JP4071906B2 - Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness - Google Patents

Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness Download PDF

Info

Publication number
JP4071906B2
JP4071906B2 JP33302499A JP33302499A JP4071906B2 JP 4071906 B2 JP4071906 B2 JP 4071906B2 JP 33302499 A JP33302499 A JP 33302499A JP 33302499 A JP33302499 A JP 33302499A JP 4071906 B2 JP4071906 B2 JP 4071906B2
Authority
JP
Japan
Prior art keywords
steel
toughness
rolling
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33302499A
Other languages
Japanese (ja)
Other versions
JP2001152248A (en
Inventor
卓也 原
龍治 植森
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33302499A priority Critical patent/JP4071906B2/en
Publication of JP2001152248A publication Critical patent/JP2001152248A/en
Application granted granted Critical
Publication of JP4071906B2 publication Critical patent/JP4071906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、強度、低温靱性および溶接性の優れたラインパイプ用鋼管の製造方法に関わるものである。
【0002】
【従来の技術】
近年、経済性、安全性等の面から溶接構造物(建築、圧力容器、造船、ラインパイプ)における、高張力鋼の使用は多岐にわたり、溶接性高張力鋼の需要は着実な増加を示している。溶接構造物に使用される鋼は当然のことながら高強度に加え、安全性、作業性の面から、高靱性と優れた溶接性を併せ持つことが要求されるが、これらの特性を満足する鋼の製造法として現在ではラインパイプ材の製造に広く使用されている制御圧延法(CR法)と圧延後焼き入れ焼き戻し処理を行う焼き入れ焼き戻し法(QT法)がよく知られている。しかし、前者の方法では圧延組織は一般的にフェライト・パーライトであり、得られる強度と板厚には自ら限界を生じている。この理由は、製造された鋼において強度・靭性に優れるアシキュラーフェライトもしくはベイナイト組織とするには冷却速度を著しく速めるかもしくは多量の合金添加を必要とするため、経済性等の点から実用化が困難であった。また、後者の方法では、再加熱工程が必要なためコスト高になると共に生産能力上の制約があった。
【0003】
このため、現在ではこれらの方法を一歩進め、省エネルギ−、省資源(合金元素の削減)化を徹底した制御圧延・制御冷却法(TMCP法)の開発が進められている。この方法で製造した鋼はCRとQT法の長所を併せ持ち低合金ないし特別な合金添加無しで優れた材質が得られるという特徴を有しているが、一方では、従来の制御冷却法で製造した鋼は次のような欠点を有している。
【0004】
▲1▼ 圧延後急冷を行った場合、強度が高すぎるため延靱性回復のために焼き戻し処理が必須となる。
▲2▼ 溶接時の熱影響部(HAZ)の軟化が大きく、特に高降伏点、高張力鋼では溶接部の強度確保が困難である。
▲3▼ 板厚断面方向の組織が不均一で硬度差が大きい。
【0005】
▲4▼ 冷却条件(冷却開始、停止温度及び速度)のコントロールが微妙で材質が不安定である。
これらの欠点を改善する方法として、例えば、特開昭63−179020号公報あるいは特開昭61−67717号公報では、成分、圧下量、冷却速度、冷却停止温度を規定することによって、板厚断面硬度差を小さくすることが開示されている。しかしながら、これらの方法では、比較的薄い板厚の鋼板には適用できても極厚鋼板では板厚方向での冷却速度の制御が困難であり、板厚断面硬度差を小さくするという効果を得ることはできないという問題がある。
【0006】
また、特開昭58−77528号公報には、NbとBの複合添加により板厚方向の組織をベイナイト均一組織とし、板厚方向の硬度差を小さくする方法が開示されている。しかしながら、この方法の場合、ベイナイト均一組織とするために冷却速度を15〜40℃/秒にする必要があるために、極厚鋼板での板厚方向の硬度差を均一にすることは難しいという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑みて、板厚方向での材質のバラツキが少なく、かつ強度・低温靱性および溶接性の優れたX65グレード(降伏応力が448MPa以上、引張り応力が530MPa以上)以上の機械的性質を有するラインパイプ鋼管を製造することを目的とするものである。なお、引張り応力の上限は、本発明の実施例の鋼No.14及び16の700MPaに基づいて、700MPa以下とする。
【0008】
【課題を解決するための手段】
すなわち、本発明の要旨とするところは、以下の通りである。
(1)質量%で、
C :0.005〜0.12%、
Si:0.02〜0.5%、
Mn:0.6〜2.2%、
P :≦0.01%、
S :≦0.005%、
Mo:0.05〜0.5%、
Al:≦0.05%、
Ti:0.005〜0.03%、
B :0.0005〜0.003%、
N :≦0.006%、
残部が鉄および不可避的不純物からなり、かつ0%≦Ti(%)−3.4N(%)≦0.02%を満足する鋼片を1000〜1250℃の温度に加熱し、950℃以下の全圧下量が40%以上、かつ仕上温度が700〜850℃となるように圧延を行い、圧延後0.1℃/秒以上40℃/秒以下の冷却速度で冷却して得られた鋼板を冷間成形した後、溶接し、引張り応力530〜700MPaのUOE鋼管としたことを特徴とする低温靱性の優れた高張力ラインパイプ用鋼管の製造方法。
(2)質量%で、
C :0.005〜0.12%
Si:0.02〜0.5%
Mn:0.6〜2.2%
P :≦0.01%
S :≦0.005%
Nb:0.01〜0.1%
Mo:0.05〜0.5%
Al:≦0.05%
Ti:0.005〜0.03%
B :0.0005〜0.003%
N :≦0.006%、
残部が鉄および不可避的不純物からなり、かつ0%≦Ti(%)−3.4N(%)≦0.02%を満足する鋼片を1000〜1250℃の温度に加熱し、950℃以下の全圧下量が40%以上、かつ仕上げ温度が700〜850℃となるように圧延を行い、圧延後0.1℃/秒以上40℃/秒以下の冷却速度で冷却して得られた鋼板を冷間成形した後、溶接し、引張り応力530〜700MPaのUOE鋼管としたことを特徴とする低温靱性の優れた高張力ラインパイプ用鋼管の製造方法。
(3)鋼片がさらに、質量%で、
Ni:0.1〜1%、
Cr:0.1〜1%、
Cu:0.1〜1.5%、
V :0.01〜0.1%、
Ca:0.0005〜0.005%、
REM:0.0005〜0.005%、
Mg :0.0001〜0.005%、
のうち1種または2種以上を含有することを特徴とする請求項1または請求項2の何れかに記載の低温靱性の優れた高張力ラインパイプ用の製造方法。
【0009】
【発明の実施の形態】
本発明者らは、上述した従来法の欠点を解決すべく制御圧延・制御冷却法(TMCP法)に適した鋼の成分系、加熱、圧延、冷却条件などの製造プロセスについて多数の実験と詳細な検討を実施した結果、Mo単独添加またはMo及びNbの複合添加し、更に微量のTi及びBを添加した鋼を制御圧延、冷却することによって板厚方向において均一組織でかつ強度・低温靱性バランスが飛躍的に向上することを見いだした。
【0010】
本発明者の研究によれば、Bは鋼の焼き入れ性向上元素としてよく知られているが、単にBを添加することによって焼き入れ性を向上させるだけでは良好な強度・低温靱性は得られないことが判明している。そこで、本発明者は、微量のBとTiの添加と共にMo単独、またはMo及びNbの複合添加した鋼に着目し、それを用いた制御圧延、冷却条件の詳細な検討を行った。
【0011】
従来から、Tiは鋼中のNを固定し、Bの焼き入れ性向上効果を安定化させると共にNとの結合でできた微細なTiNは加熱圧延中のオーステナイト粒成長を抑制し、変態後のフェライト粒をも細粒化する効果があることが知られている。また、Nbもよく知られているように低温域での圧延(約950℃以下)によってオーステナイト粒を未再結晶化させ圧延組織を細粒化させ、更に、固溶化あるいは炭窒化物の析出によって、鋼の強度を向上させる効果がある。Moも固溶化によって鋼の強度を向上させることが知られている。
【0012】
しかしながら、本発明者らの詳細な検討の結果、上記成分を単独添加する際に従来知られていた効果の他に、Bの微量添加とMo単独あるいはMo及びNbの複合添加を行った場合に新しい現象が起きることを発見した。すなわち、Bの微量添加とMo単独あるいはMo及びNbの複合添加は、オーステナイトの未再結晶化開始温度(再結晶温度)が、50℃以上も高くなると同時に、焼き入れ性が大幅に向上してNb、Mo、Bのそれぞれの単独添加から予想される値に比べて強度・低温靱性バランスが極めて向上することがわかった。この効果は通常の熱処理または制御圧延の単独効果よりも大きい。
【0013】
この微量B添加と、Mo単独あるいはMo及びNbの複合添加において、強度・低温靱性バランスが向上する理由は以下のように考えられる。
B単独添加鋼の場合、Bはオーステナイト粒界に偏析しているもの以外に、M23(CB)6 の粗大な析出物を生成する。しかしながら、BとMo単独あるいはMo及びNbの複合添加時は、Nbの炭窒化物およびNbおよびMoのCクラスターが微細に析出し、Nb、Moによるオーステナイト中でのC原子の拡散速度が減少し、M23(CB)6 へのC原子を抑制する。このため、B原子の偏析が増加し、焼き入れ性が増大したものと考えられる。この微量TiおよびBの添加とMoの複合添加または微量Ti、B、Mo、Nbの複合添加鋼を用いれば、冷却速度が0.1℃/秒以上40℃/秒以下の範囲で板厚方向の硬度差が少なく、かつ均一なベイナイト組織を有する鋼が得られることが判明した。
【0014】
本発明によれば、前述の従来の制御冷却法における▲1▼から▲4▼に記載した問題点は解決される。すなわち、▲1▼については、ミクロ組織がベイナイト(アシュキラーフェライト、ベイニテイックフェライト、上部ベイナイト、下部ベイナイトを含む)単相組織となるため、焼き戻し処理がなくても延靱性が良好である。▲2▼については、TiとBとMo、あるいはTiとBとMoとNbの複合添加の効果により、溶接部についても焼き入れ性が向上し、溶接部の強度確保が容易である。▲3▼については、TiとBとMo、あるいはTiとBとMoとNbの複合添加の効果により細粒化効果、焼き入れ性が増大するために冷却速度・厚みにかかわらず安定した硬さ分布を示す。さらに、950℃以下の低温未再結晶温度域で全圧下量40%以上で圧延するため、表面ほど細粒オーステナイトとなり、焼き入れ性が低下して厚み方向の組織は均一となる。▲4▼については、オーステナイト粒の細粒化の徹底、焼き入れ性の安定確保により、比較的広範囲の加熱圧延冷却条件下で安定な強度/低温靱性バランスを示す。
【0015】
本発明により製造した鋼は、従来の鋼材に比べ、低成分(低炭素当量)で優れた強度・低温靱性が得られるため、溶接時の硬化性、割れ感受性が低く、また、溶接部の靱性が極めて良好である。このため、本発明鋼は建築、圧力容器、造船、ラインパイプ等に適用可能である。
以下、本発明の成分の限定理由について述べる。
【0016】
C:鋼における母材強度を向上させる基本的な元素として欠かせない元素であり、その有効な下限値として0.005%以上の添加が必要であるが、0.12%を越える過剰の添加では、鋼材の溶接性や靱性の低下を招くので、その上限を0.12%とした。
Si:Siは製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.5%を越えると溶接部ならびにの靱性を低下させるのでそれを上限とする。
【0017】
Mn:Mnは、母材の強度および靱性の確保に必要な元素であるが、2.2%を越えると焼き入れ性が増加し、ベイナイトあるいは島状マルテンサイトが多量に生成し、母材ならびに溶接部の靱性を著しく阻害するが、一方、0.6%未満では、母材の強度確保が困難になるために、その範囲を0.6〜2.2%とする。
【0018】
P:Pは鋼の靱性に影響を与える元素であり、0.01%を越えて含有すると鋼材の母材だけでなく溶接部の靱性を著しく阻害するのでその含有される上限を0.01%とした。
S:Sは0.0050%を越えて過剰に添加されると粗大な硫化物の生成の原因となり、母材ならびに溶接部の靱性を劣化させるのでその含有される上限を0.005%とした。
【0019】
Mo:母材の強度・低温靱性をともに向上させる元素であるが、0.05%未満では顕著な効果がなく、一方、0.5%を超えると焼き入れ性が増大し、母材、溶接部の靱性を劣化させるので、その添加量を0.05〜0.5%とした。
Al:Alは、通常脱酸材として添加されるが、0.05%を越えると溶接部の靱性が劣化するために上限を0.05%とした。
【0020】
Ti:Tiは、その添加量が少ない範囲(Ti:0.005〜0.03%)で微細なTiNを形成し、圧延組織およびHAZの細粒化、つまり、靱性向上に効果的である。この場合、NとTiは化学量論的に当量近傍が望ましく、0%≦Ti(%)−3.4N(%)≦0.02%が良好である。また、本発明では、TiはNを固定、Bの焼き入れ性を保護する効果を併せ持つ。Ti添加量の上限は、微細なTiNが鋼片中に通常の製法で得られ、また、TiCによる靱性劣化が起きない条件から0.025%とした。また、0.005%未満ではTiNの十分な効果が得られないので下限を0.005%とした。
【0021】
B:圧延中にオーステナイト粒界に偏析し、焼き入れ性を上げ、ベイナイト組織を生成しやすくするが、0.0005%未満では顕著な焼き入れ性改善効果が無く、0.003%超になるとBNやBconstituent (硼化物)を多く生成するようになるために母材やHAZの靱性を劣化させる。このため、下限を0.0005%、上限を0.003%とした。
【0022】
N:溶鋼中に不可避的に混入し、鋼の靱性を劣化させる。特に多量のフリーNはHAZ部に島状マルテンサイトを発生させやすく、HAZ部を大幅に劣化させる。このHAZ部靱性および母材靱性を改善する目的で前記したようにTiを添加するが、Nが0.006%を越えると鋼中のTiNサイズが大きくなり、TiNの効果が減少するためにNの上限を0.006%とした。
【0023】
Nb:圧延組織の細粒化、焼き入れ性の向上と析出硬化のため含有させるもので強度・低温靱性を共に向上させる重要な元素である。制御圧延材では1.0%を越えて添加しても材質効果がなく、また、溶接性およびHAZ靱性に有害であるために上限を0.1%に限定した。また、下限0.01%は材質上の効果を有する最小値である。
【0024】
TiとN量を0%≦Ti(%)−3.4N(%)≦0.02%と限定した理由は、TiによってNを十分に固定し、Bの焼き入れ性向上効果を発揮させるためであって、上限0.02%は過剰のTiがTiCを大量に形成して靱性を劣化させない条件から、また、下限0%はフリーNが多くなってBNを形成し、焼き入れ性が低下しない条件から決定した。
【0025】
本発明による鋼は上述した各成分を基本成分とするものであるが、更にNi,Cr,Cu,V,Ca,Rem,Mgの1種または2種以上を複合添加することもできる。以下にそれらの成分の限定理由について述べる。
Niは、:HAZの硬化性および靱性に悪影響を与えることなく母材の強度・低温靱性を向上させる特性を持つが、0.1%未満ではその効果が無く、1.0%を越えるとHAZの硬化性および靱性上好ましく無いため、下限を0.1%、上限を1.0%とした。Vは、Nbとほぼ同様の効果をもつが、0.01%以下では顕著な効果が無く、上限は0.10%まで許容できる。Crは、母材の強度を高め、耐水素誘起割れ性にも効果を有するが、0.1%未満では顕著な効果が無く、1.0%を越えるとHAZの硬化性を増大させ、低温靱性・溶接性の低下が大きくなり好ましくない。このため、下限を0.1%、上限を1.0%とした。Cuは、Niとほぼ同等の効果を持つと共に、耐食性、耐水素誘起割れ性にも効果がある。しかし、0.1%未満ではNi同様顕著な効果が無く、1.5%を越えるとNiを添加しても圧延中に割れが発生し、製造が難しくなる。このため、下限を0.1%、上限を1.5%とした。Ca、REMは、MnSを球状化させ、シャルピー吸収エネルギ−衝撃値を向上させる他、圧延によって、延伸化したMnSと水素による内部欠管の発生防止を防止する。REMの含有用については0.0005%未満であると事実上効果が無く、また、0.005%を越えて添加するとREM−SまたはREM−O−Sが大量に生成して大型介在物となり、鋼の低温靱性のみならず清浄度を害し、また溶接性についても悪影響を及ぼす。CaについてもREMと同様の効果をもち、その有効範囲は0.0005〜0.005%である。Mgは、Tiとの複合脱酸によって微細な酸化物が微細分散し、溶接部の粗大粒成長の防止、粒内フェライトが生成、MnSの球状化によってシャルピー吸収エネルギ−、延性脆性遷移温度が向上する。0.0001%未満であると事実上効果が無く、また、0.005%を越えて添加すると粗大なMg酸化物、Mg硫化物が生成して大型介在物となり、鋼の低温靱性のみならず清浄度を害し、また溶接性についても悪影響を及ぼす。
【0026】
次に、上述した成分を有する鋼板の製造条件について述べる。加熱温度を1000〜1250℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち圧延組織の細粒化をはかるためである。1250℃は加熱時のオーステナイト粒が極端に粗大化しない上限であって、加熱温度がこれを越えるとオーステナイト粒が粗大混粒化し、冷却後の上部ベイナイト組織も粗大化するため、鋼の靱性が著しく劣化する。一方、加熱温度があまりに低すぎると、Nb,Vなどの析出硬化元素が十分に固溶せず強度・低温靱性バランスが劣化するだけでなく、圧延終段の温度の下がりすぎのために、制御冷却による十分な材質向上効果が期待できない。このため、下限を1000℃とする必要がある。
【0027】
また、900℃以下の未再結晶温度域での圧下量を40%以上とし、仕上げ温度を700〜850℃の範囲とした理由は、未再結晶温度での十分な圧延を加えることによってオーステナイト粒の細粒化・延伸化を徹底し、冷却後に生成する変態組織を細粒均一化するためである。このように細粒オーステナイトを十分延伸化することにより、圧延冷却後生成するフェライト、上部ベイナイト組織を十分細粒化すると、靱性が大幅に向上する。しかし、仕上げ温度が不適当であると良好な強度・低温靱性が得られない。仕上げ温度の下限を700℃としたのは過度の変態点以下の(γ+α)域圧延によって延靱性を劣化させないためである。また、仕上げ温度が700℃未満では制御圧延による十分な強度上昇効果が期待できない。一方、仕上げ温度が余りにも高すぎると制御圧延によるオーステナイト粒の細粒化効果が期待できず靱性が低下する。このため上限を850℃とする必要がある。
【0028】
圧延後の冷却条件については、良好な強度、低温靱性を得るために板厚方向に均一な変態組織が得られるように行わなければならない。このため、種々の実験を行った結果、圧延終了後から0.1℃/秒以上40℃/秒以下の冷却速度で冷却すると板厚方向に均一な変態組織が得られることが判明した。この理由は0.1℃/秒未満ではベイナイト組織が生成しにくく、強度の向上が十分でない。また、40℃/秒超では多量の島状マルテンサイトが生成し、延靱性を劣化させるからである。
【0029】
【実施例】
次に、本発明の実施例について述べる。
転炉、連続鋳造工程で製造した種々の化学成分の鋳片を用い、製造プロセスを変えて板厚16〜50mmの鋼板を製造した。これらの鋼板を冷間成形し、仮付け溶接、内外面溶接を行った後、拡管を行いUOE鋼管とした。その鋼管の母材および溶接部の機械的性質を表1および表2に示した。
【0030】
【表1】

Figure 0004071906
【0031】
【表2】
Figure 0004071906
【0032】
本発明に従って製造した鋼管1〜22はいずれも優れた母材、溶接部の特性を有している。これに対して、本発明によらない比較鋼は母材或いは溶接部の特性にいずれかが不満足で、溶接用鋼材としてのバランスに欠けている。比較鋼中、鋼23,24,25では本発明の鋼の必須元素であるMo、B、Tiのいずれかが添加されていない。このため、鋼23〜25では、Ti、BとMoあるいはTiとBとMoとNbの複合効果になっていないために母材強度が劣っている。本発明鋼では530MPa以上の引張り強度がでる。また、鋼25ではHAZ組織が粗くなり溶接部靱性も劣っている。鋼26では加熱温度が低すぎるため、鋼27では仕上げ温度が低すぎるために、鋼28は900℃以下の圧下量が十分なために強度がでない。鋼29は冷却速度が遅すぎるために十分な強度達成されない。
【0033】
【発明の効果】
本発明によって強度・低温靱性および溶接性の優れたラインパイプ鋼管の製造が可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention, strength, those involved in the manufacturing method of low-temperature toughness and weldability of excellent line steel pipe pipe.
[0002]
[Prior art]
In recent years, the use of high-strength steel has been widespread in welded structures (buildings, pressure vessels, shipbuilding, line pipes) in terms of economy and safety, and the demand for weldable high-strength steel has shown a steady increase. Yes. Of course, steel used in welded structures is required to have both high toughness and excellent weldability from the aspects of safety and workability in addition to high strength. Steel that satisfies these characteristics As a manufacturing method, a controlled rolling method (CR method) widely used in the production of line pipe materials and a quenching and tempering method (QT method) for performing quenching and tempering after rolling are well known. However, in the former method, the rolled structure is generally ferrite pearlite, and the strength and the thickness obtained are limited by themselves. The reason for this is that, in order to obtain an acicular ferrite or bainite structure that is excellent in strength and toughness in the manufactured steel, the cooling rate is remarkably increased or a large amount of alloy addition is required. It was difficult. In the latter method, since a reheating step is required, the cost is increased and the production capacity is restricted.
[0003]
Therefore, at present, these methods are advanced one step, and development of a controlled rolling / controlled cooling method (TMCP method) in which energy saving and resource saving (reduction of alloying elements) are thoroughly promoted. The steel produced by this method has the advantages of CR and QT methods, and has the characteristics that an excellent material can be obtained without adding a low alloy or special alloy, but on the other hand, it was produced by the conventional controlled cooling method. Steel has the following disadvantages.
[0004]
{Circle around (1)} When rapid cooling is performed after rolling, the strength is too high, so that a tempering treatment is essential to recover the ductility.
{Circle around (2)} The heat affected zone (HAZ) during welding is greatly softened, and it is difficult to ensure the strength of the welded portion, particularly with a high yield point and high strength steel.
(3) The structure in the cross-sectional direction of the plate thickness is uneven and the hardness difference is large.
[0005]
(4) The control of the cooling conditions (cooling start, stop temperature and speed) is delicate and the material is unstable.
As a method for improving these drawbacks, for example, in Japanese Patent Laid-Open No. 63-179020 or Japanese Patent Laid-Open No. 61-67717, a thickness cross section is defined by defining a component, a reduction amount, a cooling rate, and a cooling stop temperature. It is disclosed to reduce the hardness difference. However, these methods can be applied to a steel sheet having a relatively small thickness, but it is difficult to control the cooling rate in the thickness direction with an extra-thick steel sheet, and the effect of reducing the thickness difference in thickness section is obtained. There is a problem that you can not.
[0006]
Japanese Laid-Open Patent Publication No. 58-77528 discloses a method of reducing the hardness difference in the plate thickness direction by making the structure in the plate thickness direction a bainite uniform structure by the combined addition of Nb and B. However, in this method, since it is necessary to set the cooling rate to 15 to 40 ° C./second in order to obtain a uniform bainite structure, it is difficult to make the difference in hardness in the thickness direction of the extra-thick steel plate uniform. There was a problem.
[0007]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention has X65 grade (yield stress is 448 MPa or more, tensile stress is 530 MPa or more) with less material variation in the thickness direction and excellent strength, low temperature toughness and weldability. ) it is an object of the present invention to produce a Lula-pipe for steel pipe having a mechanical properties above. In addition, the upper limit of the tensile stress is the steel No. in the example of the present invention. Based on 14 and 16 of 700 MPa, the pressure is set to 700 MPa or less.
[0008]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) In mass% ,
C: 0.005-0.12%,
Si: 0.02 to 0.5%,
Mn: 0.6 to 2.2%
P: ≦ 0.01%
S: ≦ 0.005%,
Mo: 0.05-0.5%
Al: ≦ 0.05%,
Ti: 0.005 to 0.03%,
B: 0.0005-0.003%,
N: ≦ 0.006%,
The balance is composed of iron and inevitable impurities, and the steel slab satisfying 0% ≦ Ti (%)-3.4N (%) ≦ 0.02% is heated to a temperature of 1000 to 1250 ° C. A steel sheet obtained by rolling at a total reduction amount of 40% or more and a finishing temperature of 700 to 850 ° C. and cooling at a cooling rate of 0.1 ° C./second to 40 ° C./second after rolling. A method for producing a steel pipe for a high-tensile line pipe excellent in low-temperature toughness, characterized in that after cold forming, welding is performed to obtain a UOE steel pipe having a tensile stress of 530 to 700 MPa.
(2) In mass% ,
C: 0.005~0.12%,
Si: 0.02~0.5%,
Mn: 0.6~2.2%,
P: ≦ 0.01%,
S: ≦ 0.005%,
Nb: 0.01~0.1%,
Mo: 0.05~0.5%,
Al: ≦ 0.05%,
Ti: 0.005 to 0.03% ,
B: 0.0005 to 0.003% ,
N: ≦ 0.006%,
The balance is composed of iron and inevitable impurities, and the steel slab satisfying 0% ≦ Ti (%)-3.4N (%) ≦ 0.02% is heated to a temperature of 1000 to 1250 ° C. A steel sheet obtained by rolling so that the total reduction amount is 40% or more and the finishing temperature is 700 to 850 ° C., and is cooled at a cooling rate of 0.1 ° C./second to 40 ° C./second after rolling. A method for producing a steel pipe for a high-tensile line pipe excellent in low-temperature toughness, characterized in that after cold forming, welding is performed to obtain a UOE steel pipe having a tensile stress of 530 to 700 MPa.
(3) The steel slab is further mass% ,
Ni: 0.1 to 1%,
Cr: 0.1 to 1%,
Cu: 0.1 to 1.5%,
V: 0.01-0.1%
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.005%,
Mg: 0.0001 to 0.005%,
One or manufacturing method of the excellent high tension line pipes for steel tubes low temperature toughness according to claim 1 or claim 2, characterized by containing two or more of.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made numerous experiments and details on manufacturing processes such as steel component systems, heating, rolling, and cooling conditions suitable for the controlled rolling / controlled cooling method (TMCP method) in order to solve the above-described drawbacks of the conventional methods. As a result of carrying out various investigations, steel is added with Mo alone or combined with Mo and Nb, and steel with a small amount of Ti and B added is controlled rolled and cooled to achieve a uniform structure and balance between strength and low temperature toughness in the sheet thickness direction. Found a dramatic improvement.
[0010]
According to the inventor's research, B is well known as an element for improving the hardenability of steel. However, by simply adding B to improve the hardenability, good strength and low temperature toughness can be obtained. It turns out not. Therefore, the present inventor paid attention to steel added with a small amount of B and Ti and added with Mo alone or combined with Mo and Nb, and performed detailed examination of controlled rolling and cooling conditions using the steel.
[0011]
Conventionally, Ti fixes N in steel, stabilizes the effect of improving the hardenability of B, and fine TiN formed by bonding with N suppresses austenite grain growth during hot rolling, and after transformation It is known that there is an effect of refining ferrite grains. As is well known, Nb is not recrystallized by rolling in a low temperature region (about 950 ° C. or less) to refine the rolled structure, and further, by solid solution or carbonitride precipitation. It has the effect of improving the strength of steel. Mo is also known to improve the strength of steel by solid solution.
[0012]
However, as a result of detailed investigations by the present inventors, in addition to the effects conventionally known when the above components are added alone, a small amount of B and Mo alone or a combined addition of Mo and Nb are performed. I discovered a new phenomenon. That is, the addition of a small amount of B and Mo alone or the combined addition of Mo and Nb increases the austenite non-recrystallization start temperature (recrystallization temperature) by 50 ° C. or more and at the same time significantly improves the hardenability. It was found that the balance between strength and low temperature toughness was greatly improved as compared with the values expected from the individual addition of Nb, Mo and B. This effect is greater than the single effect of normal heat treatment or controlled rolling.
[0013]
The reason why the balance between strength and low-temperature toughness is improved in the addition of a small amount of B and the combined addition of Mo alone or Mo and Nb is considered as follows.
In the case of the steel containing B alone, B forms coarse precipitates of M 23 (CB) 6 in addition to those segregated at the austenite grain boundaries. However, when B and Mo are added alone or Mo and Nb are combined, Nb carbonitrides and C clusters of Nb and Mo precipitate finely, and the diffusion rate of C atoms in austenite by Nb and Mo decreases. , Suppresses the C atom to M 23 (CB) 6 . For this reason, it is considered that segregation of B atoms increased and the hardenability increased. If this addition of trace amounts of Ti and B and combined addition of Mo or combined addition of trace amounts of Ti, B, Mo, and Nb is used, the cooling rate is in the range of 0.1 ° C / second to 40 ° C / second in the thickness direction. It was found that a steel having a uniform hardness and a uniform bainite structure can be obtained.
[0014]
According to the present invention, the problems described in (1) to (4) in the above-described conventional controlled cooling method are solved. That is, for (1), since the microstructure is a bainite (including ash ferrite, bainitic ferrite, upper bainite, and lower bainite) single phase structure, the ductility is good even without tempering treatment. . With regard to (2), the effect of combined addition of Ti, B, and Mo, or Ti, B, Mo, and Nb improves the hardenability of the welded portion and makes it easy to ensure the strength of the welded portion. Regarding (3), since the effect of grain refinement and hardenability is increased by the combined addition of Ti and B and Mo or Ti, B, Mo and Nb, the hardness is stable regardless of the cooling rate and thickness. Show the distribution. Furthermore, since rolling is performed at a low unrecrystallization temperature range of 950 ° C. or less with a total reduction of 40% or more, the surface becomes fine-grained austenite, the hardenability decreases, and the structure in the thickness direction becomes uniform. Regarding (4), a stable strength / low temperature toughness balance is exhibited under a relatively wide range of heating, rolling and cooling conditions by thoroughly reducing the austenite grains and ensuring stable hardenability.
[0015]
The steel produced according to the present invention has excellent strength and low temperature toughness with low components (low carbon equivalent) compared to conventional steel materials, so it has low curability and cracking susceptibility during welding, and the toughness of the weld zone. Is very good. For this reason, this invention steel is applicable to a building, a pressure vessel, shipbuilding, a line pipe, etc.
Hereinafter, the reasons for limiting the components of the present invention will be described.
[0016]
C: Element that is indispensable as a basic element for improving the strength of the base metal in steel, and an effective lower limit value of 0.005% or more is necessary, but excessive addition exceeding 0.12% Then, since the weldability and toughness of steel materials are reduced, the upper limit was made 0.12%.
Si: Si is an element necessary as a deoxidizing element in steelmaking, and it is necessary to add 0.02% or more to the steel. However, if it exceeds 0.5%, the toughness of the welded part and the steel deteriorates. The upper limit.
[0017]
Mn: Mn is an element necessary for ensuring the strength and toughness of the base material. However, if it exceeds 2.2%, the hardenability increases, and a large amount of bainite or island-like martensite is generated. Although the toughness of the welded portion is significantly inhibited, on the other hand, if it is less than 0.6%, it becomes difficult to ensure the strength of the base material, so the range is made 0.6 to 2.2%.
[0018]
P: P is an element that affects the toughness of steel, and if it exceeds 0.01%, not only the base material of the steel material but also the toughness of the welded portion is significantly inhibited. It was.
S: When S is added in excess of 0.0050%, coarse sulfides are formed and the toughness of the base metal and the welded portion is deteriorated. Therefore, the upper limit of the content is set to 0.005%. .
[0019]
Mo: An element that improves both the strength and low-temperature toughness of the base metal. If it is less than 0.05%, there is no significant effect. On the other hand, if it exceeds 0.5%, the hardenability increases, and the base metal and welding. Since the toughness of the part is deteriorated, the addition amount is set to 0.05 to 0.5%.
Al: Al is usually added as a deoxidizer, but if it exceeds 0.05%, the toughness of the welded portion deteriorates, so the upper limit was made 0.05%.
[0020]
Ti: Ti forms fine TiN in a range where the amount of addition is small (Ti: 0.005 to 0.03%), and is effective in reducing the rolling structure and HAZ, that is, improving toughness. In this case, N and Ti are desirably in the vicinity of an equivalent stoichiometric amount, and 0% ≦ Ti (%) − 3.4N (%) ≦ 0.02% is favorable. In the present invention, Ti also has the effect of fixing N and protecting the hardenability of B. The upper limit of the amount of Ti added is set to 0.025% from the condition that fine TiN is obtained in a steel slab by a normal manufacturing method and toughness deterioration due to TiC does not occur. Further, if it is less than 0.005%, a sufficient effect of TiN cannot be obtained, so the lower limit was made 0.005%.
[0021]
B: Segregates at austenite grain boundaries during rolling, improves hardenability and facilitates the formation of a bainite structure, but if it is less than 0.0005%, there is no significant effect of improving hardenability, and if it exceeds 0.003% Since a large amount of BN and Bconstituent (boride) is generated, the toughness of the base material and the HAZ is deteriorated. Therefore, the lower limit is set to 0.0005% and the upper limit is set to 0.003%.
[0022]
N: inevitably mixed in molten steel to deteriorate the toughness of the steel. In particular, a large amount of free N tends to generate island martensite in the HAZ part, and the HAZ part is greatly deteriorated. In order to improve the HAZ toughness and the base metal toughness, Ti is added as described above. However, when N exceeds 0.006%, the TiN size in the steel increases, and the effect of TiN decreases. The upper limit of 0.006%.
[0023]
Nb: It is an important element for improving both strength and low-temperature toughness because it is included for making the rolled structure finer, improving hardenability and precipitation hardening. In the case of controlled rolled material, even if added over 1.0%, there is no material effect, and since it is harmful to weldability and HAZ toughness, the upper limit was limited to 0.1%. The lower limit of 0.01% is the minimum value having an effect on the material.
[0024]
The reason for limiting the amount of Ti and N to 0% ≦ Ti (%) − 3.4N (%) ≦ 0.02% is to sufficiently fix N with Ti and to exert the effect of improving the hardenability of B. The upper limit of 0.02% is based on the condition that excessive Ti does not form a large amount of TiC and deteriorates the toughness, and the lower limit of 0% increases the free N and forms BN, resulting in reduced hardenability. Not determined from the conditions.
[0025]
The steel according to the present invention has the above-described components as basic components, but it is also possible to add one or more of Ni, Cr, Cu, V, Ca, Rem, and Mg in combination. The reasons for limiting these components are described below.
Ni has the characteristics of improving the strength and low-temperature toughness of the base material without adversely affecting the curability and toughness of HAZ. However, if it is less than 0.1%, it has no effect, and if it exceeds 1.0%, HAZ Therefore, the lower limit was set to 0.1% and the upper limit was set to 1.0%. V has substantially the same effect as Nb, but there is no remarkable effect below 0.01%, and the upper limit is allowable up to 0.10%. Cr increases the strength of the base metal and has an effect on resistance to hydrogen-induced cracking, but if it is less than 0.1%, there is no significant effect, and if it exceeds 1.0%, it increases the curability of the HAZ and lowers the temperature. It is not preferable because the deterioration of toughness and weldability is increased. Therefore, the lower limit is set to 0.1% and the upper limit is set to 1.0%. Cu has substantially the same effect as Ni, and is also effective in corrosion resistance and resistance to hydrogen-induced cracking. However, if it is less than 0.1%, there is no remarkable effect like Ni, and if it exceeds 1.5%, even if Ni is added, cracks are generated during rolling, making the production difficult. Therefore, the lower limit is set to 0.1% and the upper limit is set to 1.5%. Ca and REM spheroidize MnS to improve the Charpy absorbed energy-impact value, and also prevent the occurrence of internal breakage due to the extended MnS and hydrogen by rolling. When the content of REM is less than 0.0005%, there is practically no effect. When the content exceeds 0.005%, a large amount of REM-S or REM-O-S is generated and becomes a large inclusion. , Not only the low temperature toughness of steel, but also the cleanliness, and the weldability is also adversely affected. Ca has the same effect as REM, and its effective range is 0.0005 to 0.005%. Mg is finely dispersed with fine oxides by complex deoxidation with Ti, preventing coarse grain growth in welds, forming intragranular ferrite, and improving the Charpy absorbed energy and ductile brittle transition temperature by spheroidizing MnS. To do. If it is less than 0.0001%, there is practically no effect, and if added over 0.005%, coarse Mg oxides and Mg sulfides are formed and become large inclusions, not only low temperature toughness of steel It impairs cleanliness and adversely affects weldability.
[0026]
Next, manufacturing conditions for the steel sheet having the above-described components will be described. The reason for limiting the heating temperature to 1000 to 1250 ° C. is to keep the austenite grains during heating small and to refine the rolling structure. 1250 ° C is the upper limit at which the austenite grains during heating are not extremely coarsened, and when the heating temperature exceeds this, the austenite grains become coarsely mixed and the upper bainite structure after cooling also coarsens, so the toughness of the steel Deteriorates significantly. On the other hand, if the heating temperature is too low, precipitation hardening elements such as Nb and V do not dissolve sufficiently and the balance between strength and low temperature toughness is deteriorated, and the temperature at the final stage of rolling is too low. A sufficient material improvement effect by cooling cannot be expected. For this reason, it is necessary to make a minimum into 1000 ° C.
[0027]
Moreover, the reason why the reduction amount in the non-recrystallization temperature range of 900 ° C. or less is set to 40% or more and the finishing temperature is in the range of 700 to 850 ° C. is that austenite grains are obtained by applying sufficient rolling at the non-recrystallization temperature. This is because the transformation structure formed after cooling is thoroughly refined and stretched to make the transformed structure uniform. As described above, when the fine-grained austenite is sufficiently stretched to sufficiently refine the ferrite and upper bainite structure produced after rolling and cooling, the toughness is greatly improved. However, if the finishing temperature is inappropriate, good strength and low temperature toughness cannot be obtained. The reason why the lower limit of the finishing temperature is set to 700 ° C. is that the toughness is not deteriorated by (γ + α) region rolling below an excessive transformation point. Further, if the finishing temperature is less than 700 ° C., a sufficient strength increase effect by controlled rolling cannot be expected. On the other hand, if the finishing temperature is too high, the effect of refining austenite grains by controlled rolling cannot be expected and the toughness is lowered. For this reason, it is necessary to make an upper limit into 850 degreeC.
[0028]
As for the cooling conditions after rolling, in order to obtain good strength and low temperature toughness, it must be performed so that a uniform transformation structure can be obtained in the thickness direction. For this reason, as a result of various experiments, it was found that a uniform transformation structure can be obtained in the plate thickness direction by cooling at a cooling rate of 0.1 ° C./second or more and 40 ° C./second or less after the end of rolling. The reason for this is that if it is less than 0.1 ° C./second, a bainite structure is not easily formed, and the strength is not sufficiently improved. Further, if it exceeds 40 ° C./second, a large amount of island-like martensite is generated and the ductility is deteriorated.
[0029]
【Example】
Next, examples of the present invention will be described.
Steel plates having a thickness of 16 to 50 mm were manufactured by changing the manufacturing process using slabs of various chemical components manufactured in a converter and continuous casting process. These steel sheets were cold formed, tack welded and inner / outer surface welded, and then expanded to obtain a UOE steel pipe. Tables 1 and 2 show the mechanical properties of the base metal and the weld of the steel pipe.
[0030]
[Table 1]
Figure 0004071906
[0031]
[Table 2]
Figure 0004071906
[0032]
The steel pipes 1 to 22 manufactured according to the present invention all have excellent base metal and welded portion characteristics. On the other hand, the comparative steel not according to the present invention is unsatisfactory in the characteristics of the base metal or the welded portion, and lacks the balance as a steel material for welding. Among the comparative steels, steels 23, 24, and 25 do not contain any of Mo, B, and Ti, which are essential elements of the steel of the present invention. For this reason, in the steels 23-25, since it is not the combined effect of Ti, B, and Mo or Ti, B, Mo, and Nb, base material strength is inferior. The steel of the present invention has a tensile strength of 530 MPa or more. Moreover, in the steel 25, the HAZ structure becomes coarse and the weld zone toughness is also inferior. Since the heating temperature is too low for steel 26 and the finishing temperature is too low for steel 27, steel 28 is not strong because the amount of rolling below 900 ° C. is sufficient. Steel 29 does not achieve sufficient strength because the cooling rate is too slow.
[0033]
【The invention's effect】
Production of superior line pipe steel pipe strength and low temperature toughness and weldability by the present invention becomes possible.

Claims (3)

質量%で、
C :0.005〜0.12%、
Si:0.02〜0.5%、
Mn:0.6〜2.2%、
P :≦0.01%、
S :≦0.005%、
Mo:0.05〜0.5%、
Al:≦0.05%、
Ti:0.005〜0.03%、
B :0.0005〜0.003%、
N :≦0.006%、
残部が鉄および不可避的不純物からなり、かつ0%≦Ti(%)−3.4N(%)≦0.02%を満足する鋼片を1000〜1250℃の温度に加熱し、950℃以下の全圧下量が40%以上、かつ仕上温度が700〜850℃となるように圧延を行い、圧延後0.1℃/秒以上40℃/秒以下の冷却速度で冷却して得られた鋼板を冷間成形した後、溶接し、引張り応力530〜700MPaのUOE鋼管としたことを特徴とする低温靱性の優れた高張力ラインパイプ用鋼管の製造方法。
% By mass
C: 0.005-0.12%,
Si: 0.02 to 0.5%,
Mn: 0.6 to 2.2%
P: ≦ 0.01%
S: ≦ 0.005%,
Mo: 0.05-0.5%
Al: ≦ 0.05%,
Ti: 0.005 to 0.03%,
B: 0.0005-0.003%,
N: ≦ 0.006%,
The balance is composed of iron and inevitable impurities, and the steel slab satisfying 0% ≦ Ti (%)-3.4N (%) ≦ 0.02% is heated to a temperature of 1000 to 1250 ° C. A steel sheet obtained by rolling at a total reduction amount of 40% or more and a finishing temperature of 700 to 850 ° C. and cooling at a cooling rate of 0.1 ° C./second to 40 ° C./second after rolling. A method for producing a steel pipe for a high-tensile line pipe excellent in low-temperature toughness, characterized in that after cold forming, welding is performed to obtain a UOE steel pipe having a tensile stress of 530 to 700 MPa.
質量%で、
C :0.005〜0.12%
Si:0.02〜0.5%
Mn:0.6〜2.2%
P :≦0.01%
S :≦0.005%
Nb:0.01〜0.1%
Mo:0.05〜0.5%
Al:≦0.05%
Ti:0.005〜0.03%
B :0.0005〜0.003%
N :≦0.006%、
残部が鉄および不可避的不純物からなり、かつ0%≦Ti(%)−3.4N(%)≦0.02%を満足する鋼片を1000〜1250℃の温度に加熱し、950℃以下の全圧下量が40%以上、かつ仕上げ温度が700〜850℃となるように圧延を行い、圧延後0.1℃/秒以上40℃/秒以下の冷却速度で冷却して得られた鋼板を冷間成形した後、溶接し、引張り応力530〜700MPaのUOE鋼管としたことを特徴とする低温靱性の優れた高張力ラインパイプ用鋼管の製造方法。
% By mass
C: 0.005~0.12%,
Si: 0.02~0.5%,
Mn: 0.6~2.2%,
P: ≦ 0.01%,
S: ≦ 0.005%,
Nb: 0.01~0.1%,
Mo: 0.05~0.5%,
Al: ≦ 0.05%,
Ti: 0.005 to 0.03% ,
B: 0.0005 to 0.003% ,
N: ≦ 0.006%,
The balance is composed of iron and inevitable impurities, and the steel slab satisfying 0% ≦ Ti (%)-3.4N (%) ≦ 0.02% is heated to a temperature of 1000 to 1250 ° C. A steel sheet obtained by rolling so that the total reduction amount is 40% or more and the finishing temperature is 700 to 850 ° C., and is cooled at a cooling rate of 0.1 ° C./second to 40 ° C./second after rolling. A method for producing a steel pipe for a high-tensile line pipe excellent in low-temperature toughness, characterized in that after cold forming, welding is performed to obtain a UOE steel pipe having a tensile stress of 530 to 700 MPa.
鋼片がさらに、質量%で、
Ni:0.1〜1%、
Cr:0.1〜1%、
Cu:0.1〜1.5%、
V :0.01〜0.1%、
Ca:0.0005〜0.005%、
REM:0.0005〜0.005%、
Mg :0.0001〜0.005%、
のうち1種または2種以上を含有することを特徴とする請求項1または請求項2の何れかに記載の低温靱性の優れた高張力ラインパイプ用鋼管の製造方法。
The billet is further mass% ,
Ni: 0.1 to 1%,
Cr: 0.1 to 1%,
Cu: 0.1 to 1.5%,
V: 0.01-0.1%
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.005%,
Mg: 0.0001 to 0.005%,
The manufacturing method of the steel pipe for high tension line pipes excellent in low-temperature toughness in any one of Claim 1 or 2 characterized by including 1 type, or 2 or more types.
JP33302499A 1999-11-24 1999-11-24 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness Expired - Fee Related JP4071906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33302499A JP4071906B2 (en) 1999-11-24 1999-11-24 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33302499A JP4071906B2 (en) 1999-11-24 1999-11-24 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness

Publications (2)

Publication Number Publication Date
JP2001152248A JP2001152248A (en) 2001-06-05
JP4071906B2 true JP4071906B2 (en) 2008-04-02

Family

ID=18261432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33302499A Expired - Fee Related JP4071906B2 (en) 1999-11-24 1999-11-24 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JP4071906B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660034B2 (en) * 2001-08-27 2011-03-30 新日本製鐵株式会社 A non-water-cooled manufacturing method of an X70 grade steel plate having a high impact absorption energy and a thickness of 15 mm or less.
JP3785376B2 (en) * 2002-03-29 2006-06-14 新日本製鐵株式会社 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
RU2241780C1 (en) * 2003-12-30 2004-12-10 Закрытое акционерное общество Научно-производственное объединение "ПОЛИМЕТАЛЛ" Steel
RU2252972C1 (en) * 2004-06-07 2005-05-27 Закрытое акционерное общество Научно-производственное объединение "ПОЛИМЕТАЛЛ" Pipe for gas- and product pipelines and a method of its production
JP5055736B2 (en) * 2004-12-02 2012-10-24 Jfeスチール株式会社 Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness
JP5176271B2 (en) * 2005-03-22 2013-04-03 新日鐵住金株式会社 Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP4821182B2 (en) * 2005-06-24 2011-11-24 Jfeスチール株式会社 Manufacturing method of high-tensile steel plate with excellent workability
JP4226626B2 (en) 2005-11-09 2009-02-18 新日本製鐵株式会社 High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
JP5008879B2 (en) * 2006-02-27 2012-08-22 新日本製鐵株式会社 High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4969915B2 (en) * 2006-05-24 2012-07-04 新日本製鐵株式会社 Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP4741528B2 (en) * 2007-02-09 2011-08-03 新日本製鐵株式会社 Steel plates and steel pipes for steam transport piping having excellent high temperature characteristics and methods for producing them
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
JP5096087B2 (en) 2007-09-11 2012-12-12 株式会社神戸製鋼所 High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
CN101418416B (en) 2007-10-26 2010-12-01 宝山钢铁股份有限公司 Low welding crack sensitivity steel plate with yield strength of 800MPa grade and method for producing the same
KR101174970B1 (en) 2010-02-26 2012-08-23 현대제철 주식회사 High strength linepipe steel and method of manufacturing the steel
JP5464169B2 (en) * 2011-04-28 2014-04-09 Jfeスチール株式会社 High tensile steel plate with excellent workability and tensile strength of 628 MPa or less
JP5849676B2 (en) * 2011-12-15 2016-02-03 Jfeスチール株式会社 High-strength steel sheet for civil engineering and manufacturing method thereof
JP5833964B2 (en) * 2012-03-29 2015-12-16 株式会社神戸製鋼所 Steel sheet excellent in bending workability, impact property and tensile property, and method for producing the same
KR101505290B1 (en) 2013-05-31 2015-03-23 현대제철 주식회사 Steel sheet for line pipe and method of manufacturing the same
KR101657829B1 (en) * 2014-12-24 2016-09-20 주식회사 포스코 Heat treatment steel for fitting, fitting including the same and manufacturing method thereof
CN107429353B (en) * 2015-03-27 2019-12-27 杰富意钢铁株式会社 High-strength steel, method for producing same, steel pipe, and method for producing same
CN112760464A (en) * 2019-10-21 2021-05-07 宝山钢铁股份有限公司 Normalizing type low-yield-ratio UOE welded pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001152248A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP2004084068A (en) Non-haettreated low yield ratio high tensile strength steel having excellent high temperature strength and production method therefor
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2005171300A (en) High tensile steel for high heat input welding, and weld metal
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
CN111542621B (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080118

R151 Written notification of patent or utility model registration

Ref document number: 4071906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees