JP4747280B2 - Method of joining substrate and device using Au-Sn alloy solder paste - Google Patents

Method of joining substrate and device using Au-Sn alloy solder paste Download PDF

Info

Publication number
JP4747280B2
JP4747280B2 JP2006090901A JP2006090901A JP4747280B2 JP 4747280 B2 JP4747280 B2 JP 4747280B2 JP 2006090901 A JP2006090901 A JP 2006090901A JP 2006090901 A JP2006090901 A JP 2006090901A JP 4747280 B2 JP4747280 B2 JP 4747280B2
Authority
JP
Japan
Prior art keywords
alloy solder
substrate
solder paste
alloy
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006090901A
Other languages
Japanese (ja)
Other versions
JP2007266404A (en
Inventor
石川  雅之
正好 小日向
昭史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006090901A priority Critical patent/JP4747280B2/en
Publication of JP2007266404A publication Critical patent/JP2007266404A/en
Application granted granted Critical
Publication of JP4747280B2 publication Critical patent/JP4747280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

この発明は、Au−Sn合金はんだペーストを用いて基板と素子との間の接合部にボイドを発生させることなく接合する方法に関するものであり、特に使用中に発生した熱を放出する必要のある素子、例えば、LED(発光ダイオード)素子を基板に接合する方法に関するものである。   The present invention relates to a method of bonding without generating voids at a bonding portion between a substrate and an element using an Au—Sn alloy solder paste, and it is particularly necessary to release heat generated during use. The present invention relates to a method of bonding an element, for example, an LED (light emitting diode) element to a substrate.

LED(発光ダイオード)素子、GaAs光素子、GaAs高周波素子、熱伝素子などの半導体素子と基板との接合、特に熱がこもると破損に繋がるようなLED(発光ダイオード)素子と基板との接合には、接合部の熱伝導性が非常に重要であるところから、熱伝導性が良くかつ信頼性が高い接合部を形成するAu−Sn合金はんだ箔材(リボンなど)、Auバンプ、Au−Sn合金はんだペーストが用いられていた。
For bonding a semiconductor element such as an LED (light-emitting diode) element, a GaAs optical element, a GaAs high-frequency element, or a heat transfer element to the substrate, particularly for bonding an LED (light-emitting diode) element and the substrate that may be damaged when heat is accumulated. Since the thermal conductivity of the joint is very important, an Au—Sn alloy solder foil material (ribbon or the like), Au bump, Au—Sn that forms a joint with good thermal conductivity and high reliability. An alloy solder paste was used.

しかし、Au−Snはんだ合金箔材(リボンなど)は、材料自身の熱伝導性は高いものの接合時の濡れ性が悪いため接合領域を十分に広く取ることができず、また箔材表面には酸化膜が多いため溶融したAu−Snはんだ合金の流動性が悪い。そのため加熱溶融しながら荷重をかけて接合する工法もあるが、加熱時間が長くまた長時間荷重をかけて接合しなければならないことから、熱を長時間かけることが好ましくないLED(発光ダイオード)素子に適用することができない。さらに、Au−Snはんだ合金箔材の場合、素子に荷重をかけて接合することから素子側面部にAu−Snはんだ合金が這い上がりショートを起こすこともあった。
However, Au-Sn solder alloy foil materials (ribbons, etc.) have high thermal conductivity, but the wettability at the time of bonding is poor, so that the bonding area cannot be made sufficiently wide. Since there are many oxide films, the fluidity of the molten Au—Sn solder alloy is poor. For this reason, there is a method of joining by applying a load while heating and melting, but an LED (light emitting diode) element in which it is not preferable to apply heat for a long time because the heating time is long and it is necessary to apply a load for a long time. Cannot be applied to. Further, in the case of the Au—Sn solder alloy foil material, since the load is applied to the element, the Au—Sn solder alloy may creep up on the side surface of the element and cause a short circuit.

また、Auバンプ法による素子の接合は、素子全体にAu−Snはんだ合金接合層が接合していないため、Au−Snはんだ合金接合層と接合していない部分の熱伝導が悪く、また、このAuバンプ法では300℃以上の温度で荷重をかけながら接合を行なうが、300℃以上高温を長時間保持する必要があり、熱影響を受けて劣化しやすいLED(発光ダイオード)素子に適用することができなかった。

そのため、近年、熱影響を受けて劣化しやすいLED(発光ダイオード)素子の接合には接合信頼性の一層優れたAu−Sn合金はんだペーストが多く用いられるようになってきた。このAu−Sn合金はんだペーストは、Sn:15〜25質量%(好ましくはSn:20質量%)を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金ガスアトマイズ粉末とロジン、活性剤、溶剤および増粘剤からなる市販のフラックスとを混合して作られる。
In addition, since the Au-Sn solder alloy bonding layer is not bonded to the entire element in the bonding of the elements by the Au bump method, the heat conduction of the portion not bonded to the Au-Sn solder alloy bonding layer is poor. In the Au bump method, bonding is performed while applying a load at a temperature of 300 ° C. or higher, but it is necessary to maintain a high temperature of 300 ° C. or higher for a long time, and it is applied to an LED (light emitting diode) element that is easily deteriorated due to thermal influence I could not.

For this reason, in recent years, Au-Sn alloy solder pastes with higher bonding reliability have been frequently used for bonding LED (light-emitting diode) elements that are easily deteriorated under the influence of heat. This Au—Sn alloy solder paste contains Sn: 15 to 25% by mass (preferably Sn: 20% by mass), and the remainder is composed of Au and inevitable impurities. Au—Sn eutectic alloy gas atomized powder and rosin It is made by mixing a commercially available flux consisting of an activator, a solvent and a thickener.


このAu−Sn合金はんだペーストを使用して素子と基板を接合すると接合部がAu−Sn合金はんだであるので熱伝導性が良く接合信頼性も高いこと、ペーストであるので複数の接合部に一括供給できさらに一括熱処理できること、リフロー時にフラックスがAu−Snはんだ合金表面を覆っているために酸化膜が少なく、そのため、接合時の溶融Au−Snはんだ合金の流動性が大きく、濡れが良くなって接合面積を拡大することができるところから素子全面を接合できること、さらに接合時に過剰な荷重をかける必要がないことなどのメリットがある。

このAu−Sn合金はんだペーストを用いて基板と素子を接合する方法を図3の側面図に基づいて説明する。Au−Sn合金はんだペーストを用いて基板と素子を接合するには図3(a)に示されるように、基板1にAu−Sn合金はんだペースト2を搭載または塗布する。次に、このAu−Sn合金はんだペースト2の真上に図3(b)に示されるように素子3を搭載し、この状態で加熱してリフロー処理を施したのち冷却すると、図3(c)に示されるように、Au−Sn合金はんだ接合層4を介してと基板1と素子3が接合する(特許文献1または2など参照)。
特開2003−105462 特開2003−260588

When an element and a substrate are bonded using this Au-Sn alloy solder paste, the bonding portion is Au-Sn alloy solder, so that the thermal conductivity is good and the bonding reliability is high. It can be supplied and batch heat treated, and the flux covers the Au-Sn solder alloy surface during reflow, so there is little oxide film. There are merits such that the entire surface of the element can be bonded since the bonding area can be expanded, and that it is not necessary to apply an excessive load during bonding.

A method of joining the substrate and the element using this Au—Sn alloy solder paste will be described with reference to the side view of FIG. In order to join the substrate and the device using the Au—Sn alloy solder paste, the Au—Sn alloy solder paste 2 is mounted or applied to the substrate 1 as shown in FIG. Next, as shown in FIG. 3B, the element 3 is mounted immediately above the Au—Sn alloy solder paste 2, heated in this state, subjected to reflow treatment, and then cooled. ), The substrate 1 and the element 3 are bonded via the Au—Sn alloy solder bonding layer 4 (see Patent Document 1 or 2).
JP 2003-105462 A JP 2003-260588 A


前述のように、Au−Sn合金はんだペーストは最も使いやすい接合材であるが、Au−Sn合金はんだペーストには前述のように有機物からなるフラックスを含んでおり、図3(b)に示されるようにAu−Sn合金はんだペースト2の上に素子3を搭載し、この状態で加熱してリフロー処理を施すと、Au−Sn合金はんだペースト2が溶融する際にフラックスからガスが発生し、この時Au−Sn合金はんだペースト2の真上に素子3が被さっているために、溶融中に発生したガスが逃げ場を失って閉じ込められ、Au−Sn合金はんだ接合層4の中にボイド5が生成することがある。Au−Sn合金はんだ接合層4の中にボイド5が生成すると素子3と基板1との接合面積が少なくなり、接合面積が少なくなると素子3に発生した熱の放熱性が悪くなるので好ましくない。

As described above, the Au—Sn alloy solder paste is the most easy-to-use bonding material. However, the Au—Sn alloy solder paste contains the organic flux as described above, and is shown in FIG. When the element 3 is mounted on the Au—Sn alloy solder paste 2 and heated in this state and subjected to reflow treatment, gas is generated from the flux when the Au—Sn alloy solder paste 2 is melted. Since the element 3 is covered directly on the Au—Sn alloy solder paste 2, the gas generated during melting loses the escape field and is trapped, and a void 5 is generated in the Au—Sn alloy solder bonding layer 4. There are things to do. If voids 5 are generated in the Au—Sn alloy solder bonding layer 4, the bonding area between the element 3 and the substrate 1 decreases, and if the bonding area decreases, the heat dissipation of the heat generated in the element 3 deteriorates, which is not preferable.

本発明者らは、これら課題を解決すべく研究を行った。その結果、
(イ)Au−Sn合金はんだペーストを基板に搭載または塗布し、さらにAu−Sn合金はんだペーストから離して素子を基板の上に載置し、このAu−Sn合金はんだペーストおよび素子を乗せた基板を非酸化性雰囲気中でリフロー処理すると、リフロー処理中に、まず、Au−Sn合金はんだペーストが溶融してAu−Sn合金はんだペーストに含まれるフラックスの分解ガスが放出され、さらにリフロー処理を続けるとAu−Sn合金はんだペーストに含まれるAu−Sn合金はんだ粉末が溶融してAu−Sn合金はんだ粉末の表面の酸化膜とフラックスとが反応して生成したガスが放出されてガスが十分に抜けた溶融Au−Sn合金はんだが生成し、このガスが十分に抜けた溶融Au−Sn合金はんだは基板の表面を伝って濡れ広がり、濡れ広がった溶融Au−Sn合金はんだが素子に達すると、溶融したAu−Sn合金はんだが素子の下に潜り込み、溶融Au−Sn合金はんだが素子の下に潜り込むと、溶融Au−Sn合金はんだのセルフアライメント効果により素子が溶融Au−Sn合金はんだの中央に向かって引き戻され、ガスが十分に抜けた溶融Au−Sn合金はんだのほぼ中央に素子が乗った状態となり、かかる状態で冷却すると、基板と素子との間のAu−Sn合金はんだ接合層の中にボイドが発生することなく接合することができる、
(ロ)基板の上に素子をAu−Sn合金はんだペーストに隣接するまで近づけて載置しても同様の効果が得られる、などの知見が得られたのである。
The present inventors have conducted research to solve these problems. as a result,
(A) A substrate on which an Au—Sn alloy solder paste is mounted or applied to a substrate, the device is placed on the substrate apart from the Au—Sn alloy solder paste, and the Au—Sn alloy solder paste and the device are placed on the substrate. When the reflow treatment is performed in a non-oxidizing atmosphere, first, during the reflow treatment, the Au—Sn alloy solder paste is melted to release the flux decomposition gas contained in the Au—Sn alloy solder paste, and the reflow treatment is continued. And the Au—Sn alloy solder powder contained in the Au—Sn alloy solder paste is melted and the gas generated by the reaction between the oxide film on the surface of the Au—Sn alloy solder powder and the flux is released, and the gas is sufficiently released. The molten Au—Sn alloy solder is generated, and the molten Au—Sn alloy solder from which the gas has sufficiently escaped is spread along the surface of the substrate. When the molten Au—Sn alloy solder that has spread out reaches the element, the molten Au—Sn alloy solder enters under the element, and when the molten Au—Sn alloy solder enters under the element, the molten Au—Sn alloy solder The element is pulled back toward the center of the molten Au—Sn alloy solder due to the self-alignment effect, and the element is placed almost at the center of the molten Au—Sn alloy solder from which the gas has sufficiently escaped. Bonding can be performed without generating voids in the Au-Sn alloy solder bonding layer between the substrate and the element.
(B) The knowledge that the same effect can be obtained even when the element is placed close to the Au—Sn alloy solder paste on the substrate is obtained.

この発明は、かかる知見に基づいて成されたものであって、素子を基板に載置し、さらにAu−Sn合金はんだペーストを前記素子から離してまたは該素子に隣接して基板に搭載または塗布し、前記素子を載置しかつAu−Sn合金はんだペーストを搭載または塗布した基板を非酸化性雰囲気中でリフロー処理し、溶融Au−Sn合金はんだが濡れ広がって前記素子の下に潜り込み、該素子が溶融Au−Sn合金はんだの中央に向かって引き戻された後、前記素子の全体が溶融Au−Sn合金はんだに乗った状態で冷却するAu−Sn合金はんだペーストを用いた基板と素子の接合方法、に特徴を有するものである。 This invention, which was made on the basis of this finding, placing the element on the substrate, further mounted or coated Au-Sn alloy solder paste to the substrate adjacent to and release or the element from the element The substrate on which the element is mounted and the Au-Sn alloy solder paste is mounted or applied is reflowed in a non-oxidizing atmosphere, and the molten Au-Sn alloy solder spreads out and sinks under the element, After the element is pulled back toward the center of the molten Au—Sn alloy solder, the substrate is bonded to the element using an Au—Sn alloy solder paste that cools in a state where the entire element is mounted on the molten Au—Sn alloy solder. Characteristic of the method.

この発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法を図面に基づいて具体的に説明する。図1はこの発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法を説明するための側面説明図である。   A method for joining a substrate and an element using the Au—Sn alloy solder paste of the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory side view for explaining a method of joining a substrate and an element using the Au—Sn alloy solder paste of the present invention.

図1(a)に示されるように、Au−Sn合金はんだペースト2を基板1に搭載または塗布し、さらに素子3を基板1の上にAu−Sn合金はんだペースト2から離して載置する。この基板1の表面には最表面層としてAuめっき層を形成しておくことが好ましい。 このAu−Sn合金はんだペースト2および素子3を乗せた基板1を非酸化性雰囲気中でリフロー処理すると、リフロー処理中に図1(b)に示されるように、まず、Au−Sn合金はんだペースト2が溶融してAu−Sn合金はんだペーストに含まれるフラックスの分解ガス6が放出され、さらにリフロー処理を続けるとAu−Sn合金はんだペースト2に含まれるAu−Sn合金はんだ粉末(図示せず)が溶融してAu−Sn合金はんだ粉末の表面の酸化膜とフラックスとが反応して生成したガス6が放出されて、図1(c)に示されるように、ガス6が十分に抜けた溶融Au−Sn合金はんだ4’が生成する。このガス6が十分に抜けた溶融Au−Sn合金はんだ4’は基板1の表面を伝って濡れ広がり、濡れ広がった溶融Au−Sn合金はんだ4’が素子3に達すると、図1(c)に示されるように、溶融Au−Sn合金はんだ4’が素子3の下に潜り込み、溶融Au−Sn合金はんだ4’が素子3の下に潜り込むと同時に溶融Au−Sn合金はんだ4’のセルフアライメント効果により素子3が溶融Au−Sn合金はんだ4’の中央に向かって引き戻され(すなわち、図1(c)のA方向に引き戻され)、ガスが十分に抜けた溶融Au−Sn合金はんだ4’のほぼ中央に素子3が乗った状態(素子3の全体が溶融Au−Sn合金はんだ4’上に乗った状態)となり、かかる状態で冷却すると、図1(d)に示されるように、基板1と素子3との間のAu−Sn合金はんだ接合層4の中にボイドが発生することなく接合することができる。
As shown in FIG. 1A, an Au—Sn alloy solder paste 2 is mounted on or applied to a substrate 1, and the element 3 is placed on the substrate 1 separately from the Au—Sn alloy solder paste 2. An Au plating layer is preferably formed on the surface of the substrate 1 as the outermost surface layer. When the substrate 1 on which the Au—Sn alloy solder paste 2 and the element 3 are placed is reflowed in a non-oxidizing atmosphere, first, as shown in FIG. 2 melts and the flux decomposition gas 6 contained in the Au—Sn alloy solder paste is released, and when the reflow process is continued, the Au—Sn alloy solder powder contained in the Au—Sn alloy solder paste 2 (not shown) Is melted and the oxide film on the surface of the Au—Sn alloy solder powder reacts with the flux to release the generated gas 6, and as shown in FIG. Au-Sn alloy solder 4 'is generated. The molten Au—Sn alloy solder 4 ′ from which the gas 6 has sufficiently escaped is wet and spread along the surface of the substrate 1, and when the molten Au—Sn alloy solder 4 ′ that has spread wet reaches the element 3, FIG. As shown in FIG. 4, the molten Au—Sn alloy solder 4 ′ sinks under the element 3, and the molten Au—Sn alloy solder 4 ′ sinks under the element 3, and at the same time, the self-alignment of the molten Au—Sn alloy solder 4 ′. Due to the effect, the element 3 is pulled back toward the center of the molten Au—Sn alloy solder 4 ′ (that is, pulled back in the direction A in FIG. 1C), and the molten Au—Sn alloy solder 4 ′ from which the gas has sufficiently escaped. As shown in FIG. 1D, when the element 3 is placed almost at the center (the whole element 3 is on the molten Au—Sn alloy solder 4 ′) and cooled in such a state. Au-S between 1 and element 3 It can be joined without voids are generated in the alloy solder bonding layer 4.


図2に示されるように、基板1の上に素子3とAu−Sn合金はんだペースト2が隣接するまで近づけて載置しても同様の効果が得られる。

As shown in FIG. 2, the same effect can be obtained even if the element 3 and the Au—Sn alloy solder paste 2 are placed close to each other on the substrate 1 until they are adjacent to each other.

この発明のAu−Sn合金はんだペーストを用いた接合方法によると、基板1と素子3の間の接合部にボイドの発生が少なくなって素子に発生した熱が放熱し易くなり、産業上優れた効果をもたらすものである。   According to the bonding method using the Au—Sn alloy solder paste of the present invention, the generation of voids is reduced at the bonding portion between the substrate 1 and the element 3, and the heat generated in the element is easily radiated, which is industrially excellent. It has an effect.

Sn:22質量%を含有し、残部がAuからなる成分組成を有しかつ5〜16μmの粒径を有する粉末が80%以上含まれるAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末を市販のRMAタイプのロジン系フラックスに、ロジン系フラックス:7質量%を含有し残部がAu−Sn合金はんだ粉末の配合組成となるように配合し混練してAu−Sn合金はんだペーストを作製した。このAu−Sn合金はんだペーストは三菱マテリアル株式会社製金錫合金ペーストとして市販されているものである。

さらに、基板として厚さ:100μmのCu板に厚さ:5μmのNiめっきを施し、さらにその上に厚さ:1μmのAuめっきを施した基板を用意した。
さらにLED素子の代替として、縦:500μm、横:500μm、厚さ:300μmの角銅板を用意し、この角銅板に厚さ:5μmのNiめっきを施し、さらにその上に厚さ:0.5μmのAuめっきを施した代替LED素子を用意した。
An Au—Sn alloy solder powder containing Sn: 22% by mass, with the balance being composed of Au, and containing 80% or more of a powder having a particle size of 5 to 16 μm is prepared. This Au—Sn alloy Solder powder is mixed with a commercially available RMA type rosin-based flux, rosin-based flux: 7% by mass, with the balance being the composition of Au-Sn alloy solder powder, and kneaded to prepare an Au-Sn alloy solder paste. Produced. This Au-Sn alloy solder paste is commercially available as a gold-tin alloy paste manufactured by Mitsubishi Materials Corporation.

Further, a substrate was prepared by applying Ni plating with a thickness of 5 μm to a Cu plate with a thickness of 100 μm as a substrate, and further applying Au plating with a thickness of 1 μm thereon.
Furthermore, as an alternative to the LED element, a square copper plate having a length of 500 μm, a width of 500 μm, and a thickness of 300 μm is prepared, Ni plating of a thickness of 5 μm is applied to the square copper plate, and a thickness of 0.5 μm is further formed thereon. An alternative LED element with Au plating was prepared.

実施例1〜3
先に用意した基板の上に、先に用意したAu−Sn合金はんだペーストをピン転写法により0.5mg塗布し、さらに塗布したAu−Sn合金はんだペーストから 表1に示される距離となるように離して代替LED素子を基板の上に載置した。

かかるAu−Sn合金はんだペーストを塗布しさらに代替LED素子を載置した基板を窒素雰囲気中の熱対流型炉に装入して200℃に60秒間保持したのち、さらに310℃、30秒間保持することによりリフロー処理を施し、ついで冷却することにより基板と代替LED素子の間にAu−Sn合金はんだ接合層を有するはんだ接合試験片を作製した。
Examples 1-3
Apply 0.5 mg of the previously prepared Au—Sn alloy solder paste on the previously prepared substrate by the pin transfer method, and further the distance shown in Table 1 from the applied Au—Sn alloy solder paste. Separated and placed the alternative LED element on the substrate.

The substrate on which the Au—Sn alloy solder paste is applied and the alternative LED element is mounted is placed in a thermal convection furnace in a nitrogen atmosphere and held at 200 ° C. for 60 seconds, and then held at 310 ° C. for 30 seconds. The solder joint test piece which has an Au-Sn alloy solder joint layer between the board | substrate and the alternative LED element was produced by giving a reflow process by this, and then cooling.

このはんだ接合試験片を透過X線装置(ToshibaIT&ControlSystem‘sTOSMICRON−6090FP)を用いてX線写真を撮り、画像処理(2値化)処理して接合面積%を求め、その結果を表1に示した。
An X-ray photograph of this solder joint test piece was taken using a transmission X-ray apparatus (ToshibaIT & Control System's TOSMICRON-6090FP), image processing (binarization) processing was performed to determine the joint area%, and the results are shown in Table 1. .

従来例1
先に用意した基板の上に、先に用意したAu−Sn合金はんだペーストをピン転写法により0.5mg塗布し、この塗布したAu−Sn合金はんだペーストの真上に代替LED素子を前記Au−Sn合金はんだペーストが覆われるようにして載置し、かかるAu−Sn合金はんだペーストの上に代替LED素子を被せるように載置した基板を窒素雰囲気中の熱対流型炉に装入して200℃に60秒間保持したのち、さらに310℃、30秒間保持することによりリフロー処理を施し、ついで冷却することにより基板と代替LED素子の間にAu−Sn合金はんだ接合層を有するはんだ接合試験片を作製した。
Conventional Example 1
On the previously prepared substrate, 0.5 mg of the previously prepared Au—Sn alloy solder paste is applied by a pin transfer method, and an alternative LED element is placed directly above the applied Au—Sn alloy solder paste. The Sn alloy solder paste was placed so as to be covered, and the substrate placed so as to cover the alternative LED element on the Au—Sn alloy solder paste was placed in a thermal convection type furnace in a nitrogen atmosphere and 200. A solder joint test piece having an Au—Sn alloy solder joint layer between the substrate and the alternative LED element is obtained by holding a temperature of 60 ° C. for 60 seconds, and then performing a reflow treatment by holding at 310 ° C. for 30 seconds and then cooling. Produced.

このはんだ接合試験片を透過X線装置(ToshibaIT&ControlSystem‘sTOSMICRON−6090FP)を用いてX線写真を撮り、画像処理(2値化)処理して接合面積%を求め、その結果を表1に示した。   An X-ray photograph was taken of this solder joint test piece using a transmission X-ray apparatus (ToshibaIT & Control System's TOSMICRON-6090FP), image processing (binarization) processing was performed to determine the joint area%, and the results are shown in Table 1. .

Figure 0004747280
Figure 0004747280

実施例1〜3および従来例1に示される結果から、実施例1〜3による接合面積は従来例1に比べて格段に大きいことから、実施例1〜3の本発明方法によると、基板と素子との間に形成されているAu−Sn合金はんだ接合層に発生するボイドは従来例1に比べて格段に少ないことが分かり、Au−Sn合金はんだ接合層に発生するボイドが少ないこの発明のAu−Sn合金はんだペーストを用いた基板と素子の接合方法は特に熱がこもることが好ましくないLED素子などの接合に優れた効果を有することが分かる。   From the results shown in Examples 1 to 3 and Conventional Example 1, the bonding area according to Examples 1 to 3 is much larger than that of Conventional Example 1. Therefore, according to the method of the present invention of Examples 1 to 3, the substrate and It can be seen that the voids generated in the Au—Sn alloy solder joint layer formed between the elements are remarkably fewer than those in the conventional example 1, and the voids generated in the Au—Sn alloy solder joint layer are small. It can be seen that the bonding method between the substrate and the device using the Au—Sn alloy solder paste has an excellent effect on the bonding of an LED device or the like in which heat is not particularly preferred.

この発明の方法により基板と素子を接合する工程を説明するための側面説明図である。It is side surface explanatory drawing for demonstrating the process of joining a board | substrate and an element by the method of this invention. この発明の方法により基板と素子を接合する工程を説明するための側面説明図である。It is side surface explanatory drawing for demonstrating the process of joining a board | substrate and an element by the method of this invention. 従来の方法により基板と素子を接合する工程を説明するための側面説明図である。It is side surface explanatory drawing for demonstrating the process of joining a board | substrate and an element with the conventional method.

符号の説明Explanation of symbols

1:基板、2:Au−Sn合金はんだペースト、3:素子、4:Au−Sn合金はんだ接合層、4´:溶融Au−Sn合金はんだ、5:ボイド、6:ガス。
1: substrate, 2: Au—Sn alloy solder paste, 3: element, 4: Au—Sn alloy solder bonding layer, 4 ′: molten Au—Sn alloy solder, 5: void, 6: gas.

Claims (4)

素子を基板に載置し、さらにAu−Sn合金はんだペーストを前記素子から離してまたは該素子に隣接して基板に搭載または塗布し、前記素子を載置しかつAu−Sn合金はんだペーストを搭載または塗布した基板を非酸化性雰囲気中でリフロー処理し、溶融Au−Sn合金はんだが濡れ広がって前記素子の下に潜り込み、該素子が溶融Au−Sn合金はんだの中央に向かって引き戻された後、前記素子の全体が溶融Au−Sn合金はんだに乗った状態で冷却することを特徴とするAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 Placing the device on the substrate, mounted or applied to the substrate further adjacent the Au-Sn alloy solder paste with or the element away from the device, equipped with a mounting vital Au-Sn alloy solder paste the element Alternatively, after the coated substrate is reflowed in a non-oxidizing atmosphere, the molten Au—Sn alloy solder wets and spreads under the element, and the element is pulled back toward the center of the molten Au—Sn alloy solder. A method for joining a substrate and an element using an Au-Sn alloy solder paste , wherein the entire element is cooled in a state of being on a molten Au-Sn alloy solder. 前記素子は発光ダイオード素子であることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 2. The method for bonding a substrate and an element using an Au—Sn alloy solder paste according to claim 1, wherein the element is a light emitting diode element. 前記Au−Sn合金はんだペーストは、Sn:15〜25質量%を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn合金粉末とフラックスとを混合して得られたAu−Sn合金はんだペーストであることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。The Au—Sn alloy solder paste contains Sn: 15 to 25% by mass, and the remainder is Au—Sn alloy obtained by mixing an Au—Sn alloy powder having a composition composed of Au and inevitable impurities and a flux. The method for joining a substrate and an element using the Au-Sn alloy solder paste according to claim 1, wherein the solder paste is a solder paste. 前記基板は表面に金メッキされた基板であることを特徴とする請求項1記載のAu−Sn合金はんだペーストを用いた基板と素子の接合方法。 2. The method for bonding a substrate and an element using an Au-Sn alloy solder paste according to claim 1, wherein the substrate is a substrate whose surface is gold-plated.
JP2006090901A 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste Active JP4747280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090901A JP4747280B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090901A JP4747280B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Publications (2)

Publication Number Publication Date
JP2007266404A JP2007266404A (en) 2007-10-11
JP4747280B2 true JP4747280B2 (en) 2011-08-17

Family

ID=38639084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090901A Active JP4747280B2 (en) 2006-03-29 2006-03-29 Method of joining substrate and device using Au-Sn alloy solder paste

Country Status (1)

Country Link
JP (1) JP4747280B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273398A (en) * 1987-05-01 1988-11-10 Senju Metal Ind Co Ltd Reflow soldering method for printed substrate
JPH04290478A (en) * 1991-03-19 1992-10-15 Denki Kagaku Kogyo Kk Matrix circuit board, its manufacture and display board
JPH05326574A (en) * 1991-05-24 1993-12-10 Mitsumi Electric Co Ltd Die bonding method for semiconductor element
JP3110170B2 (en) * 1992-09-02 2000-11-20 第一高周波工業株式会社 Plate soldering method
JP3958608B2 (en) * 2002-03-11 2007-08-15 日本特殊陶業株式会社 Wiring board manufacturing method
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP4560830B2 (en) * 2004-06-28 2010-10-13 三菱マテリアル株式会社 Au-Sn alloy powder for solder paste

Also Published As

Publication number Publication date
JP2007266404A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4924920B2 (en) Method for bonding the entire bonding surface of an element to a substrate using an Au-Sn alloy solder paste
US7722962B2 (en) Solder foil, semiconductor device and electronic device
KR101276917B1 (en) Electronic package formed using low-temperature active solder including indium, bismuth, and/or cadmium
JP5363789B2 (en) Optical semiconductor device
US20050056365A1 (en) Thermal interface adhesive
JP5120653B2 (en) Solder layer, device bonding substrate using the same, and method for manufacturing the device bonding substrate
JP2006237215A (en) Semiconductor device and manufacturing method thereof
JP2008010703A (en) Method for bonding between components of semiconductor device
JPWO2011027820A1 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
JP5211457B2 (en) Semiconductor device and manufacturing method thereof
JP4747281B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP2009188176A (en) Semiconductor device, and manufacturing method thereof
JP7484268B2 (en) METHOD FOR TEMPORARY FIXING OF METAL MEMBER, METHOD FOR MANUFACTURING JOINT BODY, AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD
JP4600672B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP2012206142A (en) Solder, semiconductor device using solder and soldering method
JP5062710B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
WO2018168476A1 (en) Method for producing bonded body, method for producing insulated circuit board, and method for producing insulated circuit board with heatsink
JP2008211101A (en) Solder layer, substrate for bonding device using the same, and method of manufacturing the substrate
JP4747280B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
TWI334752B (en) Manufacturing method of circuit device
JP6710155B2 (en) Power semiconductor module and method of manufacturing power semiconductor module
JP4947345B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste
JP5391584B2 (en) Method of joining substrate and device using Au-Sn alloy solder paste with less void generation
JP2016219769A (en) Method for manufacturing junction structure
CN112654453B (en) Method for manufacturing bonded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4747280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3