JP5884201B2 - Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more - Google Patents

Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more Download PDF

Info

Publication number
JP5884201B2
JP5884201B2 JP2014558502A JP2014558502A JP5884201B2 JP 5884201 B2 JP5884201 B2 JP 5884201B2 JP 2014558502 A JP2014558502 A JP 2014558502A JP 2014558502 A JP2014558502 A JP 2014558502A JP 5884201 B2 JP5884201 B2 JP 5884201B2
Authority
JP
Japan
Prior art keywords
less
strength
steel
hot
hic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014558502A
Other languages
Japanese (ja)
Other versions
JPWO2014115548A1 (en
Inventor
聡太 後藤
聡太 後藤
俊介 豊田
俊介 豊田
岡部 能知
能知 岡部
雪彦 岡崎
雪彦 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014558502A priority Critical patent/JP5884201B2/en
Application granted granted Critical
Publication of JP5884201B2 publication Critical patent/JP5884201B2/en
Publication of JPWO2014115548A1 publication Critical patent/JPWO2014115548A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は耐水素誘起割れ性(hydrogen induced cracking resistance)(以下耐HIC性と呼ぶ)を有し、API(American Petroleum Institute)規格 X70以上の強度を有する、原油または、天然ガスといったエネルギー資源を輸送するためのラインパイプ用電縫鋼管素材として用いるのに好適な熱延鋼板およびその製造方法に関する。   The present invention transports energy resources such as crude oil or natural gas having hydrogen induced cracking resistance (hereinafter referred to as HIC resistance) and strength of API (American Petroleum Institute) standard X70 or higher. The present invention relates to a hot-rolled steel sheet suitable for use as an electric-welded steel pipe material for line pipes and a method for producing the same.

従来、ラインパイプには、輸送効率の観点から、大径で厚肉な鋼管が製造可能なUOE鋼管が主として使用されてきたが、最近では、UOE鋼管に代わり生産性が高く、より安価なコイル形状の熱延鋼板(熱延鋼帯)を素材とした高強度電縫鋼管(high strength electric resistance welded steel pipe)の普及が進んでいる。コスト面以外にも、電縫鋼管は肉厚(wall thickness)の偏差(deviation)や真円度(roundness)がUOE鋼管に比べ優れるといった利点がある。一方で、電縫鋼管の造管方法(pipe production method)は冷間ロール成形(cold roll forming)であり、鋼管を製造する際に付与される塑性ひずみ(plastic strain)がUOE鋼管と比べて格段に大きいという特徴がある。   Conventionally, UOE steel pipes that can produce large-diameter and thick-walled steel pipes have been mainly used as line pipes from the viewpoint of transportation efficiency. Recently, however, UOE steel pipes have been replaced with higher productivity and less expensive coils. High strength electric resistance welded steel pipe made of hot-rolled steel sheet (hot-rolled steel strip) in shape is spreading. In addition to cost, ERW steel pipes have the advantage that wall thickness deviation and roundness are superior to UOE steel pipes. On the other hand, the pipe production method of ERW steel pipe is cold roll forming, and the plastic strain applied when manufacturing steel pipe is much higher than that of UOE steel pipe. There is a feature that is large.

近年の原油および、天然ガス開発は、エネルギー需要の増加と採掘技術の進歩により油田および、ガス田の極地化や、高深度化が進んでいる。こういった場所で用いられるラインパイプには強度、靭性および溶接性に加えて、耐HIC性や耐硫化物応力腐食割れ(sulfate stress corrosion cracking resistance)(SSC)といったいわゆる耐サワー特性(sour resistance)が求められる。敷設された後に応力が負荷されないラインパイプでは、特に耐HIC性が重要となる。   In recent years, the development of crude oil and natural gas has become more polar and deeper in oil and gas fields due to increased energy demand and advances in mining technology. In addition to strength, toughness and weldability, line pipes used in these locations have so-called sour resistance such as HIC resistance and sulfate stress corrosion cracking resistance (SSC). Is required. For line pipes that are not stressed after being laid, HIC resistance is particularly important.

HICは腐食反応により生成した水素イオンが鋼表面で水素原子となり鋼中に侵入して、MnSなどの介在物、NbCなどの粗大な炭化物や硬質第二相(second hard phase)のまわりに集積することで内圧を生じさせ、最終的に鋼材に割れを発生させるものである。また、鋼材に塑性ひずみが付与された場合、前記介在物、炭化物および硬質第二相周辺には多数の転位(dislocation)が導入されることによって、より水素原子が集積しやすくなるため、HICが助長される。   In HIC, hydrogen ions generated by the corrosion reaction become hydrogen atoms on the steel surface and penetrate into the steel and accumulate around inclusions such as MnS, coarse carbides such as NbC, and the second hard phase. In this way, an internal pressure is generated, and a crack is finally generated in the steel material. In addition, when plastic strain is applied to the steel material, a large number of dislocations are introduced around the inclusions, carbides, and hard second phase, which facilitates the accumulation of hydrogen atoms. Be encouraged.

上記したHICの問題を解決するために、従来から種々の解決策が提案されている。   In order to solve the above HIC problem, various solutions have been proposed.

特許文献1では、S、O(酸素)およびNのそれぞれと結合して介在物を形成する元素の含有量の合計を0.01%以下として、あるいは介在物の最大径を5μm以下に制御して、HICの起点となる介在物を無害化し、さらに中心偏析部(center segregation part)の硬度をHv330以下とすることで耐HICを向上させる方法が開示されている。   In Patent Document 1, the total content of elements that combine with each of S, O (oxygen) and N to form inclusions is controlled to 0.01% or less, or the maximum diameter of inclusions is controlled to 5 μm or less. Thus, there is disclosed a method for improving the HIC resistance by detoxifying the inclusion that becomes the starting point of the HIC and further setting the hardness of the center segregation part to Hv 330 or less.

特許文献2では、HICの起点となるTiNの大きさを小さくすることでHIC面積率(area ratio of HIC)を小さくする方法が開示されている。具体的にはAlとCaの添加量を調整し、CaO/Alの重量比を1.2〜1.5とすることで溶鋼中のAl−Ca系硫化物を微細化し、それを核として生成するAl−Ti−Ca系複合介在物を30μm以下とする。Patent Document 2 discloses a method of reducing the HIC area ratio (area ratio of HIC) by reducing the size of TiN that is the starting point of HIC. Specifically, the amount of Al and Ca added is adjusted, and the weight ratio of CaO / Al 2 O 3 is set to 1.2 to 1.5 to refine the Al—Ca sulfide in the molten steel. The Al—Ti—Ca-based composite inclusions generated as nuclei are 30 μm or less.

また特許文献3では、板厚方向の中央部から板厚方向へ向けて板厚の5%の距離にある領域におけるNb濃度を0.060%以下とすると共にTi濃度を0.025%以下に抑えることで、HIC起点となるNbおよびTiの炭窒化物を生成し難くする方法が開示されている。   Moreover, in patent document 3, Nb density | concentration in the area | region which is 5% of board thickness toward the board thickness direction from the center part of board thickness direction shall be 0.060% or less, and Ti density shall be 0.025% or less. Disclosed is a method for making it difficult to produce Nb and Ti carbonitrides serving as HIC starting points.

特許文献4では、鋼に添加するMn量を低減し中心偏析を軽減することで耐HIC性を高め、比較的中心偏析し難いCrおよびMoを活用することで耐HIC性に優れた高強度ラインパイプを製造する方法が開示されている。   In Patent Document 4, a high-strength line excellent in HIC resistance by using Cr and Mo, which increases HIC resistance by reducing the amount of Mn added to steel and reduces central segregation, and is relatively difficult to segregate center. A method of manufacturing a pipe is disclosed.

特開2006−63351号公報JP 2006-63351 A 特許第4363403号公報(国際公開WO2005/075694号公報)Japanese Patent No. 4363403 (International Publication WO2005 / 075694) 特開2011−63840号公報JP 2011-63840 A 特許第2647302号公報(特開平5−271766号公報)Japanese Patent No. 2647302 (JP-A-5-271766)

しかしながら、特許文献1〜3に開示された方法によりHIC起点をある程度の無害化することは可能であるが、特にAPI X70以上の高強度鋼板においては、HICへの感受性(sensitivity)が増加するため、介在物量と大きさを制御しただけでは十分な効果は得られない。   However, although it is possible to make the HIC origin harmless to some extent by the methods disclosed in Patent Documents 1 to 3, especially in high-strength steel sheets of API X70 or higher, the sensitivity to HIC increases (sensitivity). However, a sufficient effect cannot be obtained only by controlling the amount and size of inclusions.

また、特許文献4に開示されたCrおよびMoを活用する方法を用いて、CrおよびMoを過剰に添加すると中心偏析部でのマルテンサイト生成が助長され、耐HIC性が低下するという問題がある。   Further, when Cr and Mo are added excessively using the method of utilizing Cr and Mo disclosed in Patent Document 4, martensite formation is promoted in the central segregation part, and there is a problem that HIC resistance is lowered. .

本発明は、上記課題を鑑みてなされたもので、API X70以上の高強度電縫管ラインパイプの素材として好適な、耐HIC性に優れた高強度ラインパイプ用熱延鋼板を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a hot-rolled steel sheet for high-strength line pipes excellent in HIC resistance, suitable as a material for high-strength ERW line pipes of API X70 or higher. Objective.

ここで耐HIC性に優れるとは、NACE溶液(NACE TM−0284 solutionA :5%NaCl+0.5%CHOOH、1気圧飽和HS、pH=3.0〜4.0)中に96hr浸漬した後の割れ長さ率(CLR)が15%以下であることをいう。Here, excellent HIC resistance means that it is immersed for 96 hours in a NACE solution (NACE TM-0284 solution A: 5% NaCl + 0.5% CH 3 OOH, 1 atm saturated H 2 S, pH = 3.0 to 4.0). This means that the crack length ratio (CLR) after being 15% or less.

本発明は、HIC感受性が高まるTS:540MPa以上の高強度ラインパイプ用熱延鋼板において、鋼組成の調整により中心偏析部の焼入性の向上を通じて中心偏析部の組織を細粒化し、HIC伝播抵抗(propagation resistance of HIC)を高めることによって、HICの発生起点となる介在物が多少存在する場合においても、割れ長さ率CLRを小さく抑制するという考えに基づき完成したものである。すなわち、本発明の要旨は以下の通りである。   In the present invention, the hot-rolled steel sheet for high strength line pipes with TS: 540 MPa or higher with increased HIC sensitivity is used to refine the structure of the center segregation part by improving the hardenability of the center segregation part by adjusting the steel composition and to propagate the HIC. By increasing the resistance (propagation resistance of HIC), the present invention has been completed based on the idea of suppressing the crack length ratio CLR to be small even when there are some inclusions that are the starting point of HIC. That is, the gist of the present invention is as follows.

[1]成分組成が、質量%で、C:0.02〜0.06%、Si:0.05〜0.25%、Mn:0.60〜1.10%、P:0.008%以下、S:0.0010%以下、Nb:0.020〜0.060%、Ti:0.001〜0.020%、Al:0.01〜0.08%、Ca:0.0005〜0.0050%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.05%以下、V:0.10%以下の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、下記式(1)を満たすことを特徴とする引張強さ540MPa以上の耐HIC性に優れた高強度ラインパイプ用熱延鋼板。   [1] Component composition is mass%, C: 0.02 to 0.06%, Si: 0.05 to 0.25%, Mn: 0.60 to 1.10%, P: 0.008% Hereinafter, S: 0.0010% or less, Nb: 0.020 to 0.060%, Ti: 0.001 to 0.020%, Al: 0.01 to 0.08%, Ca: 0.0005 to 0 .0050%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.05% or less, V: 0.10% or less Hot-rolling for high-strength line pipe excellent in HIC resistance having a tensile strength of 540 MPa or more, comprising at least one selected from the group consisting of the remaining Fe and inevitable impurities and satisfying the following formula (1) steel sheet.

0.60≦CP≦0.90 ・・・・・(1)
なお、CPは、CP=4.46×C+2.37×Mn/6+(1.18×Cr+1.95×Mo+1.74×V)/5+(1.74×Cu+1.70×Ni)/15 から求められ、式中の元素記号は各元素の質量%を意味する。
0.60 ≦ CP ≦ 0.90 (1)
CP is obtained from CP = 4.46 × C + 2.37 × Mn / 6 + (1.18 × Cr + 1.95 × Mo + 1.74 × V) / 5 + (1.74 × Cu + 1.70 × Ni) / 15 The element symbol in the formula means mass% of each element.

[2]前記成分組成に加えてさらに、下記式(2)を満たすことを特徴とする前記[1]に記載の引張強さ540MPa以上の耐HIC性に優れた高強度ラインパイプ用熱延鋼板。   [2] In addition to the above component composition, the following formula (2) is further satisfied: [1] The hot rolled steel sheet for high strength line pipe excellent in HIC resistance having a tensile strength of 540 MPa or more. .

CM≦3.05 ・・・・・(2)
ここで、CMは、CM=2.37×Mn+2.34×Mo+0.59×Cr+0.17×Ni から求められ、式中の元素記号は各元素の質量%を意味する。
CM ≦ 3.05 (2)
Here, CM is obtained from CM = 2.37 × Mn + 2.34 × Mo + 0.59 × Cr + 0.17 × Ni, and the element symbol in the formula means mass% of each element.

[3]前記成分組成に加えてさらに、中心偏析部の金属組織が面積分率で95%以上のベイニティックフェライト組織(bainitic-ferrite microstructure)であり、ベイニティックフェライト組織の平均粒径が8.0μm以下であることを特徴とする前記[1]または[2]に記載の引張強さ540MPa以上の耐HIC性に優れた高強度ラインパイプ用熱延鋼板。   [3] In addition to the component composition, the metal structure of the central segregation part is a bainitic-ferrite microstructure with an area fraction of 95% or more, and the average particle size of the bainitic ferrite structure is The hot-rolled steel sheet for high-strength line pipe excellent in HIC resistance having a tensile strength of 540 MPa or more as described in [1] or [2] above, which is 8.0 μm or less.

[4]前記[1]または[2]に記載の成分組成を有する鋼のスラブを、1100℃〜1300℃の温度に加熱し、粗圧延に引き続き、930℃以下での累積圧下率(cumulative rolling reduction ratio)が20%以上となるように仕上圧延を行った後、板厚中心で10〜100℃/sの平均冷却速度で380〜600℃まで加速冷却(accelerated cooling)を行い、その後コイルに巻取ることを特徴とする引張強さ540MPa以上の耐HIC性に優れた高強度ラインパイプ用熱延鋼板の製造方法。   [4] A steel slab having the composition described in [1] or [2] is heated to a temperature of 1100 ° C. to 1300 ° C., followed by rough rolling, and a cumulative rolling ratio (cumulative rolling at 930 ° C. or lower). After finishing rolling so that the reduction ratio is 20% or more, accelerated cooling is performed to 380 to 600 ° C. at an average cooling rate of 10 to 100 ° C./s at the center of the plate thickness, and then the coil is applied to the coil. A method for producing a hot-rolled steel sheet for a high-strength line pipe excellent in HIC resistance having a tensile strength of 540 MPa or more, characterized by winding.

本発明によれば、多少の介在物が存在する場合であっても、中心偏析部の組織を微細に制御することによりHICを抑制し、NACE溶液に相当する過酷環境下においても問題なく使用できるAPI X70以上電縫鋼管ラインパイプに好適な、耐HIC性に優れた高強度熱延鋼板を製造することができる。また本発明により製造される熱延鋼板はAPI X70以上のスパイラル鋼管ラインパイプ(spiral steel pipe for linepipe)にも使用できる。   According to the present invention, even when some inclusions are present, HIC is suppressed by finely controlling the structure of the central segregation part, and can be used without any problem even in a harsh environment corresponding to a NACE solution. API X70 or higher A high-strength hot-rolled steel sheet excellent in HIC resistance suitable for an electric-welded steel pipe line pipe can be produced. Further, the hot-rolled steel sheet produced according to the present invention can also be used for a spiral steel pipe for linepipe of API X70 or higher.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.02〜0.06%
Cは鋼の高強度化に大きく寄与する元素であり、0.02%以上の含有でその効果を発揮するが、0.06%を超える含有はパーライト組織(pearlite microstructure)のような第二相の生成を容易にするため、耐HIC性が悪化する。このためC量は0.02〜0.06%の範囲とする。好ましくは、0.03〜0.05%の範囲である。
C: 0.02 to 0.06%
C is an element that greatly contributes to increasing the strength of steel, and when 0.02% or more is contained, the effect is exhibited. However, if it exceeds 0.06%, the second phase such as pearlite microstructure is used. This facilitates the generation of HIC resistance. For this reason, C amount is taken as 0.02 to 0.06% of range. Preferably, it is 0.03 to 0.05% of range.

Si:0.05〜0.25%
Siは、固溶強化と熱間圧延時のスケールオフ量(scale-off quantity)を小さくするために添加する元素であり、0.05%以上の含有でその効果を発揮するが、0.25%を超えると赤スケール(red scale)が過剰に成長し、熱間圧延時の冷却むら(cooling ununiformity)を生じ、外観や材質の均一性(uniformity)が悪化する。このため、Si量は0.05〜0.25%の範囲とする。より好ましくは、0.10〜0.25%である。加えて、Siは電縫溶接時にMnSi系の酸化物を形成し、電縫溶接部の靭性(toughness)を悪化させるので、Mn/Si比が4.0以上12以下となるように含有することが好ましい。
Si: 0.05-0.25%
Si is an element added to reduce the scale-off quantity at the time of solid solution strengthening and hot rolling, and when it is contained in an amount of 0.05% or more, its effect is exhibited. If the percentage exceeds 50%, the red scale grows excessively, resulting in cooling ununiformity during hot rolling, and the appearance and uniformity of the material deteriorate. For this reason, Si amount is taken as 0.05 to 0.25% of range. More preferably, it is 0.10 to 0.25%. In addition, Si forms an MnSi-based oxide during ERW welding and deteriorates the toughness of the ERW weld, so that the Mn / Si ratio should be 4.0 or more and 12 or less. Is preferred.

Mn:0.60〜1.10%
Mnは鋼組織の微細化を通じて強度、靭性に寄与する元素であり、0.60%以上の含有でその効果を発揮する。一方でMn含有量の増加は中心偏析部での微細マルテンサイト組織の形成を助長し、さらにHICの起点となるMnSの生成を助長するため、その含有量は1.10%以下に抑える必要がある。このため、Mn量は0.60〜1.10%の範囲とする。好ましくは、0.80〜1.10%の範囲である。より好ましくは、0.80〜1.05%である。
Mn: 0.60 to 1.10%
Mn is an element that contributes to strength and toughness through refinement of the steel structure, and exhibits its effect when contained in an amount of 0.60% or more. On the other hand, the increase in the Mn content promotes the formation of a fine martensite structure in the central segregation part, and further promotes the generation of MnS as a starting point of HIC. is there. For this reason, the amount of Mn shall be 0.60 to 1.10% of range. Preferably, it is 0.80 to 1.10% of range. More preferably, it is 0.80 to 1.05%.

P:0.008%以下
Pは不可避的不純物元素であり、中心偏析部の硬度を著しく上昇させ、耐HIC性を悪化させるため、その含有量はできるだけ低いほうが好ましいが、0.008%までは許容される。さらに、Pを極めて低くするためには精錬時間(refining time)の長時間化によるコスト上昇を伴うため、0.002%以上とすることが好ましい。
P: 0.008% or less P is an unavoidable impurity element, which significantly increases the hardness of the central segregation part and deteriorates the HIC resistance. Therefore, the content is preferably as low as possible, but up to 0.008% Permissible. Furthermore, in order to make P very low, it is accompanied by a cost increase due to a long refining time, so 0.002% or more is preferable.

S:0.0010%以下
Sは、Pと同様に鋼中に不可避的に含まれる元素であり、鋼中ではMnSを生成するため、その含有量はできるだけ低いほうが好ましいが、0.0010%までは許容される。より好ましくは、0.0006%以下である。
S: 0.0010% or less S is an element inevitably contained in steel as in P, and since MnS is produced in steel, its content is preferably as low as possible, but up to 0.0010% Is acceptable. More preferably, it is 0.0006% or less.

Nb:0.020〜0.060%
Nbは、熱延鋼板製造時の巻取工程(coiling process)においてNb炭窒化物として微細に析出し、鋼の強度向上に寄与する元素である。また電縫溶接時にオーステナイト粒の成長を抑制し、溶接部の靭性の向上に寄与する元素である。0.020%以上の含有でその効果を発揮する。一方、0.060%を超えるとHICの起点となる粗大なNb炭窒化物が生成しやすくなる。そのため、Nb量は0.020〜0.060%の範囲とする。好ましくは0.030〜0.050%の範囲である。
Nb: 0.020 to 0.060%
Nb is an element that precipitates finely as Nb carbonitride in the coiling process during the production of hot-rolled steel sheets and contributes to improving the strength of the steel. In addition, it is an element that suppresses the growth of austenite grains during electric resistance welding and contributes to improvement of the toughness of the weld. The effect is exhibited when the content is 0.020% or more. On the other hand, if it exceeds 0.060%, coarse Nb carbonitrides that are the starting point of HIC are likely to be generated. Therefore, the Nb amount is set to a range of 0.020 to 0.060%. Preferably it is 0.030 to 0.050% of range.

Ti:0.001〜0.020%
Tiは、鋼の靭性を著しく悪化させるNをTiNとして固定し無害化するために添加する元素である。0.001%を超える含有でその効果を発揮する。一方で、0.020%を超えるとFeのへき開面に沿って析出するTi炭窒化物の量が増加し、鋼の靭性を悪化させる。そのため、Ti量は0.001〜0.020%の範囲とする。好ましくは0.005〜0.015%の範囲である。
Ti: 0.001 to 0.020%
Ti is an element added to fix and detoxify N as TiN, which significantly deteriorates the toughness of steel. The effect is exhibited when the content exceeds 0.001%. On the other hand, if it exceeds 0.020%, the amount of Ti carbonitride that precipitates along the cleavage plane of Fe increases, and the toughness of the steel deteriorates. Therefore, the Ti amount is set to a range of 0.001 to 0.020%. Preferably it is 0.005 to 0.015% of range.

Al:0.01〜0.08%
Alは脱酸剤として添加するが、0.01%未満では脱酸が十分でなく、一方、0.08%を超えると鋼中に残存する粗大なAl系酸化物量が増加し、耐HIC性と靭性を悪化させる。そのため、Al量は0.01〜0.08%の範囲とする。好ましくは0.01〜0.05%の範囲である。
Al: 0.01 to 0.08%
Al is added as a deoxidizing agent, but if it is less than 0.01%, deoxidation is not sufficient. On the other hand, if it exceeds 0.08%, the amount of coarse Al-based oxide remaining in the steel increases, and HIC resistance And worsen toughness. Therefore, the Al content is set to a range of 0.01 to 0.08%. Preferably it is 0.01 to 0.05% of range.

Ca:0.0005〜0.0050%
Caは硫化物系介在物の形態制御による耐HIC性向上に有効な元素であり、0.0005%以上の含有でその効果を発揮する。一方で、0.0050%を超えると、効果が飽和するだけでなく、Caの酸化物を多く形成し、耐HIC性を悪化させる。そのため、Ca量は0.0005〜0.0050%の範囲とする。好ましくは0.0010〜0.0030%の範囲である。
Ca: 0.0005 to 0.0050%
Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, and exerts its effect when contained in an amount of 0.0005% or more. On the other hand, if it exceeds 0.0050%, not only the effect is saturated, but a large amount of Ca oxide is formed, and the HIC resistance is deteriorated. Therefore, the Ca content is in the range of 0.0005 to 0.0050%. Preferably it is 0.0010 to 0.0030% of range.

本発明では、さらにCu、Ni、Cr、Mo、Vのうちから1種以上を以下の範囲で含有させることができる。   In the present invention, one or more of Cu, Ni, Cr, Mo, and V can be further contained in the following range.

Cu:0.50%以下
Cuは焼入性向上を通じて鋼の靭性および強度向上に寄与する元素であり、同様の効果を有するMnやMoと比較して中心偏析部への濃化が少ないため、耐HIC性を悪化させずに鋼を強化することができるので、強度グレードに応じて添加する。0.05%以上の含有でその効果を発揮するが、0.50%を超えるとその効果は飽和し、これ以上の含有は余計なコスト上昇を招く。そのため、Cu量は0.50%以下とする。好ましくは、0.40%以下である。
Cu: 0.50% or less Cu is an element that contributes to improving the toughness and strength of steel through improved hardenability, and is less concentrated in the central segregation part than Mn and Mo having the same effect. Since steel can be strengthened without deteriorating HIC resistance, it is added according to the strength grade. The effect is exhibited when the content is 0.05% or more. However, when the content exceeds 0.50%, the effect is saturated, and the content exceeding this causes an extra cost increase. Therefore, the Cu content is 0.50% or less. Preferably, it is 0.40% or less.

Ni:0.50%以下
Niは、Cuと同様に焼入性向上を通じて鋼の靭性および強度向上に寄与する元素であり、同様の効果を有するMnやMoと比較して中心偏析部への濃化が少ないため、耐HIC性を悪化させずに鋼を強化することができるので、強度グレードに応じて添加する。0.05%以上の含有でその効果を発揮するが、0.50%を超えて含有するとその効果は飽和し、これ以上の含有は余計なコスト上昇を招く。そのため、Ni量は0.50%以下とする。好ましくは、0.40%以下である。
Ni: 0.50% or less Ni, like Cu, is an element that contributes to improving the toughness and strength of steel through improved hardenability. Compared with Mn and Mo having the same effect, Ni is concentrated in the central segregation part. Therefore, the steel can be strengthened without deteriorating the HIC resistance, so it is added depending on the strength grade. The effect is exhibited when the content is 0.05% or more, but when the content exceeds 0.50%, the effect is saturated, and the content exceeding this causes an extra cost increase. Therefore, the Ni content is 0.50% or less. Preferably, it is 0.40% or less.

Cr:0.50%以下
Crは焼入性を高め、鋼の靭性および強度向上に有効に作用する元素であり、0.05%以上の含有でその効果を発揮するが、電縫溶接時にCr酸化物を形成し溶接部の靭性を著しく悪化させる。これを抑制するために、Cr量は0.50%以下とする。好ましくは0.30%以下である。
Cr: 0.50% or less Cr is an element that enhances hardenability and effectively works to improve the toughness and strength of steel. An oxide is formed, and the toughness of the weld is significantly deteriorated. In order to suppress this, the Cr content is 0.50% or less. Preferably it is 0.30% or less.

Mo:0.50%以下
Moは焼入性を高め、鋼の靭性および強度向上に極めて有効に作用する元素であり、0.05%以上の含有でその効果を発揮するが、0.50%を超えた範囲ではその効果は飽和し、これ以上の含有は余計なコスト上昇を招く。そのため、Mo量は0.50%以下とする。好ましくは0.30%以下である。
Mo: 0.50% or less Mo is an element that enhances hardenability and works extremely effectively to improve the toughness and strength of steel. The effect is saturated in the range exceeding 1, and inclusion beyond this causes an extra cost increase. Therefore, the Mo amount is 0.50% or less. Preferably it is 0.30% or less.

V:0.10%以下
Vは固溶強化(solute strengthening)および析出強化(precipitation strengthening)を通じて0.005%以上の含有で鋼の強度向上に寄与する元素であるが、0.10%を超えると中心偏析部の硬度が高くなり、耐HIC性を悪化させる。そのため、V量は0.10%以下とする。好ましくは、0.080%以下である。
V: 0.10% or less V is an element that contributes to improving the strength of steel with a content of 0.005% or more through solute strengthening and precipitation strengthening, but exceeds 0.10% And the hardness of the center segregation part becomes high and the HIC resistance is deteriorated. Therefore, the V amount is 0.10% or less. Preferably, it is 0.080% or less.

CP:0.60〜0.90
本発明においては、各合金元素の含有量から求められるCP値が下記式(1)を満たすものとする。
CP: 0.60-0.90
In the present invention, the CP value obtained from the content of each alloy element satisfies the following formula (1).

0.60≦CP≦0.90 ・・・・・(1)
なお、CPは、CP=4.46×C+2.37×Mn/6+(1.18×Cr+1.95×Mo+1.74×V)/5+(1.74×Cu+1.70×Ni)/15 から求められ、式中の元素記号は各元素の質量%を意味する。なお添加しない元素については0とする。
0.60 ≦ CP ≦ 0.90 (1)
CP is obtained from CP = 4.46 × C + 2.37 × Mn / 6 + (1.18 × Cr + 1.95 × Mo + 1.74 × V) / 5 + (1.74 × Cu + 1.70 × Ni) / 15 The element symbol in the formula means mass% of each element. The element not added is set to 0.

CP値は中心偏析部の焼入性を示す指標であり、鋼組成をCP値が0.60以上になるように調整することで、中心偏析部において8.0μm以下の微細なベイニティックフェライト組織が得られる。一方、CP値が0.90を超えると、過度に焼入性が向上し、中心偏析部硬度が上昇する。従って、CP値は0.60〜0.90とする。より好ましくは、0.70〜0.90である。   The CP value is an index indicating the hardenability of the central segregation part. By adjusting the steel composition so that the CP value is 0.60 or more, fine bainitic ferrite of 8.0 μm or less in the central segregation part. Organization is obtained. On the other hand, if the CP value exceeds 0.90, the hardenability is excessively improved and the center segregation hardness increases. Therefore, the CP value is 0.60 to 0.90. More preferably, it is 0.70-0.90.

CM:3.05以下
中心偏析部に生成する微細マルテンサイト組織は耐HIC性を悪化させる。微細マルテンサイト組織生成に寄与する元素はMn、Mo、Cr、Niであり、これら元素の微細マルテンサイト生成量への影響度を数値化したものがCM値である。中心偏析部に生成する微細マルテンサイト組織を面積分率で5%未満とするためには、下記に示されるCM値が、下記式(2)を満たすものとする。
CM: 3.05 or less The fine martensite structure generated in the center segregation part deteriorates the HIC resistance. Elements that contribute to the formation of fine martensite structure are Mn, Mo, Cr, and Ni. The CM value is obtained by quantifying the degree of influence of these elements on the amount of fine martensite produced. In order to make the fine martensite structure generated in the central segregation part less than 5% in area fraction, the CM value shown below satisfies the following formula (2).

CM≦3.05 ・・・・・(2)
ここで、CMは、CM=2.37×Mn+2.34×Mo+0.59×Cr+0.17×Ni から求められ、式中の元素記号は各元素の質量%を意味する。より好ましくは、2.95以下である。
CM ≦ 3.05 (2)
Here, CM is obtained from CM = 2.37 × Mn + 2.34 × Mo + 0.59 × Cr + 0.17 × Ni, and the element symbol in the formula means mass% of each element. More preferably, it is 2.95 or less.

なお、上記した元素以外の残部はFeおよび不可避的不純物からなる。ただし、本発明の作用効果を妨げない限り、他の微量元素の含有は制限されない。   The balance other than the above-described elements is composed of Fe and inevitable impurities. However, the content of other trace elements is not limited as long as the effects of the present invention are not hindered.

2.金属組織について
次に、本発明鋼の金属組織について説明する。
2. Next, the metal structure of the steel of the present invention will be described.

本発明鋼の金属組織は、靭性に優れた組織であるベイニティックフェライト組織とする必要がある。ベイニティックフェライト組織中に、微細マルテンサイトや上部ベイナイト、パーライトなどの異種組織相が存在すると、水素のトラップサイトとなるため、耐HIC性は低下する。このため、ベイニティックフェライト組織以外の組織分率は少なければ少ないほど良い。ただし、ベイニティックフェライト組織以外の面積分率が極めて低い場合には、その影響は無視できるほど小さいので、ある程度の量までは許容できる。具体的には、ベイニティックフェライト組織以外の鋼組織(微細マルテンサイト、上部ベイナイト、パーライトなど)の中心偏析部に占める面積分率の合計が5%以下であれば、本発明に含まれる。   The metal structure of the steel of the present invention needs to be a bainitic ferrite structure which is a structure having excellent toughness. In the bainitic ferrite structure, if a different structure phase such as fine martensite, upper bainite, or pearlite is present, it becomes a hydrogen trap site, so that the HIC resistance is lowered. For this reason, the smaller the fraction of the structure other than the bainitic ferrite structure, the better. However, when the area fraction other than the bainitic ferrite structure is extremely low, the influence is so small that it can be ignored. Specifically, it is included in the present invention if the total area fraction of the central segregation portion of the steel structure (fine martensite, upper bainite, pearlite, etc.) other than the bainitic ferrite structure is 5% or less.

ベイニティックフェライト組織の平均粒径:8.0μm以下
ラインパイプ用途として十分な靭性(vTrs≦−80℃)を得るためには、ベイニティックフェライトの平均粒径を8.0μm以下とする必要がある。また、HICき裂伝播抵抗を高めるためにも平均粒径を8.0μm以下とすることが望ましい。好ましくは6.0μm以下である。
Average particle size of bainitic ferrite structure: 8.0 μm or less In order to obtain sufficient toughness (vTrs ≦ −80 ° C.) for line pipe applications, the average particle size of bainitic ferrite needs to be 8.0 μm or less. There is. Further, in order to increase the HIC crack propagation resistance, it is desirable that the average particle size is 8.0 μm or less. Preferably it is 6.0 μm or less.

3.製造条件について
次に上記鋼組織を達成するための製造条件について説明する。
3. Manufacturing conditions Next, manufacturing conditions for achieving the steel structure will be described.

スラブ加熱温度は1100℃以上1300oC以下とする。1100℃未満では、連鋳工程で鋼中に生成した炭化物を完全に固溶させるのに不十分であり、必要な強度が得られない。一方、1300℃を超える加熱では、オーステナイト粒が著しく粗大化するために靭性が悪化する。なお、この温度は加熱炉の炉内温度であり、スラブ中心(center of slab)までこの温度に加熱されるものとする。   Slab heating temperature shall be 1100 degreeC or more and 1300 degrees C or less. If it is less than 1100 degreeC, it is inadequate to make the carbide | carbonized_material produced | generated in steel in the continuous casting process completely dissolve, and required intensity | strength cannot be obtained. On the other hand, when the temperature exceeds 1300 ° C., the austenite grains become extremely coarse and the toughness deteriorates. Note that this temperature is the furnace temperature of the heating furnace and is heated to this temperature up to the center of the slab.

仕上圧延工程では、930℃以下の累計圧下率が20%以上となる条件で仕上圧延を施す必要がある。累積圧下率が20%未満であるとベイニティックフェライト組織の生成サイトが不足し、粗大組織となるため靭性が悪化する。しかし累積圧下率が80%を超えると、その効果が飽和するばかりか、圧延機に多大な負荷をかけることになるため、累積圧下率の上限は80%以下とすることが好ましい。   In the finish rolling process, it is necessary to perform finish rolling under the condition that the cumulative rolling reduction at 930 ° C. or less is 20% or more. When the cumulative rolling reduction is less than 20%, the site for forming the bainitic ferrite structure is insufficient, and the toughness deteriorates due to the coarse structure. However, when the cumulative rolling reduction exceeds 80%, not only the effect is saturated, but also a great load is applied to the rolling mill. Therefore, the upper limit of the cumulative rolling reduction is preferably 80% or less.

板厚中心の平均冷却速度は10〜100℃/sとする。10℃/s未満の冷却速度では、Cu、Ni、Crといった焼入性向上元素を添加したとしても、フェライトおよび/またはパーライト組織の面積分率が5%超えとなるため、10℃/s以上の冷速速度が必要となる。一方で、100℃/sを超える場合はマルテンサイト組織の面分率が5%超えとなる。板厚中心の冷却速度は、事前に調査したランナウト(run-out)の冷却能力(cooling capacity)(熱伝達率(heat-transfer coefficient))とランナウト上で放射温度計(radiation thermometer)により測定された鋼板の表面温度を用いて伝熱計算(heat-transfer calculation)を行い、板厚中心の温度履歴(temperature history)を求めることで算出した。   The average cooling rate at the center of the plate thickness is 10 to 100 ° C./s. At a cooling rate of less than 10 ° C./s, even if a hardenability improving element such as Cu, Ni, Cr is added, the area fraction of the ferrite and / or pearlite structure exceeds 5%, so that it is 10 ° C./s or more. The cold speed of is required. On the other hand, when it exceeds 100 ° C./s, the area fraction of the martensite structure exceeds 5%. The cooling rate at the center of the plate thickness is measured with a run-out cooling capacity (heat-transfer coefficient) and a radiation thermometer on the run-out. The heat-transfer calculation was performed using the surface temperature of the steel plate, and the temperature history at the center of the plate thickness was calculated.

冷却停止の温度範囲は380℃以上600℃以下とする。600℃を超えるとNb炭窒化物といった析出強化粒子の粗大化により強度が低下する。さらに中心偏析部での炭素の濃化が促進され、微細マルテンサイト、上部ベイナイトおよびパーライトが生成しやすくなる。一方で、380℃を下回る場合は、鋼板の変形抵抗(deformation resistance)が増加し、コイル状に巻き取ることが困難となるばかりか、Nb炭窒化物といった析出強化粒子が析出しないため、強度が低下する。   The temperature range of cooling stop is 380 ° C. or more and 600 ° C. or less. If it exceeds 600 ° C., the strength decreases due to coarsening of precipitation strengthening particles such as Nb carbonitride. Furthermore, the concentration of carbon in the central segregation part is promoted, and fine martensite, upper bainite and pearlite are easily generated. On the other hand, when the temperature is lower than 380 ° C., the deformation resistance of the steel sheet is increased, and it becomes difficult to wind up in a coil shape, and precipitation strengthening particles such as Nb carbonitride do not precipitate, so that the strength is increased. descend.

表1に示す組成の鋼素材に、表2に示す熱間圧延条件および冷却条件で熱間圧延を行ないコイル状に巻取り、表2に示す板厚の熱延鋼板とした。   A steel material having the composition shown in Table 1 was hot-rolled under the hot rolling conditions and cooling conditions shown in Table 2 and wound into a coil shape to obtain a hot-rolled steel sheet having a thickness shown in Table 2.

Figure 0005884201
Figure 0005884201

Figure 0005884201
Figure 0005884201

得られた熱延鋼板から、試験片を採取し、組織観察、引張試験、シャルピー衝撃試験、硬度測定およびHIC試験を実施し、引張特性、靭性および耐HIC性を評価した。   From the obtained hot-rolled steel sheet, a test piece was collected and subjected to structure observation, tensile test, Charpy impact test, hardness measurement and HIC test to evaluate tensile properties, toughness and HIC resistance.

得られた熱延鋼板から組織観察用試験片を採取し、圧延方向断面を研磨し、2%ナイタールに30秒以上浸漬し、偏析線(segregation line)を現出させたのち、走査電子顕微鏡(electron scanning microscope)(倍率2000倍)で、偏析位置を5視野以上撮影し、組織の種類、ベイニティックフェライト粒径、微細マルテンサイト、上部ベイナイトおよびパーライトといった有害第2相の面積分率を測定した。鋼組織は板厚方向1/4t位置から採取した組織観察用試験片から判定した。   A specimen for microstructure observation was collected from the obtained hot rolled steel sheet, the cross section in the rolling direction was polished, immersed in 2% nital for 30 seconds or more, and a segregation line was revealed, and then a scanning electron microscope ( Using an electron scanning microscope (magnification 2000 times), segregation positions were photographed over 5 fields of view, and the area fraction of harmful second phase such as tissue type, bainitic ferrite grain size, fine martensite, upper bainite and perlite was measured. did. The steel structure was determined from a structure observation specimen taken from a 1/4 t position in the plate thickness direction.

引張試験は、得られた熱延鋼板から、圧延方向に直交する方向(C方向)が長手方向となるように、API−5Lの規定に準拠して、室温にて引張試験を実施し、降伏応力YS(公称ひずみ0.5%での変形応力)と引張強さTSを求めた。   The tensile test is performed at room temperature in accordance with the provisions of API-5L so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction from the obtained hot-rolled steel sheet, and yielding is performed. Stress YS (deformation stress at a nominal strain of 0.5%) and tensile strength TS were determined.

シャルピー衝撃試験は、得られた熱延鋼板の板厚中央部から、圧延方向に直交する方向(C方向)が長手方向となるようにVノッチ試験片を採取し、JIS Z 2242の規定に準拠して−140℃〜0℃の範囲でシャルピー衝撃試験(Charpy impact test)を実施し、吸収エネルギー(absorbed energy)と脆性破面率(percent brittle fracture)を測定し、脆性破面率が50%となる温度(破面遷移温度(fracture transition temperature))を求めた。なお、各温度での試験片は3本とし、得られた吸収エネルギーと脆性破面率の算術平均を求めた。   In the Charpy impact test, a V-notch test piece was taken from the center of the thickness of the obtained hot-rolled steel sheet so that the direction perpendicular to the rolling direction (C direction) was the longitudinal direction, and conformed to JIS Z 2242. Then, the Charpy impact test is performed in the range of -140 ° C to 0 ° C, the absorbed energy and the percent brittle fracture are measured, and the brittle fracture rate is 50% Temperature (fracture transition temperature) was obtained. In addition, the test piece in each temperature was set to three, and the arithmetic mean of the obtained absorbed energy and the brittle fracture surface ratio was calculated | required.

なお、破面遷移温度(vTrs)は−80℃以下を良好(○)であるとした。   The fracture surface transition temperature (vTrs) was -80 ° C. or less as good (◯).

HIC試験は、得られた熱延鋼板から、長手方向が鋼板の圧延方向となるように鋼板板厚×20mm幅×100mm長さのHIC試験片を採取し、NACE TM 0284の規定に準拠し、A溶液にて耐HIC性を評価した。なお、試験片本数は10本とし、電縫鋼管成形時の塑性ひずみの影響を反映すべく、予め幅方向に10%の圧縮歪を付与した。この結果、全ての試験片において割れ長さ率(CLR)≦15%となったコイルを耐HIC性が良好(○)であると判断する。いずれかの試験片でCLR>15%となったコイルは耐HIC性不良(×)であると判断する。   In the HIC test, from the obtained hot-rolled steel sheet, a HIC test piece having a steel plate thickness × 20 mm width × 100 mm length is collected so that the longitudinal direction is the rolling direction of the steel plate, and conforms to the regulations of NACE TM 0284, The HIC resistance was evaluated with the solution A. Note that the number of test pieces was 10, and 10% of compressive strain was applied in the width direction in advance in order to reflect the influence of plastic strain at the time of forming the ERW steel pipe. As a result, the coil having a crack length ratio (CLR) ≦ 15% in all the test pieces is judged to have good HIC resistance (◯). A coil having CLR> 15% in any of the test pieces is judged to have poor HIC resistance (x).

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 0005884201
Figure 0005884201

本発明例はいずれも、TS≧540MPaの高強度と良好な耐HIC性を持つ鋼板となっている。一方、本発明の範囲を外れる比較例は、所望の強度、靭性を得られていないか、耐HIC性が低下しているかして、耐HIC性に優れた高強度電縫鋼管用の熱延鋼板として、所望の特性を確保できていない。
All of the examples of the present invention are steel plates having high strength of TS ≧ 540 MPa and good HIC resistance. On the other hand, the comparative examples that are out of the scope of the present invention show that the desired strength and toughness are not obtained, or the HIC resistance is lowered. As a steel plate, desired properties cannot be secured.

Claims (1)

成分組成が、質量%で、C:0.02〜0.06%、Si:0.05〜0.19%、Mn:0.60〜1.10%、P:0.008%以下、S:0.0010%以下、Nb:0.020〜0.060%、Ti:0.001〜0.020%、Al:0.01〜0.08%、Ca:0.0005〜0.0050%を含有し、さらに、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、残部Feおよび不可避的不純物からなり、下記式(1)および式(2)を満たし、中心偏析部の金属組織が面積分率で95%以上のベイニティックフェライト組織であり、ベイニティックフェライト組織の平均粒径が8.0μm以下であることを特徴とする引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板。
0.60≦CP≦0.90 ・・・・・(1)
なお、CPは、CP=4.46×C+2.37×Mn/6+(1.18×Cr+1.95×Mo+1.74×V)/5+(1.74×Cu+1.70×Ni)/15 から求められ、式中の元素記号は各元素の質量%を意味する。
CM≦3.05 ・・・・・(2)
ここで、CMは、CM=2.37×Mn+2.34×Mo+0.59×Cr+0.17×Niから求められ、式中の元素記号は各元素の質量%を意味する。
Component composition, by mass%, C: 0.02~0.06%, Si : 0.05~ 0.19%, Mn: 0.60~1.10%, P: 0.008% or less, S : 0.0010% or less, Nb: 0.020 to 0.060%, Ti: 0.001 to 0.020%, Al: 0.01 to 0.08%, Ca: 0.0005 to 0.0050% In addition, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.10% or less contain one or more, and a balance of Fe and unavoidable impurities, the following formula (1) and (2) meets the metal structure of the center segregation area is at an area fraction of 95% or more bainitic ferrite structure The average grain size of the bainitic ferrite structure is 8.0 μm or less. Hot-rolled steel sheet for high-strength line pipes with a tensile strength of 540 MPa or more.
0.60 ≦ CP ≦ 0.90 (1)
CP is obtained from CP = 4.46 × C + 2.37 × Mn / 6 + (1.18 × Cr + 1.95 × Mo + 1.74 × V) / 5 + (1.74 × Cu + 1.70 × Ni) / 15 The element symbol in the formula means mass% of each element.
CM ≦ 3.05 (2)
Here, CM is obtained from CM = 2.37 × Mn + 2.34 × Mo + 0.59 × Cr + 0.17 × Ni, and the element symbol in the formula means mass% of each element.
JP2014558502A 2013-01-24 2014-01-23 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more Active JP5884201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014558502A JP5884201B2 (en) 2013-01-24 2014-01-23 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013010977 2013-01-24
JP2013010977 2013-01-24
PCT/JP2014/000319 WO2014115548A1 (en) 2013-01-24 2014-01-23 HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
JP2014558502A JP5884201B2 (en) 2013-01-24 2014-01-23 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more

Publications (2)

Publication Number Publication Date
JP5884201B2 true JP5884201B2 (en) 2016-03-15
JPWO2014115548A1 JPWO2014115548A1 (en) 2017-01-26

Family

ID=51227340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558502A Active JP5884201B2 (en) 2013-01-24 2014-01-23 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more

Country Status (6)

Country Link
US (1) US20150368737A1 (en)
EP (1) EP2927338B1 (en)
JP (1) JP5884201B2 (en)
KR (1) KR20150088320A (en)
CN (1) CN104937124A (en)
WO (1) WO2014115548A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105132833B (en) * 2015-10-10 2017-12-08 武汉钢铁有限公司 A kind of economical high intensity submerged pipeline steel and production method
CN105112808B (en) * 2015-10-10 2017-06-13 武汉钢铁(集团)公司 A kind of high intensity marine riser steel and production method
KR101867701B1 (en) 2016-11-11 2018-06-15 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
CN109536847B (en) * 2017-09-21 2020-12-08 上海梅山钢铁股份有限公司 Hot rolled steel plate for welded pipe with yield strength of 390MPa and manufacturing method thereof
CN111183238A (en) * 2017-09-28 2020-05-19 杰富意钢铁株式会社 High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
KR101988771B1 (en) 2017-12-22 2019-09-30 주식회사 포스코 Steel having excellent hydrogen induced cracking resistance and longitudinal strength unifomity and method for manufacturing the same
CN108998746B (en) * 2017-12-25 2020-01-07 武汉科技大学 X70 grade pipeline steel with high HIC resistance and preparation method thereof
JP6825748B2 (en) * 2018-09-28 2021-02-03 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipe and its manufacturing method, and high-strength steel pipe using high-strength steel sheet for sour-resistant pipe
CN111378893A (en) * 2018-12-28 2020-07-07 上海梅山钢铁股份有限公司 Hot-rolled steel plate for longitudinal welded pipe with yield strength of 290MPa
CN113406291A (en) * 2021-06-29 2021-09-17 西安热工研究院有限公司 Quality verification method of structural steel plate for wind power tower

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271974A (en) * 1993-03-18 1994-09-27 Nippon Steel Corp Line pipe excellent in hydrogen induced cracking resistance
JPH06306530A (en) * 1993-04-26 1994-11-01 Nippon Steel Corp Low-medium strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
JP2004315957A (en) * 2003-03-27 2004-11-11 Jfe Steel Kk High strength hot rolled steel strip with excellent low-temperature toughness and weldability for resistance welded pipe, and its manufacturing method
JP2005240051A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Sour-resistant high-strength hot rolled steel plate with excellent toughness of weld zone for electric resistance welded pipe, and manufacturing method therefor
JP2005264217A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Thick hot rolled steel plate having excellent hic resistance and its production method
JP2005281838A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk High strength and high toughness hot rolled steel strip having excellent uniformity of material, and its production method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2647302B2 (en) 1992-03-30 1997-08-27 新日本製鐵株式会社 Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
JP3869747B2 (en) * 2002-04-09 2007-01-17 新日本製鐵株式会社 High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance
AU2004315176B2 (en) 2004-02-04 2008-06-12 Nippon Steel Corporation Steel product for line pipe excellent in resistance to HIC and line pipe produced by using the steel product
JP2006063351A (en) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP5151008B2 (en) * 2005-03-29 2013-02-27 Jfeスチール株式会社 Hot-rolled steel sheet for sour-resistant and high-strength ERW pipe with excellent HIC resistance and weld toughness and method for producing the same
BRPI0617763A2 (en) * 2005-10-24 2011-08-02 Exxonmobil Upstream Res Co high strength double phase steel with low deformation ratio, high hardness and superior casting capacity
CA2750291C (en) * 2009-01-30 2014-05-06 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
JP2011063840A (en) 2009-09-16 2011-03-31 Sumitomo Metal Ind Ltd Steel sheet having excellent hic resistance and uoe steel pipe
JP5782827B2 (en) * 2011-05-24 2015-09-24 Jfeスチール株式会社 High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5776377B2 (en) * 2011-06-30 2015-09-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271974A (en) * 1993-03-18 1994-09-27 Nippon Steel Corp Line pipe excellent in hydrogen induced cracking resistance
JPH06306530A (en) * 1993-04-26 1994-11-01 Nippon Steel Corp Low-medium strength uoe line pipe excellent in sulfide stress cracking resistance in weld zone
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
JP2004315957A (en) * 2003-03-27 2004-11-11 Jfe Steel Kk High strength hot rolled steel strip with excellent low-temperature toughness and weldability for resistance welded pipe, and its manufacturing method
JP2005240051A (en) * 2004-02-24 2005-09-08 Jfe Steel Kk Sour-resistant high-strength hot rolled steel plate with excellent toughness of weld zone for electric resistance welded pipe, and manufacturing method therefor
JP2005264217A (en) * 2004-03-17 2005-09-29 Jfe Steel Kk Thick hot rolled steel plate having excellent hic resistance and its production method
JP2005281838A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk High strength and high toughness hot rolled steel strip having excellent uniformity of material, and its production method

Also Published As

Publication number Publication date
US20150368737A1 (en) 2015-12-24
JPWO2014115548A1 (en) 2017-01-26
EP2927338A4 (en) 2015-12-16
WO2014115548A1 (en) 2014-07-31
CN104937124A (en) 2015-09-23
EP2927338A1 (en) 2015-10-07
KR20150088320A (en) 2015-07-31
EP2927338B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
KR101730756B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional souring resistance, crush resistance properties, and low-temperature ductility, and line pipe
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
JP5776377B2 (en) High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same
KR102379935B1 (en) steel pipe and plate
JP5151008B2 (en) Hot-rolled steel sheet for sour-resistant and high-strength ERW pipe with excellent HIC resistance and weld toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5884202B2 (en) Hot-rolled steel sheet for high-strength line pipe
JP5782827B2 (en) High compressive strength steel pipe for sour line pipe and manufacturing method thereof
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
WO2015012317A1 (en) Steel plate for line pipe, and line pipe
JP5742123B2 (en) High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same
JP2011017061A (en) High-tensile-strength hot-rolled steel plate for high-strength welded steel pipe and manufacturing method therefor
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP4802450B2 (en) Thick hot-rolled steel sheet with excellent HIC resistance and manufacturing method thereof
JPWO2016157857A1 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
JP6693610B1 (en) ERW steel pipe for line pipe
JP6819835B1 (en) Steel materials for line pipes and their manufacturing methods and line pipes and their manufacturing methods
CN111655872A (en) Steel material for line pipe, method for producing same, and method for producing line pipe
JP2005206938A (en) STRUCTURAL Fe-Cr BASED STEEL PLATE AND METHOD FOR PRODUCTION THEREOF

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5884201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250