JP4743551B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP4743551B2
JP4743551B2 JP2008117458A JP2008117458A JP4743551B2 JP 4743551 B2 JP4743551 B2 JP 4743551B2 JP 2008117458 A JP2008117458 A JP 2008117458A JP 2008117458 A JP2008117458 A JP 2008117458A JP 4743551 B2 JP4743551 B2 JP 4743551B2
Authority
JP
Japan
Prior art keywords
delay period
amount
internal combustion
combustion engine
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008117458A
Other languages
English (en)
Other versions
JP2009264337A (ja
Inventor
淳 川村
正訓 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008117458A priority Critical patent/JP4743551B2/ja
Priority to DE102009002575.8A priority patent/DE102009002575B4/de
Priority to US12/430,169 priority patent/US7769531B2/en
Publication of JP2009264337A publication Critical patent/JP2009264337A/ja
Application granted granted Critical
Publication of JP4743551B2 publication Critical patent/JP4743551B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の制御装置に関する。
ディーゼルエンジンなど、空燃比が理論空燃比よりも高いリーン燃焼を基本とする内燃機関においては、しばしば理論空燃比以下のリッチ燃焼への切り替えが行われる。例えばエンジンから排出された窒素酸化物(NOx)を浄化する目的で排気管にNOx触媒(LNT:Lean NOx Trap)が装備されている場合、リーン雰囲気でLNTにNOxを吸蔵させて、間隔を置いてリッチ雰囲気に切り替えることによって吸蔵されたNOxを無害な窒素に還元する。また、基本とするリーン燃焼の場合においても、例えば加速時などに吸気系制御がうまくいかないことによって、空燃比が目標よりリッチ側にずれる場合がある。
リーン燃焼からリッチ燃焼への切替時には、吸気スロットルを絞り、排気ガス再循環(EGR:Exhaust Gas Recirculation)のバルブを開き、空気過剰率などの吸気系目標を急変する。その場合、空気過剰率などの吸気系制御量はすぐに目標に追従するわけでなく、遷移期間があるため、着火時期が適合状態から大きく乖離することがある。着火時期が適合状態から乖離すると、最適な着火時期よりも進角側では燃焼が進行しすぎて例えば騒音や過大なトルクといった不具合が発生する。逆に最適な着火時期よりも遅角側では、例えば失火したり、排気中の未燃燃料の増加や過小なトルクといった不具合が発生する。この現象は、加速時に空燃比ずれが起きたときにも、発生する。
この問題に対し、下記特許文献1では、リーン燃焼からリッチ燃焼への切り替えの過渡状態において、リッチ燃焼、リーン燃焼それぞれの噴射時期を時々刻々の空気過剰率に応じて補間して現在の噴射時期を算出する技術が開示されている。同文献では、この手法によって適切な噴射時期が算出されることで着火時期を目標値に追従させることができると主張されている。
特開2005−48724号公報
図6には特許文献1による(a)吸気スロットル開度、(b)EGRバルブ開度、(c)空気過剰率、(d)噴射時期指令値、(e)着火時期の時間推移の例が示されている。時刻t0においてリーン燃焼からリッチ燃焼へと切り替えられるとする。図6のとおりリーン燃焼からリッチ燃焼へ切り替えられることによって、(a)吸気スロットル開度は減少され、(b)EGRバルブ開度は増加される。これにより吸気が絞られて還流される排気量は増えるので、(c)空気過剰率は徐々に減少していく。
そして特許文献1の手法によって、時々刻々の(d)噴射時期指令値が算出される。リッチ燃焼においては不完全燃焼となる傾向が強いことによってエンジンからの煤の排出が多くなる不具合が知られている。そのためリッチ燃焼においては目標着火時期を遅くすることによって、噴射時期から着火時期までの時間を十分とって燃料と空気とが十分に混合して不完全燃焼を回避する場合がある。図6でも着火時期の目標値を遅角側に設定してある。しかし図6に示された従来技術の例では、実際の(e)着火時期が目標値ほど遅くできていない。
図6のような不具合が発生する原因は、過渡状態における噴射時期の指令値が適切に算出されなかったことであるとみなされる。特許文献1においては空気過剰率のみを用いてリーンとリッチでの燃料噴射時期を補間して過渡状態での燃料噴射時期を算出しているが、空気過剰率の情報のみが最適な燃料噴射時期の算出に関係する要素ではない。発明者の知見によれば、筒内酸素量などが急変する状況において精度良く適切な燃料噴射時期を算出するためには、以下の要素も考慮する必要がある。
まず着火時期が早いか遅いかによって着火遅れ期間が異なることを考慮する必要がある。一般に着火時期が上死点から遠ざかるほど着火遅れ期間が長くなる特性がある。上でも述べたが、一般にリッチ燃焼ではリーン燃焼よりも着火遅れ期間を長くして、燃料と空気とを十分に混合して煤の排出を抑制する。したがってリッチ燃焼時とリーン燃焼時においては着火時期が異なるように制御されるので、それにより着火遅れ期間も異なることを考慮しないと、適切な噴射時期は得られない。
またパイロット噴射の有無、さらにはパイロット噴射における噴射量、噴射時期によっても着火遅れ期間が影響を受ける。パイロット噴射とは、メイン噴射よりも前に少量の燃料を噴射することであり、これにより着火前の燃料と空気との混合が促進される効果がある。燃料と空気の混合が促進されると不完全燃焼が抑制されるので例えば煤の排出が抑えられる。一般にパイロット噴射量が大きいほど、またパイロット噴射時期がメイン噴射に近いほど着火遅れ期間は短くなる特性がある。
このように着火時期やパイロット噴射によって着火遅れ期間は増減する。したがって、こうした着火遅れ期間の増減を考慮しないと、筒内酸素量が急変する状態では適切な噴射時期が算出できない。特許文献1は、これらの要素を考慮にいれずに、単純に着火遅れ期間は常に一定とみなして噴射時期を算出しているのみであると言える。
そこで本発明が解決しようとする課題は、上記問題点に鑑み、着火時期やパイロット噴射の噴射量や噴射時期といった空気過剰率以外の要因も考慮して、筒内酸素量などが急変する状態において適切な噴射量指令値を算出する内燃機関の制御装置を提供することである。
課題を解決するための手段及び発明の効果
上記課題を解決するために、本発明の内燃機関の制御装置は、内燃機関において理論空燃比における筒内酸素量と比較して現在の筒内酸素量がどれだけ多いかを示す空気過剰率相当値を推定する推定手段と、リーン燃焼とリッチ燃焼とにおける空気過剰率相当値での着火遅れ期間の一次補間による前記推定手段によって推定された空気過剰率相当値における着火遅れ期間の算出と、着火時期が上死点から離れると着火遅れ期間を大きくするように補正する着火時期による着火遅れ期間の補正と、パイロット噴射量が大きいと着火遅れ期間を小さく、パイロット噴射時期がメイン噴射時期に近いと着火遅れ期間を小さくするように補正するパイロット噴射量及びパイロット噴射時期による着火遅れ期間の補正と、により、前記推定手段によって推定された空気過剰率相当値における前記着火遅れ期間を算出する第1の算出手段と、その第1の算出手段によって算出された前記着火遅れ期間を着火時期の目標値から減じた値を、前記内燃機関における燃料の噴射時期の指令値として算出する第2の算出手段とを備えたことを特徴とする。
これにより本発明の内燃機関の制御装置では、内燃機関における少なくとも2つの空気過剰率相当値における前記内燃機関での着火遅れ期間から、推定された空気過剰率相当値における着火遅れ期間を算出し、その値を着火時期の目標値から減じて内燃機関における燃料の噴射時期の指令値を算出するので、現在の空気過剰率相当値に応じて内燃機関における燃料の噴射時期の指令値を適切に算出できる。よって適切に算出された燃料の噴射時期によって、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
また前記第1の算出手段は、前記着火時期の目標値により補正して前記着火遅れ期間を算出する第1の補正手段を備えたとしてもよい。
これにより着火遅れ期間を着火時期の目標値によって補正するので、着火時期の違いによって着火遅れ期間が異なることに対処できる。よって補正された着火遅れ期間を用いて燃料噴射時期を適切に算出するので、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
また前記第1の算出手段は、パイロット噴射における噴射量と噴射時期との少なくとも一方により補正して前記着火遅れ期間を算出する第2の補正手段を備えたとしてもよい。
これにより着火遅れ期間をパイロット噴射における噴射量と噴射時期との少なくとも一方によって補正するので、着火時期の違いによって着火遅れ期間が異なることに対処できる。よって補正された着火遅れ期間を用いて燃料噴射時期を適切に算出するので、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
また前記内燃機関における少なくとも2つの前記空気過剰率相当値での前記内燃機関での着火時期の目標値から、前記推定手段によって推定された空気過剰率相当値における前記着火時期の目標値を算出する第3の算出手段を備え、前記第2の算出手段において用いられる前記着火時期の目標値は、前記第3の算出手段によって算出された前記着火時期の目標値であるとしてもよい。
これにより少なくとも2つの空気過剰率相当値における着火時期の目標値から推定された空気過剰率相当値における着火時期の目標値を算出するので、現在の空気過剰率相当値における適切な着火時期の目標値を算出できる。よって適切に算出された着火時期の目標値によって、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
また前記排気通路から吸気通路へ排気を還流する排気還流通路を備え、前記推定手段は、前記吸気通路への吸入空気量と前記排気還流通路への排気の還流量とから前記内燃機関の空気過剰率相当値を推定するとしてもよい。
これにより推定手段によって吸気通路への吸入空気量と排気還流通路への排気の還流量とから酸素量を推定するので、精度よく空気過剰率相当値が推定できる。そして精度のよい空気過剰率相当値の推定値を用いて、その空気過剰率相当値における着火時期の目標値や着火遅れ期間を適切に算出できる。よって適切な着火時期の目標値や着火遅れ期間から適切な噴射時期を算出して、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
また前記推定手段において、前記排気の還流量は、前記内燃機関の筒内へ吸入されるガス量と前記吸気通路への吸気量との差分から算出されるとしてもよい。また前記排気通路における排気温度を計測する排気温度計測手段と、前記排気通路における排気圧力を計測する排気圧力計測手段とを備え、前記推定手段において、前記内燃機関の筒内へ吸入されるガス量は、前記排気温度計測手段によって計測された排気温度と前記排気圧力計測手段によって計測された排気圧力から算出されるとしてもよい。さらに前記推定手段において、前記内燃機関の筒内へ吸入されるガス量は、吸気マニホールドにおける圧力と温度とから算出されるとしてもよい。こうした手法により空気過剰率相当値を精度よく推定できる。そして精度のよい空気過剰率相当値の推定値を用いて、その空気過剰率相当値における着火時期の目標値や着火遅れ期間を適切に算出できる。よって適切な着火時期の目標値や着火遅れ期間から適切な噴射時期を算出して、筒内酸素量が急変する状況でもトルク変動や未燃HC排出量や騒音を抑制する制御装置が実現できる。
以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る内燃機関の制御装置1の一実施形態の装置構成の概略図である。
図1には、4気筒のディーゼルエンジン2(以下では単にエンジンと称する)に対して構成された制御装置1の例が示されている。図1の内燃機関及び制御装置1は主に、エンジン2、吸気管3、排気管4、排気還流管5からなる。
吸気管3から吸気マニホールド35を通ってエンジン2に空気(新気、吸気)が供給される。吸気管3にはエアフロメータ31、吸気スロットル32が配置されている。エアフロメータ31は吸気量を計測する。ここでの吸気量は例えば単位時間当たりの質量流量とすればよい。
また吸気スロットル32の開度が調節されることによってエンジン2に供給される吸気量が増減する。また吸気マニホールド35には吸気圧センサ33と吸気温度センサ34とが装備されている。吸気圧センサ33によって吸気マニホールド内の吸気圧力が計測される。吸気温度センサ34によって吸気マニホールド内の吸気の温度が計測される。また吸気スロットル32の前後に差圧センサ36が装備されている。差圧センサ36によって吸気スロットル32の前後差圧が計測される。
エンジン2にはインジェクタ21、エンジン回転数センサ22が装備されている。インジェクタ21からの噴射によってシリンダ内に燃料が供給される。エンジン回転数センサ22によってエンジン2の(単位時間あたりの)回転数が計測される。エンジン回転数センサ22は、例えばエンジン2から連結されたクランクの回転角度を計測するクランク角センサとすればよい。そしてクランク角センサの検出値がECU10へ送られてエンジン2の回転数が算出されるとすればよい。
またエンジン2に接続された排気管4へ排気が排出される。排気管4にはA/Fセンサ41、排気温度センサ42、排気圧力センサ43が配置されている。A/Fセンサ41によって、空燃比(A/F)の値が計測される。排気温度センサ42によって排気温度が計測される。排気圧力センサ43によって排気圧力が計測される。
排気還流管5(EGR管)は、排気管4から吸気管3への排気ガス再循環(EGR)をおこなう。EGR管5にはEGRバルブ51が装備されている。EGRバルブ51の開閉によって排気の還流量が調節される。
また排気管4の途中には、LNT6が装備されている。LNT6は例えばセラミック製の基材上に担体の層が形成されて、担体上に吸蔵剤と触媒とが担持された構造であるとすればよい。担体としては例えばガンマアルミナを用いれば表面の凹凸による大きな表面積によって多くの吸蔵剤、触媒が担持できて好適である。また吸蔵剤としては例えばバリウム、リチウム、カリウムなど、触媒としては例えば白金などを用いればよい。
LNT6においては、理論空燃比よりも燃料が希薄な(通常、A/F値(空燃比値)は17以上)リーン雰囲気時に排気中のNOxが吸蔵剤に吸蔵される。そして理論空燃比よりも燃料が過剰な(通常、A/F値は14.5以下)リッチ雰囲気に空燃比が調節され、所定の温度条件(例えば触媒が機能するために摂氏300度以上。)が満たされると、吸蔵剤に吸蔵されていたNOxが、燃料中の成分から生成された還元剤によって還元されて無害な窒素となって排出される。リッチ雰囲気を形成するためにはリッチ燃焼と呼ばれる手法がある。リッチ燃焼では、吸入空気量を減らすとともにインジェクタ21からのメイン噴射量を増量してリッチ雰囲気が形成される。
上で述べたエアフロメータ31、吸気圧センサ33、吸気温度センサ34、差圧センサ36、エンジン回転数センサ22、A/Fセンサ41、排気温度センサ42、排気圧力センサ43の計測値は電子制御装置7(ECU:Electronic Control Unit)へ送られる。またECU7によりインジェクタ21によるエンジン2への燃料噴射のタイミングや噴射量、吸気スロットル32とEGRバルブ51との開度調節が制御される。ECU7は通常のコンピュータの構造を有するとし、各種演算をおこなうCPUや各種情報の記憶を行うメモリ71を備えるとすればよい。
本実施例では以上の装置構成のもとで、リーン雰囲気からリッチ雰囲気に切り替えた後でまだリッチ燃焼の定常状態に達していない過渡状態でのインジェクタ21による燃料の噴射時期の算出処理を行う。その処理手順は図2に示されている。図2の処理がECU7によって例えば周期的に、かつ自動的に実行されるとすればよい。なお図2の各処理が行われている時点を現在と称する。
まず手順S10でECU7はエンジン2の空気過剰率を算出する。空気過剰率は、同じ燃料噴射量における現在の筒内酸素量(重量)と理論空燃比での筒内酸素量(重量)との比である。現在の筒内酸素重量は吸気管3から吸入される吸入酸素重量と、EGR管5を通って還流される還流酸素重量との和として算出する。吸入酸素重量は例えばエアフロメータ31で計測された吸気の重量に、大気中の酸素重量の割合(約21%)を乗じた値とすればよい。
その際に、差圧センサ36の計測値に応じてエアフロメータ31の計測値を補正するマップを予め求めてメモリ71に記憶しておいて、それを用いてエアフロメータ31の計測値を補正してもよい。還流酸素重量の算出方法に関しては後述する。
次にS20でECU7は目標着火時期を算出する。一般にスモークや燃焼騒音などの問題により、最適な着火時期は空気過剰率によって異なる。そして図6などで示されているように、リーン燃焼時とリッチ燃焼時とでは空気過剰率が異なる。したがってリーン燃焼時とリッチ燃焼時とでは異なる目標着火時期が設定される。よってリーン燃焼とリッチ燃焼との間の過渡状態において空気過剰率が時々刻々変化している状態でも、時々刻々の空気過剰率に応じて目標着火時期を算出することが好適である。
発明者の知見では最適な着火時期は空気過剰率の1次関数の関係がある。そこで以上の考え方からS20における目標着火時期の算出は次の式(E1)を用いる。式(E1)でIGtrgは現在の目標噴射時期を示し、IGtrgLはリーン燃焼の定常状態での目標噴射時期、IGtrgRはリッチ燃焼の定常状態での目標噴射時期を示す。またO2はS10で求めた現在の空気過剰率、O2Lはリーン燃焼の定常状態での空気過剰率、O2Rはリッチ燃焼の定常状態での空気過剰率をそれぞれ示す。
IGtrg={IGtrgR・(O2L−O2)+IGtrgL・(O2−O2R)}/(O2L−O2R) (E1)
IGtrgL、IGtrgR、O2L、O2Rは予め設定されてメモリ71に記憶されているとすればよい。式(E1)は、現在の目標着火時期をリーン燃焼定常状態での目標着火時期とリッチ燃焼定常状態での目標着火時期との一次補間で算出することを示している。したがって上述のとおり現在の最適な目標着火時期が算出されるとみなされる。
次にS30ではリーン燃焼、及びリッチ燃焼の定常状態における着火遅れ期間を次の式(E2)、(E3)から求める。式(E2)、(E3)において、IGdlyL1、IGdlyR1はそれぞれリーン燃焼、及びリッチ燃焼の定常状態における着火遅れ期間である。またIJtmgL、IJtmgRはそれぞれリーン燃焼、及びリッチ燃焼の定常状態における噴射時期とする。噴射時期は指令値とすればよい。
IJtmgL、IJtmgRは予め算出されてメモリ71に記憶されているとすればよい。またIGdlyL1、IGdlyR1をS30で算出せず、予め算出しておいてメモリ71に記憶しておいてもよい。
IGdlyL1=IGtrgL−IJtmgL (E2)
IGdlyR1=IGtrgR−IJtmgR (E3)
本発明の基本的な考え方は、リーン燃焼、及びリッチ燃焼の定常状態における着火遅れ期間を1次補間して現在の着火遅れ期間を算出することだが、リ−ン燃焼とリッチ燃焼とでは着火時期、さらにパイロット噴射の有無、噴射量、噴射時期が異なっている場合があり、発明者の知見では、これらの相違がリ−ン燃焼とリッチ燃焼それぞれでの着火遅れ期間の大小に影響を与える。したがってパイロット噴射の有無、噴射量、噴射時期に起因する相違がなくなるように規格化を行う必要がある。そこで以下のS40、S50ではそれぞれ、着火時期、パイロット噴射の有無、噴射量、噴射時期に関して、S30で算出したIGdlyL1、IGdlyR1を規格化する。
まずS40でECU7は、S30で算出したIGdlyL1、IGdlyR1を着火時期に関して規格化する。ここではIGdlyL1、IGdlyR1は次の式(E4)、(E5)によりIGdlyL2、IGdlyR2に規格化される。
IGdlyL2=IGdlyL1/βL (E4)
IGdlyR2=IGdlyR1/βR (E5)
式(E4)、(E5)において、βL、βRは図3により求める。図3は着火時期と着火遅れ期間補正量βとの関係を示した図である。着火遅れ期間補正量βは、個々の着火時期における着火遅れ期間の、着火時期が上死点(TDC:Top Dead Center)である場合の着火遅れ期間に対する比である。同図のとおり一般に着火時期が上死点から離れるほど着火遅れ期間は大きくなる。βL、βRはそれぞれ、図3においてリーン燃焼、及びリッチ燃焼の定常状態における着火時期における着火遅れ期間補正量βの値とする。式(E4)、(E5)により、リーン燃焼、及びリッチ燃焼の定常状態における着火遅れ期間が、着火時期が上死点の場合の値へと規格化される。
次にS50でECU7は、S40で算出したIGdlyL2、IGdlyR2をパイロット噴射に関して規格化する。ここではIGdlyL2、IGdlyR2は次の式(E6)、(E7)によりIGdlyL、IGdlyRに規格化される。
IGdlyL=IGdlyL2/αL (E6)
IGdlyR=IGdlyR2/αR (E7)
式(E6)、(E7)において、αL、αRは図4により求める。図4(a)はパイロット噴射量と着火遅れ期間補正量α1との関係を示した図である。着火遅れ期間補正量α1は、個々のパイロット噴射量における着火遅れ期間の、シングル噴射の場合(つまりパイロット噴射がない場合)の着火遅れ期間に対する比である。同図のとおり一般にパイロット噴射量が大きいほど、着火前の燃料と空気との混合が促進されて着火遅れ期間は小さくなる。
また図4(b)はパイロットインターバルと着火遅れ期間補正量α2との関係を示した図である。パイロットインターバルはパイロット噴射とメイン噴射との間の期間であり、クランクシャフトの角度(クランク角、CA:Crank Angle)で示されている。また着火遅れ期間補正量α2は、個々のパイロットインターバルにおける着火遅れ期間のパイロットインターバルがゼロの場合の着火遅れ期間に対する比である。
同図のとおり一般にパイロットインターバルがある値(図4では15度)よりも小さい領域でパイロット噴射の効果によって着火遅れ期間は小さくなり、パイロットインターバルが大きくなるほどパイロット噴射の効果が薄れて着火遅れ期間を短くする効果は減少する。式(E8)のように図4(a)、図4(b)のα1とα2の積を着火遅れ期間補正量αとする。なおシングル噴射の場合は図4によらず単にα=1とすればよい。
α=α1・α2 (E8)
αL、αRはそれぞれ、リーン燃焼、及びリッチ燃焼の定常状態のパイロット噴射量およびパイロットインターバルにおける着火遅れ期間補正量αの値とする。式(E6)、(E7)により、リーン燃焼、及びリッチ燃焼の定常状態における着火遅れ期間が、シングル噴射の場合の値へと規格化される。
以上のS40、S50の結果得られたIGdlyL、IGdlyRは、ともに着火時期が上死点であり、かつシングル噴射の場合に規格化されている。したがってIGdlyLとIGdlyRでの値の違いは空気過剰率の違いによるものとみなせる。そして発明者の知見では、着火遅れ期間は空気過剰率以外の要因が一定の場合、空気過剰率とは1次関数の関係がある。
以上より次のS60でECU7は、次の式(E9)により現在の着火遅れ期間IGdly1を算出する。式(E9)は、現在の着火遅れ期間IGdly1をリーン燃焼定常状態での着火遅れ期間IGdlyLとリッチ燃焼定常状態での着火遅れ期間IGdlyRとの1次補間で算出することを示している。したがって上述のとおり、式(E9)によって最適な着火遅れ期間IGdly1が算出されるとみなされる。
IGdly1={IGdlyR・(O2L−O2)+IGdlyL・(O2−O2R)}/(O2L−O2R) (E9)
上述のとおり、式(E9)において、リーン燃焼定常状態での着火遅れ期間IGdlyLとリッチ燃焼定常状態での着火遅れ期間IGdlyRは、着火時期が上死点でありシングル噴射の場合に規格化された値であるので、式(E9)により算出した現在の着火遅れ期間IGdly1もまた着火時期が上死点でありシングル噴射の場合に規格化された値となる。したがって以下のS70、S80で現在の着火遅れ、パイロット噴射により、S60で求めた現在の着火遅れ期間IGdly1を補正する。
まずS70でECU7は現在の着火時期によりIGdly1の値を補正する。補正は次の式(E10)により行う。これにより現在の着火遅れ期間の値はIGdly1からIGdly2へ補正される。式(E10)のβは、図3において現在の着火時期における着火遅れ補正量βである。
IGdly2=IGdly1・β (E10)
次にS80でECU7は、現在のパイロット噴射の噴射量及びパイロットインターバルにより、S70で算出したIGdly2の値を補正する。補正は次の式(E11)により行い、これにより現在の着火遅れ期間の値はIGdly2からIGdlyへ補正される。式(E11)のαは、図4(a)において現在のパイロット噴射量における着火遅れ補正量α1の値と図4(b)において現在のパイロットインターバルにおける着火遅れ補正量α2の値との積である。
IGdly=IGdly2・α (E11)
以上によりS80で、現在の着火時期及びパイロット噴射に対応した着火遅れ期間IGdlyが算出された。またS20では現在の目標着火時期IGtrgが算出されている。周知のとおり、目標着火時期から着火遅れ期間を減算した値が噴射時期である。そこで次のS90でECU7は、次の式(E12)により現在の目標着火時期IGtrgから現在の着火遅れ期間IGdlyを減算することにより、現在の噴射時期の指令値IJtmgを算出する。以上が図2の処理である。
IJtmg=IGtrg−IGdly (E12)
図5には本発明による(a)吸気スロットル32の開度、(b)EGRバルブ51の開度、(c)空気過剰率、(d)噴射時期指令値、(e)着火時期の時間推移の例が示されている。このうち(a)吸気スロットル32の開度、(b)EGRバルブ51の開度、(c)空気過剰率の推移は、図6の従来技術と同じである。
本発明により図5(d)噴射時期指令値の値が、リッチ燃焼からリーン燃焼への切り替えの過渡状態において、1次補間の際に着火時期やパイロット噴射に関して規格化や補正を行った結果、従来技術の値と異なっている。そしてそれにより本発明でのリッチ燃焼からリーン燃焼への切り替えの過渡状態における(e)着火時期の値も従来技術による値とは異なっている。本発明による(e)着火時期の値は図6で示した目標値と一致しており、本発明の効果が示されている。
以下で還流酸素重量の算出方法を説明する。この手順は例えば特開2002−327634号公報に記載されているように、以下のとおり行えばよい。まず筒内に流入するガス量を算出する。そのためにまず吸気圧センサ33によって吸気マニホールド35における吸気圧Pmを計測する。また吸気温度センサ34によって吸気温度Tmを計測する。エンジン回転数センサ22によってエンジン回転数Neを計測する。次にエンジン回転数Neと吸気圧Pmとから体積効率bを算出する。このために予めエンジン回転数Neと吸気圧Pmとから体積効率bへの関数関係を求めてメモリ71に記憶しておく。
以上の数値から次の式(E13)を用いて、筒内に流入するガス量Mcldを算出する。式(E13)は気体状態式である。なおRは気体定数、Vcldはシリンダの容積とする。(E13)に示されているように、筒内に流入するガス量Mcldの算出のために吸気圧Pmと吸気温度Tmとが用いられる。
Mcld=Pm・Vcld・b/(R・Tm) (E13)
次に吸気マニホールド35に流入する新気量MDthを算出する。そのためにエアフロメータ31によって流量Mafmを計測する。そして吸気圧センサ33によって計測された現在の吸気圧と1サイクル前の吸気圧との差をΔPとして算出する。以上の数値から次の式(E14)を用いて、吸気マニホールド35に流入する新気量MDthを算出する。式(E14)は吸気管3内の質量保存側を表している。なおVINは吸気管の容積であり、cは気筒数である。
Mafm・2/c−MDth=ΔP・VIN/(Tm・R) (E14)
次に吸気マニホールド35に流入するEGRガス量を算出する。以上で求めた数値から、次の式(E15)を用いて吸気マニホールド35に流入するEGRガス量Megrを算出する。式(E15)は吸気マニホールド35内の質量保存側を表している。式(E15)に示されているように、吸気マニホールド35に流入するEGRガス量Megrは、基本的には筒内に流入するガス量Mcldと吸気マニホールド35に流入する新気量MDthの差分であり、これをΔPを含む項で補正することによって得られる。
Megr=Mcld―MDth+ΔP・Vm/(Tm・R) (E15)
最後に、排気管4に装備されたA/Fセンサ41で計測されたA/F値を用いて、上で求めた吸気マニホールド35に流入するEGRガス量Megrのうちの酸素分の重量を算出する。そして、その値を還流酸素重量とする。以上が還流酸素重量の算出方法である。
上で筒内に流入するガス量Mcldを排気ガス流量に置きなおしてもよい。その際、排気ガス流量は排気管4に排ガス流量センサを装備して、それによって計測してもよい。また排気ガス流量は、エアフロメータ31によって計測された新気量をECU7で排気温度及び排気圧力によって補正して得られた値としてもよい。排気温度及び排気圧力は、それぞれ排気温度センサ42と排気圧力センサ43とによって計測すればよい。
なお図2の処理は、LNT6においてリーン燃焼からリッチ燃焼に切り替えられてLNT6に吸蔵されたNOxを還元する(リッチパージ)際に、まだリッチ燃焼の定常状態に達していない期間に実行してもよい。またエンジン2及び制御装置1は自動車に搭載されており、図2の処理は、加速時において吸気系制御量が目標値からずれた場合に実行してもよい。これによりリッチパージや加速時において筒内酸素量が急変することによって着火時期が適合状態から乖離してトルク段差が発生することや未燃HCの排出が増加することなどが抑制できる。
なお上の実施例では空気過剰率を用いているが、本発明はこれに限定されず、空気過剰率に相当する数値、すなわち理論空燃比における筒内酸素量と比較して現在の筒内酸素量がどれだけ多いかを示す数値であればよい。その例としては空燃比や筒内酸素濃度、筒内酸素重量があげられる。
また図2のS40、S70では着火時期による規格化や補正が行われているが、これは着火時期には限定されない。例えば噴射時期を用いてもよい。着火時期と同様に、噴射時期が異なることによっても着火遅れ期間は増減する。したがってこの場合上の議論を以下の様に修正すればよい。まず図3で横軸を着火時期から噴射時期に変更し、縦軸の着火遅れ期間補正量を、個々の噴射時期における着火遅れ期間の、噴射時期が上死点である場合の着火遅れ期間に対する比に変更したものを計測して、予めメモリ71に記憶しておく。そしてS40とS70で、それにもとづいて着火遅れ期間の規格化と補正を行う。
上記実施例において、S10の手順とECU7とが推定手段を構成する。S60の手順とECU7とが第1の算出手段を構成する。S90の手順とECU7とが第2の算出手段を構成する。S20の手順とECU7とが第3の算出手段を構成する。S40及びS70の手順とECU7とが第1の補正手段を構成する。S50及びS80の手順とECU7とが第2の補正手段を構成する。排気温度センサ42が排気温度計測手段を構成する。排気圧力センサ43が排気圧力計測手段を構成する。
本発明に係る内燃機関の制御装置の一実施形態の構成図。 噴射時期算出の処理手順を示すフローチャート。 着火時期と着火遅れ期間補正量との関係を示す図。 (a)パイロット噴射量と着火遅れ期間補正量との関係、(b)パイロットインターバルと着火遅れ期間補正量との関係を示す図。 本発明による吸気スロットル開度、EGRバルブ開度、空気過剰率、噴射時期指令値、着火時期の時間推移を示す図。 従来技術による吸気スロットル開度、EGRバルブ開度、空気過剰率、噴射時期指令値、着火時期の時間推移を示す図。
符号の説明
1 制御装置
2 ディーゼルエンジン(エンジン、内燃機関)
3 吸気管(吸気通路)
4 排気管(排気通路)
5 排気還流管(EGR管、排気還流通路)
6 吸蔵還元型NOx触媒(NOx触媒、LNT)
7 ECU
21 インジェクタ
22 エンジン回転数センサ
31 エアフロメータ
32 吸気スロットル
33 吸気圧センサ
34 吸気温度センサ
35 吸気マニホールド
41 A/Fセンサ
71 メモリ

Claims (8)

  1. 内燃機関において理論空燃比における筒内酸素量と比較して現在の筒内酸素量がどれだけ多いかを示す空気過剰率相当値を推定する推定手段と、
    リーン燃焼とリッチ燃焼とにおける空気過剰率相当値での着火遅れ期間の一次補間による前記推定手段によって推定された空気過剰率相当値における着火遅れ期間の算出と、着火時期が上死点から離れると着火遅れ期間を大きくするように補正する着火時期による着火遅れ期間の補正と、パイロット噴射量が大きいと着火遅れ期間を小さく、パイロット噴射時期がメイン噴射時期に近いと着火遅れ期間を小さくするように補正するパイロット噴射量及びパイロット噴射時期による着火遅れ期間の補正と、により、前記推定手段によって推定された空気過剰率相当値における前記着火遅れ期間を算出する第1の算出手段と、
    その第1の算出手段によって算出された前記着火遅れ期間を着火時期の目標値から減じた値を、前記内燃機関における燃料の噴射時期の指令値として算出する第2の算出手段とを備えたことを特徴とする内燃機関の制御装置。
  2. 前記第1の算出手段は、前記着火時期の目標値により補正して前記着火遅れ期間を算出する第1の補正手段を備えた請求項1に記載の内燃機関の制御装置。
  3. 前記第1の算出手段は、パイロット噴射における噴射量と噴射時期との少なくとも一方により補正して前記着火遅れ期間の目標値を算出する第2の補正手段を備えた請求項1又は2に記載の内燃機関の制御装置。
  4. リーン燃焼とリッチ燃焼とにおける空気過剰率相当値での着火時期の一次補間により、前記推定手段によって推定された空気過剰率相当値における前記着火時期の目標値を算出する第3の算出手段を備え、
    前記第2の算出手段において用いられる前記着火時期の目標値は、前記第3の算出手段によって算出された前記着火時期の目標値である請求項1ないし3のいずれか1項に記載の内燃機関の制御装置。
  5. 前記排気通路から吸気通路へ排気を還流する排気還流通路を備え、
    前記推定手段は、前記吸気通路への吸入空気量と前記排気還流通路への排気の還流量とから前記内燃機関の空気過剰率相当値を推定する請求項1ないし4のいずれか1項に記載の内燃機関の制御装置。
  6. 前記推定手段において、前記排気の還流量は、前記内燃機関の筒内へ吸入されるガス量と前記吸気通路への吸気量との差分から算出される請求項5に記載の内燃機関の制御装置。
  7. 前記排気通路における排気温度を計測する排気温度計測手段と、
    前記排気通路における排気圧力を計測する排気圧力計測手段とを備え、
    前記推定手段において、前記内燃機関の筒内へ吸入されるガス量は、前記排気温度計測手段によって計測された排気温度と前記排気圧力計測手段によって計測された排気圧力から算出される請求項6に記載の内燃機関の制御装置。
  8. 前記推定手段において、前記内燃機関の筒内へ吸入されるガス量は、吸気マニホールドにおける圧力と温度とから算出される請求項6又は7に記載の内燃機関の制御装置。
JP2008117458A 2008-04-28 2008-04-28 内燃機関の制御装置 Expired - Fee Related JP4743551B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008117458A JP4743551B2 (ja) 2008-04-28 2008-04-28 内燃機関の制御装置
DE102009002575.8A DE102009002575B4 (de) 2008-04-28 2009-04-22 Steuervorrichtung für einen Verbrennungsmotor
US12/430,169 US7769531B2 (en) 2008-04-28 2009-04-27 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117458A JP4743551B2 (ja) 2008-04-28 2008-04-28 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2009264337A JP2009264337A (ja) 2009-11-12
JP4743551B2 true JP4743551B2 (ja) 2011-08-10

Family

ID=41111970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117458A Expired - Fee Related JP4743551B2 (ja) 2008-04-28 2008-04-28 内燃機関の制御装置

Country Status (3)

Country Link
US (1) US7769531B2 (ja)
JP (1) JP4743551B2 (ja)
DE (1) DE102009002575B4 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743551B2 (ja) * 2008-04-28 2011-08-10 株式会社デンソー 内燃機関の制御装置
JP5448264B2 (ja) 2009-11-19 2014-03-19 三菱化学株式会社 ポリカーボネート樹脂フィルム並びに透明フィルム
DE102010003281A1 (de) * 2010-03-25 2011-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Abgasrückführungsrate für Verbrennungsmotoren im Magerbetrieb
JP5590132B2 (ja) * 2010-09-23 2014-09-17 トヨタ自動車株式会社 内燃機関の制御装置
US9284906B2 (en) * 2011-06-08 2016-03-15 GM Global Technology Operations LLC Combustion phasing control methodology in HCCI combustion
JP6866827B2 (ja) * 2017-11-15 2021-04-28 トヨタ自動車株式会社 内燃機関の制御装置
US10823131B2 (en) * 2019-02-28 2020-11-03 Caterpillar Inc. Dual fuel combustion control based on covaried spark production and pilot shot delivery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3979692B2 (ja) 1997-01-31 2007-09-19 株式会社日立製作所 筒内噴射エンジン制御装置
EP1471240A2 (en) 1997-05-21 2004-10-27 Nissan Motor Co., Ltd. Transient control between two spark-ignited combustion states in engine
DE19824915C1 (de) 1998-06-04 1999-02-18 Daimler Benz Ag Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
JP4284906B2 (ja) 2001-02-28 2009-06-24 株式会社デンソー 内燃機関の制御装置
JP3979066B2 (ja) * 2001-03-30 2007-09-19 日産自動車株式会社 エンジンの空燃比制御装置
JP3864754B2 (ja) * 2001-10-25 2007-01-10 日産自動車株式会社 内燃機関の制御装置
JP4178386B2 (ja) 2002-03-28 2008-11-12 株式会社デンソー 内燃機関のノッキング抑制制御装置
JP2005048749A (ja) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd エンジンの制御装置
JP2005048752A (ja) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd エンジンの制御装置
JP4096834B2 (ja) * 2003-07-30 2008-06-04 日産自動車株式会社 エンジンの燃料噴射制御装置
JP4466008B2 (ja) * 2003-07-31 2010-05-26 日産自動車株式会社 エンジンの燃料噴射制御装置
JP2005226460A (ja) * 2004-02-10 2005-08-25 Toyota Motor Corp 内燃機関の混合気濃度推定方法
JP2006183466A (ja) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4243601B2 (ja) * 2005-07-14 2009-03-25 本田技研工業株式会社 内燃機関の制御装置
JP4414377B2 (ja) * 2005-07-15 2010-02-10 本田技研工業株式会社 内燃機関の制御装置
JP4242390B2 (ja) * 2006-01-31 2009-03-25 本田技研工業株式会社 内燃機関の制御装置
JP4743551B2 (ja) * 2008-04-28 2011-08-10 株式会社デンソー 内燃機関の制御装置

Also Published As

Publication number Publication date
JP2009264337A (ja) 2009-11-12
DE102009002575B4 (de) 2019-03-28
US7769531B2 (en) 2010-08-03
US20090266335A1 (en) 2009-10-29
DE102009002575A1 (de) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4743551B2 (ja) 内燃機関の制御装置
JP3771454B2 (ja) 内燃機関の制御装置
JP2005188392A (ja) 内燃機関の制御装置
JP6259246B2 (ja) 内燃機関の制御装置
US10138831B2 (en) Controller and control method for internal combustion engine
JP4743443B2 (ja) 内燃機関の排気浄化装置
JP4969546B2 (ja) 内燃機関の制御装置および方法
US7623954B2 (en) Air-fuel ratio control apparatus and method of internal combustion engine
JP2010090872A (ja) 内燃機関の点火時期制御装置
JP2009047130A (ja) 内燃機関の制御装置
JP2006274977A (ja) 内燃機関の制御装置
US20180066557A1 (en) Exhaust purification system, and control method for exhaust purification system
JP4618141B2 (ja) 内燃機関の排気ガス還流装置
JP4895333B2 (ja) 内燃機関の排気浄化装置
JP5111534B2 (ja) 内燃機関のegr制御装置
JP4792453B2 (ja) 吸入空気量検出装置
JP2015083778A (ja) 内燃機関の制御装置
JP2015108315A (ja) エンジンの制御装置
JP5695878B2 (ja) 内燃機関の燃焼制御装置及び方法
JP2013007271A (ja) 内燃機関の制御装置
JP4155036B2 (ja) 内燃機関の内部egr量推定装置
JP2009228641A (ja) 内燃機関の制御システム
JP6498537B2 (ja) 内燃機関の制御装置
JP2014190305A (ja) ディーゼルエンジンの制御装置
WO2023223504A1 (ja) 三元触媒の酸素ストレージ量制御方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4743551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees