JP4746061B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4746061B2
JP4746061B2 JP2008030458A JP2008030458A JP4746061B2 JP 4746061 B2 JP4746061 B2 JP 4746061B2 JP 2008030458 A JP2008030458 A JP 2008030458A JP 2008030458 A JP2008030458 A JP 2008030458A JP 4746061 B2 JP4746061 B2 JP 4746061B2
Authority
JP
Japan
Prior art keywords
lead
electrode pad
source
gate
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008030458A
Other languages
Japanese (ja)
Other versions
JP2008177588A (en
Inventor
幸弘 佐藤
俊幸 波多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2008030458A priority Critical patent/JP4746061B2/en
Publication of JP2008177588A publication Critical patent/JP2008177588A/en
Application granted granted Critical
Publication of JP4746061B2 publication Critical patent/JP4746061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

本発明は半導体装置に係わり、特にパワーMOSFET,IGBT(Insulated Gate Bipolar Transistor),バイポーラパワートランジスタ等の電源用トランジスタチップを封止した半導体装置に適用して有効な技術に関する。上記半導体装置は、携帯機器、レーザビームプリンタ、自動車電装機器等で使用されている。   The present invention relates to a semiconductor device, and more particularly to a technique effectively applied to a semiconductor device in which a power supply transistor chip such as a power MOSFET, IGBT (Insulated Gate Bipolar Transistor), or bipolar power transistor is sealed. The semiconductor device is used in portable equipment, laser beam printers, automobile electrical equipment, and the like.

携帯電話,ビデオカメラなどの充電器,オフィスオートメーション(OA)機器等の電源回路,自動車電装機器等に使用される電源用トランジスタとして、低電圧駆動用パワートランジスタが知られている(例えば、特許文献1)。   Low voltage drive power transistors are known as power transistors used in battery chargers for mobile phones, video cameras and the like, power supply circuits for office automation (OA) devices, and automobile electrical equipment (for example, Patent Documents). 1).

また、工業規格パッケージ外形がTO220型やTO247型となるハイパワーMOSFETも提案されている(例えば、特許文献2)。   In addition, a high power MOSFET having an industrial standard package outer shape of TO220 type or TO247 type has been proposed (for example, Patent Document 2).

特開2000−49184号公報JP 2000-49184 A 特開2000−77588号公報JP 2000-77588 A

TO220型の半導体装置(パッケージ)90は、図23及び図24に示すような外観形状をしている。図23はパッケージの平面図であり、図24はパッケージの側面図である。ヘッダと呼称される金属製の支持基板91の上面側は絶縁性樹脂からなる封止体92によって被われ、この封止体92の一端から三本のリード93〜95が平行に突出している。リード93〜95はゲート(G)リード,ドレイン(D)リード,ソース(S)リードとなっている。また、中央のリード94は封止体92の内部でオフセットされ、ヘッダ91と一体に形成されている。図示はしないが、ヘッダ91の上面にはMOSFETが形成された半導体チップが固定されている。半導体チップの裏面はドレイン電極となり、ヘッダ91と電気的に接続されている。また、半導体チップの上面にはゲート電極パッド及びソース電極パッドが設けられている。これらゲート電極パッド及びソース電極パッドと、ゲートリード93,ソースリード95のワイヤ接続部(リードポスト)は導電性のワイヤで各々接続されている。   The TO220 type semiconductor device (package) 90 has an external shape as shown in FIGS. FIG. 23 is a plan view of the package, and FIG. 24 is a side view of the package. An upper surface side of a metal support substrate 91 called a header is covered with a sealing body 92 made of an insulating resin, and three leads 93 to 95 project in parallel from one end of the sealing body 92. The leads 93 to 95 are a gate (G) lead, a drain (D) lead, and a source (S) lead. The central lead 94 is offset inside the sealing body 92 and formed integrally with the header 91. Although not shown, a semiconductor chip on which a MOSFET is formed is fixed on the upper surface of the header 91. The back surface of the semiconductor chip serves as a drain electrode and is electrically connected to the header 91. A gate electrode pad and a source electrode pad are provided on the upper surface of the semiconductor chip. These gate electrode pads and source electrode pads are connected to the wire connecting portions (lead posts) of the gate lead 93 and the source lead 95 with conductive wires.

図25及び図26は本発明に先立って検討したTO220型の半導体装置である。図25は樹脂封止体を取り除いた場合の模式的平面図、図26は図25に対応する断面図である。図25及び図26において、各部の符号は図23及び図24と共通な構成は、その参照番号をそのまま使用する。   25 and 26 show a TO220 type semiconductor device examined prior to the present invention. 25 is a schematic plan view when the resin sealing body is removed, and FIG. 26 is a cross-sectional view corresponding to FIG. In FIG. 25 and FIG. 26, the reference numerals of the respective parts are the same as those in FIG. 23 and FIG.

ヘッダ91はパッケージ90を実装基板に固定するため使用する取付孔96を有する。半導体チップ97は矩形リング状に形成されたV溝枠98の内側の領域に接着材を介して固定されている。   The header 91 has a mounting hole 96 used for fixing the package 90 to the mounting substrate. The semiconductor chip 97 is fixed to a region inside the V groove frame 98 formed in a rectangular ring shape with an adhesive.

半導体チップ97の上面(第1主面)には、ゲート電極パッド99及びソース電極パッド100が設けられている。ゲート電極パッド99とゲートリード93のワイヤ接続部(リードポスト)93aは導電性のワイヤ101で接続され、ソース電極パッド100とソースリード95のワイヤ接続部95aは導電性のワイヤ102で接続されている。オン抵抗を低減するため、ソース電極パッド100とソースリード95を接続するワイヤ102は2本使用される。このワイヤ102はゲート電極パッド99とゲートリード93を接続するワイヤ101(例えば、直径125μmのアルミニウム線)に比較して、各々が太く(例えば直径300〜500μmのアルミニウム)形成される。   A gate electrode pad 99 and a source electrode pad 100 are provided on the upper surface (first main surface) of the semiconductor chip 97. The wire connection portion (lead post) 93 a of the gate electrode pad 99 and the gate lead 93 is connected by the conductive wire 101, and the wire connection portion 95 a of the source electrode pad 100 and the source lead 95 is connected by the conductive wire 102. Yes. In order to reduce the on-resistance, two wires 102 connecting the source electrode pad 100 and the source lead 95 are used. Each of the wires 102 is thicker (for example, aluminum having a diameter of 300 to 500 μm) than the wire 101 (for example, an aluminum wire having a diameter of 125 μm) that connects the gate electrode pad 99 and the gate lead 93.

半導体チップ97の上面には絶縁性の保護膜が形成されているが、この保護膜を部分的に除去した開口部の底にそれぞれ電極が露出し、この露出部分がゲート電極パッド99、ソース電極パッド100となる。ソース電極パッド100は2本のワイヤを接続するため幅広に形成されている。即ち、リードの延在方向に直交する方向に長く形成されている。ソース電極パッド100は半導体チップ97の略中央に形成されている。ゲート電極パッド99は細いワイヤを接続することから、ソース電極パッド100に比較して充分小さい。また、特許文献2にも示されているように、ゲート電極パッド99は、半導体チップ97の隅(コーナ)で、かつゲートリード93の先端のリードポスト93aに近接した位置に設けられている。即ち、ゲート電極パッド99はソース電極パッド100よりもリード93,95のリードポスト93a,95a側に近接している。換言するならば、ゲートリードポスト93aとソース電極パッド100との間にゲート電極パッド99が位置している。   An insulating protective film is formed on the upper surface of the semiconductor chip 97. Electrodes are exposed at the bottoms of the openings from which the protective film has been partially removed, and the exposed parts are the gate electrode pad 99 and the source electrode. The pad 100 is formed. The source electrode pad 100 is formed wide to connect two wires. That is, it is long in the direction orthogonal to the extending direction of the leads. The source electrode pad 100 is formed in the approximate center of the semiconductor chip 97. Since the gate electrode pad 99 is connected to a thin wire, it is sufficiently smaller than the source electrode pad 100. As also shown in Patent Document 2, the gate electrode pad 99 is provided at a corner (corner) of the semiconductor chip 97 and at a position close to the lead post 93 a at the tip of the gate lead 93. That is, the gate electrode pad 99 is closer to the lead posts 93a and 95a side of the leads 93 and 95 than the source electrode pad 100 is. In other words, the gate electrode pad 99 is located between the gate lead post 93 a and the source electrode pad 100.

しかし、このようにゲート電極パッド99がリードポストに近い半導体チップ97のコーナ側に配置される構成の場合、半導体チップのチップサイズが大きくなると、ゲート電極パッド99とリードポスト93aが更に近接することになる。このため、パッケージの製造工程におけるワイヤボンディング時、リード段差部にボンディングツールが接触し、ボンディングが困難になる。即ち、ワイヤボンディングはウエッジボンディングツールを用いた超音波ボンディングであるため、第1ボンディングとしてゲート電極パッド99にワイヤの一端を接続する際、ワイヤを保持するボンディングツール(キャピラリ)がゲートリードポスト93aに接触し、超音波振動をワイヤ接合部に効果的に加えられなくなり、信頼性の高いワイヤボンディングが困難になる。   However, in the case where the gate electrode pad 99 is arranged on the corner side of the semiconductor chip 97 close to the lead post as described above, the gate electrode pad 99 and the lead post 93a become closer to each other when the chip size of the semiconductor chip increases. become. For this reason, at the time of wire bonding in the manufacturing process of the package, the bonding tool comes into contact with the stepped portion of the lead, and bonding becomes difficult. That is, since wire bonding is ultrasonic bonding using a wedge bonding tool, when one end of the wire is connected to the gate electrode pad 99 as the first bonding, a bonding tool (capillary) for holding the wire is connected to the gate lead post 93a. It becomes impossible to effectively apply ultrasonic vibration to the wire bonding portion due to contact, and it becomes difficult to perform highly reliable wire bonding.

また、ソースリード95は、パッケージの外側に配置され、一方、ソース電極パッド100は、パッケージの中央側に配置されているため、ソース用ワイヤ102は、リードの延びる方向に対して交差する方向に延びる。   Further, since the source lead 95 is disposed outside the package, while the source electrode pad 100 is disposed on the center side of the package, the source wire 102 is in a direction intersecting with the direction in which the lead extends. Extend.

従って、ソース用ワイヤ102をリードの延びる方向に延ばして形成した場合に比べて、ソース用ワイヤ102間のピッチを広く設定する必要があり、多数本のソース用ワイヤ102の形成が困難になる。   Therefore, it is necessary to set the pitch between the source wires 102 wider than when the source wires 102 are formed to extend in the lead extending direction, and it becomes difficult to form a large number of source wires 102.

更に、ソース電極パッド100に接続するワイヤ102は、前述のように300〜500μm直径の太いワイヤが使用されることから、ソース電極パッド及びリードポスト95aに接続するワイヤの本数も制限され、パッケージの低ON抵抗化にも限度がある。   Furthermore, since the wire 102 connected to the source electrode pad 100 is a thick wire having a diameter of 300 to 500 μm as described above, the number of wires connected to the source electrode pad and the lead post 95a is limited, and the package There is a limit to reducing the ON resistance.

本発明の一つの目的は、低オン抵抗の半導体装置を提供することにある。
本発明の一つの目的は、支持基板上により大きいサイズの半導体チップを固定できる半導体装置を提供することにある。
本発明の一つの目的は、電気的信頼性の高い半導体装置の製造方法を提供することにある。
One object of the present invention is to provide a low on-resistance semiconductor device.
One object of the present invention is to provide a semiconductor device capable of fixing a semiconductor chip having a larger size on a support substrate.
An object of the present invention is to provide a method for manufacturing a semiconductor device with high electrical reliability.

本発明の前記ならびにそのほかの目的と新規な特徴は、本明細書の記述および添付図面からあきらかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。   The outline of a typical invention among the inventions disclosed in the present application will be briefly described as follows.

(1)本発明の半導体装置は、絶縁性樹脂からなる封止体によって少なくとも一部が被われ下面が前記封止体から露出しかつ第1電極になる金属製の支持基板と、前記支持基板に連なり前記封止体の一側面から突出する第1電極リードと、前記封止体の前記一側面から突出し、前記第1電極リードと並んで延在する第2電極リード及び制御電極リードと、前記封止体に被われるとともに下面に第1電極を有し上面に第2電極パッドと制御電極パッドを有し下面が導電性の接合材を介して前記支持基板に固定される半導体チップと、前記封止体内に位置し前記第2電極パッドと前記第2電極リードを電気的に接続する接続手段と、前記封止体内に位置し前記制御電極パッドと前記制御電極リードを電気的に接続する接続手段とを有し、前記制御電極リード及び前記第2電極リードに対して、前記第2電極パッドは近い位置にあり、前記制御電極パッドは遠い位置にあることを特徴とする。   (1) A semiconductor device of the present invention includes a metal support substrate that is at least partially covered by a sealing body made of an insulating resin, a lower surface exposed from the sealing body, and serving as a first electrode, and the support substrate A first electrode lead projecting from one side surface of the sealing body, and a second electrode lead and a control electrode lead projecting from the one side surface of the sealing body and extending alongside the first electrode lead; A semiconductor chip which is covered with the sealing body and has a first electrode on the lower surface, a second electrode pad and a control electrode pad on the upper surface, and the lower surface is fixed to the support substrate via a conductive bonding material; Connection means located in the sealed body for electrically connecting the second electrode pad and the second electrode lead, and electrically connected between the control electrode pad and the control electrode lead located in the sealed body Connecting means, and said control Against electrode lead and the second electrode lead located at the second electrode pad is close, the control electrode pad may be located at a position far.

前記半導体チップには電界効果トランジスタが組み込まれ、前記第1電極リードはドレインリード、前記制御電極リードはゲートリード、前記第2電極リードはソースリードである。四角形からなる半導体チップの1辺がゲートリード及びソースリードのリードポストに対面し、対面した辺の反対側の辺に連なる半導体チップの1コーナ部分にゲート電極パッドが位置している。   A field effect transistor is incorporated in the semiconductor chip, the first electrode lead is a drain lead, the control electrode lead is a gate lead, and the second electrode lead is a source lead. One side of the rectangular semiconductor chip faces the lead posts of the gate lead and the source lead, and the gate electrode pad is located at one corner portion of the semiconductor chip connected to the opposite side of the facing side.

ゲート電極パッドとゲートリードは1本のワイヤで接続され、ソース電極パッドとソースリードは複数本のワイヤで接続され、該複数本のワイヤはゲート電極パッドとゲートリードを接続するワイヤよりも太くかつ短い。   The gate electrode pad and the gate lead are connected by a single wire, the source electrode pad and the source lead are connected by a plurality of wires, and the plurality of wires are thicker than the wire connecting the gate electrode pad and the gate lead and short.

(2)前記手段(1)の構成において、ソース電極パッド及びソースリードは幅が広くなり、ソース電極パッドとソースリードは、可撓性のリボン・ストラップや所定形状に成形された金属板からなる幅広の導体板で接続されている。   (2) In the configuration of the means (1), the source electrode pad and the source lead are widened, and the source electrode pad and the source lead are made of a flexible ribbon strap or a metal plate formed in a predetermined shape. They are connected by wide conductor plates.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
(1)低オン抵抗の半導体装置を提供することができる。
(2)支持基板上により大きいサイズの半導体チップを固定できる半導体装置を提供することができ、高出力の半導体装置を提供することができる。
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
(1) A low on-resistance semiconductor device can be provided.
(2) A semiconductor device capable of fixing a semiconductor chip having a larger size on a supporting substrate can be provided, and a high-output semiconductor device can be provided.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、発明の実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
(実施形態1)
図1乃至図8は本発明の一実施形態(実施形態1)である半導体装置に係わる図である。図1は樹脂封止体を取り除いた半導体装置の模式的平面図、図2は半導体装置の断面図、図3は半導体装置に組み込まれる半導体チップの模式的平面図、図4は図3のA−A線に沿う断面図、図5はゲート電極パッドをチップのコーナに配置した状態を示すチップの一部を示す平面図、図6はゲート電極パッドをチップの辺の途中に配置した状態を示すチップの一部を示す平面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment of the invention, and the repetitive description thereof is omitted.
(Embodiment 1)
1 to 8 are diagrams related to a semiconductor device according to an embodiment (Embodiment 1) of the present invention. 1 is a schematic plan view of a semiconductor device from which a resin sealing body is removed, FIG. 2 is a cross-sectional view of the semiconductor device, FIG. 3 is a schematic plan view of a semiconductor chip incorporated in the semiconductor device, and FIG. FIG. 5 is a cross-sectional view taken along line -A, FIG. 5 is a plan view showing a part of the chip showing the state in which the gate electrode pad is arranged at the corner of the chip, and FIG. It is a top view which shows a part of chip | tip shown.

本実施形態1では、本発明を縦型パワートランジスタ(半導体装置)1に適用した例について説明する。即ち、第1電極としてドレイン(D)電極、第2電極としてソース(S)電極、制御電極としてゲート(G)電極となる電界効果トランジスタを組み込んだ半導体チップが、半導体装置1に組み込まれている。   In the first embodiment, an example in which the present invention is applied to a vertical power transistor (semiconductor device) 1 will be described. That is, a semiconductor chip in which a field effect transistor that becomes a drain (D) electrode as a first electrode, a source (S) electrode as a second electrode, and a gate (G) electrode as a control electrode is incorporated in the semiconductor device 1. .

パワートランジスタ1は、図1および図2に示すように、絶縁性樹脂からなる封止体2と、前記封止体2によって少なくとも一部が被われ下面が前記封止体2から露出しかつ第1電極になる金属製の支持基板(ヘッダ)3と、前記支持基板3に連なり前記封止体2の一端面から突出しかつ途中で一段階段状に屈曲する第1電極リード(ドレインリード)4と、前記封止体2の前記一端面から並んで突出する第2電極リード(ソースリード)5および制御電極リード(ゲートリード)6を有している。ソースリード5及びゲートリード6はドレインリード4と同じ高さになっている。支持基板3は厚く、リードは薄くなり、これらは部分的に厚さが異なる異型材から製造される。   As shown in FIGS. 1 and 2, the power transistor 1 includes a sealing body 2 made of an insulating resin, and at least a part of which is covered by the sealing body 2, and a lower surface exposed from the sealing body 2. A metal support substrate (header) 3 that becomes one electrode, and a first electrode lead (drain lead) 4 that is connected to the support substrate 3 and protrudes from one end surface of the sealing body 2 and bends in one step in the middle. And a second electrode lead (source lead) 5 and a control electrode lead (gate lead) 6 protruding side by side from the one end face of the sealing body 2. The source lead 5 and the gate lead 6 are at the same height as the drain lead 4. The support substrate 3 is thick and the leads are thin, and these are manufactured from atypical materials having partially different thicknesses.

また、前記封止体(パッケージ)2内には半導体チップ7が配置されている。この半導体チップ7には、図4に示すように縦型パワーMOSFETが形成され下面に第1電極(ドレイン電極)10を有し、図3及び図1に示すように、主面(上面)には第2電極(ソース電極)パッド11と制御電極(ゲート電極)パッド12を有した構造になっている。ドレイン電極はTi・Ni・Auによって形成されている。また、ソース電極パッド11及びゲート電極パッド12はAlで形成されている。   A semiconductor chip 7 is disposed in the sealing body (package) 2. The semiconductor chip 7 is formed with a vertical power MOSFET as shown in FIG. 4 and has a first electrode (drain electrode) 10 on the lower surface, and on the main surface (upper surface) as shown in FIGS. The structure has a second electrode (source electrode) pad 11 and a control electrode (gate electrode) pad 12. The drain electrode is made of Ti / Ni / Au. The source electrode pad 11 and the gate electrode pad 12 are made of Al.

半導体チップ7は、図2に示すように、図示しない下面のドレイン電極が導電性の接合材(図示せず)を介して前記支持基板(ヘッダ)3に固定されている。また、前記封止体2内に延在するソースリード5及びゲートリード6の先端は幅広になるリードポスト5a,6aとなっている。これらリードポスト5a,6aは、ワイヤ14,15を介して半導体チップ7のソース電極パッド11及びゲート電極パッド12にそれぞれ接続されている。   As shown in FIG. 2, the semiconductor chip 7 has a drain electrode on the lower surface (not shown) fixed to the support substrate (header) 3 via a conductive bonding material (not shown). The leading ends of the source lead 5 and the gate lead 6 extending into the sealing body 2 are lead posts 5a and 6a which are wide. The lead posts 5a and 6a are connected to the source electrode pad 11 and the gate electrode pad 12 of the semiconductor chip 7 through wires 14 and 15, respectively.

ゲートリード6のリードポスト6aとゲート電極パッド12を接続するワイヤ15は直径が、例えば、125μmと細いAl線である。ソースリード5のリードポスト5aとソース電極パッド11は複数本のワイヤ14で接続されている。図では2本になっているが、オン抵抗を低減するためにさらに多くてもよい。このワイヤ14は直径が300〜500μm程度、例えば500μmとなり、ワイヤ15に比較して太い。このワイヤ15もAl線である。また、オン抵抗の低減を図るため、ワイヤ14の接続長さは5mm以内となっている。また、いずれのワイヤも超音波によくこすり付けによって接続される。従って、半導体チップ7の主面の電極パッドにワイヤボンディングを行うときは、ワイヤを保持するボンディングツールが一段高い位置にあるリードポストに接触しないようにして行う必要がある。   The wire 15 connecting the lead post 6a of the gate lead 6 and the gate electrode pad 12 is a thin Al wire having a diameter of, for example, 125 μm. The lead post 5 a of the source lead 5 and the source electrode pad 11 are connected by a plurality of wires 14. Although the number is two in the figure, the number may be increased in order to reduce the on-resistance. The wire 14 has a diameter of about 300 to 500 μm, for example, 500 μm, and is thicker than the wire 15. This wire 15 is also an Al wire. In order to reduce the on-resistance, the connection length of the wire 14 is within 5 mm. In addition, both wires are often connected to ultrasonic waves by rubbing. Therefore, when wire bonding is performed on the electrode pads on the main surface of the semiconductor chip 7, it is necessary that the bonding tool for holding the wires does not come into contact with the lead post at a higher level.

本実施形態1では、図1に示すように、ゲート電極パッド12はリードポストから遠い位置にあり、ソース電極パッド11は大きく、ワイヤ14はこのソース電極パッド11の中心線に沿う位置にそれぞれボンディングされることから、ボンディングツールがリードポストに接触することがなく、確実なワイヤボンディングが可能になる。   In the first embodiment, as shown in FIG. 1, the gate electrode pad 12 is located far from the lead post, the source electrode pad 11 is large, and the wire 14 is bonded to a position along the center line of the source electrode pad 11. Therefore, the bonding tool does not come into contact with the lead post, and reliable wire bonding is possible.

ここで、簡単に半導体チップ7について説明する。半導体チップ7は図3に示すように、平面的に見て四角形である。ソース電極パッド11は幅広(長方形)となるとともに、チップの一方の辺側に偏った位置に設けられている。ソース電極パッド11に近接する辺(図3では下縁になる辺)が、支持基板3に固定されるときリードポストに対面する辺である。そして、この対面する辺の反対側の辺(図3では上縁になる辺)に連なるチップの1コーナ部分(図3では左側のコーナ)にゲート電極パッド12が位置している。図1に示すように、ソース電極パッド11の中心線からゲート電極パッド12は距離eずれている。   Here, the semiconductor chip 7 will be briefly described. As shown in FIG. 3, the semiconductor chip 7 has a quadrangular shape in plan view. The source electrode pad 11 is wide (rectangular) and is provided at a position biased toward one side of the chip. The side close to the source electrode pad 11 (the side that becomes the lower edge in FIG. 3) is the side that faces the lead post when fixed to the support substrate 3. Then, the gate electrode pad 12 is located at one corner portion (left corner in FIG. 3) of the chip connected to the opposite side (the upper edge in FIG. 3) of the opposite side. As shown in FIG. 1, the gate electrode pad 12 is displaced from the center line of the source electrode pad 11 by a distance e.

半導体チップ7は、特に限定はされないが、1辺が8〜9mmの大きさである。そして、ゲート電極パッド12はワイヤ15の太さが125μm直径であることから、その大きさは一辺が0.3〜0.5mm程度となる正方形である。これに対して、ソース電極パッド11は、例えば、ソース電極パッド11の中心線に沿って複数本のワイヤ14を接続することから、例えば、縦4mm、横(幅)7mm程度である。   The semiconductor chip 7 is not particularly limited, but one side has a size of 8 to 9 mm. And since the thickness of the wire 15 is 125 micrometers in diameter, the magnitude | size of the gate electrode pad 12 is a square whose side becomes about 0.3-0.5 mm. On the other hand, the source electrode pad 11 is, for example, about 4 mm long and about 7 mm wide (width) because a plurality of wires 14 are connected along the center line of the source electrode pad 11.

図4は図3のA−A線に沿う一部の拡大断面図である。半導体チップ7は、主面にn型のエピタキシャル層21を有するn型のシリコン半導体基板20を基に形成されている。パワートランジスタ1は縦型MOSFETであり、平面的に見て多数のセル(トランジスタ)が整列配置されている。この例では、各トランジスタセルはトレンチ構成になっている。エピタキシャル層21の所定領域には、p型のチャネル(ch)層22が形成されるとともに、その外周にはガードリングとなるp型のウエル層23が形成されている。 FIG. 4 is a partial enlarged sectional view taken along line AA of FIG. The semiconductor chip 7 is formed based on an n + type silicon semiconductor substrate 20 having an n type epitaxial layer 21 on the main surface. The power transistor 1 is a vertical MOSFET, and a large number of cells (transistors) are aligned in a plan view. In this example, each transistor cell has a trench configuration. A p type channel (ch) layer 22 is formed in a predetermined region of the epitaxial layer 21, and a p type well layer 23 serving as a guard ring is formed on the outer periphery thereof.

また、チャネル(ch)層22を貫通するようにセル形成領域には多数のトレンチ(溝)25が形成される。このトレンチ25はウエル層23にも設けられる。ウエル層23に設けられるトレンチと、その内側の最外周に位置するセルを構成するトレンチとの間の領域は、セルとして使用されない無効領域fとなる。この無効領域fは、図3では二点鎖線で示される2本線に挟まれた領域である。無効領域fで囲まれた領域はセルが形成される有効領域hになる。この有効領域hが広い程セルの数を多くでき、パワートランジスタ1の出力増大を図ることができる。   A large number of trenches (grooves) 25 are formed in the cell formation region so as to penetrate the channel (ch) layer 22. The trench 25 is also provided in the well layer 23. A region between the trench provided in the well layer 23 and the trench constituting the cell located on the innermost outer periphery thereof is an invalid region f that is not used as a cell. The invalid region f is a region sandwiched between two lines indicated by a two-dot chain line in FIG. A region surrounded by the invalid region f becomes an effective region h in which a cell is formed. The wider the effective area h, the larger the number of cells and the more the output of the power transistor 1 can be increased.

本実施形態1では、ゲート電極パッド12は半導体チップ7の1隅(コーナ)に設けられ、無効領域fで囲まれる領域(有効領域h)の外側に位置している。図6に示すように、リードポストに対面したチップの辺に連なりかつこの対面した辺に直交するチップの辺の途中部分にゲート電極パッド12を位置させることも可能である。ゲートリード6のリードポスト6aに対応するため、ゲート電極パッド12はチップの左側の辺の途中に配置してある。   In the first embodiment, the gate electrode pad 12 is provided at one corner (corner) of the semiconductor chip 7 and is located outside the region (effective region h) surrounded by the ineffective region f. As shown in FIG. 6, it is also possible to position the gate electrode pad 12 in the middle of the side of the chip that is continuous with the side of the chip facing the lead post and is orthogonal to the side facing the lead post. In order to correspond to the lead post 6a of the gate lead 6, the gate electrode pad 12 is arranged in the middle of the left side of the chip.

ゲート電極パッド12をチップの一辺の途中部分に設けると、図6に示すように、無効領域fはゲート電極パッド12の三辺に沿って現れるが、ゲート電極パッド12を半導体チップ7のコーナに配置すると、図5に示すように、無効領域fはゲート電極パッド12の二辺に現れるだけである。従って、ゲート電極パッド12をコーナに設ければ、無効領域fの面積を減らすことができ、その減らした分だけ有効領域hの面積が増大することから、セル数の増大を図ることができる。本実施形態1の場合、例えば、セルの大きさは一辺が3〜5μmとなる正方形状である。ゲート電極パッド12の一辺は300〜500μmであることから、ゲート電極パッド12をコーナに設けることによってより多くのセルを形成することができる。   When the gate electrode pad 12 is provided in the middle of one side of the chip, the invalid region f appears along the three sides of the gate electrode pad 12 as shown in FIG. 6, but the gate electrode pad 12 is formed at the corner of the semiconductor chip 7. When arranged, the invalid region f only appears on the two sides of the gate electrode pad 12 as shown in FIG. Therefore, if the gate electrode pad 12 is provided in the corner, the area of the ineffective region f can be reduced, and the area of the effective region h is increased by the reduced amount, so that the number of cells can be increased. In the case of the first embodiment, for example, the size of the cell is a square shape with one side of 3 to 5 μm. Since one side of the gate electrode pad 12 is 300 to 500 μm, more cells can be formed by providing the gate electrode pad 12 in the corner.

トレンチ25内にはゲート電極となるポリシリコンゲート層26が設けられ、この層の下にはゲート絶縁膜27が設けられている。そして、トレンチに囲まれたチャネル層22の中央表層部分にはp領域28が形成されている。セル部分のチャネル層22においては、p領域28の外側からトレンチに到る領域に亘ってn型からなるソース領域29が設けられている。トレンチ部分、即ち、ゲート絶縁膜27及びポリシリコンゲート層26は絶縁膜32で被われ、この絶縁膜32上にはソース電極33が形成されている。このソース電極33は絶縁膜32が設けられない開口部分でp領域28及びソース領域29と電気的に接続されている。 A polysilicon gate layer 26 serving as a gate electrode is provided in the trench 25, and a gate insulating film 27 is provided below this layer. A p + region 28 is formed in the central surface layer portion of the channel layer 22 surrounded by the trench. In the channel layer 22 of the cell portion, an n + type source region 29 is provided from the outside of the p + region 28 to the region reaching the trench. The trench portion, that is, the gate insulating film 27 and the polysilicon gate layer 26 are covered with an insulating film 32, and a source electrode 33 is formed on the insulating film 32. The source electrode 33 is electrically connected to the p + region 28 and the source region 29 at an opening where the insulating film 32 is not provided.

無効領域fの外側に位置するトレンチ25部分では、ゲート絶縁膜27に連なって厚い絶縁膜(LOCOS)34が設けられている。この厚い絶縁膜34はウエル層23の外周を超えて延在している。無効領域fの外側に位置するトレンチ25に埋め込まれたポリシリコンゲート層26は厚い絶縁膜34上の途中部分にまで延在して周辺ゲート配線35を形成している。また、この周辺ゲート配線35及び厚い絶縁膜34も絶縁膜32で被われている。この絶縁膜32部分上にはゲート電極配線36が設けられている。このゲート電極配線36は絶縁膜32に部分的に設けられた開口を通してポリシリコンゲート層26に電気的に接続されている。   In the trench 25 portion located outside the invalid region f, a thick insulating film (LOCOS) 34 is provided continuously to the gate insulating film 27. This thick insulating film 34 extends beyond the outer periphery of the well layer 23. The polysilicon gate layer 26 buried in the trench 25 located outside the invalid region f extends to a middle portion on the thick insulating film 34 to form a peripheral gate wiring 35. The peripheral gate wiring 35 and the thick insulating film 34 are also covered with the insulating film 32. A gate electrode wiring 36 is provided on the insulating film 32 portion. The gate electrode wiring 36 is electrically connected to the polysilicon gate layer 26 through an opening partially provided in the insulating film 32.

図4に示すように、絶縁膜32は半導体チップ7の周縁まで到達しない状態となっている。また、絶縁膜32から外れたエピタキシャル層21の表面はわずかにエッチングされて一段低くなっている。そしてこの低くなった部分において、絶縁膜32の周縁はドレイン電極と同電位となるガードリング37で被われている。ガードリング37の下のエピタキシャル層21の表層には、p型からなるガードリングコンタクト層(HCNT)38が設けられている。このガードリングコンタクト層(HCNT)38は半導体チップ7の縁にまで延在している。また、ガードリング37の内側のエピタキシャル層21の表層部分には、n型からなるチャネルストッパ層(S)39が設けられている。ガードリングコンタクト層(HCNT)38はガードリングの電位をとるためで、チャネルストッパ層(S)39は、空乏層の進行をガードする効果がある。 As shown in FIG. 4, the insulating film 32 does not reach the periphery of the semiconductor chip 7. Further, the surface of the epitaxial layer 21 that is removed from the insulating film 32 is slightly etched to be lowered by one step. In this lowered portion, the periphery of the insulating film 32 is covered with a guard ring 37 having the same potential as the drain electrode. A p + type guard ring contact layer (HCNT) 38 is provided on the surface layer of the epitaxial layer 21 below the guard ring 37. The guard ring contact layer (HCNT) 38 extends to the edge of the semiconductor chip 7. An n + type channel stopper layer (S) 39 is provided on the surface layer portion of the epitaxial layer 21 inside the guard ring 37. Since the guard ring contact layer (HCNT) 38 takes the guard ring potential, the channel stopper layer (S) 39 has an effect of guarding the progress of the depletion layer.

半導体チップ7の主面は、図4に示すように、絶縁膜40で被われて保護されている。また、この絶縁膜40は選択的に開口されている。この開口部分が、図3及び図1に示すソース電極パッド11及びゲート電極パッド12になる。   The main surface of the semiconductor chip 7 is covered and protected by an insulating film 40 as shown in FIG. The insulating film 40 is selectively opened. This opening becomes the source electrode pad 11 and the gate electrode pad 12 shown in FIGS.

一方、半導体チップ7から外れる封止体2の中央部分には、パワートランジスタ1を実装基板等に取り付ける際利用する取付用孔8が設けられている。この取付用孔8が設けられる支持基板3には、この取付用孔8と同心円からなるとともに、取付用孔8よりも大きな孔9が設けられている。また、支持基板3の主面には四角枠状にV溝が形成されている。このV溝枠41のV溝内にも封止体2を形成する樹脂が充填される。このV溝枠41の存在によって、支持基板3と封止体2との界面における水分の浸入もし難くなる。また、支持基板3の両側はそれぞれ2箇所に亘って押し潰し部分42が設けられている。この押し潰し部分42の上下には封止体2を形成する樹脂が位置し、支持基板3から封止体2が剥離し難くなっている。これによりパワートランジスタ1の耐湿性が向上する。   On the other hand, an attachment hole 8 is provided in the central portion of the sealing body 2 that is detached from the semiconductor chip 7 and is used when attaching the power transistor 1 to a mounting substrate or the like. The support substrate 3 provided with the mounting holes 8 is provided with a hole 9 which is concentric with the mounting holes 8 and which is larger than the mounting holes 8. Further, a V-groove is formed in a rectangular frame shape on the main surface of the support substrate 3. The resin forming the sealing body 2 is also filled in the V groove of the V groove frame 41. The presence of the V-groove frame 41 makes it difficult for moisture to enter the interface between the support substrate 3 and the sealing body 2. Moreover, the crushing part 42 is provided in the both sides of the support substrate 3 over two places, respectively. The resin forming the sealing body 2 is positioned above and below the crushing portion 42, and the sealing body 2 is difficult to peel off from the support substrate 3. Thereby, the moisture resistance of the power transistor 1 is improved.

つぎに、本実施形態1の半導体装置(パワートランジスタ1)の製造方法について、図7及び図8を参照しながら説明する。図7はパワートランジスタの製造において、チップを固定したリードフレームを示す平面図であり、図8はワイヤを接続したリードフレームを示す平面図である。   Next, a method for manufacturing the semiconductor device (power transistor 1) according to the first embodiment will be described with reference to FIGS. FIG. 7 is a plan view showing a lead frame to which a chip is fixed in manufacturing a power transistor, and FIG. 8 is a plan view showing a lead frame to which wires are connected.

パワートランジスタ1の製造においては、図7に示すようにリードフレーム45が用意される。このリードフレーム45は複数個のパワートランジスタ1を製造するように、1個のパワートランジスタ1を製造する単位リードフレーム46が、並列に複数繋がる短冊形状になっている。   In manufacturing the power transistor 1, a lead frame 45 is prepared as shown in FIG. The lead frame 45 has a strip shape in which a plurality of unit lead frames 46 for manufacturing one power transistor 1 are connected in parallel so as to manufacture a plurality of power transistors 1.

単位リードフレーム46は、図1で説明した3本のリード6,4,5を所定長さ長く延在させるパターンになるとともに、これら3本のリード6,4,5を支持するようにリードに直交する方向に延在する細いダム47と、3本のリード6,4,5の先端部分を接続する枠片48とを有する。ダム47は封止体2に近接した位置に設けられている。   The unit lead frame 46 has a pattern in which the three leads 6, 4, 5 described with reference to FIG. 1 extend a predetermined length long, and the unit lead frame 46 supports the three leads 6, 4, 5. It has a thin dam 47 extending in a direction orthogonal to each other and a frame piece 48 connecting the tip portions of the three leads 6, 4, 5. The dam 47 is provided at a position close to the sealing body 2.

単位リードフレーム46は、これらダム47及び枠片48によって繋がっている。また、支持基板(ヘッダ)3の先端側部も隣接するヘッダに連結部50で繋がる構造になっている。単位リードフレーム46を3個並列にした状態が図7である。また、支持基板3は各リードよりも一段低くなる(図2参照)。枠片48にはガイド孔49が設けられている。ガイド孔49はリードフレーム45を移送したり、リードフレーム45の位置決め時に使用される。リードフレーム45は、一側が所定の幅で厚くなる帯状の銅合金等からなる金属板(異形材)を精密プレスで打ち抜いてパターニングするとともに、薄い一部で屈曲させて薄い部分を厚い部分よりも一段高くした構造(段差は1.8mm)になっている。厚い部分が前記支持基板3であり1.26mmの厚さになり、薄い部分がゲートリード6,ドレインリード4,ソースリード5であり0.6mmの厚さになっている。ソースリード5及びゲートリード6の先端は幅広のリードポスト5a,6aになっている。   The unit lead frame 46 is connected by the dam 47 and the frame piece 48. Further, the front end side portion of the support substrate (header) 3 is also connected to the adjacent header by the connecting portion 50. FIG. 7 shows a state in which three unit lead frames 46 are arranged in parallel. Further, the support substrate 3 is one step lower than each lead (see FIG. 2). A guide hole 49 is provided in the frame piece 48. The guide hole 49 is used when the lead frame 45 is transferred or the lead frame 45 is positioned. The lead frame 45 is formed by punching and patterning a metal plate (deformed material) made of a strip-shaped copper alloy or the like whose one side is thick with a predetermined width with a precision press, and bending the thin part to make the thin part thicker than the thick part. The structure is one step higher (the step is 1.8 mm). The thick part is the support substrate 3 and has a thickness of 1.26 mm, and the thin part is the gate lead 6, drain lead 4 and source lead 5 and has a thickness of 0.6 mm. The leading ends of the source lead 5 and the gate lead 6 are wide lead posts 5a and 6a.

このようなリードフレーム45の各支持基板3上の所定位置に半導体チップ7を接着材を介して固定する。この際、リードポスト5a,6aに近い位置にソース電極パッド11が位置し、リードポスト5a,6aから遠い位置にゲート電極パッド12が位置する状態で半導体チップ7の固定を行う(図7参照)。   The semiconductor chip 7 is fixed to a predetermined position on each support substrate 3 of the lead frame 45 with an adhesive. At this time, the semiconductor chip 7 is fixed in a state where the source electrode pad 11 is located near the lead posts 5a and 6a and the gate electrode pad 12 is located far from the lead posts 5a and 6a (see FIG. 7). .

つぎに、図8に示すように、ソース電極パッド11とソースリード5のリードポスト5aを、500μm直径のAlワイヤで電気的に接続する。ソース電極パッド11とソースリード5は2本のワイヤ14で接続する。ワイヤ14は超音波ワイヤボンディングによって接続される。   Next, as shown in FIG. 8, the source electrode pad 11 and the lead post 5a of the source lead 5 are electrically connected by an Al wire having a diameter of 500 μm. The source electrode pad 11 and the source lead 5 are connected by two wires 14. The wires 14 are connected by ultrasonic wire bonding.

つぎに、ゲート電極パッド12とゲートリード6のリードポスト6aを、125μmのAlワイヤ15で接続する。ワイヤ15は超音波ワイヤボンディングによって接続される。ゲート電極パッド12にワイヤ15の先端を超音波ボンディングしても、ゲート電極パッド12がリードポスト6aから遠い位置にあることから、ボンディングツールがリードポスト6aに接触することがなく、確実なワイヤボンディングができる。このため、半導体チップ7をリードポスト5a,6aに近づけるようにして支持基板3に固定することができる。これは、支持基板3の長さを短くしたり、あるいは固定する半導体チップ7のサイズの大型化が図れることになり、パワートランジスタ1の小型化やチップ大型化による出力増大が可能になる。   Next, the gate electrode pad 12 and the lead post 6 a of the gate lead 6 are connected by an Al wire 15 of 125 μm. The wire 15 is connected by ultrasonic wire bonding. Even if the tip of the wire 15 is ultrasonically bonded to the gate electrode pad 12, since the gate electrode pad 12 is located far from the lead post 6a, the bonding tool does not come into contact with the lead post 6a, and reliable wire bonding is achieved. Can do. For this reason, the semiconductor chip 7 can be fixed to the support substrate 3 so as to be close to the lead posts 5a and 6a. This can shorten the length of the support substrate 3 or increase the size of the semiconductor chip 7 to be fixed, and the output can be increased by reducing the size of the power transistor 1 or increasing the size of the chip.

つぎに、図8の点線で示すように、トランスファモールディング等によって絶縁性樹脂によって封止体2を形成する。つぎに、各リード間のダム47及び連結部50を切断除去し、ついで各リードを切断して図1及び図2に示すパワートランジスタ1を複数製造する。   Next, as shown by a dotted line in FIG. 8, the sealing body 2 is formed of an insulating resin by transfer molding or the like. Next, the dam 47 and the connecting portion 50 between the leads are cut and removed, and then the leads are cut to manufacture a plurality of power transistors 1 shown in FIGS.

つぎに、必要に応じて封止体2から突出するリード表面に半田メッキ処理を行い、リードや支持基板3の所定箇所に図示しない実装用の半田メッキ膜を形成する。   Next, if necessary, a solder plating process is performed on the lead surface protruding from the sealing body 2, and a solder plating film for mounting (not shown) is formed on a predetermined portion of the lead or the support substrate 3.

本実施形態1のパワートランジスタ1は、例えば、自動車の制御系のスイッチとしても使用できる。例えば、出力は10〜15W(電源電圧が10〜20V)のものである。
本実施形態1によれば、以下の効果を奏する。
The power transistor 1 according to the first embodiment can be used as, for example, a switch for an automobile control system. For example, the output is 10 to 15 W (power supply voltage is 10 to 20 V).
According to the first embodiment, the following effects are obtained.

(1)ゲート電極パッド12がゲートリード6のリードポスト6aから遠い位置にあることから、ワイヤボンディング時、ワイヤを保持するボンディングツールがゲートリード6のリードポスト6aに接触しなくなる。この結果、支持基板(ヘッダ)3に固定する半導体チップ7をゲートリード6のリードポスト6a側に近接させて配置することができるため、その分支持基板3を小さくでき、パワートランジスタ(半導体装置)1の小型化が可能になる。   (1) Since the gate electrode pad 12 is located far from the lead post 6 a of the gate lead 6, the bonding tool that holds the wire does not come into contact with the lead post 6 a of the gate lead 6 during wire bonding. As a result, the semiconductor chip 7 to be fixed to the support substrate (header) 3 can be disposed close to the lead post 6a side of the gate lead 6, so that the support substrate 3 can be made smaller and the power transistor (semiconductor device). 1 can be miniaturized.

(2)上記(1)により、支持基板3に固定する半導体チップ7をゲートリード6のリードポスト6a側に近接させて配置することができるため、支持基板3により大きいサイズの半導体チップ7を固定することができる。この結果、パワートランジスタ1の出力増大を図ることができる。   (2) According to the above (1), the semiconductor chip 7 to be fixed to the support substrate 3 can be disposed close to the lead post 6 a side of the gate lead 6, so that a larger size semiconductor chip 7 is fixed to the support substrate 3. can do. As a result, the output of the power transistor 1 can be increased.

(3)ソース電極パッド11をソースリード5に近づけることができるため、ソース電極パッド11とソースリード5を接続するワイヤ14の長さを短くでき、オン抵抗の低減を図ることができる。   (3) Since the source electrode pad 11 can be brought close to the source lead 5, the length of the wire 14 connecting the source electrode pad 11 and the source lead 5 can be shortened, and the on-resistance can be reduced.

(実施形態2)
図9は本発明の他の実施形態(実施形態2)である半導体装置の樹脂封止体を取り除いた模式的平面図、図10は半導体装置の断面図である。
(Embodiment 2)
FIG. 9 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 2) of the present invention from which a resin sealing body is removed, and FIG. 10 is a cross-sectional view of the semiconductor device.

本実施形態2は実施形態1のパワートランジスタ1において、ソース電極パッド11とソースリード5を導体板52で接続した例である。この実施形態では、導体板52として、厚さ150〜250μm程度の可撓性のAl箔からなるリボン・ストラップ53を使用する。   The second embodiment is an example in which the source electrode pad 11 and the source lead 5 are connected by the conductor plate 52 in the power transistor 1 of the first embodiment. In this embodiment, a ribbon strap 53 made of a flexible Al foil having a thickness of about 150 to 250 μm is used as the conductor plate 52.

本実施形態では、導体板52による接続がしやすいようにするため、図9に示すように、ソースリード5が中央に位置させている。ソースリード5の左側にゲートリード6が位置し、右側にドレインリード4が位置している。ソースリード5のリードポスト5aは、導体板52を接続できるように他のリードの幅よりも広くなり、例えば、ソース電極パッド11と略同じ幅となっている。このため、幅広いリボン・ストラップを接続することができる。リボン・ストラップ53は可撓性のAl箔からなり、超音波ボンディングによってソース電極パッド11やソースリード5のリードポスト5aに接続される。   In the present embodiment, the source lead 5 is positioned at the center as shown in FIG. 9 in order to facilitate connection by the conductor plate 52. The gate lead 6 is located on the left side of the source lead 5 and the drain lead 4 is located on the right side. The lead post 5a of the source lead 5 is wider than the other leads so that the conductor plate 52 can be connected. For example, the lead post 5a has substantially the same width as the source electrode pad 11. For this reason, a wide range of ribbon straps can be connected. The ribbon strap 53 is made of flexible Al foil and is connected to the source electrode pad 11 and the lead post 5a of the source lead 5 by ultrasonic bonding.

即ち、パワートランジスタ1の製造においては、最初に、図7に示すようなリードフレーム45が用意される。このリードフレーム45は、パターニングされかつ一部で1段屈曲させた一枚の金属板からなり、第1電極(ドレイン電極)を構成するとともに半導体チップが固定される支持基板と、支持基板を先端に支持する第1電極リード(ドレインリード4)と、第1電極リードと並んで延在する第2電極リード(ソースリード5)及び制御電極リード(ゲートリード6)を有する。   That is, in manufacturing the power transistor 1, first, a lead frame 45 as shown in FIG. 7 is prepared. The lead frame 45 is made of a single metal plate that is patterned and partially bent one step. The lead frame 45 forms a first electrode (drain electrode) and a semiconductor substrate to which the semiconductor chip is fixed. And a second electrode lead (source lead 5) and a control electrode lead (gate lead 6) extending side by side with the first electrode lead.

また、下面に第1電極(ドレイン電極)を有し上面に第2電極パッド(ソース電極パッド11)と制御電極パッド(ゲート電極パッド12)を有する四角形の半導体チップ7が用意される。   Further, a rectangular semiconductor chip 7 having a first electrode (drain electrode) on the lower surface and a second electrode pad (source electrode pad 11) and a control electrode pad (gate electrode pad 12) on the upper surface is prepared.

つぎに、半導体チップ7をその第1電極部分(ドレイン電極)で導電性の接合材を介して支持基板3上に固定する。   Next, the semiconductor chip 7 is fixed on the support substrate 3 via the conductive bonding material at the first electrode portion (drain electrode).

つぎに、半導体チップ7のソース電極パッド11とソース電極パッド11を接続手段で電気的に接続するとともに、半導体チップ7のゲート電極パッド12とゲートリード6を接続手段で電気的に接続する。ゲート電極パッド12とゲートリード6は直径125μmのAlワイヤ15で接続するが、ソース電極パッド11とソース電極パッド11は前述のリボン・ストラップ53で接続する。この場合、図9に示すように、ワイヤ15はリボン・ストラップ53の角部を横切るため、リボン・ストラップ53の接続が終了した後、ゲート電極パッド12とゲートリード6のリードポスト6aをワイヤ15で接続する必要がある。   Next, the source electrode pad 11 and the source electrode pad 11 of the semiconductor chip 7 are electrically connected by connection means, and the gate electrode pad 12 and the gate lead 6 of the semiconductor chip 7 are electrically connected by connection means. The gate electrode pad 12 and the gate lead 6 are connected by an Al wire 15 having a diameter of 125 μm. The source electrode pad 11 and the source electrode pad 11 are connected by the ribbon strap 53 described above. In this case, as shown in FIG. 9, since the wire 15 crosses the corner of the ribbon strap 53, after the connection of the ribbon strap 53 is finished, the gate electrode pad 12 and the lead post 6 a of the gate lead 6 are connected to the wire 15. It is necessary to connect with.

つぎに、半導体チップ7,接続手段であるワイヤ15及びリボン・ストラップ53,ソースリード5及びゲートリード6の一部を絶縁性樹脂で封止して封止体2で被う。   Next, a part of the semiconductor chip 7, the wire 15 and the ribbon strap 53, which are connection means, the source lead 5 and the gate lead 6 are sealed with an insulating resin and covered with the sealing body 2.

つぎに、実施形態1と同様にリードフレーム45の不要部分を切断除去するとともにリードを所定長さで切断する。   Next, as in the first embodiment, unnecessary portions of the lead frame 45 are cut and removed, and the leads are cut by a predetermined length.

本実施形態によれば、幅広いのリボン・ストラップ53を用いることから、さらにオン抵抗の低減が可能になる。本実施形態2のパワートランジスタ1も実施形態1のパワートランジスタ1と同様の効果を有する。   According to this embodiment, since a wide range of ribbon straps 53 are used, the on-resistance can be further reduced. The power transistor 1 of the second embodiment has the same effect as the power transistor 1 of the first embodiment.

(実施形態3)
図11は本発明の他の実施形態(実施形態3)である半導体装置の樹脂封止体を取り除いた模式的平面図、図12は半導体装置の断面図である。
(Embodiment 3)
FIG. 11 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 3) of the present invention from which a resin sealing body is removed, and FIG. 12 is a cross-sectional view of the semiconductor device.

本実施形態では、実施形態2と同様にソース電極パッド11とソースリード5を導体板52で接続するが、本例では、導体板52として、所定形状に成形した金属板54を使用する。金属板54は、例えば銅板からなっている。図11に示すように、成形された金属板54は、ソース電極パッド11及びソースリード5のリードポスト5aに接着材55によって電気的に接続される。接着材55は導電性樹脂や半田等を使用する。ただし、この場合、ソース電極パッド11の表面にアンダーバリアメタル加工が必要である。これは、Al表面酸化膜によって導通阻害を防止するためである。アンダーバリアメタル層は、例えば、Alパッド表面にNi層を形成し、最上部はNiの酸化を防止するAuまたはAgからなっている。   In this embodiment, the source electrode pad 11 and the source lead 5 are connected by the conductor plate 52 as in the second embodiment, but in this example, a metal plate 54 formed into a predetermined shape is used as the conductor plate 52. The metal plate 54 is made of, for example, a copper plate. As shown in FIG. 11, the molded metal plate 54 is electrically connected to the source electrode pad 11 and the lead post 5 a of the source lead 5 by an adhesive 55. The adhesive 55 uses conductive resin, solder, or the like. However, in this case, under barrier metal processing is required on the surface of the source electrode pad 11. This is to prevent conduction inhibition by the Al surface oxide film. The under barrier metal layer is formed of, for example, an Ni layer on the surface of the Al pad, and the uppermost portion is made of Au or Ag that prevents oxidation of Ni.

本実施形態3においてもオン抵抗の低減が図れる。また、接着材55を用いて金属板54を接続することから,作業が容易になる。本実施形態3のパワートランジスタ1も実施形態2のパワートランジスタ1と同様の効果を有する。   Also in the third embodiment, the on-resistance can be reduced. Further, since the metal plate 54 is connected using the adhesive 55, the operation is facilitated. The power transistor 1 of the third embodiment has the same effect as the power transistor 1 of the second embodiment.

(実施形態4)
図13は本発明の他の実施形態(実施形態4)である半導体装置の樹脂封止体を取り除いた模式的平面図である。
(Embodiment 4)
FIG. 13 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 4) of the present invention from which a resin sealing body is removed.

本実施形態4は、実施形態1のパワートランジスタ1におけるソース電極パッド11を、ソース電極パッド11a,bの2本で構成し、それぞれのソース電極パッド11a,bとソースリード5のリードポスト5aをそれぞれワイヤ14で接続したものである。そして、この例においても、リードポスト5a,6aに近いソース電極パッド11aの中心線から距離g程ゲート電極パッド12はリードポスト5a,6aから遠ざかる構造になっている。図13においては、封止体2は省略してある。   In the fourth embodiment, the source electrode pad 11 in the power transistor 1 of the first embodiment is composed of two source electrode pads 11a and 11b, and the source electrode pads 11a and 11b and the lead post 5a of the source lead 5 are provided. Each is connected by a wire 14. In this example, the gate electrode pad 12 is further away from the lead posts 5a and 6a by a distance g from the center line of the source electrode pad 11a near the lead posts 5a and 6a. In FIG. 13, the sealing body 2 is omitted.

本実施形態4のパワートランジスタ1も実施形態1と同様にゲート電極パッド12がゲートリード6のリードポスト6aから遠い位置にあることから、ワイヤボンディングに支障を来さない。また、ソース電極パッド11aの中心線部分は、半導体チップ7のソースリード5のリードポスト5a寄りの辺から、例えば、2mm程度となり、かつこの部分に第1ボンディングとしてワイヤ14が接続されるため、ボンディングツールがリードポスト5aに接触することもなく良好なワイヤボンディングが可能になる。このようにワイヤボンディングを支障を来さない位置となるならば、ソース電極パッド11を3本,4本と多くしても問題はない。   In the power transistor 1 of the fourth embodiment, the gate electrode pad 12 is located far from the lead post 6a of the gate lead 6 as in the first embodiment, so that wire bonding is not hindered. Further, the center line portion of the source electrode pad 11a is, for example, about 2 mm from the side near the lead post 5a of the source lead 5 of the semiconductor chip 7, and the wire 14 is connected to this portion as the first bonding. Good bonding can be performed without the bonding tool coming into contact with the lead post 5a. In this way, there is no problem even if the number of source electrode pads 11 is increased to three or four as long as it does not hinder wire bonding.

本実施形態4の構成では、ソース電極パッド11を複数本としたことから、ワイヤを接続する場所が多くなり、さらに多い本数のワイヤボンディングが可能になり、オン抵抗の低減が可能になる。本実施形態4のパワートランジスタ1も実施形態1のパワートランジスタ1と同様の効果を有する。   In the configuration of the fourth embodiment, since a plurality of source electrode pads 11 are provided, there are many places where wires are connected, and a larger number of wires can be bonded, and the on-resistance can be reduced. The power transistor 1 of the fourth embodiment has the same effect as the power transistor 1 of the first embodiment.

(実施形態5)
図14は本発明の他の実施形態(実施形態5)である半導体装置の樹脂封止体を取り除いた模式的平面図、図15は半導体装置の断面図、図16は半導体装置の製造で使用するリードフレームの平面図である。
(Embodiment 5)
14 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 5) of the present invention from which a resin sealing body is removed, FIG. 15 is a sectional view of the semiconductor device, and FIG. 16 is used for manufacturing the semiconductor device. It is a top view of the lead frame which does.

本実施形態5は、実施形態4と同様にソース電極パッド11を複数設け、かつ各ソース電極パッド11とソースリード5をワイヤ等の接続手段で電気的に接続する技術思想のものである。   As in the fourth embodiment, the fifth embodiment has a technical idea in which a plurality of source electrode pads 11 are provided and the source electrode pads 11 and the source leads 5 are electrically connected by a connecting means such as a wire.

本実施形態5では、図14に示すように、ソース電極パッド11をゲート電極パッド12と同じ大きさの四角形とし、各リードの延在方向に交差する方向に(支持基板3の幅方向)沿って千鳥足跡状に複数設けた構造になっている。そして、ワイヤボンディングを効果的に行うため、ソースリード5を中央に配列させている。   In the fifth embodiment, as shown in FIG. 14, the source electrode pad 11 is a square having the same size as the gate electrode pad 12, and extends in the direction intersecting the extending direction of each lead (width direction of the support substrate 3). It has a structure with multiple staggered footprints. And in order to perform wire bonding effectively, the source lead 5 is arranged in the center.

図16は本実施形態5のパワートランジスタ1を製造する際用いるリードフレーム45aである。このリードフレーム45aは、実施形態1のリードフレーム45において、リードの配列が異なる。また、ソースリード5のリードポスト5aの幅(長さ)が他のリード、即ち、ゲートリード6よりも広い点等においても異なる。   FIG. 16 shows a lead frame 45a used when manufacturing the power transistor 1 of the fifth embodiment. The lead frame 45a differs from the lead frame 45 of the first embodiment in the arrangement of leads. Also, the width (length) of the lead post 5 a of the source lead 5 is different in that it is wider than other leads, that is, the gate lead 6.

即ち、本実施形態1のパワートランジスタ1は、図14に示すように、ソースリード5を中央に位置させ、ソースリード5の一側(左側)にゲートリード6を位置させ、ソースリード5の他側(右側)にドレインリード4を位置させている。そして、ソースリード5の幅、即ち、ソースリード5のリードポスト5aの幅を、他のリードの幅(ゲートリード6のリードポスト6aの幅)よりも広く形成している。即ち、千鳥足跡状に配列した各ソース電極パッド11に接続するワイヤ14の全てに接続するに充分な幅(長さ)になっている。そして、図15にも示すように、各ソース電極パッド11とソースリード5のリードポスト5aはワイヤ14によって接続されている。   That is, in the power transistor 1 of the first embodiment, as shown in FIG. 14, the source lead 5 is positioned at the center, the gate lead 6 is positioned on one side (left side) of the source lead 5, and The drain lead 4 is located on the side (right side). The width of the source lead 5, that is, the width of the lead post 5a of the source lead 5 is formed wider than the width of the other leads (the width of the lead post 6a of the gate lead 6). That is, the width (length) is sufficient to connect to all of the wires 14 connected to the source electrode pads 11 arranged in a zigzag footprint. As shown in FIG. 15, each source electrode pad 11 and the lead post 5 a of the source lead 5 are connected by a wire 14.

本実施形態5においても、千鳥足跡状配列のソース電極パッド11よりも遠い位置にゲート電極パッド12が配置され、ゲート電極パッド12へのワイヤボンディング時、ボンディングツールがリードポスト5aに接触しないようになっている。千鳥足跡状配列のソース電極パッド11においてもソースリード5のリードポスト5aから充分離れていることから、ソース電極パッド11へのワイヤボンディング時、ボンディングツールがソースリード5のリードポスト5aに接触することもなく、確実なワイヤボンディングが可能になる。   Also in the fifth embodiment, the gate electrode pad 12 is disposed at a position farther from the source electrode pad 11 in the staggered footprint array so that the bonding tool does not come into contact with the lead post 5a at the time of wire bonding to the gate electrode pad 12. It has become. The source electrode pads 11 arranged in a staggered footprint are also sufficiently separated from the lead posts 5 a of the source leads 5, so that the bonding tool contacts the lead posts 5 a of the source leads 5 during wire bonding to the source electrode pads 11. Therefore, reliable wire bonding is possible.

本実施形態5のパワートランジスタ1においても、6本と多数のワイヤ14でソース電極パッド11とソースリード5を接続するため、オン抵抗の低減を図ることができる。本実施形態5のパワートランジスタ1も実施形態4のパワートランジスタ1と同様の効果を有する。   Also in the power transistor 1 of the fifth embodiment, since the source electrode pad 11 and the source lead 5 are connected by the six wires and the numerous wires 14, the on-resistance can be reduced. The power transistor 1 of the fifth embodiment has the same effect as the power transistor 1 of the fourth embodiment.

(実施形態6)
図17は本発明の他の実施形態(実施形態6)である半導体装置の樹脂封止体を取り除いた模式的平面図、図18は半導体装置の断面図である。
(Embodiment 6)
FIG. 17 is a schematic plan view of a semiconductor device according to another embodiment (embodiment 6) of the present invention from which a resin sealing body is removed, and FIG. 18 is a cross-sectional view of the semiconductor device.

本実施形態6は実施形態5において、ソース電極パッド11を千鳥足跡状配列とせず、実施形態4のように、平行に延在する2本の長いソース電極パッド11a,11bとしたものである。そして、複数のワイヤ14のうちの各ワイヤは、図18に示すように、ソース電極パッド11a,11bとソースリード5のリードポスト5aに接続されるものである。   In the sixth embodiment, the source electrode pads 11 are not arranged in a staggered footprint pattern in the fifth embodiment, but are two long source electrode pads 11a and 11b extending in parallel as in the fourth embodiment. Each wire of the plurality of wires 14 is connected to the source electrode pads 11a and 11b and the lead post 5a of the source lead 5 as shown in FIG.

本実施形態6におけるワイヤボンディングにおいては、ボンディングツールで保持したワイヤの先端を、第1ボンディング点として半導体チップ7のリードポスト5aから遠い位置にあるソース電極パッド11aに接続し、その後ボンディングツールでワイヤを引き回し、その途中部分を半導体チップ7のソース電極パッド11bに接続し、さらにソースリード5のリードポスト5aに接続し、その後リードポスト5aの接続部分近傍でワイヤを切断して1張りのワイヤボンディングを終了する。即ち、本実施形態6ではステッチボンディングによってワイヤ14の接続を行うものである。このステッチボンディングによってソース電極パッド11a,11bとソースリード5のリードポスト5aを複数のワイヤ14で接続する。図19には7本のワイヤ14が使用された例が示されている。   In wire bonding in the sixth embodiment, the tip of the wire held by the bonding tool is connected to the source electrode pad 11a located far from the lead post 5a of the semiconductor chip 7 as a first bonding point, and then the wire is bonded by the bonding tool. Is connected to the source electrode pad 11b of the semiconductor chip 7 and further connected to the lead post 5a of the source lead 5, and then the wire is cut in the vicinity of the connecting portion of the lead post 5a to make one wire bonding. Exit. That is, in the sixth embodiment, the wires 14 are connected by stitch bonding. The source electrode pads 11 a and 11 b and the lead post 5 a of the source lead 5 are connected by a plurality of wires 14 by this stitch bonding. FIG. 19 shows an example in which seven wires 14 are used.

本実施形態6の場合においても、ソース電極パッド11a,11bとソースリード5を接続する複数のワイヤ14のうち、ゲート電極パッド12とゲートリード6を接続するワイヤ15に近い側のワイヤ14のワイヤボンディング時、ワイヤ15と接触してショート不良を発生させることも考えられるので、ソース電極パッド11a,11bとソースリード5のワイヤボンディングを終了した後にゲート電極パッド12とゲートリード6とのワイヤボンディングを行う必要がある。   Also in the case of the sixth embodiment, among the plurality of wires 14 that connect the source electrode pads 11 a and 11 b and the source lead 5, the wire 14 near the wire 15 that connects the gate electrode pad 12 and the gate lead 6. When bonding, it is conceivable that a short circuit defect may occur due to contact with the wire 15, and therefore, after the wire bonding between the source electrode pads 11 a and 11 b and the source lead 5 is completed, the wire bonding between the gate electrode pad 12 and the gate lead 6 is performed. There is a need to do.

本実施形態6においても、ソース電極パッド11a,11bよりも遠い位置にゲート電極パッド12が配置され、ゲート電極パッド12へのワイヤボンディング時、ボンディングツールがリードポスト5aに接触しないようになっている。また、ソース電極パッド11a,11bとソースリード5とのワイヤボンディングにおいては、ソースリード5が中央に位置し、ソースリード5のリードポスト5aとソース電極パッド11a,11bは同じ幅で対面していることから、ワイヤボンディングは他のリードポスト等に接触することもなく、良好なワイヤボンディングが可能になる。この結果、大きな半導体チップ7を支持基板3に固定することも可能になる。   Also in the sixth embodiment, the gate electrode pad 12 is disposed at a position farther from the source electrode pads 11a and 11b, and the bonding tool does not come into contact with the lead post 5a during wire bonding to the gate electrode pad 12. . In the wire bonding between the source electrode pads 11a and 11b and the source lead 5, the source lead 5 is located in the center, and the lead post 5a of the source lead 5 and the source electrode pads 11a and 11b face each other with the same width. For this reason, wire bonding can be performed without causing contact with other lead posts or the like. As a result, the large semiconductor chip 7 can be fixed to the support substrate 3.

本実施形態6のパワートランジスタ1においても、7本と多数のワイヤ14でソース電極パッド11とソースリード5を接続するため、オン抵抗の低減を図ることができる。本実施形態6のパワートランジスタ1も実施形態5のパワートランジスタ1と同様の効果を有する。   Also in the power transistor 1 of the sixth embodiment, since the source electrode pad 11 and the source lead 5 are connected by seven wires and a large number of wires 14, the on-resistance can be reduced. The power transistor 1 of the sixth embodiment also has the same effect as the power transistor 1 of the fifth embodiment.

(実施形態7)
図19は本発明の他の実施形態(実施形態7)である半導体装置の樹脂封止体を取り除いた模式的平面図、図20は半導体装置の断面図である。
(Embodiment 7)
FIG. 19 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 7) of the present invention from which a resin sealing body is removed, and FIG. 20 is a cross-sectional view of the semiconductor device.

本実施形態7は、実施形態6において、中央のソースリード5を太くしたものである。ソースリード5のリードポスト5aは多数のワイヤ14を接続するため当然にして幅広であるが、リードポスト5aから外れた封止体2から外部に突出する部分をも含み全体を他のリード(ドレインリード4,ゲートリード6)よりも幅広としてある。これにより、封止体2内の半導体チップ7で発生する熱を多数のワイヤ14を介在させて太いソースリード5から外部に放散することができ、パワートランジスタ1の安定動作が可能になる。本実施形態7のパワートランジスタ1も実施形態6のパワートランジスタ1と同様の効果を有する。   In the seventh embodiment, the central source lead 5 is thickened in the sixth embodiment. The lead post 5a of the source lead 5 is naturally wide in order to connect a large number of wires 14. However, the lead post 5a of the source lead 5 also includes a portion projecting outside from the sealing body 2 removed from the lead post 5a. It is wider than the lead 4 and the gate lead 6). As a result, heat generated in the semiconductor chip 7 in the sealing body 2 can be dissipated to the outside from the thick source lead 5 through the numerous wires 14, and the power transistor 1 can be stably operated. The power transistor 1 of the seventh embodiment has the same effect as the power transistor 1 of the sixth embodiment.

(実施形態8)
図21は本発明の他の実施形態(実施形態8)である半導体装置の樹脂封止体を取り除いた模式的平面図である。
(Embodiment 8)
FIG. 21 is a schematic plan view of a semiconductor device according to another embodiment (Embodiment 8) of the present invention from which a resin sealing body is removed.

本実施形態8は、実施形態1等と同様に制御電極リード(ゲートリード)及び第2電極リード(ソースリード)のリードポストに対して、第2電極パッド(ソース電極パッド)は近い位置にあり、制御電極パッド(ゲート電極パッド)は遠い位置にあるという技術思想のものである。   In the eighth embodiment, the second electrode pad (source electrode pad) is located close to the lead posts of the control electrode lead (gate lead) and the second electrode lead (source lead) as in the first embodiment. The control electrode pad (gate electrode pad) has a technical idea that it is located at a distant position.

そして、さらに第2電極パッドを複数設けた場合、複数の第2電極パッドにおいて、リードポスト寄りの第2電極パッドは、リードポストに対して、制御電極パッドよりも近い位置にあるという技術思想のものである。   Further, in the case where a plurality of second electrode pads are provided, in the plurality of second electrode pads, the second electrode pad near the lead post is located closer to the lead post than the control electrode pad. Is.

本実施形態8のパワートランジスタ1は、実施形態4のパワートランジスタ1において、ゲート電極パッド12を四角形からなる半導体チップ7の左側の辺の途中部分に配置したものである。辺の途中にゲート電極パッド12を設けるため、並列配置されるソース電極パッド11a,11bはその分短くなっている。   In the power transistor 1 of the eighth embodiment, the gate electrode pad 12 is arranged in the middle of the left side of the semiconductor chip 7 having a square shape in the power transistor 1 of the fourth embodiment. Since the gate electrode pad 12 is provided in the middle of the side, the source electrode pads 11a and 11b arranged in parallel are shortened accordingly.

換言するならば、四角形からなる半導体チップ7の1辺はゲートリード6及びソースリード5の先端のリードポスト5a,6aに対面している。そこで、この対面した辺に連なりかつ前記対面した辺に直交する左辺の途中部分にゲート電極パッド12を位置させる。図21に示すように、リードポスト5a,6aに近いソース電極パッド11aの中心線からゲート電極パッド12は距離m程遠い位置に配置されている。しかし、この例では、リードポスト5a,6aから遠い位置にあるソース電極パッド11bに比較して、ゲート電極パッド12はリードポスト5a,6aに近くなっている。これにより、本実施形態8のパワートランジスタ1も実施形態1のパワートランジスタ1と同様の効果を有する。   In other words, one side of the rectangular semiconductor chip 7 faces the lead posts 5 a and 6 a at the tips of the gate lead 6 and the source lead 5. Therefore, the gate electrode pad 12 is positioned in the middle of the left side that is continuous with the facing side and is orthogonal to the facing side. As shown in FIG. 21, the gate electrode pad 12 is disposed at a distance m from the center line of the source electrode pad 11a near the lead posts 5a and 6a. However, in this example, the gate electrode pad 12 is closer to the lead posts 5a and 6a than the source electrode pad 11b located far from the lead posts 5a and 6a. As a result, the power transistor 1 of the eighth embodiment has the same effect as the power transistor 1 of the first embodiment.

(実施形態9)
図22は本発明の他の実施形態(実施形態9)である半導体装置の模式的断面図である。本実施形態9は、実施形態1のパワートランジスタ1において、封止体2の端面から突出するドレインリード4,ソースリード5,ゲートリード6の3本のリードを、途中で折れ曲がるように成形し、先端は支持基板3の下面と略同じ高さに位置させて延在させた構造になっている。この先端の延在部分60は、パワートランジスタ1を実装基板等に支持基板3を固定する際、3本のリードの先端の延在部分60は実装基板に設けた配線との接続部分になる。実施形態9のパワートランジスタ1は面実装構造になっている。なお、ドレインリード4は支持基板3と同じ電位になることから、封止体2から突出する付け根部分で切断して実装基板には接続しない構造としてもよい。本実施形態8のパワートランジスタ1も実施形態1のパワートランジスタ1と同様の効果を有する。
(Embodiment 9)
FIG. 22 is a schematic cross-sectional view of a semiconductor device according to another embodiment (Embodiment 9) of the present invention. In Embodiment 9, in the power transistor 1 of Embodiment 1, the three leads of the drain lead 4, the source lead 5, and the gate lead 6 protruding from the end face of the sealing body 2 are formed to be bent in the middle, The front end has a structure that extends and is positioned at substantially the same height as the lower surface of the support substrate 3. When the support substrate 3 is fixed to the mounting substrate or the like, the extended portion 60 at the distal end serves as a connection portion with the wiring provided on the mounting substrate. The power transistor 1 of the ninth embodiment has a surface mounting structure. Since the drain lead 4 has the same potential as the support substrate 3, the drain lead 4 may be cut at the base portion protruding from the sealing body 2 and not connected to the mounting substrate. The power transistor 1 of the eighth embodiment has the same effect as the power transistor 1 of the first embodiment.

以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。実施形態では、第1電極,第2電極,制御電極をそれぞれ電極とするパワーMOSFETを半導体チップに組み込んだ例を示したが、組み込む素子としてはパワーバイポーラトランジスタ,IGBT等のトランジスタ、あるいはトランジスタを含むICでもよい。本発明は少なくともTO−220構造の半導体装置には適用できる。   Although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the scope of the invention. Nor. In the embodiment, the power MOSFET having the first electrode, the second electrode, and the control electrode as the electrodes is incorporated in the semiconductor chip. However, the elements to be incorporated include a power bipolar transistor, a transistor such as an IGBT, or a transistor. IC may be used. The present invention can be applied to at least a semiconductor device having a TO-220 structure.

本発明の一実施形態(実施形態1)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is one Embodiment (Embodiment 1) of this invention. 本実施形態1の半導体装置の断面図である。1 is a cross-sectional view of a semiconductor device according to a first embodiment. 本実施形態1の半導体装置に組み込まれる半導体チップの模式的平面図である。3 is a schematic plan view of a semiconductor chip incorporated in the semiconductor device of Embodiment 1. FIG. 図3のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. ゲートパッドをチップのコーナに配置した状態を示すチップの一部を示す平面図である。It is a top view which shows a part of chip | tip which shows the state which has arrange | positioned the gate pad in the corner of a chip | tip. ゲートパッドをチップの辺の途中に配置した状態を示すチップの一部を示す平面図である。It is a top view which shows a part of chip | tip which shows the state which has arrange | positioned the gate pad in the middle of the chip | tip side. 本実施形態1の半導体装置の製造において、チップを固定したリードフレームを示す平面図である。4 is a plan view showing a lead frame to which a chip is fixed in the manufacture of the semiconductor device of Embodiment 1. FIG. 本実施形態1の半導体装置の製造において、ワイヤを接続したリードフレームを示す平面図である。5 is a plan view showing a lead frame to which wires are connected in the manufacture of the semiconductor device of Embodiment 1. FIG. 本発明の他の実施形態(実施形態2)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 2) of this invention. 本実施形態2の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this Embodiment 2. 本発明の他の実施形態(実施形態3)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 3) of this invention. 本実施形態3の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this Embodiment 3. 本発明の他の実施形態(実施形態4)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 4) of this invention. 本発明の他の実施形態(実施形態5)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 5) of this invention. 本実施形態5の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this Embodiment 5. 本実施形態5の半導体装置の製造で使用するリードフレームの平面図である。FIG. 10 is a plan view of a lead frame used in manufacturing a semiconductor device of Embodiment 5. 本発明の他の実施形態(実施形態6)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 6) of this invention. 本実施形態6の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this Embodiment 6. 本発明の他の実施形態(実施形態7)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 7) of this invention. 本実施形態7の半導体装置の断面図である。It is sectional drawing of the semiconductor device of this Embodiment 7. 本発明の他の実施形態(実施形態8)である半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device which is other embodiment (Embodiment 8) of this invention. 本発明の他の実施形態(実施形態9)である半導体装置の模式的断面図である。It is typical sectional drawing of the semiconductor device which is other embodiment (Embodiment 9) of this invention. 従来の半導体装置の模式的平面図である。It is a typical top view of the conventional semiconductor device. 図23に示す半導体装置の側面図である。FIG. 24 is a side view of the semiconductor device shown in FIG. 23. 本発明に先立って検討した半導体装置の樹脂封止体を取り除いた模式的平面図である。It is the typical top view which removed the resin sealing body of the semiconductor device examined prior to this invention. 図25に示す半導体装置の断面図である。FIG. 26 is a cross-sectional view of the semiconductor device shown in FIG. 25.

符号の説明Explanation of symbols

1…半導体装置(パワートランジスタ)、2…封止体(パッケージ)、3…支持基板(ヘッダ)、4…第1電極リード(ドレインリード)、5…第2電極リード(ソースリード)、5a,6a…リードポスト、6…制御電極リード(ゲートリード)、7…半導体チップ、8…取付用孔、9…孔、10…第1電極(ドレイン電極)、11…第2電極(ソース電極)パッド、12…制御電極(ゲート電極)パッド、14,15…ワイヤ、20…シリコン半導体基板、21…エピタキシャル層、22…チャネル(ch)層、23…ウエル層、25…トレンチ(溝)、26…ポリシリコンゲート層、27…ゲート絶縁膜、28…p領域、29…ソース領域、32…絶縁膜、33…ソース電極、34…厚い絶縁膜、35…周辺ゲート配線、36…ゲート電極配線、37…ガードリング、38…ガードリングコンタクト、39…チャネルストッパ、40…絶縁膜、41…V溝枠、42…押し潰し部分、45…リードフレーム、46…単位リードフレーム、47…ダム、48…枠片、49…ガイド孔、50…連結部、52…導体板、53…リボン・ストラップ、54…金属板、55…接着材、60…延在部分、90…半導体装置(パッケージ)、91…支持基板(ヘッダ)、92…封止体、93…ゲートリード、94…ドレインリード、95…ソースリード、96…取付孔、97…半導体チップ、98…V溝枠、99…ゲート電極パッド、100…ソース電極パッド、101,102…ワイヤ。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor device (power transistor), 2 ... Sealing body (package), 3 ... Support substrate (header), 4 ... 1st electrode lead (drain lead), 5 ... 2nd electrode lead (source lead), 5a, 6a ... lead post, 6 ... control electrode lead (gate lead), 7 ... semiconductor chip, 8 ... mounting hole, 9 ... hole, 10 ... first electrode (drain electrode), 11 ... second electrode (source electrode) pad , 12 ... Control electrode (gate electrode) pad, 14, 15 ... Wire, 20 ... Silicon semiconductor substrate, 21 ... Epitaxial layer, 22 ... Channel (ch) layer, 23 ... Well layer, 25 ... Trench (groove), 26 ... Polysilicon gate layer, 27 ... gate insulating film, 28 ... p + region, 29 ... source region, 32 ... insulating film, 33 ... source electrode, 34 ... thick insulating film, 35 ... peripheral gate wiring, 36 ... gate Electrode wiring, 37 ... guard ring, 38 ... guard ring contact, 39 ... channel stopper, 40 ... insulating film, 41 ... V groove frame, 42 ... crushing part, 45 ... lead frame, 46 ... unit lead frame, 47 ... Dam ... 48 ... Frame piece 49 ... Guide hole 50 ... Connection part 52 ... Conductor plate 53 ... Ribbon strap 54 ... Metal plate 55 ... Adhesive material 60 ... Extension part 90 ... Semiconductor device (package) , 91 ... Support substrate (header), 92 ... Sealed body, 93 ... Gate lead, 94 ... Drain lead, 95 ... Source lead, 96 ... Mounting hole, 97 ... Semiconductor chip, 98 ... V groove frame, 99 ... Gate Electrode pads, 100 ... source electrode pads, 101,102 ... wires.

Claims (2)

MOSFETを含み、上面に前記MOSFETのゲート電極パッドおよびソース電極パッドが形成され下面にドレイン電極パッドが形成された半導体チップと、
前記半導体チップが搭載され、かつ前記ドレイン電極パッドと電気的に接続されたヘッダと、
前記ヘッダと電気的に接続されたドレインリードと、
前記ゲート電極パッドと導電性ワイヤを介して電気的に接続されたゲートリードと、
前記ソース電極パッドと金属板を介して電気的に接続されたソースリードと、
前記ヘッダ、ドレインリード、ソースリード、ゲートリードの一部、前記導電性ワイヤ、前記金属板および前記半導体チップを覆う絶縁性樹脂を有し、
前記ヘッダの下面は前記絶縁性樹脂の下面から露出し、
前記ドレインリード、ゲートリードおよびソースリードの一部は前記絶縁性樹脂の側面から露出し、
前記絶縁性樹脂の側面から露出したソースリードは、前記絶縁性樹脂の側面から露出したゲートリードとドレインリードの間に位置していることを特徴とする半導体装置。
A semiconductor chip including a MOSFET, the gate electrode pad and the source electrode pad of the MOSFET formed on the upper surface, and the drain electrode pad formed on the lower surface;
A header on which the semiconductor chip is mounted and electrically connected to the drain electrode pad;
Drain leads electrically connected to the header;
A gate lead electrically connected to the gate electrode pad via a conductive wire;
A source lead electrically connected to the source electrode pad via a metal plate;
Insulating resin that covers the header, drain lead, source lead, part of the gate lead, the conductive wire, the metal plate and the semiconductor chip,
The lower surface of the header is exposed from the lower surface of the insulating resin,
A part of the drain lead, gate lead and source lead are exposed from the side surface of the insulating resin,
The source lead exposed from the side surface of the insulating resin is located between the gate lead and the drain lead exposed from the side surface of the insulating resin.
MOSFETを含み、上面に前記MOSFETのゲート電極パッドおよびソース電極パッドが形成され下面にドレイン電極パッドが形成された半導体チップと、
前記半導体チップが搭載され、かつ前記ドレイン電極パッドと電気的に接続されたヘッダと、
前記ヘッダと電気的に接続されたドレインリードと、
前記ゲート電極パッドと第1導電性ワイヤを介して電気的に接続されたゲートリードと、
前記ソース電極パッドと複数の第2導電性ワイヤを介して電気的に接続されたソースリードと、
前記ヘッダ、ドレインリード、ソースリード、ゲートリードの一部、前記第1導電性ワイヤ、第2導電性ワイヤおよび前記半導体チップを覆う絶縁性樹脂を有し、
前記ソースパッドと前記ゲートリードの距離は、前記ソースパッドと前記ソースリードの距離よりも長く、
前記ヘッダの下面は前記絶縁性樹脂の下面から露出し、
前記ドレインリード、ゲートリードおよびソースリードの一部は前記絶縁性樹脂の側面から露出し、
前記絶縁性樹脂の側面から露出したソースリードは、前記絶縁性樹脂の側面から露出したゲートリードとドレインリードの間に位置していることを特徴とする半導体装置。
A semiconductor chip including a MOSFET, the gate electrode pad and the source electrode pad of the MOSFET formed on the upper surface, and the drain electrode pad formed on the lower surface;
A header on which the semiconductor chip is mounted and electrically connected to the drain electrode pad;
Drain leads electrically connected to the header;
A gate lead electrically connected to the gate electrode pad via a first conductive wire;
A source lead electrically connected to the source electrode pad via a plurality of second conductive wires;
Insulating resin that covers the header, drain lead, source lead, part of the gate lead, the first conductive wire, the second conductive wire, and the semiconductor chip,
The distance between the source pad and the gate lead is longer than the distance between the source pad and the source lead.
The lower surface of the header is exposed from the lower surface of the insulating resin,
A part of the drain lead, gate lead and source lead are exposed from the side surface of the insulating resin,
The source lead exposed from the side surface of the insulating resin, the semi-conductor device characterized in that positioned between the exposed gate lead and a drain lead from the side surface of the insulating resin.
JP2008030458A 2008-02-12 2008-02-12 Semiconductor device Expired - Fee Related JP4746061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030458A JP4746061B2 (en) 2008-02-12 2008-02-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030458A JP4746061B2 (en) 2008-02-12 2008-02-12 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003187377A Division JP4248953B2 (en) 2003-06-30 2003-06-30 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011086201A Division JP5388235B2 (en) 2011-04-08 2011-04-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2008177588A JP2008177588A (en) 2008-07-31
JP4746061B2 true JP4746061B2 (en) 2011-08-10

Family

ID=39704319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030458A Expired - Fee Related JP4746061B2 (en) 2008-02-12 2008-02-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4746061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002625A1 (en) 2012-06-28 2014-01-03 住友電気工業株式会社 Semiconductor device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163562B (en) * 2011-03-18 2012-09-19 聚信科技有限公司 Method for mounting power semiconductor element and synchronous buck converter
JP5815976B2 (en) * 2011-04-21 2015-11-17 トランスフォーム・ジャパン株式会社 Semiconductor device
JP2013093444A (en) * 2011-10-26 2013-05-16 Rohm Co Ltd High-speed switching operation circuit
JP5694285B2 (en) * 2012-12-28 2015-04-01 トヨタ自動車株式会社 Semiconductor device
JP6406021B2 (en) * 2015-01-09 2018-10-17 株式会社デンソー Semiconductor device
JP6462367B2 (en) * 2015-01-13 2019-01-30 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6322253B2 (en) * 2016-10-12 2018-05-09 ローム株式会社 Wireless power supply apparatus and AC / DC power supply circuit having high-speed switching operation circuit
JP7161582B2 (en) * 2020-07-13 2022-10-26 ローム株式会社 switching element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049184A (en) * 1998-05-27 2000-02-18 Hitachi Ltd Semiconductor device and production thereof
JP2002203957A (en) * 2000-12-28 2002-07-19 Rohm Co Ltd Transistor
JP2002314018A (en) * 2001-04-18 2002-10-25 Toshiba Corp Semiconductor device and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166984A (en) * 1991-12-16 1993-07-02 Hitachi Ltd Semiconductor device
JP3027512B2 (en) * 1994-08-23 2000-04-04 株式会社日立製作所 Power MOSFET
JP4169882B2 (en) * 1999-08-30 2008-10-22 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2003068961A (en) * 2001-08-20 2003-03-07 Chie Kan Pan Tao Teii Kofun Yugenkoshi Power semiconductor package and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049184A (en) * 1998-05-27 2000-02-18 Hitachi Ltd Semiconductor device and production thereof
JP2002203957A (en) * 2000-12-28 2002-07-19 Rohm Co Ltd Transistor
JP2002314018A (en) * 2001-04-18 2002-10-25 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002625A1 (en) 2012-06-28 2014-01-03 住友電気工業株式会社 Semiconductor device
US9087817B2 (en) 2012-06-28 2015-07-21 Sumitomo Electric Industries, Ltd. Semiconductor device including a gate wiring connected to at least one semiconductor chip

Also Published As

Publication number Publication date
JP2008177588A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP4248953B2 (en) Semiconductor device and manufacturing method thereof
JP4746061B2 (en) Semiconductor device
US7763967B2 (en) Semiconductor device with surface mounting terminals
US6992386B2 (en) Semiconductor device and a method of manufacturing the same
US8629467B2 (en) Semiconductor device
JP4989437B2 (en) Manufacturing method of semiconductor device
JP2008294384A (en) Semiconductor device
JP5271778B2 (en) Manufacturing method of semiconductor device
JP5665206B2 (en) Semiconductor device
JP2013016837A (en) Semiconductor device
JP2005243685A (en) Semiconductor device
JP2015019115A (en) Semiconductor device
JP5388235B2 (en) Semiconductor device
JP2005101293A (en) Semiconductor device
JP2016040839A (en) Method of manufacturing semiconductor device
JP5512845B2 (en) Semiconductor device
WO2022153902A1 (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees