JP4741528B2 - Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them - Google Patents

Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them Download PDF

Info

Publication number
JP4741528B2
JP4741528B2 JP2007030622A JP2007030622A JP4741528B2 JP 4741528 B2 JP4741528 B2 JP 4741528B2 JP 2007030622 A JP2007030622 A JP 2007030622A JP 2007030622 A JP2007030622 A JP 2007030622A JP 4741528 B2 JP4741528 B2 JP 4741528B2
Authority
JP
Japan
Prior art keywords
strength
less
steel
temperature
steam transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007030622A
Other languages
Japanese (ja)
Other versions
JP2008195991A (en
Inventor
太郎 村木
均 朝日
直己 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007030622A priority Critical patent/JP4741528B2/en
Publication of JP2008195991A publication Critical patent/JP2008195991A/en
Application granted granted Critical
Publication of JP4741528B2 publication Critical patent/JP4741528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に、300〜400℃の蒸気輸送用配管に好適な高温特性に優れた蒸気輸送配管用鋼管およびその製造方法、並びに、蒸気輸送配管用鋼管の素材である鋼板およびその製造方法に関するものである。   In particular, the present invention relates to a steel pipe for steam transport piping excellent in high-temperature characteristics suitable for a steam transport pipe at 300 to 400 ° C., a manufacturing method thereof, a steel plate as a material of the steel pipe for steam transport piping, and a manufacturing method thereof. Is.

オイルサンド中に含有されるビチュメンのような重質油などの粘性の高い原油は、通常の方法で油井から天然のまま採取できない。そのため、オイルサンド含有層に蒸気を注入して原油の粘性を下げて採取し、回収効率を高める方法が採用されている。   Highly viscous crude oil such as heavy oil such as bitumen contained in the oil sand cannot be collected naturally from the oil well by a normal method. Therefore, a method has been adopted in which steam is injected into the oil sand containing layer to collect crude oil with reduced viscosity, thereby increasing the recovery efficiency.

このオイルサンド含有層に蒸気を注入する方法として、例えばスチームインジェクション法がある。この方法では、高温に加熱された高圧の蒸気を輸送用パイプラインによって運搬し、注入用鋼管を通じて注入する。   As a method for injecting steam into the oil sand-containing layer, for example, there is a steam injection method. In this method, high-pressure steam heated to a high temperature is conveyed by a transportation pipeline and injected through an injection steel pipe.

オイルサンド含有層に注入される高温、高圧の蒸気の温度は300〜400℃であり、内圧は150MPa程度である。この蒸気を輸送する配管に好適な高温強度に優れた蒸気輸送配管用鋼管として、従来、API X65、X70グレード相当の継目無鋼管が提案されている(例えば、特許文献1〜3)。これらの鋼管の外径は最大で16インチであった。   The temperature of the high-temperature and high-pressure steam injected into the oil sand-containing layer is 300 to 400 ° C., and the internal pressure is about 150 MPa. As steel pipes for steam transport pipes excellent in high-temperature strength suitable for pipes for transporting steam, seamless steel pipes equivalent to API X65 and X70 grades have been proposed (for example, Patent Documents 1 to 3). The maximum outer diameter of these steel pipes was 16 inches.

近年、エネルギー需要旺盛によりカナダなどでオイルサンド事業が活況となり、ビチュメンの回収効率を向上させるために配管の大径化が要求され、また、配管の軽量化による敷設コスト低減のため、鋼管の大径化及び高強度化が要求されている。しかし、特許文献1〜3によって提案されているような継目無鋼管は大径化が困難であり、API X80グレードの高強度も得られていない。   In recent years, the oil sands business has become active in Canada and other countries due to the energetic demand for energy, and it has been required to increase the diameter of piping in order to improve bitumen recovery efficiency. There is a demand for increasing diameter and strength. However, it is difficult to increase the diameter of a seamless steel pipe as proposed by Patent Documents 1 to 3, and high strength of API X80 grade is not obtained.

これに対して、高温強度に優れ、大径化が可能な溶接鋼管の製造技術が提案されている(例えば、特許文献4)。しかし、特許文献4によって提案されている蒸気配管用鋼管は、300〜400℃という中温域で長時間使用する際には、クリープによる破断が懸念される。   On the other hand, a technique for manufacturing a welded steel pipe that is excellent in high-temperature strength and capable of increasing the diameter has been proposed (for example, Patent Document 4). However, when the steel pipe for steam piping proposed by Patent Document 4 is used for a long time in an intermediate temperature range of 300 to 400 ° C., there is a concern about breakage due to creep.

特開昭56−029627号公報JP-A-56-029627 特開平02−050917号公報Japanese Patent Laid-Open No. 02-050917 特開2000−290728号公報JP 2000-290728 A 特開2006−183133号公報JP 2006-183133 A

本発明は、300〜400℃の中温度域での強度及び長時間クリープ特性に優れ、特に、常温及び中温度域での降伏強さが550MPa以上(APIグレードX80以上)の蒸気輸送配管用高強度鋼管及びその素材である高強度鋼板、並びにそれらの製造方法の提供を目的とする。   The present invention is excellent in strength at a medium temperature range of 300 to 400 ° C. and long-term creep characteristics, and particularly has a high yield strength for steam transport piping having a yield strength of 550 MPa or more (API grade X80 or more) at room temperature and medium temperature range. An object is to provide a high-strength steel pipe, a high-strength steel plate as a raw material thereof, and a method for producing them.

本発明は、特に、低合金鋼において、Ti/Nが適正な範囲になるようにTiを添加して、TiNを微細に析出させ、固溶Nbを確保して高温強度を高め、更に、Bを有効に活用して、300〜400℃におけるクリープ特性の向上を図った、高温特性に優れる高強度鋼板及びそれを素材とする高強度溶接鋼管であり、その要旨は、以下のとおりである。
(1) 質量%で、C:0.02〜0.10%、Si:0.01〜0.50%、Mn:0.5〜2.0%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、N:0.001〜0.010%、B:0.0001〜0.0050%を含有し、P:0.020%以下、S:0.005%以下、Al:0.04%以下に制限し、Ti/N:2.0〜4.0を満足し、残部Fe及び不可避的不純物からなることを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼板。
(2) 質量%で、さらに、Mo:0.50%以下、Cr:0.50%以下の1種又は2種を合計で0.50%以下含有し、Mo、Cr、Nb、Bの含有量が下記(1)式を満たすことを特徴とする上記(1)に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
0.015≦Mo+Cr+Nb+100B≦1.35 … (1)
(3) 質量%で、さらに、V:0.50%以下を含有することを特徴とする上記(1)又は(2)に記載の高温特性に優れた高温特性に優れた蒸気輸送配管用高強度鋼板。
(4) 質量%で、さらに、Cu:0.50%以下、Ni:0.50%以下の1種又は2種を含有することを特徴とする上記(1)〜(3)の何れか1項に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
(5) 質量%で、さらに、Ca:0.0005〜0.0050%、REM:0.0005〜0.0100%の一方又は双方を含有することを特徴とする上記(1)〜(4)の何れか1項に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
(6) 上記(1)〜(4)の何れか1項に記載の鋼板を管状に成形し、突合わせ部を溶接したことを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼管。
(7) 上記(1)〜4の何れか1項に記載の成分からなる鋼片を、1000〜1250℃に加熱し、900℃以下での累積圧下率を50%以上とし、終了温度を850℃以下として熱間圧延した後、400〜550℃の範囲まで、5℃/s以上の冷却速度で加速冷却することを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼板の製造方法。
(8) 上記(6)に記載の方法により製造された高強度鋼板を管状に成形し、突合せ部を溶接することを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼管の製造方法。
In the present invention, in particular, in low alloy steel, Ti is added so that Ti / N is in an appropriate range, TiN is finely precipitated, solid solution Nb is secured to increase high temperature strength, and B Is a high-strength steel sheet excellent in high-temperature characteristics, and a high-strength welded steel pipe made from the same, which has improved creep characteristics at 300 to 400 ° C. by effectively utilizing the above, and the gist thereof is as follows.
(1) By mass%, C: 0.02 to 0.10%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, Nb: 0.005 to 0.050% , Ti: 0.005 to 0.050%, N: 0.001 to 0.010%, B: 0.0001 to 0.0050%, P: 0.020% or less, S: 0.005 % Or less, Al: 0.04% or less, satisfying Ti / N: 2.0 to 4.0, consisting of the remainder Fe and inevitable impurities High strength steel plate.
(2) By mass%, Mo: 0.50% or less, Cr: 0.50% or less, or a total of 0.50% or less, Mo, Cr, Nb, B content The high-strength steel sheet for steam transport piping excellent in high-temperature characteristics as described in (1) above, wherein the amount satisfies the following formula (1).
0.015 ≦ Mo + Cr + Nb + 100B ≦ 1.35 (1)
(3) High in steam transport piping excellent in high temperature characteristics and excellent in high temperature characteristics as described in (1) or (2) above, further comprising V: 0.50% or less by mass% Strength steel plate.
(4) Any one of the above-mentioned (1) to (3), further comprising one or two of Cu: 0.50% or less and Ni: 0.50% or less in mass%. A high-strength steel sheet for steam transport piping having excellent high-temperature characteristics as described in the paragraph.
(5) The above-mentioned (1) to (4), characterized by containing one or both of Ca: 0.0005 to 0.0050% and REM: 0.0005 to 0.0100% by mass%. The high-strength steel sheet for steam transport piping excellent in high-temperature characteristics according to any one of the above.
(6) A high-strength steel pipe for steam transport piping excellent in high-temperature characteristics, wherein the steel plate according to any one of (1) to (4) is formed into a tubular shape and a butt portion is welded.
(7) The steel slab comprising the component described in any one of (1) to (4) above is heated to 1000 to 1250 ° C., the cumulative rolling reduction at 900 ° C. or less is set to 50% or more, and the end temperature is 850 A method for producing a high-strength steel sheet for steam transport piping excellent in high-temperature characteristics, characterized by performing accelerated rolling at a cooling rate of 5 ° C./s or higher after hot rolling at a temperature of 400 ° C. or less after hot rolling.
(8) A method for producing a high-strength steel pipe for steam transport piping excellent in high-temperature characteristics, wherein the high-strength steel sheet produced by the method described in (6) above is formed into a tubular shape and a butt portion is welded.

本発明によれば、高温、高圧の蒸気を輸送する配管に好適な、高温強度及び長時間クリープ特性に優れた蒸気輸送配管用高強度鋼管を得ることができ、これにより、蒸気輸送用配管の重量軽減による敷設コストの削減が可能になり、又は蒸気輸送用配管の大径化によって蒸気輸送効率が向上するなど、産業上の貢献が顕著である。   According to the present invention, it is possible to obtain a high-strength steel pipe for steam transport piping excellent in high-temperature strength and long-term creep characteristics, suitable for piping for transporting high-temperature and high-pressure steam. Industrial contributions such as reduction in weight due to weight reduction, and improvement in steam transport efficiency due to an increase in diameter of steam transport pipes are significant.

本発明は、Tiの添加によって、微細なTiNの析出による強化を活用し、高温強度を向上させた蒸気輸送配管用高強度鋼板及びその鋼板を素材とする蒸気輸送配管用高強度鋼管である。TiNの析出状態は、Ti/Nに大きく影響され、これを適正な範囲に規定することにより、TiNを鋼中に微細に分散させることができる。TiNは、析出強化だけでなく、溶接熱影響部(HAZという。)の旧オーステナイト粒の微細化にも有効であり、Ti/Nの適正化によってHAZの靭性も向上する。   The present invention is a high-strength steel plate for steam transport piping that uses high-strength steel plate for steam transport piping that uses high-strength strength due to precipitation of fine TiN by adding Ti, and a high-strength steel pipe for steam transport piping that uses the steel plate as a raw material. The precipitation state of TiN is greatly influenced by Ti / N, and TiN can be finely dispersed in the steel by defining this in an appropriate range. TiN is effective not only for precipitation strengthening but also for refining the prior austenite grains in the weld heat affected zone (referred to as HAZ), and the toughness of the HAZ is improved by optimizing Ti / N.

したがって、本発明において、Ti/Nは重要な因子である。Ti/Nは、Tiの添加量の、Nの添加量に対する比であり、TiNの析出状態を示すパラメータである。Ti/Nが2.0未満であると、TiNの析出量が少ないため析出強化の効果が不十分になり、高温強度が低下する。一方、Ti/Nが4.0を超えると、TiNが析出する温度が高温になり、TiNが粗大化する。そのため、特に、HAZにおいて、TiNによる結晶粒成長の抑制が不十分になり、旧オーステナイト粒が粗大化して、靭性が劣化する。   Therefore, Ti / N is an important factor in the present invention. Ti / N is a ratio of the addition amount of Ti to the addition amount of N, and is a parameter indicating the precipitation state of TiN. When Ti / N is less than 2.0, the precipitation amount of TiN is small, so that the effect of precipitation strengthening becomes insufficient, and the high-temperature strength decreases. On the other hand, when Ti / N exceeds 4.0, the temperature at which TiN precipitates becomes high and TiN becomes coarse. Therefore, in particular, in HAZ, the suppression of crystal grain growth by TiN becomes insufficient, the prior austenite grains become coarse, and the toughness deteriorates.

本発明者らは、C:0.02〜0.10%、Si:0.01〜0.50%、Mn:0.5〜2.0%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、N:0.001〜0.010%、B:0.0001〜0.0050%を含有し、P:0.020%以下、S:0.005%以下、Al:0.04%以下に制限し、Ti/Nを変化させた鋼を溶製して鋳造した。得られた鋼片を1000〜1250℃に加熱し、900℃以下での累積圧下率を50%以上として、圧延し、850℃以下で熱間圧延を終了して、400〜550℃まで5℃/s以上の冷却速度で加速冷却し、鋼板を製造した。   The inventors have C: 0.02 to 0.10%, Si: 0.01 to 0.50%, Mn: 0.5 to 2.0%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.050%, N: 0.001 to 0.010%, B: 0.0001 to 0.0050%, P: 0.020% or less, S: 0.005% In the following, Al was limited to 0.04% or less, and steel with varying Ti / N was melted and cast. The obtained steel slab is heated to 1000 to 1250 ° C., rolled at a cumulative reduction rate of 900 ° C. or less at 50% or more, hot-rolled at 850 ° C. or less and finished to 400 to 550 ° C. to 5 ° C. The steel plate was manufactured by accelerated cooling at a cooling rate of at least / s.

これらの鋼板用いて、高温強度及びHAZの靭性を評価した。高温強度は、JIS G 0567に準拠し、350℃の引張強度を測定して評価した。HAZの靭性は、鋼板から採取した小片に再現熱サイクル試験を施した後、シャルピー試験を行って評価した。再現熱サイクル試験は、高周波加熱とガス冷却によって、溶接熱影響部の温度履歴を模擬した熱処理を施すものである。本発明では、1400℃に加熱し、800℃から500℃までの冷却時間を10sとして冷却する条件で再現熱サイクル試験を行い、シャルピー試験をJIS Z 2242に準拠して行った。   Using these steel plates, high temperature strength and HAZ toughness were evaluated. The high temperature strength was evaluated by measuring the tensile strength at 350 ° C. according to JIS G 0567. The toughness of HAZ was evaluated by conducting a repetitive thermal cycle test on a small piece taken from a steel plate and then performing a Charpy test. The reproducible heat cycle test is a heat treatment that simulates the temperature history of the heat affected zone by high frequency heating and gas cooling. In the present invention, a reproducible thermal cycle test was performed under the conditions of heating to 1400 ° C. and cooling the cooling time from 800 ° C. to 500 ° C. as 10 s, and the Charpy test was performed in accordance with JIS Z 2242.

結果を図1及び図2に示す。図1及び図2に示したように、Ti/Nが2.0〜4.0の範囲内であれば、高温強度及びHAZ靭性が良好であることがわかる。また、図1から、Ti/Nが、2.0〜4.0の範囲内では、大きい方が高温強度の向上には好ましいことがわかる。したがって、良好な高温強度及びHAZ靭性を得るためにはTi/Nを2.0〜4.0とすることが必要であり、高温強度を向上させるためにはTi/Nを3.0〜4.0とすることが好ましい。   The results are shown in FIGS. As shown in FIG.1 and FIG.2, if Ti / N exists in the range of 2.0-4.0, it turns out that a high temperature strength and HAZ toughness are favorable. Moreover, it can be seen from FIG. 1 that when Ti / N is in the range of 2.0 to 4.0, a larger value is preferable for improving high-temperature strength. Therefore, in order to obtain good high-temperature strength and HAZ toughness, it is necessary to set Ti / N to 2.0 to 4.0, and in order to improve high-temperature strength, Ti / N is set to 3.0 to 4 0.0 is preferable.

また、本発明は、Bを添加し、析出するBNを有効に活用して、300〜400℃におけるクリープ特性を向上させたことを最大の特徴とするものである。高強度鋼板及び鋼管は、長時間、300〜400℃に加熱されると、M236が粗大なM6Cとなり、高温強度及びクリ−プ強度が低下する。これに対して、Bを添加するとM236が安定化し、粗大なM6Cの生成が抑制され、高温強度やクリ−プ強度の低下が抑制される。Mは、主にFeであり、鋼の成分組成に選択的にCr、Moが含有される場合は、Feに加えて、Cr、Moが含まれることがある。 Further, the present invention is characterized in that the creep characteristics at 300 to 400 ° C. are improved by adding B and effectively utilizing the precipitated BN. When a high-strength steel plate and a steel pipe are heated to 300 to 400 ° C. for a long time, M 23 C 6 becomes coarse M 6 C, and high-temperature strength and creep strength are lowered. On the other hand, when B is added, M 23 C 6 is stabilized, generation of coarse M 6 C is suppressed, and a decrease in high temperature strength and creep strength is suppressed. M is mainly Fe, and when Cr and Mo are selectively contained in the steel component composition, Cr and Mo may be contained in addition to Fe.

特に、Mo、Crの1種又は2種を含有させて、高温強度の向上を図る場合には、粗大なM6Cの生成が問題になる。そのため、本発明者らは、C、Si、Mn、Ti、N、P、S、Alの含有量が上述の範囲であり、Ti/Nが2.0〜4.0であり、Nb及びBの含有量が、Nb:0.001〜0.050%、B:0〜0.0050%であり、更に、Mo:0.50%以下、Cr:0.50%以下の1種又は2種を合計で0.50%以下を添加した鋼を溶製し、上述の条件で製造した鋼板を製造し、鋼板から試験片を採取して、350℃におけるクリープ破断特性を評価した。 In particular, when one or two of Mo and Cr are contained to improve the high-temperature strength, the generation of coarse M 6 C becomes a problem. Therefore, the present inventors have the contents of C, Si, Mn, Ti, N, P, S, and Al in the above range, Ti / N is 2.0 to 4.0, Nb and B The content of Nb is 0.001 to 0.050%, B is 0 to 0.0050%, Mo is 0.50% or less, and Cr is 0.50% or less. Steels added with 0.50% or less in total were melted, steel plates manufactured under the above-mentioned conditions were manufactured, specimens were taken from the steel plates, and creep rupture properties at 350 ° C. were evaluated.

クリープ破断特性の評価は、直径6mm、平行部30mmの丸棒試験片を用いて、400℃及び450℃のクリープ破断強度を測定し、ラルソンミラーパラメータ法で350℃、30万時間後の推定クリープ破断強度を算出した。   Creep rupture characteristics were evaluated by measuring the creep rupture strength at 400 ° C and 450 ° C using a round bar test piece with a diameter of 6 mm and a parallel part of 30 mm, and estimated creep after 300,000 hours at 350 ° C by the Larson Miller parameter method. The breaking strength was calculated.

その結果、図3に示すように、クリープ破断強度には、Mo、Cr、Nb、Bの含有量との相関が認められた。図3から下記(1)式
0.015≦Mo+Cr+Nb+100B≦1.35 … (1)
を満たすことにより、350℃におけるクリープ特性が良好になることが明らかである。ここで、Mo、Cr、Nb、Bは質量%で表された各元素の含有量である。
As a result, as shown in FIG. 3, the creep rupture strength was correlated with the contents of Mo, Cr, Nb, and B. From FIG. 3, the following equation (1) 0.015 ≦ Mo + Cr + Nb + 100B ≦ 1.35 (1)
It is clear that the creep characteristics at 350 ° C. are improved by satisfying the above. Here, Mo, Cr, Nb, and B are the contents of each element expressed in mass%.

上記(1)式のMo+Cr+Nb+100Bを適正な範囲に規定することにより、クリープ特性が向上することから、Bの添加による長時間加熱時の高温強度の劣化の抑制、クリープ特性の向上の効果が、特に、Cr、Moを含有する低合金鋼において、極めて有効であることがわかる。この理由は、低合金鋼に添加されたBは、Cと共偏析するため、M236がM23CB6となり、安定化するためであると考えられる。特に、Cr、Moを含有する低合金鋼は、高温で長時間加熱されるとM236にCr、Moが濃化するため、粗大なM6Cが生成し易い。しかし、Bを添加すると、M23CB6がM236の周辺に析出し、粗大なM6Cの生成が抑制される。 By defining Mo + Cr + Nb + 100B in the above formula (1) within an appropriate range, the creep characteristics are improved. Therefore, the effect of suppressing the deterioration of high-temperature strength during long-time heating due to the addition of B, and the improvement of the creep characteristics are particularly effective. It can be seen that this is extremely effective in a low alloy steel containing Cr, Mo. The reason for this is considered that B added to the low alloy steel co-segregates with C, so that M 23 C 6 becomes M 23 CB 6 and stabilizes. In particular, low alloy steels containing Cr and Mo tend to produce coarse M 6 C because Cr and Mo concentrate in M 23 C 6 when heated for a long time at a high temperature. However, when B is added, M 23 CB 6 precipitates around M 23 C 6 and the production of coarse M 6 C is suppressed.

次に、本発明の鋼板及び鋼管の成分組成について説明する。   Next, the component composition of the steel plate and steel pipe of the present invention will be described.

Cは、焼入性を向上させ、また、Fe、Nb、Ti、更に、選択的に添加されるCr、Mo、と炭化物を形成し、常温及び高温における強度の向上に寄与する元素である。C量が、0.02%未満では、焼入性が下するため十分な強度を保持できない。また、炭化物の析出強化を十分に発現させるためには、Cを0.04%以上添加することが好ましい。一方、C量が、0.10%を超えると炭化物が粗大化し、析出強化に寄与する微細な炭化物の析出量が減少し、強度が低下する。   C is an element that improves hardenability and forms carbides with Fe, Nb, Ti, and selectively added Cr, Mo, and carbides, and contributes to improvement in strength at normal and high temperatures. If the amount of C is less than 0.02%, the hardenability is lowered and sufficient strength cannot be maintained. Moreover, in order to fully develop the precipitation strengthening of carbides, it is preferable to add 0.04% or more of C. On the other hand, if the amount of C exceeds 0.10%, the carbides become coarse, the amount of fine carbides that contribute to precipitation strengthening decreases, and the strength decreases.

Siは、脱酸剤として作用する元素であり、その効果を得るには0.01%以上の添加が必要である。強力な脱酸剤であるAlの含有量が少ない場合には、Siを0.05%以上添加することが好ましい。一方、Si量が0.50%を超えると溶接熱影響部の靭性が低下し、クリープ特性も劣化する。   Si is an element that acts as a deoxidizer, and in order to obtain the effect, addition of 0.01% or more is necessary. When the content of Al, which is a strong deoxidizer, is small, it is preferable to add 0.05% or more of Si. On the other hand, if the amount of Si exceeds 0.50%, the toughness of the weld heat affected zone decreases, and the creep characteristics also deteriorate.

Mnは、脱酸剤として作用し、強度も向上させる元素である。Mn含有量が0.5%未満では脱酸の効果が不十分であり、強度を確保するためには、1.0%以上を添加することが好ましい。一方、Mn量が2.0%を超えるとクリープ破断強度が低下する。   Mn is an element that acts as a deoxidizer and improves strength. If the Mn content is less than 0.5%, the effect of deoxidation is insufficient, and in order to ensure strength, it is preferable to add 1.0% or more. On the other hand, when the amount of Mn exceeds 2.0%, the creep rupture strength decreases.

Bは、上述のように、BN、M23CB6を生じ、特に、Cr、Moを含有する場合には、粗大なM6Cの析出が抑えられ、高温強度、クリ−プ強度の向上に寄与する極めて重要な元素である。また、Bは、焼入性を著しく向上させる元素であり、強度の向上にも寄与する。これらの効果を得るには、Bを0.0001%以上添加することが必要である。一方、B含有量が0.0050%を超えるとBが結晶粒界に過剰に偏析し、加工性、靭性及び溶接性を損なう。また、Cとの共偏析による炭化物の凝集粗大化を抑制して、常温及び高温での強度を確保し、クリープ特性の劣化を抑制するには、B含有量の上限を0.0030%以下にすることが好ましい。 As described above, B produces BN and M 23 CB 6 , and particularly when Cr and Mo are contained, the precipitation of coarse M 6 C is suppressed, and the high temperature strength and the creep strength are improved. It is a very important element that contributes. B is an element that remarkably improves hardenability and contributes to the improvement of strength. In order to obtain these effects, it is necessary to add 0.0001% or more of B. On the other hand, if the B content exceeds 0.0050%, B is excessively segregated at the grain boundaries, thereby impairing workability, toughness, and weldability. Moreover, in order to suppress the agglomeration and coarsening of carbides due to co-segregation with C, to ensure the strength at normal temperature and high temperature, and to suppress the deterioration of creep characteristics, the upper limit of the B content is set to 0.0030% or less. It is preferable to do.

Nbは、C、Nと結合してNb(C,N)などの炭窒化物を形成する元素である。この炭窒化物が微細に析出すると、高温強度やクリープ破断強度の向上に寄与し、更に、結晶粒を微細化して、靭性の改善にも有効に作用する。これらの効果を得るには、Nb含有量を0.005%以上とすることが必要である。一方、Nb含有量が0.050%を超えるとNbの炭窒化物が粗大になり、高温強度及び靭性を損なう。   Nb is an element that combines with C and N to form a carbonitride such as Nb (C, N). If this carbonitride precipitates finely, it contributes to the improvement of high-temperature strength and creep rupture strength, and further refines the crystal grains and effectively acts to improve toughness. In order to obtain these effects, the Nb content needs to be 0.005% or more. On the other hand, if the Nb content exceeds 0.050%, the Nb carbonitride becomes coarse and the high-temperature strength and toughness are impaired.

Tiは、上述のように、本発明において極めて重要な元素である。Tiは、Nとの結合力がNbよりも強いため、固溶Nの固定に有効であり、生成した微細なTiNは、強度、特に高温強度の向上への寄与が顕著である。この効果を得るには、Ti含有量を0.005%以上とすることが必要である。一方、Ti量が0.050%を超えるとTiNが高温で析出して粗大化し、HAZの靭性が低下するため、上限を0.050%以下とすることが必要である。また、TiNが粗大化すると高温強度を向上させる効果が不十分になるため、Tiの含有量の上限を0.030%以下とすることが好ましい。   As described above, Ti is an extremely important element in the present invention. Since Ti has a stronger binding force with N than Nb, Ti is effective for fixing solute N, and the fine TiN produced has a significant contribution to improving strength, particularly high-temperature strength. In order to acquire this effect, it is necessary to make Ti content 0.005% or more. On the other hand, if the amount of Ti exceeds 0.050%, TiN precipitates at a high temperature and becomes coarse, and the toughness of the HAZ decreases. Therefore, the upper limit needs to be 0.050% or less. Moreover, since the effect of improving the high-temperature strength becomes insufficient when TiN is coarsened, the upper limit of the Ti content is preferably 0.030% or less.

Nは、鋼中に固溶し、また、Nb、Ti、更にVと窒化物、炭窒化物を形成する元素であり、固溶強化及び析出強化に寄与するため、0.001%以上を添加する。更に、本発明では、Nは、BNを生じて、クリープ破断強度の向上にも寄与する。この効果を得るには、Nを0.002%以上添加することが好ましい。一方、N量が0.010%を超えると、靭性と強度が低下する。また、HAZ靭性を確保するには、N量の上限を0.006%以下とすることが好ましい。   N is an element that forms a solid solution in steel and forms Nb, Ti, V, nitride, and carbonitride, and contributes to solid solution strengthening and precipitation strengthening, so 0.001% or more is added. To do. Further, in the present invention, N generates BN and contributes to the improvement of creep rupture strength. In order to acquire this effect, it is preferable to add N 0.002% or more. On the other hand, if the N content exceeds 0.010%, the toughness and strength decrease. Moreover, in order to ensure HAZ toughness, it is preferable to make the upper limit of N amount 0.006% or less.

P、Sは、本発明では不純物であり、過剰に含有すると機械特性を損なう。P、Sの含有量が、それぞれ、0.020%、0.005%を超えると強度が低下する。   P and S are impurities in the present invention, and if contained excessively, mechanical properties are impaired. If the P and S contents exceed 0.020% and 0.005%, the strength decreases.

Alは、脱酸剤として有効であるが、0.040%を超えると高温強度が低下する。脱酸の効果を十分に得るには、下限を0.002%以上とすることが好ましい。   Al is effective as a deoxidizing agent, but when it exceeds 0.040%, the high-temperature strength decreases. In order to sufficiently obtain the effect of deoxidation, the lower limit is preferably set to 0.002% or more.

本発明において、高温強度を向上させるには、Cr、Moの1種又は2種を更に含有させることが好ましい。   In the present invention, in order to improve the high temperature strength, it is preferable to further contain one or two of Cr and Mo.

Crは、強度向上に有効な元素であり、高温強度の向上にも有効である。しかし、Cr含有量が0.50%を超えると、溶接性を損なうことがあるため、上限を0.50%以下とすることが好ましい。また、靭性及び製造コストの観点から、0.35%以下とすることが更に好ましい。   Cr is an element effective for improving the strength, and is also effective for improving the high-temperature strength. However, if the Cr content exceeds 0.50%, weldability may be impaired, so the upper limit is preferably made 0.50% or less. Moreover, from a viewpoint of toughness and manufacturing cost, it is still more preferable to set it as 0.35% or less.

Moは、固溶強化と微細炭化物析出による強化作用に有効な元素であり、高温強度の向上には極めて有効である。しかし、Mo含有量が0.50%を超えると、溶接性、靭性を損うことがあるため、上限を0.50%以下とすることが好ましい。また、Moは高価で、価格が不安定であるため、製造コストの観点から、0.10%未満を上限とすることが更に好ましい。   Mo is an element effective for strengthening by solid solution strengthening and fine carbide precipitation, and is extremely effective for improving high-temperature strength. However, if the Mo content exceeds 0.50%, weldability and toughness may be impaired, so the upper limit is preferably made 0.50% or less. Moreover, since Mo is expensive and its price is unstable, it is more preferable that the upper limit is less than 0.10% from the viewpoint of manufacturing cost.

更に、Cr、Moの1種又は2種を添加する場合には、添加量の合計の上限を0.50%以下とすることが好ましい。これは、Cr、Moの合計含有量が0.50%を超えると、溶接性及び靭性を損なうことがあるためである。なお、Cr及びMoの含有量を、更に好ましい上限、それぞれ、0.35%以下、0.10%未満とする場合には、Cr、Moの合計の含有量を0.45%未満とすることが好ましい。   Furthermore, when adding 1 type or 2 types of Cr and Mo, it is preferable to make the upper limit of the total of addition amount into 0.50% or less. This is because if the total content of Cr and Mo exceeds 0.50%, weldability and toughness may be impaired. In addition, when the content of Cr and Mo is further more preferable, respectively, 0.35% or less and less than 0.10%, the total content of Cr and Mo should be less than 0.45%. Is preferred.

更に、V、Cu、Ni、Ca、REMの1種又は2種以上を含有しても良い。   Furthermore, you may contain 1 type (s) or 2 or more types of V, Cu, Ni, Ca, and REM.

Vは、Nbと同様、V(C,N)の微細炭窒化物を形成し、高温長時間側のクリープ断強度や高温強度の向上に寄与する。しかし、0.50%を超えるVを添加すると粗大なV(C,N)が析出し、クリープ強度、高温強度、引張強度、靭性を損なうことがある。したがって、V含有量は0.50%以下とすることが好ましい。   V, like Nb, forms fine carbonitrides of V (C, N) and contributes to the improvement of the creep breaking strength and the high temperature strength on the high temperature long time side. However, when V exceeding 0.50% is added, coarse V (C, N) is precipitated, which may impair the creep strength, high temperature strength, tensile strength, and toughness. Therefore, the V content is preferably 0.50% or less.

Cu、Niは、靭性及び強度の向上に有効な元素であり、1種又は2種を添加しても良い。0.50%超のCu、Niを添加する場合には、粗大な金属間化合物の析出、粒界への偏析に起因する脆化が生じることがあるため、上限を0.50%以下とすることが好ましい。   Cu and Ni are elements effective for improving toughness and strength, and one or two of them may be added. When adding more than 0.50% Cu or Ni, embrittlement may occur due to precipitation of coarse intermetallic compounds and segregation to grain boundaries, so the upper limit is made 0.50% or less. It is preferable.

Ca、REMは介在物の形態の制御に有効な元素である。Caは硫化物系介在物の形態を制御し、靭性を改善させるため、0.0005%以上を添加することが好ましい。一方、0.0050%を超えるCaを添加すると、粗大な酸化物を形成して靭性を損なうことがある。したがって、Ca含有量は0.0005〜0.0050%とすることが好ましい。REMは、不純物元素(P、S、O)とそれらの析出物(介在物)の形態の制御を目的として添加される元素である。不純物を安定で無害な析出物として固定し、強度と靭性を向上させるには、REMを0.0005%以上添加することが好ましい。一方、REMの添加量が0.0100%を超えると、介在物が増加して、靭性を損なうことがある。したがって、REMの含有量は0.0005〜0.0100%以下とすることが好ましい。   Ca and REM are effective elements for controlling the form of inclusions. Ca controls the form of sulfide inclusions and improves toughness, so 0.0005% or more is preferably added. On the other hand, when Ca exceeding 0.0050% is added, a coarse oxide may be formed and toughness may be impaired. Therefore, the Ca content is preferably 0.0005 to 0.0050%. REM is an element added for the purpose of controlling the form of impurity elements (P, S, O) and their precipitates (inclusions). In order to fix impurities as stable and harmless precipitates and improve strength and toughness, it is preferable to add REM 0.0005% or more. On the other hand, if the amount of REM added exceeds 0.0100%, inclusions may increase and the toughness may be impaired. Therefore, the REM content is preferably 0.0005 to 0.0100% or less.

次に、本発明の鋼板の製造方法について説明する。   Next, the manufacturing method of the steel plate of this invention is demonstrated.

鋼の溶製及び鋳造は常法で行えば良く、鋳造は生産性の観点から連続鋳造が好ましい。得られた鋼片を熱間圧延し、冷却して鋼板とする。なお、熱間圧延の条件は、特に規定する必要はなく、素材である鋼片の形状及び厚みと熱間圧延後の鋼板の板厚、目的とする機械特性を考慮して、条件を決定すれば良い。熱間圧延後は空冷でも良いが、加速冷却を行うことが好ましい。加速冷却は、水冷、ミスト冷却、送風など、目的とする機械特性を考慮して、適宜選択することができる。   The melting and casting of steel may be performed by a conventional method, and the casting is preferably continuous casting from the viewpoint of productivity. The obtained steel slab is hot-rolled and cooled to obtain a steel plate. The conditions for hot rolling need not be specified, and should be determined in consideration of the shape and thickness of the steel slab, the thickness of the steel sheet after hot rolling, and the desired mechanical properties. It ’s fine. Although air cooling may be performed after hot rolling, accelerated cooling is preferably performed. Accelerated cooling can be appropriately selected in consideration of target mechanical characteristics such as water cooling, mist cooling, and air blowing.

以下、熱間圧延及び制御冷却の好ましい条件について説明する。   Hereinafter, preferable conditions for hot rolling and controlled cooling will be described.

熱間圧延の加熱温度は、鋼片の組織をオーステナイトとするため、1000℃以上とすることが好ましい。これは、炭化物の固溶を十分に進行させるためであり、特に、室温強度、高温強度及び長時間クリープ特性を得るためには、加熱温度を1100℃以上にすることが好ましい。一方、加熱温度が1250℃を超えると、鋼のオーステナイトが粒成長し、圧延、加速冷却後の鋼板の靱性が劣化することがある。   The heating temperature of the hot rolling is preferably set to 1000 ° C. or higher so that the structure of the steel slab is austenite. This is to sufficiently advance the solid solution of the carbide. In particular, in order to obtain room temperature strength, high temperature strength, and long-term creep characteristics, it is preferable to set the heating temperature to 1100 ° C. or higher. On the other hand, when the heating temperature exceeds 1250 ° C., the austenite of the steel grows and the toughness of the steel sheet after rolling and accelerated cooling may deteriorate.

熱間圧延では、オーステナイトからフェライトへの変態温度以上で、再結晶が進行しない温度(オーステナイト未再結晶域という。)での圧下率を確保することが好ましい。本発明の鋼は、Nb添加によってオーステナイト未再結晶域の上限が900℃程度にまで上昇する。したがって、鋼片を熱間圧延する際には、900℃以下での累積の圧下率を50%以上とすることが好ましい。これにより、オーステナイト粒が圧延方向に延伸し、板厚、板幅方向で細粒になると共に、圧延により導入される粒内の転位密度が増加し、高強度が得られ、靭性が向上する。   In hot rolling, it is preferable to ensure a reduction rate at a temperature at which the recrystallization does not proceed (referred to as an austenite non-recrystallized region) above the transformation temperature from austenite to ferrite. In the steel of the present invention, the upper limit of the austenite non-recrystallized region rises to about 900 ° C. by adding Nb. Therefore, when the steel slab is hot-rolled, it is preferable that the cumulative rolling reduction at 900 ° C. or less is 50% or more. As a result, the austenite grains are stretched in the rolling direction and become fine grains in the plate thickness and plate width directions, the dislocation density in the grains introduced by rolling is increased, high strength is obtained, and toughness is improved.

また、圧延の終了温度が850℃を超えると、結晶粒が成長して粗大になり、転位が回復して、強度が低下することがある。なお、圧延の終了温度が低すぎると、相変態によりフェライトが生成して、加速冷却後の組織に加工フェライトが含まれることがあり、700℃以上とすることが好ましい。   On the other hand, when the rolling end temperature exceeds 850 ° C., crystal grains grow and become coarse, dislocations recover, and the strength may decrease. In addition, when the completion | finish temperature of rolling is too low, a ferrite will produce | generate by a phase transformation and a process ferrite may be contained in the structure | tissue after accelerated cooling, It is preferable to set it as 700 degreeC or more.

熱間圧延の終了後は、結晶粒の成長、転位の回復を抑制するために、加速冷却を行うことが好ましい。加速冷却は、熱間圧延の終了後、直ちに開始することが好ましいが、60s以内に行えば良い。搬送時に温度が低下する場合には、開始温度を700℃以上とすることが好ましい。   After the hot rolling is completed, accelerated cooling is preferably performed in order to suppress the growth of crystal grains and the recovery of dislocations. Accelerated cooling is preferably started immediately after the end of hot rolling, but may be performed within 60 s. In the case where the temperature decreases during transportation, the starting temperature is preferably set to 700 ° C. or higher.

加速冷却での冷却速度を速くすると、鋼の組織において、ベイナイト、マルテンサイトなど、低温変態の生成量が増加し、強度が向上する。そのため、高い強度を確保するためには、加速冷却の冷却速度を5℃/s以上とすることが好ましい。加速冷却の冷却速度が5℃/s未満であると、フェライトの生成量が増加し、冷却中に転位の回復も進行するため、室温及び高温での強度が低下する傾向にある。加速冷却の上限は、冷却設備の性能により適宜決定されるが、300℃/sを超えることは困難である。   When the cooling rate in accelerated cooling is increased, the amount of low-temperature transformation such as bainite and martensite is increased in the steel structure, and the strength is improved. Therefore, in order to ensure high strength, it is preferable to set the cooling rate of accelerated cooling to 5 ° C./s or more. If the cooling rate of accelerated cooling is less than 5 ° C./s, the amount of ferrite produced increases and the recovery of dislocations also proceeds during cooling, so the strength at room temperature and high temperature tends to decrease. The upper limit of accelerated cooling is appropriately determined depending on the performance of the cooling facility, but it is difficult to exceed 300 ° C./s.

また、加速冷却の停止温度が低下すると、強度が上昇して、靭性が低下することがある。そのため、強度及び靭性を確保するには、加速冷却の冷却停止温度を適正な範囲とすることが好ましい。加速冷却の冷却停止温度が550℃を超えると、炭化物の成長が促進され、固溶炭素量が少なくなり、強度、特に高温強度が低下することがあるため、上限を550℃とすることが好ましい。一方、冷却停止温度が400℃未満になると、低温変態生成物の析出が顕著になり靭性が劣化することがある。   Moreover, when the stop temperature of accelerated cooling falls, intensity | strength will rise and toughness may fall. Therefore, in order to ensure strength and toughness, it is preferable to set the cooling stop temperature for accelerated cooling to an appropriate range. When the cooling stop temperature of accelerated cooling exceeds 550 ° C., the growth of carbides is promoted, the amount of dissolved carbon decreases, and the strength, particularly the high temperature strength may be lowered. Therefore, the upper limit is preferably set to 550 ° C. . On the other hand, when the cooling stop temperature is less than 400 ° C., precipitation of the low-temperature transformation product becomes remarkable and the toughness may deteriorate.

上述の方法によって得られた鋼板を造管し、アーク溶接して、本発明の鋼管、例えば、UOE鋼管、電縫鋼管、スパイラル鋼管、レーザー溶接鋼管を製造する。   The steel plate obtained by the above method is piped and arc welded to produce the steel pipe of the present invention, for example, UOE steel pipe, ERW steel pipe, spiral steel pipe, laser welded steel pipe.

UOE鋼管の場合、上述の熱間圧延工程で製造した鋼板を、冷間加工、具体的には、Cプレス、Uプレス及びOプレスによって管状に成形し、突合された鋼板の端部をアーク溶接、好ましくは、サブマージアーク溶接によって溶接する。更に、真円度を高める場合には、拡管を行うことが好ましい。   In the case of UOE steel pipe, the steel plate manufactured in the above hot rolling process is cold-worked, specifically formed into a tube by C press, U press and O press, and the ends of the butt steel plates are arc welded. The welding is preferably performed by submerged arc welding. Furthermore, in order to increase the roundness, it is preferable to perform tube expansion.

電縫鋼管やレーザー溶接鋼管の場合、熱間圧延工程で製造した熱延鋼板を、ロール成形などの冷間曲げ加工によって管状に成形し、入熱、鋼板の突き合わせ角度(V角)、鋼板の通板速度等を制御して、電縫溶接又はレーザー溶接する。スパイラル鋼管の場合は、熱延工程で製造した鋼板を螺旋状に送給して管状に成形し、溶接して製造する。   In the case of ERW and laser welded steel pipes, the hot-rolled steel sheet produced in the hot rolling process is formed into a tubular shape by cold bending such as roll forming, and heat input, the butt angle (V angle) of the steel sheet, Electrically welded or laser welded by controlling the plate passing speed. In the case of a spiral steel pipe, the steel plate manufactured in the hot rolling process is spirally fed, formed into a tubular shape, and welded.

表1に示す化学成分の鋼を溶製し、鋳造して得られた鋼片を表2に示した条件で熱間圧延し、鋼板を製造した。鋼板をUOE工程で造管してサブマージアーク溶接し、鋼管を製造した。鋼管のサイズは、肉厚が表2に示した鋼板の板厚と同等であり、外径は762mmである。   Steel pieces obtained by melting and casting steels having chemical components shown in Table 1 were hot-rolled under the conditions shown in Table 2 to produce steel plates. A steel plate was piped in the UOE process and submerged arc welded to manufacture a steel pipe. The size of the steel pipe is equivalent to the plate thickness of the steel plate shown in Table 2, and the outer diameter is 762 mm.

造管前の鋼板から、圧延方向と垂直な方向を長手方向として引張試験片を採取した。また、鋼管は、平板状にプレスして、鋼管周方向に引張試験片を採取した。これらの試験片を用いて、室温及び350℃で引張試験を行い、降伏強度を求めた。室温での試験にはAPI全厚引張試験を用いた。350℃での試験には直径6mm、平行部30mmの丸棒試験片を用いた。室温及び350℃での降伏強度が550MPa以上であるものを良好として評価した。   Tensile specimens were taken from the steel plate before pipe making with the direction perpendicular to the rolling direction as the longitudinal direction. Moreover, the steel pipe was pressed into a flat plate shape, and tensile test pieces were collected in the circumferential direction of the steel pipe. Using these test pieces, a tensile test was performed at room temperature and 350 ° C. to determine the yield strength. The API full thickness tensile test was used for the test at room temperature. For the test at 350 ° C., a round bar test piece having a diameter of 6 mm and a parallel part of 30 mm was used. Those having a yield strength of 550 MPa or more at room temperature and 350 ° C. were evaluated as good.

また、平板状にプレスした鋼管からは、クリープ破断特性を評価するために、鋼管周方向に直径6mm、平行部30mmの丸棒試験片を採取し、試験温度400℃及び450℃にてクリープ破断強度を測定した。これは、加速評価試験であり、ラルソンミラーパラメータ法を用いることによって350℃、30万時間後の推定クリープ破断強度を算出した。   Moreover, in order to evaluate creep rupture characteristics, a round bar test piece having a diameter of 6 mm and a parallel part of 30 mm was collected from a steel tube pressed into a flat plate shape and subjected to creep rupture at test temperatures of 400 ° C. and 450 ° C. The strength was measured. This is an accelerated evaluation test, and the estimated creep rupture strength after 300,000 hours at 350 ° C. was calculated by using the Larson Miller parameter method.

更に、鋼管周方向からJIS Z 2241のVノッチシャルピー試験片を採取し、溶接部境界(Fusion Line)から1mm位置にノッチ位置を設けてシャルピー衝撃試験を行った。HAZ靭性の評価は、試験温度は0℃として、脆性破面率により評価した。   Furthermore, a V-notch Charpy test piece of JIS Z 2241 was sampled from the circumferential direction of the steel pipe, and a Charpy impact test was performed by providing a notch position at a position of 1 mm from the weld line boundary (Fusion Line). The HAZ toughness was evaluated based on the brittle fracture surface ratio at a test temperature of 0 ° C.

表2に結果を示す。表2の製造No.1〜16は本発明例であり、鋼板および鋼管の室温および350℃の降伏強度が550MPa以上を有し、かつ350℃、30万時間後の推定クリープ破断強度も非常に良好な値を得ることができた。なお、鋼板の製造条件が好ましい範囲外である製造No.12〜16は、鋼板および鋼管の室温および350℃の降伏強度、および350℃、30万時間後の推定クリープ破断強度のうち、何れかが、製造No.1よりも若干劣っている。   Table 2 shows the results. Production No. in Table 2 1 to 16 are examples of the present invention, the yield strength of steel sheets and pipes at room temperature and 350 ° C. is 550 MPa or more, and the estimated creep rupture strength after 350 ° C. and 300,000 hours is also very good. I was able to. In addition, manufacturing No. whose manufacturing conditions of a steel plate are outside a preferable range. Nos. 12 to 16 indicate that any of the yield strength at 350 ° C. and 350 ° C. after 300,000 hours of steel plate and steel pipe is the production No. Slightly inferior to 1.

一方、化学成分が本発明の範囲外である製造No.17〜25は、鋼板および鋼管の室温および350℃の降伏強度、および350℃、30万時間後の推定クリープ破断強度のうち、何れかが本発明例よりも劣っている。   On the other hand, production No. whose chemical component is out of the scope of the present invention. Nos. 17 to 25 are inferior to the examples of the present invention among the room temperature and the yield strength at 350 ° C. of the steel plate and the steel pipe, and the estimated creep rupture strength after 350 ° C. and 300,000 hours.

Figure 0004741528
Figure 0004741528

Figure 0004741528
Figure 0004741528

Ti/Nと高温強度との関係を示す図である。It is a figure which shows the relationship between Ti / N and high temperature strength. Ti/NとHAZ靭性との関係を示す図である。It is a figure which shows the relationship between Ti / N and HAZ toughness. Mo+Cr+Nb+100Bとクリープ特性との関係を示す図である。It is a figure which shows the relationship between Mo + Cr + Nb + 100B and a creep characteristic.

Claims (8)

質量%で、
C :0.02〜0.10%、
Si:0.01〜0.50%、
Mn:0.5〜2.0%、
Nb:0.005〜0.050%、
Ti:0.005〜0.050%、
N :0.001〜0.010%、
B :0.0001〜0.0050%
を含有し、
P:0.020%以下、
S:0.005%以下、
Al:0.04%以下
に制限し、
Ti/N:2.0〜4.0
を満足し、残部がFe及び不可避的不純物からなることを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼板。
% By mass
C: 0.02-0.10%,
Si: 0.01 to 0.50%,
Mn: 0.5 to 2.0%
Nb: 0.005 to 0.050%,
Ti: 0.005 to 0.050%,
N: 0.001 to 0.010%,
B: 0.0001 to 0.0050%
Containing
P: 0.020% or less,
S: 0.005% or less,
Al: limited to 0.04% or less,
Ti / N: 2.0 to 4.0
A high-strength steel sheet for steam transport piping excellent in high temperature characteristics, characterized in that the balance is composed of Fe and inevitable impurities.
質量%で、さらに、
Mo:0.50%以下、
Cr:0.50%以下
の一方又は双方を合計で0.50%以下含有し、Mo、Cr、Nb、Bの含有量が下記(1)式を満たすことを特徴とする請求項1に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
0.015≦Mo+Cr+Nb+100B≦1.35 … (1)
In mass%,
Mo: 0.50% or less,
The content of Mo, Cr, Nb, and B satisfies the following formula (1), containing one or both of Cr: 0.50% or less in total and 0.50% or less. High strength steel plate for steam transport piping with excellent high temperature characteristics.
0.015 ≦ Mo + Cr + Nb + 100B ≦ 1.35 (1)
質量%で、さらに、
V:0.50%以下
を含有することを特徴とする請求項1又は2に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
In mass%,
V: 0.50% or less, The high-strength steel sheet for steam transport piping excellent in high temperature characteristics according to claim 1 or 2.
質量%で、さらに、
Cu:0.50%以下、
Ni:0.50%以下
の1種又は2種を含有することを特徴とする請求項1〜3の何れかの項に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
In mass%,
Cu: 0.50% or less,
Ni: 0.50% or less of 1 type or 2 types is contained, The high strength steel plate for steam transport piping excellent in the high temperature characteristic of any one of Claims 1-3 characterized by the above-mentioned.
質量%で、さらに、
Ca :0.0005〜0.0050%、
REM:0.0005〜0.0100%
の1種又は2種を含有することを特徴とする請求項1〜4の何れか1項に記載の高温特性に優れた蒸気輸送配管用高強度鋼板。
In mass%,
Ca: 0.0005 to 0.0050%,
REM: 0.0005 to 0.0100%
One type or two types of these are contained, The high strength steel plate for steam transport piping excellent in the high temperature characteristic of any one of Claims 1-4 characterized by the above-mentioned.
請求項1〜4の何れか1項に記載の鋼板を管状に成形し、該鋼板の突合わせ部を溶接したことを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼管。   A high-strength steel pipe for steam transport piping having excellent high-temperature characteristics, wherein the steel sheet according to any one of claims 1 to 4 is formed into a tubular shape and a butt portion of the steel sheet is welded. 請求項1〜4の何れか1項に記載の成分からなる鋼片を、1000〜1250℃に加熱し、900℃以下での累積圧下率を50%以上とし、終了温度を850℃以下として熱間圧延した後、400〜550℃の範囲まで5℃/s以上の冷却速度で加速冷却することを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼板の製造方法。   The steel slab comprising the component according to any one of claims 1 to 4 is heated to 1000 to 1250 ° C, the cumulative rolling reduction at 900 ° C or less is set to 50% or more, and the end temperature is set to 850 ° C or less. A method for producing a high-strength steel sheet for steam transport piping excellent in high-temperature characteristics, characterized by accelerated cooling at a cooling rate of 5 ° C./s or higher after hot rolling to a range of 400 to 550 ° C. 請求項6に記載の方法により製造された高強度鋼板を管状に成形し、突合せ部を溶接することを特徴とする高温特性に優れた蒸気輸送配管用高強度鋼管の製造方法。   A method for producing a high-strength steel pipe for steam transport piping excellent in high-temperature characteristics, wherein the high-strength steel sheet produced by the method according to claim 6 is formed into a tubular shape and a butt portion is welded.
JP2007030622A 2007-02-09 2007-02-09 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them Active JP4741528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030622A JP4741528B2 (en) 2007-02-09 2007-02-09 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030622A JP4741528B2 (en) 2007-02-09 2007-02-09 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them

Publications (2)

Publication Number Publication Date
JP2008195991A JP2008195991A (en) 2008-08-28
JP4741528B2 true JP4741528B2 (en) 2011-08-03

Family

ID=39755204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030622A Active JP4741528B2 (en) 2007-02-09 2007-02-09 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them

Country Status (1)

Country Link
JP (1) JP4741528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002423A1 (en) 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
KR20170117523A (en) 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method therefor
KR20170117524A (en) 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method for steel pipe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102812146B (en) * 2010-03-18 2015-09-16 新日铁住金株式会社 Vapo(u)r blasting weldless steel tube and manufacture method thereof
JP6137435B2 (en) 2015-03-27 2017-05-31 Jfeスチール株式会社 High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
CN105177446A (en) * 2015-09-11 2015-12-23 武汉钢铁(集团)公司 Steel for 600-DEG C medium-temperature nuclear power pressure vessel and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071906B2 (en) * 1999-11-24 2008-04-02 新日本製鐵株式会社 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP4074555B2 (en) * 2003-06-03 2008-04-09 新日本製鐵株式会社 Manufacturing method of steel for high strength low alloy boilers with excellent creep characteristics
JP4325503B2 (en) * 2003-12-01 2009-09-02 住友金属工業株式会社 Steel material with excellent fatigue characteristics and method for producing the same
EP1983069A4 (en) * 2006-02-08 2011-03-02 Nippon Steel Corp Fire-resistant high-strength rolled steel material and method for production thereof
JP4823841B2 (en) * 2006-10-12 2011-11-24 新日本製鐵株式会社 High tensile strength steel sheet for super high heat input welding with low acoustic anisotropy and excellent weldability and tensile strength of 570 MPa class or more and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002423A1 (en) 2012-06-28 2014-01-03 Jfeスチール株式会社 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
KR20150013861A (en) 2012-06-28 2015-02-05 제이에프이 스틸 가부시키가이샤 High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges, and method for producing same
US9551047B2 (en) 2012-06-28 2017-01-24 Jfe Steel Corporation High-strength electric-resistance-welded steel pipe of excellent long-term softening resistance in intermediate temperature ranges
KR20170117523A (en) 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method therefor
KR20170117524A (en) 2015-03-27 2017-10-23 제이에프이 스틸 가부시키가이샤 High-strength steel, production method therefor, steel pipe, and production method for steel pipe
CN107429354A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 High strength steel and its manufacture method and steel pipe and its manufacture method
CN107429353A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The manufacture method of high strength steel and its manufacture method and steel pipe and the steel pipe
EP3276033A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel, production method therefor, steel pipe, and production method for steel pipe
US10570477B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe

Also Published As

Publication number Publication date
JP2008195991A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5151008B2 (en) Hot-rolled steel sheet for sour-resistant and high-strength ERW pipe with excellent HIC resistance and weld toughness and method for producing the same
WO2011065578A1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
JP5316721B2 (en) ERW steel pipe in which yield ratio is prevented from increasing after coating is heated, and method for manufacturing the same
JP4837789B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP5055736B2 (en) Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
KR101718267B1 (en) Hot-rolled steel sheet for high strength linepipe
JP4741528B2 (en) Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them
JP6241570B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP6008042B2 (en) Steel plate for thick-walled steel pipe, method for producing the same, and thick-walled high-strength steel pipe
JP2019116659A (en) Thick walled large diameter electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP4900260B2 (en) Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP5020691B2 (en) Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof
JP2009084599A (en) Method for manufacturing steel sheet and steel pipe for ultrahigh-strength line pipe superior in deformability and low-temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R151 Written notification of patent or utility model registration

Ref document number: 4741528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350