JP2812063B2 - Analysis method of reaction solution in nickel purification reaction tank - Google Patents

Analysis method of reaction solution in nickel purification reaction tank

Info

Publication number
JP2812063B2
JP2812063B2 JP13433892A JP13433892A JP2812063B2 JP 2812063 B2 JP2812063 B2 JP 2812063B2 JP 13433892 A JP13433892 A JP 13433892A JP 13433892 A JP13433892 A JP 13433892A JP 2812063 B2 JP2812063 B2 JP 2812063B2
Authority
JP
Japan
Prior art keywords
analysis
reaction solution
reaction
solution
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13433892A
Other languages
Japanese (ja)
Other versions
JPH05307004A (en
Inventor
隆雄 伊藤
貞美 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP13433892A priority Critical patent/JP2812063B2/en
Publication of JPH05307004A publication Critical patent/JPH05307004A/en
Application granted granted Critical
Publication of JP2812063B2 publication Critical patent/JP2812063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はニッケル精製反応槽の反
応溶液の迅速な組成分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quickly analyzing the composition of a reaction solution in a nickel purification reactor.

【0002】[0002]

【従来の技術】ニッケル精製のプロセスは大きく分けて
ニッケルマット等原料の粉砕、浸出、浄液、給調、電解
の工程になっており、一定の品質の電気ニッケルを得る
ためには各種反応槽の反応溶液の組成分析を行ない適切
なプロセスコントロールをしなければならない。
2. Description of the Related Art The process of nickel refining is roughly divided into the steps of pulverization, leaching, liquid purification, supply adjustment, and electrolysis of raw materials such as nickel matte. The composition of the reaction solution must be analyzed and appropriate process control must be performed.

【0003】従来、反応槽の反応溶液の組成分析方法と
しては成分の濃度範囲が非常に広いため、目的成分の濃
度に合わせ、主成分は滴定法やX線分析法などで分析
し、0.0ng/リットル以下の微量成分については主
成分を分離した後、比色分析や原子吸光分析あるいは多
種の試薬のみを用いてマトリックスマッチングさせた標
準試料を用いた直接原子吸光分析などが行なわれてい
る。このように反応槽の組成分析方法はいくつかの分析
方法を併用しているため分析時間を要するだけではな
く、精度の高い分析結果を迅速にプロセスにフィードバ
ックするという面で問題がある。
Conventionally, as a method for analyzing the composition of a reaction solution in a reaction tank, the concentration range of the components is very wide. Therefore, the main component is analyzed by titration or X-ray analysis in accordance with the concentration of the target component. For a trace component of 0 ng / liter or less, after separating the main component, colorimetric analysis, atomic absorption analysis, direct atomic absorption analysis using a standard sample subjected to matrix matching using only various kinds of reagents, and the like are performed. . As described above, the method of analyzing the composition of the reaction tank uses several analysis methods in combination, which requires not only an analysis time but also a problem in that a highly accurate analysis result is promptly fed back to the process.

【0004】一方最近、溶液の高感度かつ高精度分析機
器として高周波誘導結合プラズマ(以後ICPと略す)
発光分光分析装置が各分野に急速に普及されている。こ
の装置は原子吸光に比べ、高感度(ほとんどの元素につ
いてppbレベルの分析が可能)、検量線の直線領域が
広い(通常4桁から5桁)、高温度のプラズマ発光を利
用するので測定時における化学的な干渉がほとんど無
い、硫黄やりんの分析も可能であるなどの特長を有して
いる。従って、ニッケル精製反応槽の反応溶液の迅速な
組成分析方法への応用が期待されるが、主成分分析には
ほとんど問題がないものの、微量成分については、IC
P発光測定時における共存元素の影響により幾つかの問
題がある。
On the other hand, recently, a high-frequency inductively coupled plasma (hereinafter abbreviated as ICP) has been used as a highly sensitive and highly accurate analyzer of a solution.
Emission spectrometers are rapidly spreading in various fields. Compared to atomic absorption, this device has higher sensitivity (ppb level analysis is possible for most elements), wide linear range of calibration curve (usually 4 to 5 digits), and uses high temperature plasma emission to measure Has little chemical interference and is capable of analyzing sulfur and phosphorus. Therefore, it is expected to be applied to a rapid method for analyzing the composition of the reaction solution in the nickel purification reaction tank.
There are some problems due to the influence of coexisting elements when measuring P emission.

【0005】その一つは、試料溶液の粘度および比重差
から発生する物理的な干渉である。これは、試料溶液中
に存在する金属塩や酸によって生じるものであり、液を
霧にして導入する際の効率を左右させる。例えば、酸が
大量に含まれる試料では溶液の吸引速度が低下するとと
もに霧化効率も変化する。そのため、分析試料の液性
標準試料液性異なる場合、誤った分析値を得る可能
性がある。特に、微量成分を分析する場合にはICP
発光分光分析装置の感度上溶液の希釈倍率を大きくで
きないため、この影響を受けやすい。次は、原子にエネ
ルギーをあたえる過程で発生する励起干渉である。この
場合も試料中に目的成分以外の大量の共存元素(元素
の種類によって異なるが、目安としては目的元素濃度の
1000倍量以上)が存在する時に生じるものであり、
共存元素の励起エネルギーに作用されているものと考え
られるが、詳細については明らかになっていない。傾向
としては目的元素の発光を抑制する場合が多く、前述と
同様に微量成分を分析するうえで注意が必要である。最
は、スペクトル線を測定する時に生じる光学的な干渉
である。ICP発光分析では目的とする元素固有のスペ
クトル線強度を測定しているが、元素によっては数千本
というスペクトル線をもっているものもあり、測定時に
目的元素以外のスペクトルが重なってくる場合がある。
通常はこれらの影響を受けない分析線を選択するが、多
種の共存元素や大量の共存元素が存在すると分析線の
変更では影響防げない場合も出てくる。影響は妨害元
素の濃度と比例してプラスとなって現れる。
One of them is physical interference generated from a difference in viscosity and specific gravity of a sample solution. This is that caused by the metal salt or acid present in the sample solution, Ru is influence the efficiency in introducing in the liquid mist. For example, in a sample containing a large amount of acid, the suction speed of the solution decreases and the atomization efficiency changes. Therefore, if the liquid of the analysis sample is different from the liquid in the standard sample, there is a possibility of obtaining incorrect analysis. In particular, when analyzing trace components , ICP
Since the dilution ratio of the solution cannot be increased due to the sensitivity of the emission spectrometer, the sensitivity is easily affected. Next is excitation interference generated in the process of applying energy to atoms. In this case as well , it occurs when a large amount of coexisting elements other than the target component (depending on the type of the element, but as a guide, 1000 times or more the target element concentration) exist in the sample,
It is thought that it is affected by the excitation energy of the coexisting element, but the details are not clear. The tendency is to suppress the emission of the target element in many cases, and it is necessary to pay attention to the analysis of the trace components in the same manner as described above. The last is the optical interference that occurs when measuring spectral lines. In ICP emission spectrometry, the spectral line intensity specific to the target element is measured. However, some elements have several thousand spectral lines, and spectra other than the target element may overlap during measurement.
Normally, analysis lines that are not affected by these are selected. However, if there are many coexisting elements or a large amount of coexisting elements, there are cases where the effects can not be prevented by changing the analysis line. The effect appears positive in proportion to the concentration of the interfering element.

【0006】ICP発光測定時においてこのような問題
が発生した場合、その対策としては次の方法が代表的で
ある。まず、試料に化学的な前処理を施し共存元素と目
的元素とを分離する方法である。溶媒抽出、沈殿分離、
イオン交換分離等がそれに相当する。しかし、これらの
方法はいずれも前処理時間が長いため測定までに時間を
要するので、迅速分析には不向きである。次に、測定時
において用いる多種の試薬のみで作成した標準溶液に試
料と同じ濃度の影響する元素をさらに添加するマトリッ
クスマッチング法がある。しかし、この場合も組成が変
動しやすい試料にたいしては多種類の標準試料をつくら
ねばならず、標準試料の測定に時間がかかるとともに共
存元素の濃度を予め分析しなければならないという欠点
がある。従って、この方法もニッケル精製反応槽の反応
溶液の迅速な組成分析には不向きであった。
If such a problem occurs during ICP emission measurement, the following method is typically used as a countermeasure. First, there is a method of subjecting a sample to a chemical pretreatment to separate a coexisting element from a target element. Solvent extraction, precipitation separation,
Ion exchange separation corresponds to this. However, all of these methods require a long time for measurement due to a long pre-treatment time, and are not suitable for rapid analysis. Next, there is a matrix matching method in which an influence element having the same concentration as that of a sample is further added to a standard solution prepared only with various kinds of reagents used in measurement. However, also in this case, there are drawbacks in that many kinds of standard samples must be prepared for a sample whose composition is liable to fluctuate, so that it takes time to measure the standard sample and the concentration of coexisting elements must be analyzed in advance. Therefore, this method is also unsuitable for rapid composition analysis of the reaction solution in the nickel purification reaction tank.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記のような
従来の各種分析方法を併用する反応槽の反応溶液の組成
分析の欠点を解消して、分析精度を損なうことなく迅速
に分析結果をプロセスにフィードバックさせることがで
きるICP発光分光分析装置によるニッケル精製反応槽
の反応溶液の組成分析方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention eliminates the drawbacks of the composition analysis of a reaction solution in a reaction vessel using the above-mentioned various conventional analysis methods in combination, and allows the analysis results to be quickly obtained without impairing the analysis accuracy. It is an object of the present invention to provide a method for analyzing the composition of a reaction solution in a nickel purification reaction tank using an ICP emission spectrometer that can be fed back to a process.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに本発明によるニッケル精製反応槽の反応溶液の分
析方法は、ニッケル精製工程の各種反応槽の反応溶液を
高周波誘導結合プラズマ発光分析法により分析する際
に、検量線作成用標準試料としてニッケル精製反応槽か
ら採取されて組成が分析された反応溶液および/または
組成が分析された該反応溶液に既知量の目的成分を添加
した溶液を組成の変動範囲にわたって用意しておき、こ
れらの標準試料を用いて検量線を作成するようにした
に特徴がある。
In order to achieve the above object, a method for analyzing a reaction solution in a nickel purification reaction tank according to the present invention comprises the steps of: When analyzing by the method, use a nickel purification reaction tank as a standard sample for preparing a calibration curve .
A reaction solution that has been sampled and analyzed for composition and / or a solution obtained by adding a known amount of a target component to the reaction solution whose composition has been analyzed is prepared over the range of variation in composition.
A feature is that a calibration curve is prepared using these standard samples .

【0009】又、本発明によるニッケル精製反応槽の反
応溶液の分析方法は、ニッケル精製工程の各種反応槽の
反応溶液の分析および検量線を作成する際に、高周波誘
導結合プラズマ発光分光分析装置のネブライザーの動作
条件がキャリアガス流量0.7〜0.9リットル/mi
nである点に特徴がある。
Further, the method for analyzing a reaction solution in a nickel purification reaction tank according to the present invention is a method for analyzing a reaction solution in various reaction tanks in a nickel purification step and preparing a calibration curve. The operating condition of the nebulizer of the spectroscopic analyzer is a carrier gas flow rate of 0.7 to 0.9 liter / mi.
The feature is that it is n.

【0010】[0010]

【作用】本発明は前記の手段により前記の諸々な干渉を
排除して、前処理が無いICP発光分析法を行なうこと
により正確で迅速な分析が可能になったものである。
The present invention eliminates the above-mentioned various interferences by the above-mentioned means, and enables accurate and rapid analysis by performing ICP emission analysis without pretreatment.

【0011】標準(検量線)試料に用いる反応液は組成
の変動範囲をカバーするように採取し、従来の正確な分
析方法により濃度を求める。この時変動の少ない成分に
ついては、希釈または既知量の目的成分の標準添加操作
を行なう。標準試料数は共存元素補正の精度を左右する
ため、20試料以上が好ましい(標準試料数は後述する
校正方式により増やしても分析時間には影響しない)。
検量線の種類は、表1に示した様に反応槽の反応溶液の
組成範囲によるグループ分けを行なえば3〜4に絞るこ
とが可能である。従って、組成の類似する反応液の検量
線を共有できるので検量線の校正回数が減り、分析所要
時間の短縮と簡略化に効果がある。
A reaction solution used as a standard (calibration curve) sample is collected so as to cover the fluctuation range of the composition, and the concentration is determined by a conventional accurate analysis method. At this time, for components with little fluctuation, dilution or standard addition of a known amount of the target component is performed. Since the number of standard samples influences the accuracy of the coexistence element correction, it is preferable that the number of standard samples be 20 or more (even if the number of standard samples is increased by a calibration method described later, the analysis time is not affected).
As shown in Table 1, the type of the calibration curve can be narrowed to 3 to 4 by performing grouping according to the composition range of the reaction solution in the reaction tank. Therefore, since the calibration curves of reaction solutions having similar compositions can be shared, the number of calibrations of the calibration curves is reduced, which is effective in shortening and simplifying the time required for analysis.

【0012】[0012]

【表1】 [Table 1]

【0013】また、一連の測定の際に必要な検量線の再
校正には目的組成に類似した2水準の合成標準溶液を使
用することが可能であった。このことは、従来法によれ
ば毎回20試料以上の標準試料の測定が必要であったの
が2〜3試料の測定のみになるため、校正時間の大幅な
短縮に効果があった。
Further, for recalibration of a calibration curve required for a series of measurements, it was possible to use a two-level synthetic standard solution similar to the target composition. This means that, according to the conventional method, it is necessary to measure 20 or more standard samples each time, but only 2 or 3 samples need to be measured, which is effective in greatly shortening the calibration time.

【0014】なお、反応溶液を希釈する場合には高濃度
の成分および微量含有成分を同じ溶液で測定するので、
目的元素、特に微量元素のICP発光分析における感度
を考慮して希釈倍率を設定する必要があるが、浸出系の
反応液などニッケルが200〜300g/リットル存在
する液は採取後すぐニッケルの析出が始まるものもあ
り、また酸や添加元素など液調整も必要なため実用上2
〜20倍が好ましい。また、試料溶液中に不溶解物など
の粒子が存在するときはネブライザーの試料導入管の詰
まりの原因となるのでガラスフィルターなどで除去する
必要がある。表1に各試料組成に対する希釈倍率を示し
た。
When diluting the reaction solution, high concentration components and trace components are measured in the same solution.
It is necessary to set the dilution factor in consideration of the sensitivity in the ICP emission analysis of the target element, particularly, the trace element. However, in the case of a solution containing 200 to 300 g / liter of nickel, such as a leaching reaction solution, nickel precipitates immediately after collection. In some cases, it is necessary to adjust the liquid such as acid and additional elements.
It is preferably up to 20 times. In addition, if particles such as insoluble matter are present in the sample solution, they may cause clogging of the sample introduction tube of the nebulizer, and thus need to be removed with a glass filter or the like. Table 1 shows the dilution ratio for each sample composition.

【0015】各元素の分析線については表2に示した様
に、一般的な測定方法と同じくニッケルによる光学的干
渉の少ないものを選択する。主成分については微量成分
と同じ溶液で測定することを目的に感度の低い分析線を
選択している。これによって1試料当たり1回の希釈で
全目的元素の分析が可能となるため分析所要時間を短縮
することができる。また、コバルトや銅など検量線のグ
ループ内で大きく組成が変動(3桁以上)する元素につ
いては、濃度別に2波長選択している。これはマルチチ
ャンネルタイプを使用する際に有効である。つまり、検
量線の濃度範囲が非常に広いものについては測定精度上
1つの検量線でカバーすることは難しいため、低濃度
用、高濃度用の検量線を分析線を変えて作成する。
As shown in Table 2, for the analysis lines of each element, those having little optical interference by nickel are selected in the same manner as in a general measuring method. For the main component, an analysis line with low sensitivity is selected for the purpose of measuring in the same solution as the trace component. This makes it possible to analyze all target elements with one dilution per sample, thereby shortening the time required for analysis. For elements such as cobalt and copper whose composition greatly fluctuates (more than three orders of magnitude) within a group of calibration curves, two wavelengths are selected for each concentration. This is effective when using a multi-channel type. That is, it is difficult to cover a calibration curve having a very wide concentration range with a single calibration curve due to measurement accuracy. Therefore, calibration curves for low concentration and high concentration are created by changing the analysis line.

【0016】[0016]

【表2】 [Table 2]

【0017】しかし、微量成分についてはニッケルによ
る光学的干渉を完全に避けられないため、標準試料(反
応溶液を調整したもの)の測定結果より補正係数を算出
した。この方法は、試薬のみで作成したニッケル標準溶
液のみで補正係数を求めるのと違い液性からくる影響も
補正できるのでより正確な補正が可能となる。
However, for a trace component, since optical interference due to nickel cannot be completely avoided, a correction coefficient was calculated from the measurement result of a standard sample (prepared reaction solution). In this method, unlike the case where the correction coefficient is obtained only with the nickel standard solution prepared only with the reagent, the influence caused by the liquid property can be corrected, so that more accurate correction can be performed.

【0018】また、ICP発光分光分析装置には分光器
の違いによりシーケンシャルタイプとマルチチャンネル
タイプがある。シーケンシャルタイプとは、光りを分け
る回折格子が稼動するものでその角度によって自由に光
りの波長を選択することができる。従って、自由度は高
いが多元素を測定する場合は1元素ごと逐次的に波長を
変えながら測定するため、測定時間は目的元素数に応じ
て長くなる。それに対してマルチチャンネルタイプは回
折格子を固定し、光りの分散方向に目的元素の波長をと
らえるように検出器を並べる構造をもつ。そのため検出
器は目的波長の数だけ必要となるが、多元素を同時に測
定できる特長を持っている。ニッケル精製反応槽の反応
溶液の組成分析においては何れにも適用可能であるが、
分析時間の短縮を考えた場合、後者のタイプが有利であ
る。
Further, ICP emission spectrometers are classified into a sequential type and a multi-channel type depending on the type of spectrometer. In the sequential type, a diffraction grating for dividing light is operated, and the wavelength of light can be freely selected according to the angle. Therefore, when measuring multiple elements, the degree of freedom is high, since the measurement is performed while sequentially changing the wavelength for each element, the measurement time becomes longer in accordance with the number of target elements. On the other hand, the multi-channel type has a structure in which the diffraction grating is fixed and detectors are arranged so as to capture the wavelength of the target element in the direction of light dispersion. Therefore, the number of detectors required is equal to the number of target wavelengths, but it has the feature that multiple elements can be measured simultaneously. In the composition analysis of the reaction solution of the nickel purification reaction tank, it can be applied to any,
The latter type is advantageous when shortening the analysis time.

【0019】また、主成分の高精度分析を目的に、通常
の高精度分析と同様に、イットリウムによる内標準法を
採用するのが良い。内標準法とは試料溶液の中に試料中
に含まれていない元素を一定量加え、ICP発光測定時
に生ずる試料導入量の変化や不安定性、高周波出力やプ
ラズマの揺らぎによる発光強度の変化の指標とし、目的
元素の補正を行なう方法である。主に物理的干渉に効果
を示すが、測定系全体の補正ができるため高精度分析に
欠かせない手法である。
For the purpose of analyzing the main components with high accuracy, it is preferable to employ an internal standard method using yttrium as in the case of ordinary high-precision analysis. The internal standard method is an index of the change in the amount of sample introduced and the instability that occurs during ICP luminescence measurement, the change in luminescence intensity due to high-frequency output, and the fluctuation of plasma, when a certain amount of elements not contained in the sample is added to the sample solution. And correcting the target element. Although this method is effective mainly for physical interference, it is an indispensable technique for high-precision analysis because the entire measurement system can be corrected.

【0020】ICP発光分析法を用いて行う本発明にお
けるニッケル精製反応槽の反応溶液の組成分析において
は、1試料当たり1回の希釈で高濃度の成分と微量含有
成分とを測定するので、希釈倍率を大きくすると微量含
有成分が測定出来なくなる。従って、希釈倍率が小さい
ので測定試料中には大量の金属塩が存在し、物理的な干
渉が大きくなる可能性が考えられる。本発明では、IC
P発光分光分析装置の試料導入部の溶液を霧化する機
能を有するネブライザーの動作条件を調査した結果、前
記の如く大量の金属塩が存在する反応溶液に対しても表
3に示した通り、キャリアガス流量が0.7〜0.9リ
ットル/minの範囲でのみNi、Co、Cuの測定値
のバラツキが少ないことが判った
According to the present invention, which is performed using ICP emission spectrometry,
In the analysis of the composition of the reaction solution in the nickel purification reaction tank, a high concentration component and a trace component are measured by one dilution per sample. Therefore, when the dilution ratio is increased, the trace component cannot be measured. Therefore, since the dilution ratio is small, a large amount of metal salt is present in the measurement sample, and physical interference may increase. In the present invention, the IC
P emission spectrometer results of solution of the sample introduction portion were examined operating conditions of the nebulizer having a function of injection atomization, as is also shown in Table 3 with respect to the reaction solution wherein a large amount of metal salts as are present It was also found that the variation in the measured values of Ni, Co, and Cu was small only when the flow rate of the carrier gas was 0.7 to 0.9 liter / min .

【0021】すなわち、この表3のデータは、Ni1
0.0g/リットル、Co0.005g/リットル、C
u0.005g/リットル、Pb0.005g/リット
ル、Fe0.002g/リットル、As0.005g/
リットル、Ag0.002g/リットル、S0.50g
/リットルのニッケル精製反応槽の反応溶液を用い、キ
ャリアガス流量以外は表2の条件でICP発光分析を行
って得たものであり、又、この表3における補正前の値
は各元素の測定値の標準偏差であり、補正後の値は各元
素の測定値をイットリウムの測定値で割った値の標準偏
差であるが、上記の範囲においては、いづれの元素
正後の値の標準偏差0.5以下と低値であり、精度の
高い分析が可能であることを示している。
That is, the data in Table 3 is obtained from Ni1
0.0 g / liter, Co 0.005 g / liter, C
u 0.005 g / liter, Pb 0.005 g / lit
, Fe 0.002 g / liter, As 0.005 g /
Liter, Ag 0.002g / liter, S0.50g
Using the reaction solution of the
ICP emission analysis was performed under the conditions in Table 2 except for the carrier gas flow rate.
Are those obtained me, also, your Keru before the correction value in this table 3 is the standard deviation of the measured value of each element, the value after the correction is obtained by dividing the measured value of each element in the measurement value of the yttrium is a standard deviation of the values that, in the above range, the standard deviation is 0.5 or less and a low of Izure elements also after the auxiliary <br/> positive value, it is possible to highly accurate analysis Is shown.

【0022】[0022]

【表3】 [Table 3]

【0023】又、ネブライザーには構造上、同軸型、ク
ロスフロー型、超音波型等があるが、本試料への適用に
ついては、噴霧の安定性、操作性、寿命、コストを考え
た場合、同軸型が適している。部品の仕様については、
キャリアガス流量1リットル/minにおいて液吸引速
度が2〜3ml/minのものが好ましい。これは、試料
溶液の比重が高いため吸引能力の低いものについては送
液ムラがでることと、試料の液置換を迅速に行なうた
め、流量可変式のチューブを絞って送液する構造のペリ
スタルティックポンプを併用するためキャリアガス流量
の設定が低く導入管の細いネブライザーでは液の圧送に
弱いためである。
Nebulizers include a coaxial type, a cross-flow type, an ultrasonic type, and the like in terms of structure. For application to this sample, considering the spraying stability, operability, life, and cost, A coaxial type is suitable. For part specifications,
It is preferable that the liquid suction speed is 2 to 3 ml / min at a carrier gas flow rate of 1 liter / min. This is because of the high specific gravity of the sample solution, the unevenness of the liquid sending occurs when the suction capacity is low. This is because the setting of the carrier gas flow rate is low due to the combined use of the pump, and the nebulizer having a small inlet pipe is weak in the pressure feeding of the liquid.

【0024】そのほか、測光高さについては励起干渉を
受けにくいとされる15mmの位置、積分時間については
分析精度を考慮して10秒2回積分(計20秒)とし
た。他の条件については一般に使用されているもので特
に問題はないが、プラズマトーチにはニッケルが析出し
閉塞する可能性もあるので中心管の先の絞り込みがない
高塩濃度タイプを使用し、分析試料数に応じ洗浄交換す
るのが好ましい。
In addition, the photometric height was set to a position of 15 mm, which is hardly affected by excitation interference, and the integration time was set to 10 seconds and 2 times (20 seconds in total) in consideration of analysis accuracy. Other conditions are generally used and there is no particular problem.However, since the plasma torch may deposit nickel and blockage, use a high salt concentration type without narrowing down the center tube. It is preferable to perform washing exchange according to the number of samples.

【0025】[0025]

【実施例】ニッケル精製工程の浄液槽の反応溶液を10
倍に希釈した後、マルチタイプICP発光分光分析装置
により測定を行なった。ネブライザーのキャリアガスを
0.8リットル/minとした以外は表2と同じ条件で
ある。目的成分の分析値が全部出るまでの分析所要時間
は10分間であった。得られた各成分の分析値を表4に
示した。ここで、検量線作成用標準溶液としては、表1
のグループ3の各元素の各組成範囲をカバーする様に、
ニッケル精製反応槽から採取した溶液および試薬を用い
て作成した40個の溶液を使用した。
[Embodiment] The reaction solution in the purifying tank in the nickel refining process was 10
After dilution by a factor of 2, measurement was performed using a multi-type ICP emission spectrometer. The conditions were the same as in Table 2 except that the nebulizer carrier gas was set at 0.8 liter / min. The time required for analysis until all the analytical values of the target component were obtained was 10 minutes. Table 4 shows the analytical values of the obtained components. Here, as a standard solution for preparing a calibration curve, Table 1 is used.
To cover each composition range of each element of group 3 of
Forty solutions prepared using the solutions and reagents collected from the nickel purification reactor were used.

【0026】[0026]

【表4】 [Table 4]

【0027】比較の為に、ニッケルをキレート滴定法
で、ニッケルから微量成分を分離する化学的分離操作と
して溶媒抽出を行なって実施例と同じ浄液槽の反応溶液
を分析した。目的成分の分析値が全部出るまでの分析所
要時間は495分間であった。得られた各成分の分析値
を表4に従来法1として示した。又、試薬のみを溶解し
て測定溶液の組成に合わせ合成液を用いて分析するマト
リックスマッチング法を採用したICP発光分析法によ
り実施例と同じ反応溶液を分析した。目的成分の分析値
が全部出るまでの分析所要時間は32分間であった。得
られた各成分の分析値を表4に従来例2として示した。
For comparison, the reaction solution in the same purification tank as in the example was analyzed by performing solvent extraction as a chemical separation operation for separating trace components from nickel by chelate titration of nickel. The time required for analysis until all the analysis values of the target component appeared was 495 minutes. The analytical values of the obtained components are shown in Table 4 as Conventional Method 1. Further, the same reaction solution as in the example was analyzed by ICP emission spectrometry employing a matrix matching method in which only the reagent was dissolved, and the composition was adjusted to the composition of the measurement solution and analyzed using a synthetic solution. The time required for analysis until all the analysis values of the target component were obtained was 32 minutes. The analytical values of the obtained components are shown in Table 4 as Conventional Example 2.

【0028】表4に示す結果から、本発明法は分析結果
については従来法1と差異が認められないことが分かっ
た。従来法2については微量成分(Co、Cu、Fe、
As、Ag)の分析結果について従来法1と差異が認め
られる。これはマトリックスマッチングが不完全と考え
られるが、事実上、標準溶液を時々刻々と変化する実試
料の組成に完全にマッチングさせるのは非常に難しい。
分析所要時間については従来法1に比べ分離操作が無い
ため大幅に改善されていることが分かる。また、従来法
1では分析結果が元素ごとに逐次的にでることや試料数
が少ない場合に時間的に不利になるなどの問題がある。
つまり、試料数が多いときには前処理を並行操作し、見
かけ上1試料当たりの分析所要時間を短くすることがで
きる。しかし、分析結果が出るまでの時間の短縮にはな
らないことや試料をある程度ためることが可能なものに
限定されるため、分析結果を迅速にプロセスにフィード
バックしなければならないニッケル精製反応槽の組成分
析には適さない。それに対し、本発明では試料単位で分
析を行なうため分析結果が迅速に得られるので、結果を
直ちにプロセスにフィードバックすることができる。従
来法2については分析所要時間の短縮は図れるが微量成
分の分析値の精度が良くなく、即ち標準溶液の調整に大
きな問題がある。
From the results shown in Table 4, it was found that the method of the present invention showed no difference in analytical results from the conventional method 1. For the conventional method 2, trace components (Co, Cu, Fe,
A difference from the conventional method 1 is observed in the analysis results of As and Ag). Although this is considered to be incomplete matrix matching, it is actually very difficult to completely match the standard solution to the composition of the real sample that changes every moment.
It can be seen that the time required for analysis is significantly improved because there is no separation operation as compared with the conventional method 1. Further, the conventional method 1 has a problem that analysis results are sequentially obtained for each element, and there is a disadvantage in terms of time when the number of samples is small.
That is, when the number of samples is large, the pre-processing is performed in parallel, so that the apparent time required for analysis per sample can be shortened. However, it is not possible to shorten the time until the analysis result is obtained, or it is limited to those that can accumulate a certain amount of sample, so the composition analysis of the nickel purification reaction tank, where the analysis result must be quickly fed back to the process Not suitable for On the other hand, in the present invention, since the analysis is performed on a sample basis, the analysis result can be obtained quickly, and the result can be immediately fed back to the process. In the conventional method 2, the time required for analysis can be shortened, but the accuracy of the analysis value of the trace component is not good, that is, there is a great problem in adjusting the standard solution.

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明のニ
ッケル精製反応槽の反応溶液の組成分析方法によれば、
反応液の複雑な化学的前処理を伴わず希釈のみでICP
発光分光分析装置により全成分の迅速かつ高精度分析が
可能である。
As described in detail above, according to the method for analyzing the composition of a reaction solution in a nickel purification reaction tank of the present invention,
ICP only by dilution without complicated chemical pretreatment of reaction solution
Emission spectroscopy enables rapid and accurate analysis of all components.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル精製工程の各種反応槽の反応溶
液を高周波誘導結合プラズマ発光分析法により分析する
際に、検量線作成用標準試料として、ニッケル精製反応
槽から採取されて組成が分析された反応溶液および/ま
たは組成が分析された該反応溶液に既知量の目的成分を
添加した溶液を組成の変動範囲にわたって用意してお
き、これらの標準試料を用いて検量線を作成するように
したことを特徴とするニッケル精製反応槽の反応溶液の
分析方法。
When a reaction solution in various reaction vessels in a nickel purification step is analyzed by a high frequency inductively coupled plasma emission spectrometry , a nickel purification reaction is used as a standard sample for preparing a calibration curve.
A reaction solution collected from the tank and analyzed for composition and / or a solution obtained by adding a known amount of the target component to the reaction solution analyzed for composition is prepared over the range of variation of the composition.
To make a calibration curve using these standard samples.
A method for analyzing a reaction solution in a nickel purification reaction tank, comprising:
【請求項2】 ニッケル精製工程の各種反応槽の反応溶
液の分析および検量線を作成する際に、高周波誘導結合
プラズマ発光分光分析装置のネブライザーの動作条件が
キャリアガス流量0.7〜0.9リットル/minであ
ることを特徴とする請求項1記載のニッケル精製反応
槽の反応溶液の分析方法。
2. The method according to claim 1, wherein the operation conditions of the nebulizer of the high frequency inductively coupled plasma emission spectrometer are 0.7 to 0.9 in the analysis of the reaction solution in the various reaction tanks and the preparation of the calibration curve in the nickel purification step. The method for analyzing a reaction solution in a nickel purification reaction tank according to claim 1 , wherein the reaction rate is 1 liter / min.
JP13433892A 1992-04-28 1992-04-28 Analysis method of reaction solution in nickel purification reaction tank Expired - Fee Related JP2812063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13433892A JP2812063B2 (en) 1992-04-28 1992-04-28 Analysis method of reaction solution in nickel purification reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13433892A JP2812063B2 (en) 1992-04-28 1992-04-28 Analysis method of reaction solution in nickel purification reaction tank

Publications (2)

Publication Number Publication Date
JPH05307004A JPH05307004A (en) 1993-11-19
JP2812063B2 true JP2812063B2 (en) 1998-10-15

Family

ID=15126019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13433892A Expired - Fee Related JP2812063B2 (en) 1992-04-28 1992-04-28 Analysis method of reaction solution in nickel purification reaction tank

Country Status (1)

Country Link
JP (1) JP2812063B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4754888B2 (en) * 2005-06-27 2011-08-24 株式会社島津製作所 Emission spectroscopy analysis method and emission spectroscopy analyzer
JP5169678B2 (en) * 2008-09-24 2013-03-27 住友金属鉱山株式会社 High precision analysis of metal elements by inductively coupled plasma optical emission spectrometry
JP5585786B2 (en) * 2011-06-08 2014-09-10 住友金属鉱山株式会社 Measuring method of total organic carbon

Also Published As

Publication number Publication date
JPH05307004A (en) 1993-11-19

Similar Documents

Publication Publication Date Title
Berman et al. Simultaneous determination of five trace metals in sea water by inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization
Garbarino et al. An inductive-coupled plasma atomic-emission spectrometric method for routine water quality testing
Fodor et al. Determination of some hydride-forming elements in urine by resin complexation and inductively coupled plasma atomic spectroscopy
Crompton Determination of metals and anions in soils, sediments and sludges
KR20210078882A (en) Multi-elemental analysis of blood by inductively coupled plasma/mass spectrometry
Nakahara et al. Determination of trace concentrations of antimony by the introduction of stibine into an inductively-coupled plasma for atomic emission spectrometry
Husáková et al. Multi-element analysis of milk by ICP-oa-TOF-MS after precipitation of calcium and proteins by oxalic and nitric acid
CN102565029A (en) Method for measuring impurities in pure silver by electrical inductance-coupled plasma emission spectrometer
CN109507181B (en) Method for rapidly and quantitatively detecting concentration of trace cobalt, nickel and iron ions in zinc smelting solution
Drava et al. Influence of an internal standard in axial ICP OES analysis of trace elements in plant materials
CN108226204A (en) The method that the analysis of applied energy dispersive x-ray fluorescence measures chlorinity in complex fertilizer
JP2812063B2 (en) Analysis method of reaction solution in nickel purification reaction tank
Niemelä et al. Determination of trace impurities in germanium dioxide by ICP-OES, ICP-MS and ETAAS after matrix volatilization: a long-run performance of the method
Kokšal et al. Extraction-spectrometric determination of lead in high-purity aluminium salts
Griffiths et al. Comparison of traditional and multivariate calibration techniques applied to complex matrices using inductively coupled plasma atomic emission spectroscopy
CN108303388B (en) Method for in-situ quantitative characterization of complex organic matter and metal ion complexing process
JP2006329687A (en) Analytical method for trace element in metal sample
US11994455B2 (en) Analyte quantitation using Raman spectroscopy
Kagaya et al. Determination of cadmium in river water by electrothermal atomic absorption spectrometry after internal standardization-assisted rapid coprecipitation with lanthanum phosphate
CN108956582A (en) A kind of emission spectrometry method of high-copper Phosphorus From Wastewater content
McClenathan et al. Novel flow injection strategies for study and control of matrix interferences by inductively coupled plasma time-of-flight mass spectrometryPresented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehammer, Norway, February 5–8, 2001.
Oliveira Junior et al. Determination of impurities in uranium oxide by inductively coupled plasma mass spectrometry (ICPMS) by the matrix matching method
Afkhami et al. Comparison of partial least squares regression and H-point standard addition method for simultaneous spectrophotometric determination of zinc, cobalt and nickel by 1-(2-pyridylazo) 2-naphthol in micellar media
Morales et al. Practical implementation of survey analysis in inductively coupled plasma optical emission spectrometry
Dawson Analytische Atomspektroskopie in Biologie und Medizin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070807

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100807

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110807

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees