelength H is automatically determined to be used. Suppose that
At this time, it is assumed that the concentration of the sample measured using the measurement wavelength L is 0.6 ppm. Since this value is 1.0 ppm or less of the set switching concentration, measurement is performed using the measurement wavelength L. However, the measurement wavelength L is affected by the spectral interference and the measurement accuracy is reduced, and the concentration measurement region is narrowed. Therefore, the measurement wavelength H is used which is not influenced by the spectral interference and enables more accurate analysis. It is preferable to perform measurement.

そこで、本発明が解決しようとする課題は、複数の測定波長のうちのいずれか1つを用いて或る元素の定量分析を行う発光分光分析装置において、分光干渉の影響を考慮した、最も高い精度で以て定量分析を行うことができる測定波長を自動的に選択することが可能な構成及び分析方法を提供することである。   Therefore, the problem to be solved by the present invention is the highest in consideration of the influence of spectral interference in an emission spectroscopic analyzer that performs quantitative analysis of a certain element using any one of a plurality of measurement wavelengths. It is an object of the present invention to provide a configuration and an analysis method capable of automatically selecting a measurement wavelength capable of performing quantitative analysis with accuracy.

上記課題を解決するために成された本発明に係る発光分光分析方法は、
試料を励起して該試料に含まれる目的元素に固有の波長を有する光を放出させ、その光を分光測定して取得したスペクトルに基づき前記目的元素の定量分析を行う発光分光分析方法において、
種々の元素毎に、それぞれが所定の濃度測定領域を有し、該濃度測定領域が相互に重なり合う複数の測定波長を予め設定しておき、
分析対象試料について取得したスペクトルと分析目的元素に応じて、各測定波長について共存元素の干渉に基づく測定精度を算出し、
各測定波長について、前記算出された測定精度に基づき、前記濃度測定領域を補正した干渉後濃度測定領域を決定し、
前記目的元素の濃度が前記干渉後濃度測定領域に含まれる測定波長のうち、算出された測定精度が最も高い測定波長による定量分析値を選択する
ことを特徴とする。
An emission spectroscopic analysis method according to the present invention made to solve the above problems is as follows.
In an emission spectroscopic analysis method for exciting a sample to emit light having a wavelength specific to the target element contained in the sample, and performing quantitative analysis of the target element based on a spectrum obtained by spectroscopic measurement of the light,
For each of the various elements, each has a predetermined concentration measurement region, and a plurality of measurement wavelengths in which the concentration measurement regions overlap each other are set in advance,
Calculate the measurement accuracy based on the interference of coexisting elements for each measurement wavelength according to the spectrum acquired for the sample to be analyzed and the analysis target element,
For each measurement wavelength, based on the calculated measurement accuracy, determine a post-interference concentration measurement region that has corrected the concentration measurement region,
The quantitative analysis value at the measurement wavelength with the highest calculated measurement accuracy is selected from the measurement wavelengths in which the concentration of the target element is included in the post-interference concentration measurement region.

また、上記課題を解決するために成された本発明に係る発光分光分析装置は、上記発光分光分析方法を具現化した装置であって、
試料を励起して該試料に含まれる目的元素に固有の波長を有する光を放出させ、その光を分光測定して取得したスペクトルに基づき前記目的元素の定量分析を行う発光分光分析装置において、
種々の元素毎に、複数の測定波長及び該測定波長による濃度測定領域が保存された測定波長データベースと、
分析対象試料について取得したスペクトルと分析目的元素に応じて、各測定波長について共存元素の干渉に基づく測定精度を算出する測定精度算出手段と、
各測定波長について、前記算出された測定精度に基づき、前記濃度測定領域を補正した干渉後濃度測定領域を決定する干渉後濃度測定領域決定手段と、
前記目的元素の濃度が前記干渉後濃度測定領域に含まれる測定波長のうち、算出された測定精度が最も高い測定波長による定量分析値を選択する測定波長選択手段と、
を含むことを特徴とする。
Further, an emission spectroscopic analysis apparatus according to the present invention made to solve the above problems is an apparatus that embodies the above-mentioned emission spectroscopic analysis method,
In an emission spectroscopic analyzer for performing quantitative analysis of the target element based on a spectrum obtained by exciting the sample to emit light having a wavelength specific to the target element contained in the sample and spectroscopically measuring the light,
A measurement wavelength database in which a plurality of measurement wavelengths and concentration measurement regions based on the measurement wavelengths are stored for each of various elements;
A measurement accuracy calculation means for calculating a measurement accuracy based on interference of coexisting elements for each measurement wavelength according to a spectrum acquired for an analysis target sample and an analysis target element;
For each measurement wavelength, based on the calculated measurement accuracy, a post-interference concentration measurement region determination unit that determines a post-interference concentration measurement region that has corrected the concentration measurement region;
Measurement wavelength selection means for selecting a quantitative analysis value with the highest measurement accuracy calculated from the measurement wavelengths in which the concentration of the target element is included in the post-interference concentration measurement region,
It is characterized by including.

本発明に係る発光分光分析方法及び発光分光分析装置は、ある元素の定量分析を行うにあたり、目的とする元素の濃度を測定することが可能な複数の測定波長のそれぞれに関して、分光干渉影響を考慮した測定精度を求め、次いでその測定精度に基づき干渉後の測定波長の濃度測定領域を決定した上で、どの測定波長を用いるのが最適かを自動的に決定することができるため、測定が一度で終了する。また、このような自動化により、分析に不慣れな作業者であっても最適な測定波長でもって適切な分析を行うことが可能となる。   The emission spectroscopic analysis method and the emission spectroscopic analysis apparatus according to the present invention consider spectral interference effects for each of a plurality of measurement wavelengths capable of measuring the concentration of a target element in performing quantitative analysis of a certain element. Measurement accuracy, and after determining the concentration measurement region of the measurement wavelength after interference based on the measurement accuracy, it is possible to automatically determine which measurement wavelength is most suitable for use. End with. Further, by such automation, even an operator who is unfamiliar with analysis can perform an appropriate analysis with an optimum measurement wavelength.

以下、本発明の一実施例によるICP発光分光分析装置について図面を参照しつつ説明する。   Hereinafter, an ICP emission spectroscopic analyzer according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施例であるICP発光分光分析装置の概略構成図である。このICP発光分光分析装置はマルチチャンネル型の装置である。   FIG. 1 is a schematic configuration diagram of an ICP emission spectroscopic analyzer according to the present embodiment. This ICP emission spectroscopic analyzer is a multi-channel type apparatus.

図1において、制御部21により制御されるオートサンプラ11から供給された試料溶液は、図示しないネブライザで霧化された後、発光部10に導入されプラズマ炎によって励起される。これにより発生した光は集光レンズ12により集光され、スリット13を通過して回折格子14に送られる。回折格子14で波長分散された光は、例えばリニアCCDセンサ等のマルチチャンネル型検出器15でほぼ同時に検出される。具体的には、ここでは検出器15の受光面の両端部にそれぞれ到達する波長λ1、λ2の間の光をほぼ同時に検出し、各受光素子で光電変換した検出信号をデータ処理部20へと送る。   In FIG. 1, the sample solution supplied from the autosampler 11 controlled by the control unit 21 is atomized by a nebulizer (not shown) and then introduced into the light emitting unit 10 and excited by a plasma flame. The light generated thereby is collected by the condenser lens 12, passes through the slit 13, and is sent to the diffraction grating 14. The light wavelength-dispersed by the diffraction grating 14 is detected almost simultaneously by a multi-channel detector 15 such as a linear CCD sensor. Specifically, here, the light between the wavelengths λ1 and λ2 reaching the both ends of the light receiving surface of the detector 15 is detected almost simultaneously, and the detection signal photoelectrically converted by each light receiving element is sent to the data processing unit 20. send.

データ処理部20は該検出信号をデジタルデータ(スペクトルデータ)に変換し、所定のアルゴリズムに従って演算処理することにより、試料の定性分析や定量分析を実行する。そのために、データ処理部20はスペクトルデータを記憶するスペクトルデータメモリ201と波長データベース202とを内蔵している。上記各部の動作は制御部21により統括的に制御されており、制御部21とデータ処理部20の機能の多くは汎用のパーソナルコンピュータ22上で所定のプログラムを実行することによって達成される。また、パーソナルコンピュータ22には、操作者が分析条件等を入力するためのキーボード等から成る入力部23と、測定結果等を表示するためのディスプレイ等から成る表示部24とが接続されている。   The data processing unit 20 converts the detection signal into digital data (spectral data) and performs arithmetic processing according to a predetermined algorithm, thereby executing qualitative analysis and quantitative analysis of the sample. For this purpose, the data processing unit 20 incorporates a spectrum data memory 201 for storing spectrum data and a wavelength database 202. The operations of the above-described units are comprehensively controlled by the control unit 21, and many of the functions of the control unit 21 and the data processing unit 20 are achieved by executing predetermined programs on a general-purpose personal computer 22. The personal computer 22 is connected to an input unit 23 including a keyboard for an operator to input analysis conditions and the like, and a display unit 24 including a display for displaying measurement results and the like.

また、上記構成を有する本実施例のICP発光分光分析装置では、測定精度算出手段203、及び干渉後濃度測定領域決定手段204によって得られた結果に基づき最終的に使用する測定波長を選択する(測定波長選択手段205)。これら測定精度算出手段203、干渉後濃度測定領域決定手段204、及び測定波長選択手段205は、いずれもデータ処理部20がそれぞれ所定の処理を行うことにより実現される機能である。   Further, in the ICP emission spectroscopic analysis apparatus of the present embodiment having the above-described configuration, the measurement wavelength to be finally used is selected based on the results obtained by the measurement accuracy calculation unit 203 and the post-interference concentration measurement region determination unit 204 ( Measurement wavelength selection means 205). The measurement accuracy calculation unit 203, the post-interference density measurement region determination unit 204, and the measurement wavelength selection unit 205 are functions realized by the data processing unit 20 performing predetermined processing.

波長データベース202には、各種の元素毎に、その元素に適した測定波長及び該測定波長の濃度測定領域(測定波長データベース206)、該測定波長に対し分光干渉の影響を与え得る共存元素のスペクトルを取得するための補正用波長、及び、該共存元素による前記測定波長における干渉補正係数、が検索が容易であるようにデータベース化されて格納されている。これらのデータは分析装置の機種毎に固有のものであるから、ICP発光分光分析装置の機種毎に実測され、予めデータベース202に格納されている。   The wavelength database 202 includes a measurement wavelength suitable for each element, a concentration measurement region of the measurement wavelength (measurement wavelength database 206), and a spectrum of coexisting elements that can affect spectral interference with the measurement wavelength. Are stored in a database so that the search is easy, and the interference correction coefficient at the measurement wavelength by the coexisting element is easy to retrieve. Since these data are unique to each model of the analyzer, they are actually measured for each model of the ICP emission spectral analyzer and stored in the database 202 in advance.

元素毎に設定される測定波長、及び、その測定波長の濃度測定領域について、図2により説明する。図2に示す例では、測定波長a、測定波長b、測定波長c、測定波長dの4つの測定波長が設定されている。各測定波長の濃度測定領域はそれぞれ、0.05〜1.0、0.1〜2.0、0.5〜10、1.0〜20ppmであり、これらの測定波長の濃度測定領域はこの分析装置において測定不能な濃度が存在しないように相互に重なり合っている。これらの測定波長a〜d及び各測定波長の濃度測定領域は、分析者が分析開始時に入力部23を用いて目的元素を入力することにより、データ処理部20によって測定波長データベース206から読み出される。
なお、本例では測定波長は4つとしているが、本発明においては、設定される測定波長の個数は限定されない。また、濃度測定領域が略同一であるような複数の測定波長が設定されていても構わない。
The measurement wavelength set for each element and the concentration measurement region of the measurement wavelength will be described with reference to FIG. In the example shown in FIG. 2, four measurement wavelengths, measurement wavelength a, measurement wavelength b, measurement wavelength c, and measurement wavelength d, are set. The concentration measurement areas at each measurement wavelength are 0.05 to 1.0, 0.1 to 2.0, 0.5 to 10, and 1.0 to 20 ppm, respectively, so that there are no unmeasureable concentrations in this analyzer. They overlap each other. The measurement wavelength a to d and the concentration measurement region of each measurement wavelength are read from the measurement wavelength database 206 by the data processing unit 20 when the analyst inputs the target element using the input unit 23 at the start of analysis.
In this example, the number of measurement wavelengths is four, but in the present invention, the number of measurement wavelengths to be set is not limited. A plurality of measurement wavelengths may be set so that the concentration measurement regions are substantially the same.

いま、本例のICP発光分光分析装置において測定を行ったとき、測定波長aによって算出される元素の濃度が0.3ppmであるとする(ここで、測定波長bを用いて濃度を算出しても構わない。ただし、試料の濃度を濃度測定領域に含んでいない測定波長c及びdを用いることはできない。)。このとき、使用する(すなわち、最終的に採用する定量分析の値を算出する)測定波長の候補としては、0.3ppmを濃度測定領域内に有する測定波長a及び測定波長bの2つ考えられるが、共存元素による分光干渉の影響を考慮するために、ここで、データ処理部20が、測定波長a及び測定波長bの測定精度(分光干渉を考慮した測定感度)を算出する。   Now, when the measurement is performed in the ICP emission spectroscopic analyzer of this example, the concentration of the element calculated by the measurement wavelength a is 0.3 ppm (here, even if the concentration is calculated using the measurement wavelength b) However, measurement wavelengths c and d that do not include the concentration of the sample in the concentration measurement region cannot be used.) At this time, there are two possible measurement wavelength candidates to be used (that is, to calculate the value of the quantitative analysis to be finally adopted): measurement wavelength a and measurement wavelength b having 0.3 ppm in the concentration measurement region. In order to consider the influence of spectral interference due to coexisting elements, the data processing unit 20 calculates the measurement accuracy (measurement sensitivity in consideration of spectral interference) of the measurement wavelength a and the measurement wavelength b.

なお、この測定精度算出手段203によって実行される測定精度の算出には従来の方法を用いることができるが、とりわけ、本出願人が特願2005−97858号により既に提案しているような方法を用いるとよい。この方法によれば、標準試料の作成を行うことなく共存元素による干渉の影響の度合いを知ることができるため、極めて迅速に分光干渉を考慮した測定精度を算出することができる。   Note that a conventional method can be used to calculate the measurement accuracy executed by the measurement accuracy calculation unit 203, and in particular, a method that the applicant has already proposed in Japanese Patent Application No. 2005-97858. Use it. According to this method, it is possible to know the degree of influence of interference due to coexisting elements without creating a standard sample, and therefore it is possible to calculate the measurement accuracy in consideration of spectral interference very quickly.

また、特願2005−97858号に記載の測定精度の算出方法において、波長データベース202に含まれる、測定波長に対し分光干渉の影響を与え得る共存元素のスペクトルを取得するための補正用波長や、該共存元素による前記測定波長における干渉補正係数を読み出して利用する構成とするのが好ましい。
この構成によれば、分析者が分析したい目的元素を設定すると、データベースからその目的元素のスペクトルに影響を与える共存元素が明らかになる。従って、分析者が想定していない共存元素が存在していたとしても、しかも、その共存元素が複数あったとしても、測定精度の算出をより正確に行うことが可能となる。
Further, in the calculation method of measurement accuracy described in Japanese Patent Application No. 2005-97858, a correction wavelength for acquiring a spectrum of a coexisting element that can have an influence of spectral interference on the measurement wavelength, included in the wavelength database 202, It is preferable that the interference correction coefficient at the measurement wavelength by the coexisting element is read and used.
According to this configuration, when an analyst sets a target element to be analyzed, coexisting elements that affect the spectrum of the target element are clarified from the database. Therefore, even if there are coexisting elements that are not assumed by the analyst, and even if there are a plurality of coexisting elements, the measurement accuracy can be calculated more accurately.

ここで、上に述べた特願2005−97858号に記載の方法を利用した測定精度の算出方法の概略を説明する。   Here, an outline of a method for calculating the measurement accuracy using the method described in Japanese Patent Application No. 2005-97858 described above will be described.

まず、分析者は入力部23より目的元素を特定する。この入力を受けたデータ処理部20では、まず前記波長データベース202を参照して、設定された目的元素の測定波長、干渉元素の補正用波長、及び干渉補正係数を読み出す。
次にデータ処理部20は、スペクトルデータメモリ201に保存されているデータの中で測定波長におけるスペクトル強度を取得し、これに対しバックグラウンド補正を行うことによって、バックグラウンドノイズを除いた強度値を算出する。
次にデータ処理部20は、スペクトルデータメモリ201に保存されているデータの中で、補正用波長におけるスペクトル強度を取得し、これに対し上記と同様の手法でバックグラウンド補正を行うことによってバックグラウンドノイズを差し引いた強度値を算出する。
その後データ処理部20は、バックグラウンド補正後の共存元素の強度値に前記干渉補正係数を乗じることにより、測定波長においてバックグラウンド補正後の目的元素の強度値に含まれる干渉量を算出する。それから、求めた干渉量に所定の係数を乗じ、その値とバックグラウンド補正後の目的元素の強度値とから、測定精度を算出する。
First, the analyst specifies the target element from the input unit 23. Upon receiving this input, the data processing unit 20 first reads the set measurement wavelength of the target element, correction wavelength of the interference element, and interference correction coefficient with reference to the wavelength database 202.
Next, the data processing unit 20 acquires the spectrum intensity at the measurement wavelength in the data stored in the spectrum data memory 201, and performs background correction on the spectrum intensity, thereby obtaining an intensity value excluding background noise. calculate.
Next, the data processing unit 20 obtains the spectral intensity at the correction wavelength from the data stored in the spectral data memory 201, and performs background correction on this by using the same method as described above, thereby obtaining the background. The intensity value minus the noise is calculated.
Thereafter, the data processing unit 20 calculates the amount of interference included in the intensity value of the target element after background correction at the measurement wavelength by multiplying the intensity value of the coexisting element after background correction by the interference correction coefficient. Then, the obtained interference amount is multiplied by a predetermined coefficient, and the measurement accuracy is calculated from the value and the intensity value of the target element after the background correction.

このようにして算出された測定精度は定量下限値にほかならない。そこで、次いでデータ処理部20は、この算出された測定精度に基づき、測定波長a及び測定波長bの干渉後濃度測定領域(すなわち、分光干渉を考慮した濃度測定領域)を決定する。   The measurement accuracy calculated in this way is nothing but the lower limit of quantification. Therefore, the data processing unit 20 then determines a post-interference concentration measurement region (that is, a concentration measurement region in consideration of spectral interference) of the measurement wavelength a and the measurement wavelength b based on the calculated measurement accuracy.

続いてデータ処理部20は、自身の機能の一つとして有する測定波長選択手段205を実行することにより、目的元素の濃度が干渉後濃度測定領域に含まれる測定波長のうち、実試料の定量を最も高精度に行うことができる測定波長を選択する。この選択は、例えば以下のようにして行う。   Subsequently, the data processing unit 20 executes the measurement wavelength selection unit 205 having one of its functions, thereby quantifying the actual sample out of the measurement wavelengths in which the concentration of the target element is included in the post-interference concentration measurement region. The measurement wavelength that can be performed with the highest accuracy is selected. This selection is performed as follows, for example.

上記例において、測定精度が算出された結果、測定波長a及び測定波長bのいずれにも分光干渉の影響がほとんどなく、両者ともに濃度測定領域と干渉後濃度測定領域とがほとんど変化していないことが明らかとなった場合には、測定波長aの方が測定波長bよりも定量下限値が小さく(測定波長aの下限値は0.05ppm、測定波長bの下限値は0.1ppm)、高精度な測定が可能なため、測定波長aによる測定値を採用する。   In the above example, as a result of the measurement accuracy being calculated, there is almost no influence of spectral interference on both the measurement wavelength a and the measurement wavelength b, and the density measurement region and the density measurement region after interference have hardly changed in both cases. Is clear, the measurement wavelength a is smaller in the lower limit of quantification than the measurement wavelength b (the lower limit of the measurement wavelength a is 0.05 ppm, the lower limit of the measurement wavelength b is 0.1 ppm), and is highly accurate. Since measurement is possible, the measurement value by the measurement wavelength a is adopted.

また、図2下段に示すように、測定精度が算出された結果、測定波長aに分光干渉が生じ、測定波長aによる濃度測定領域が0.05〜1.0ppmから0.4〜1.0ppm(干渉後濃度測定領域)になったとする。この場合には、測定波長aの濃度測定領域にはもはや実試料の濃度が含まれない。従って、測定波長bによる測定値を採用する。   Further, as shown in the lower part of FIG. 2, as a result of calculating the measurement accuracy, spectral interference occurs in the measurement wavelength a, and the concentration measurement region depending on the measurement wavelength a is 0.05 to 1.0 ppm to 0.4 to 1.0 ppm (the concentration measurement region after interference) ). In this case, the concentration measurement region of the measurement wavelength a no longer includes the actual sample concentration. Therefore, the measurement value by the measurement wavelength b is adopted.

以上のように、本実施例に係るICP発光分光分析装置では、目的元素の定量分析を行ううえで最適な(最も高精度な測定が可能な)波長が自動的に選択される。   As described above, in the ICP emission spectroscopic analyzer according to the present embodiment, the optimum wavelength (which enables the most accurate measurement) is automatically selected for quantitative analysis of the target element.

なお、上記実施例は本発明の一例に過ぎず、本発明の精神内で適宜に変更、修正、追加、改良を行っても構わないことは明らかである。例えばICP発光分光分析装置以外にも、レーザ励起プラズマ発光分光分析装置や固体発光分光分析装置、グロー放電発光分光分析装置等、様々な発光分光分析装置に適用することが可能である。
The above embodiment is merely an example of the present invention, and it is obvious that changes, modifications, additions and improvements may be made as appropriate within the spirit of the present invention. For example, in addition to the ICP emission spectroscopic analysis apparatus, the present invention can be applied to various emission spectroscopic analysis apparatuses such as a laser excitation plasma emission spectroscopic analysis apparatus, a solid state emission spectroscopic analysis apparatus, and a glow discharge emission spectroscopic analysis apparatus.

本発明に係る発光分光分析装置の一例であるICP発光分光分析装置の構成模式図。1 is a schematic configuration diagram of an ICP emission spectroscopic analysis apparatus which is an example of an emission spectroscopic analysis apparatus according to the present invention. 本発明の測定波長の濃度測定領域の一例を示す図。The figure which shows an example of the density | concentration measurement area | region of the measurement wavelength of this invention. ICP発光分光分析装置で取得される発光スペクトルの一例を示す図。The figure which shows an example of the emission spectrum acquired with an ICP emission-spectral-analysis apparatus. 従来の測定波長の濃度測定領域の例を示す図。The figure which shows the example of the density | concentration measurement area | region of the conventional measurement wavelength.

符号の説明Explanation of symbols

10…発光部
11…オートサンプラ
12…集光レンズ
13…スリット
14…回折格子
15…マルチチャンネル型検出器
20…データ処理部
201…スペクトルデータメモリ
202…波長データベース
203…測定精度算出手段
204…干渉後濃度測定領域決定手段
205…測定波長選択手段
206…測定波長データベース
21…制御部
22…パーソナルコンピュータ
23…入力部
24…表示部


DESCRIPTION OF SYMBOLS 10 ... Light emission part 11 ... Autosampler 12 ... Condensing lens 13 ... Slit 14 ... Diffraction grating 15 ... Multichannel type detector 20 ... Data processing part 201 ... Spectral data memory 202 ... Wavelength database 203 ... Measurement accuracy calculation means 204 ... Interference Post-concentration measurement region determination means 205 ... measurement wavelength selection means 206 ... measurement wavelength database 21 ... control section 22 ... personal computer 23 ... input section 24 ... display section


Claims (2)

試料を励起して該試料に含まれる目的元素に固有の波長を有する光を放出させ、その光を分光測定して取得したスペクトルに基づき前記目的元素の定量分析を行う発光分光分析方法において、
種々の元素毎に、それぞれが所定の濃度測定領域を有し、該濃度測定領域が相互に重なり合う複数の測定波長を予め設定しておき、
分析対象試料について取得したスペクトルと分析目的元素に応じて、各測定波長について共存元素の干渉に基づく測定精度を算出し、
各測定波長について、前記算出された測定精度に基づき、前記濃度測定領域を補正した干渉後濃度測定領域を決定し、
前記目的元素の濃度が前記干渉後濃度測定領域に含まれる測定波長のうち、算出された測定精度が最も高い測定波長による定量分析値を選択する
ことを特徴とする発光分光分析方法。
In an emission spectroscopic analysis method for exciting a sample to emit light having a wavelength specific to the target element contained in the sample, and performing quantitative analysis of the target element based on a spectrum obtained by spectroscopic measurement of the light,
For each of the various elements, each has a predetermined concentration measurement region, and a plurality of measurement wavelengths in which the concentration measurement regions overlap each other are set in advance,
Calculate the measurement accuracy based on the interference of coexisting elements for each measurement wavelength according to the spectrum acquired for the sample to be analyzed and the analysis target element,
For each measurement wavelength, based on the calculated measurement accuracy, determine a post-interference concentration measurement region that has corrected the concentration measurement region,
An emission spectroscopic analysis method comprising: selecting a quantitative analysis value at a measurement wavelength having the highest measurement accuracy among measurement wavelengths in which the concentration of the target element is included in the post-interference concentration measurement region.
試料を励起して該試料に含まれる目的元素に固有の波長を有する光を放出させ、その光を分光測定して取得したスペクトルに基づき前記目的元素の定量分析を行う発光分光分析装置において、
種々の元素毎に、複数の測定波長及び該測定波長による濃度測定領域が保存された測定波長データベースと、
分析対象試料について取得したスペクトルと分析目的元素に応じて、各測定波長について共存元素の干渉に基づく測定精度を算出する測定精度算出手段と、
各測定波長について、前記算出された測定精度に基づき、前記濃度測定領域を補正した干渉後濃度測定領域を決定する干渉後濃度測定領域決定手段と、
前記目的元素の濃度が前記干渉後濃度測定領域に含まれる測定波長のうち、算出された測定精度が最も高い測定波長による定量分析値を選択する測定波長選択手段と、
を含むことを特徴とする発光分光分析装置。


In an emission spectroscopic analyzer for performing quantitative analysis of the target element based on a spectrum obtained by exciting the sample to emit light having a wavelength specific to the target element contained in the sample and spectroscopically measuring the light,
A measurement wavelength database in which a plurality of measurement wavelengths and concentration measurement regions based on the measurement wavelengths are stored for each of various elements;
A measurement accuracy calculation means for calculating a measurement accuracy based on interference of coexisting elements for each measurement wavelength according to a spectrum acquired for an analysis target sample and an analysis target element;
For each measurement wavelength, based on the calculated measurement accuracy, a post-interference concentration measurement region determination unit that determines a post-interference concentration measurement region that has corrected the concentration measurement region;
Measurement wavelength selection means for selecting a quantitative analysis value with the highest measurement accuracy calculated from the measurement wavelengths in which the concentration of the target element is included in the post-interference concentration measurement region,
An emission spectroscopic analyzer comprising:


JP2005185949A 2005-06-27 2005-06-27 Emission spectroscopy analysis method and emission spectroscopy analyzer Active JP4754888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185949A JP4754888B2 (en) 2005-06-27 2005-06-27 Emission spectroscopy analysis method and emission spectroscopy analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185949A JP4754888B2 (en) 2005-06-27 2005-06-27 Emission spectroscopy analysis method and emission spectroscopy analyzer

Publications (2)

Publication Number Publication Date
JP2007003428A JP2007003428A (en) 2007-01-11
JP4754888B2 true JP4754888B2 (en) 2011-08-24

Family

ID=37689200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185949A Active JP4754888B2 (en) 2005-06-27 2005-06-27 Emission spectroscopy analysis method and emission spectroscopy analyzer

Country Status (1)

Country Link
JP (1) JP4754888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131211B2 (en) * 2009-01-20 2013-01-30 株式会社島津製作所 Optical emission spectrometer
JP5251816B2 (en) * 2009-09-30 2013-07-31 株式会社島津製作所 Luminescence analyzer
CN102879385A (en) * 2012-04-01 2013-01-16 中国航空工业集团公司北京航空材料研究院 Method for measuring content of trace element calcium in pure molybdenum
JP6815736B2 (en) * 2016-03-11 2021-01-20 株式会社住化分析センター Quantitators, quantification methods, control programs, and recording media

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151838A (en) * 1986-12-16 1988-06-24 Shimadzu Corp Emission spectroanalyser
JPH0690133B2 (en) * 1989-02-27 1994-11-14 株式会社島津製作所 Optical emission spectroscopy Spectral line selection support device
JPH0721453B2 (en) * 1990-03-19 1995-03-08 株式会社日立製作所 Scanning optical emission spectrometer
JP2812063B2 (en) * 1992-04-28 1998-10-15 住友金属鉱山株式会社 Analysis method of reaction solution in nickel purification reaction tank
JP2002310913A (en) * 2001-04-19 2002-10-23 Shin Etsu Handotai Co Ltd Method for quantitatively analyzing tin in organic acid solution

Also Published As

Publication number Publication date
JP2007003428A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5131211B2 (en) Optical emission spectrometer
JP4324701B2 (en) Optical emission spectrometer
JP4506554B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
JP2008522171A (en) Spectrophotometer
JP4754888B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
JP2011232106A (en) Icp optical emission spectrometer
JP6507757B2 (en) Foreign substance analyzer
JP5204655B2 (en) Methods for qualitative and quantitative analysis by emission spectroscopy
JP5387536B2 (en) How to create a calibration curve
JPH01214723A (en) Spectral fluorescence photometer
JP2006153460A (en) Fluorescence detection method, detection device and fluorescence detection program
JP4506524B2 (en) Optical emission spectrometer
JP4626572B2 (en) Optical emission spectrometer
JP4600228B2 (en) ICP emission spectroscopic analysis method and ICP emission spectroscopic analysis apparatus
JP6696458B2 (en) Optical emission spectrometer
JP2007024679A (en) Analyzer and analyzing processing method
JPH04157350A (en) Fluorescent measurement apparatus
JPH04138343A (en) Fluorescence spectrophotometer
JP6996630B2 (en) Emission analyzer and its maintenance method
JPH07128260A (en) Fluorescent x-ray analyzing device
JP2004527767A (en) Optical detection of chemical species in enriched media
JP3128163U (en) Spectrophotometer
JP6973123B2 (en) Analytical control device, analytical device, analytical control method and analytical method
JP2023131244A (en) Analysis method using spectrum measurement device
JPH09127026A (en) Fluorescent x-ray analytical method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4754888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3