JP4739805B2 - Optical property control LED device and manufacturing method thereof - Google Patents

Optical property control LED device and manufacturing method thereof Download PDF

Info

Publication number
JP4739805B2
JP4739805B2 JP2005125101A JP2005125101A JP4739805B2 JP 4739805 B2 JP4739805 B2 JP 4739805B2 JP 2005125101 A JP2005125101 A JP 2005125101A JP 2005125101 A JP2005125101 A JP 2005125101A JP 4739805 B2 JP4739805 B2 JP 4739805B2
Authority
JP
Japan
Prior art keywords
light
led device
led
emitting surface
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005125101A
Other languages
Japanese (ja)
Other versions
JP2006303303A (en
Inventor
真一 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2005125101A priority Critical patent/JP4739805B2/en
Publication of JP2006303303A publication Critical patent/JP2006303303A/en
Application granted granted Critical
Publication of JP4739805B2 publication Critical patent/JP4739805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、光学特性制御LEDデバイス及びその製造方法に関するものであり、詳しくは、LEDデバイスの指向特性の調整、色調ムラの改善、光度の適正化等を可能にするLED光学特性制御LEDデバイス及びその製造方法に関する。   The present invention relates to an optical property control LED device and a manufacturing method thereof, and more specifically, an LED optical property control LED device that enables adjustment of directivity characteristics of an LED device, improvement of uneven color tone, optimization of luminous intensity, and the like. It relates to the manufacturing method.

LEDチップには、半導体ウエハー内及び半導体ウエハーの組成の個体差、活性層形成工程に於ける安定性及び再現性の限界等によって、発光効率や分光特性のバラツキが存在している。またLEDチップは、一辺の長さが0.5mm程度の6面体(サイコロ状)の寸法・形状をした極めて小さい半導体素子であり、そのため発光光量が少なく、点光源に近い光学特性を有している。   LED chips have variations in light emission efficiency and spectral characteristics due to individual differences in the composition of semiconductor wafers and semiconductor wafers, stability and reproducibility limitations in the active layer formation process, and the like. The LED chip is a very small semiconductor element having a hexagonal (dice-like) dimension and shape with a side length of about 0.5 mm. Therefore, the LED chip has a small amount of emitted light and has optical characteristics close to a point light source. Yes.

また、LEDチップが実装されたLEDデバイスは、一般的にはLEDチップを透光性樹脂によって樹脂封止し、LEDチップから発せられた光を透光性樹脂内を導光させて光出射面から外部(大気中)に出射するようになっている。   Also, an LED device mounted with an LED chip is generally a light emitting surface by sealing the LED chip with a light-transmitting resin and guiding light emitted from the LED chip through the light-transmitting resin. To the outside (in the atmosphere).

ところで、LEDチップを実装したLEDデバイスを多数個作製した場合、LEDチップの発光効率の個体差によってLEDデバイスの光出射面からの出射光の光量が夫々異なるものとなり、各LEDデバイスの相互間に明るさのバラツキが生じることになる。また、LEDチップの光出射面から出射されてLEDデバイスの光出射面に至る光の光量は、LEDチップの光出射面からLEDデバイスの光出射面までの光路長によって異なるものとなり、LEDデバイスの光出射面内に於いて明るさのムラが生じることになる。   By the way, when a large number of LED devices mounted with LED chips are produced, the amount of light emitted from the light emitting surface of the LED devices differs depending on the individual light emission efficiency of the LED chips, and the LED devices are different from each other. Variations in brightness will occur. In addition, the amount of light emitted from the light emitting surface of the LED chip and reaching the light emitting surface of the LED device varies depending on the optical path length from the light emitting surface of the LED chip to the light emitting surface of the LED device. There will be uneven brightness in the light exit surface.

このような、各LEDデバイス相互間の明るさのバラツキ及びLEDデバイスの光出射面内に於ける明るさのムラを制御して上記不具合を解消する方法として、LEDデバイスの光出射面に遮光性又は半遮光性の塗料によって多数のドットを形成するか、或いは、遮光性又は半遮光性の塗料によって細幅線を網目状に形成することが提案されている(例えば、特許文献1参照。)。   As a method for solving the above problems by controlling the brightness variation between the LED devices and the brightness unevenness in the light emitting surface of the LED device, the light emitting surface of the LED device has a light shielding property. Alternatively, it has been proposed to form a large number of dots with a semi-light-shielding paint, or to form narrow lines in a mesh shape with a light-shielding or semi-light-shielding paint (for example, see Patent Document 1). .

また、同様にLEDチップを実装したLEDデバイスを多数個作製した場合、LEDチップの分光特性の個体差によってLEDデバイスの光出射面からの出射光の色調が夫々異なるものとなり、各LEDデバイスの相互間に色調のバラツキが生じることになる。   Similarly, when a large number of LED devices mounted with LED chips are produced, the color tone of the emitted light from the light emitting surface of the LED device differs depending on the individual differences in the spectral characteristics of the LED chips, and each LED device has a mutual relationship. Variations in color tone will occur between them.

このような、各LEDデバイス相互間の色調バラツキを制御して上記不具合を解消する方法として、LEDチップを樹脂封止する透光性樹脂を該LEDチップの発光色と同一の色調に着色し、LEDデバイスの光出射面に前記透光性樹脂と同一の色調に着色した遮光性又は半遮光性の塗料によって多数のドットを形成するか、或いは、前記透光性樹脂と同一の色調に着色した遮光性又は半遮光性の塗料によって細幅線を網目状に形成することが提案されている(例えば、特許文献2参照。)。
特開2003−243722号公報 特開2003−258309号公報
As a method for controlling the color tone variation between the LED devices and solving the above problems, the translucent resin for resin-sealing the LED chip is colored in the same color tone as the emission color of the LED chip, A large number of dots are formed on the light exit surface of the LED device with a light-shielding or semi-light-shielding paint colored in the same color as the light-transmitting resin, or colored in the same color as the light-transmitting resin. It has been proposed to form narrow lines in a mesh shape with a light-shielding or semi-light-shielding paint (see, for example, Patent Document 2).
JP 2003-243722 A JP 2003-258309 A

しかしながら、上記LEDデバイスの光出射面を形成する透光性樹脂に、遮光性又は半遮光性の塗料によってドットや細幅線を網目状に形成する手法は、以下のような問題点を含んでいる。   However, the method of forming dots and narrow lines in a mesh shape with a light-shielding or semi-light-shielding paint on the light-transmitting resin that forms the light emitting surface of the LED device includes the following problems. Yes.

まず、遮光性又は半遮光性の塗料によってドットや細幅線を網目状に形成する方法に、例えば、インクジェットによる噴射印刷やスクリーン印刷等が挙げられているが、透光性樹脂表面に塗布された塗料が滲みを生じて遮光精度を低下させるため、高精度で、安定した、再現性の良好な光学特性の制御を実現することは難しい。   First, as a method for forming dots and narrow lines in a mesh shape with a light-shielding or semi-light-shielding paint, for example, jet printing by ink jet or screen printing is mentioned, but it is applied to the surface of a translucent resin. Since the paint bleeds and reduces the light-blocking accuracy, it is difficult to realize high-precision, stable, and reproducible optical property control.

また、塗料の耐熱性が塗料を塗布する透光性樹脂よりも劣っており、LEDデバイス実装時の半田付け熱に対する耐熱性の不足によって、軟化・溶融流動することになる。同様に、塗料に関しては、塗料の耐侯性も塗料を塗布する透光性樹脂よりも劣っており、大気中の紫外線やLEDチップから発せられる短波長領域の光を受けて劣化し、透光性樹脂面から剥がれ落ちる等の不具合により遮光性が損なわれることになる。   Further, the heat resistance of the paint is inferior to that of the translucent resin to which the paint is applied, and the softening / melting flow occurs due to the lack of heat resistance against the soldering heat when the LED device is mounted. Similarly, with respect to paint, the weather resistance of the paint is also inferior to that of the translucent resin to which the paint is applied, and deteriorates by receiving light in the short wavelength region emitted from ultraviolet rays or LED chips in the atmosphere. The light-shielding property is impaired due to problems such as peeling off from the resin surface.

更に、塗料を使用することによってLEDデバイスを構成する部材点数が多くなり、製造コストを上昇させる要因となる。   Further, the use of paint increases the number of members constituting the LED device, which increases the manufacturing cost.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、LEDデバイスの指向特性の調整、色調ムラの改善、光度の適正化等を良好な精度で且つ高温・紫外線環境下に晒されても特性維持が実現できるLEDデバイスの光学特性制御方法及びLEDデバイスを提供することにある。   Therefore, the present invention was devised in view of the above problems, and its object is to adjust the directivity of LED devices, improve color unevenness, optimize luminous intensity, etc. with high accuracy and high temperature / ultraviolet rays. An object of the present invention is to provide an LED device optical property control method and an LED device capable of maintaining characteristics even when exposed to an environment.

上記課題を解決するために、本発明の請求項1に記載された本発明は、少なくとも1個以上の青色LEDチップが少なくとも1種類以上の、前記青色LEDチップの発光によって励起されて蛍光を発する蛍光体が混入されている直方体形状の透光性部材によって封止されたLEDデバイスであって、前記透光性部材の光出射面周辺領域にはレーザ光によって凹みを形成し、光出射面中央部には凹みを形成しないことを特徴とするものである。 In order to solve the above-mentioned problem, the present invention described in claim 1 of the present invention emits fluorescence when at least one blue LED chip is excited by light emission of at least one kind of blue LED chip. An LED device sealed with a rectangular parallelepiped-shaped translucent member mixed with a phosphor, wherein a recess is formed by a laser beam in a peripheral region of the light exit surface of the translucent member, and the center of the light exit surface It is characterized in that no recess is formed in the part.

また、本発明の請求項2に記載された発明は、請求項1において、前記透光性部材は樹脂及びガラスのうちの1つであることを特徴とするものである。   The invention described in claim 2 of the present invention is characterized in that, in claim 1, the translucent member is one of resin and glass.

また、本発明の請求項に記載された発明は、LEDデバイスの色調を測定する工程と、前記LEDチップを封止した少なくとも1種類以上の蛍光体が混入されている透光性部材の光出射面周辺領域に少なくとも1個以上の凹みをレーザ光によって形成する工程と、前記凹みを形成した後に、色調を測定する工程と、を有することを特徴とするものである。 According to a third aspect of the present invention, there is provided a process for measuring a color tone of an LED device, and light of a translucent member in which at least one kind of phosphor sealing the LED chip is mixed. The method includes a step of forming at least one or more dents in the peripheral area of the emission surface with a laser beam, and a step of measuring a color tone after forming the dents.

本発明の光学特性制御LEDデバイス及びその製造方法は、LEDデバイスの光出射面にレーザ光によって凹みを設け、該凹み部分が外部に出射しようとする光を阻止する働きをなすことを利用して光度、指向特性、色調を制御しようとするものである。   The optical property control LED device and the manufacturing method thereof according to the present invention utilize the fact that a recess is provided by a laser beam on the light emission surface of the LED device, and the recess serves to block light that is to be emitted to the outside. It is intended to control light intensity, directivity, and color tone.

よって、高熱や紫外線等の厳しい環境下に於いても、凹みを設けた効果が影響受けるものではなく、光学特性を長期間に亘って維持できる信頼性のあるLEDデバイスを実現するものである。   Therefore, even in a severe environment such as high heat and ultraviolet rays, the effect of providing the dent is not affected, and a reliable LED device capable of maintaining optical characteristics over a long period of time is realized.

また、塗料を塗布する方法とは異なるため、滲みがなく、光学特性の精度及び再現性の高いLEDデバイスを実現することができる。   Moreover, since it is different from the method of applying a paint, it is possible to realize an LED device that does not bleed and has high optical property accuracy and reproducibility.

また、製造工程に於いて新たな部品を必要とするものではなく、材料費の上昇を伴なわない経済的な手法でもある。   In addition, it does not require new parts in the manufacturing process, and is an economical method that does not involve an increase in material costs.

つまり、本発明の光学特性制御LEDデバイス及びその製造方法は上記効果を奏しながら、LEDデバイスの指向特性の調整、色調ムラの改善、光度の適正化等を良好な精度で達成できるものである。   That is, the optical property control LED device and the manufacturing method thereof according to the present invention can achieve adjustment of the directivity of the LED device, improvement of uneven color tone, optimization of luminous intensity, and the like with good accuracy while exhibiting the above effects.

以下、この発明の好適な実施形態を図1〜図8を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は本発明に係わる光学特性制御LEDデバイスの原理図である。LEDデバイスの光学制御に係わる主な構成要素は、LEDチップと該LEDチップを封止する透光性樹脂である。そして、LEDチップの光出射面と透光性樹脂とは界面を形成し、透光性樹脂の光出射面と外部(大気)も界面を形成している。   FIG. 1 is a principle view of an optical property control LED device according to the present invention. The main components related to the optical control of the LED device are the LED chip and a translucent resin that seals the LED chip. The light emitting surface of the LED chip and the translucent resin form an interface, and the light emitting surface of the translucent resin and the outside (atmosphere) also form an interface.

この構成に於いて、LEDチップの光出射面から出射されて透光性樹脂との界面を経て透光性樹脂内に入射し、透光性樹脂の光出射面に向かう光は、透光性樹脂内を導光されて透光性樹脂の光出射面に至り、大気との界面である光出射面で屈折されて大気中に出射される(図中では直線1〜3及び点線4、5で示される光線)。   In this configuration, the light emitted from the light emitting surface of the LED chip, enters the light transmitting resin through the interface with the light transmitting resin, and the light traveling toward the light emitting surface of the light transmitting resin is translucent. The light is guided through the resin to the light emitting surface of the translucent resin, refracted by the light emitting surface which is an interface with the atmosphere, and emitted into the atmosphere (in the figure, straight lines 1 to 3 and dotted lines 4 and 5). Light rays indicated by

ところで、透光性樹脂の光出射面に例えば断面略円弧形状の凹面からなる凹みを設けると、凹面は透光性樹脂と大気との界面となり、透光性樹脂の光出射面となる。従って、透光性樹脂の光出射面は凹面とそれ以外の面とで構成されることになる。   By the way, if the light emitting surface of the translucent resin is provided with, for example, a concave portion having a substantially arc-shaped cross section, the concave surface becomes an interface between the translucent resin and the atmosphere and becomes the light emitting surface of the translucent resin. Therefore, the light emitting surface of the translucent resin is composed of a concave surface and other surfaces.

そこで、LEDチップの光出射面から出射されて透光性樹脂の光出射面に至った光の一部は光出射面で屈折されて大気中に出射される(図中では直線1〜3で示される光線)。一方、凹面に至った光のうち、凹面の入射点における界面の法線との交角(入射角)が臨界角以内のときは大気との界面である凹面で屈折されて大気中に放出される(図中では一点鎖線6、7で示される光線)。   Therefore, a part of the light emitted from the light emitting surface of the LED chip and reaching the light emitting surface of the translucent resin is refracted by the light emitting surface and emitted into the atmosphere (in the figure, straight lines 1 to 3). Rays shown). On the other hand, of the light reaching the concave surface, when the intersection angle (incident angle) with the interface normal at the incident point of the concave surface is within the critical angle, it is refracted by the concave surface that is the interface with the atmosphere and emitted into the atmosphere. (In the figure, light rays indicated by alternate long and short dash lines 6 and 7).

ところが、凹面に至った光のうち、凹面の入射点における界面の法線との交角(入射角)が臨界角以上のときは大気との界面である凹面で全反射されて再び透光性樹脂内に戻る。(図中では直線8、9で示される光線)。   However, of the light that reaches the concave surface, when the intersection angle (incident angle) with the normal of the interface at the incident point of the concave surface is greater than the critical angle, it is totally reflected by the concave surface that is the interface with the atmosphere and is again a translucent resin. Return inside. (Rays indicated by straight lines 8 and 9 in the figure).

従って、透光性樹脂の光出射面に凹みが形成されていないときには大気中に出射していた光線4、5が、凹みが形成されたことによって光線8、9のように内部反射されて大気中に出射されないようになったことになる。つまり、透光性樹脂の光出射面に於いて、凹みを形成することによって凹みを含む凹み近傍から大気中に出射する光量を部分的に抑制することができ、その結果、光出射面から出射される光の指向特性が制御できることになる。   Therefore, when the dent is not formed on the light emitting surface of the translucent resin, the light rays 4 and 5 emitted into the atmosphere are internally reflected as the light rays 8 and 9 due to the formation of the dent. The light is not emitted into the inside. In other words, by forming a dent on the light emitting surface of the translucent resin, it is possible to partially suppress the amount of light emitted from the vicinity of the dent including the dent into the atmosphere. As a result, the light is emitted from the light emitting surface. The directivity characteristics of the emitted light can be controlled.

また、透光性樹脂の光出射面全面に、多数の凹みを略等間隔でマトリックス状に設けることにより、指向特性を変えることなくLEDデバイスの出射光量(明るさ)のみを制御することができる。   Further, by providing a large number of dents in a matrix at substantially equal intervals on the entire light emitting surface of the translucent resin, it is possible to control only the emitted light amount (brightness) of the LED device without changing the directivity. .

更に、LEDデバイスには、LEDチップから出射された光で蛍光体を励起して波長変換し、波長変換された光とLEDチップから出射された光とを混合することによってLEDチップから出射される光とは異なる色調の光を出射するようにしたものがある。   Further, in the LED device, the phosphor is excited by the light emitted from the LED chip to convert the wavelength, and the wavelength-converted light and the light emitted from the LED chip are mixed to be emitted from the LED chip. Some of them emit light having a color tone different from that of light.

それは例えば、LEDチップから出射される光が青色光の場合には、青色光に励起されて青色の補色となる黄色光に波長変換する蛍光体を用いることにより、LEDチップから出射された青色光が蛍光体を励起することによって波長変換された黄色光と、LEDチップから出射された青色光との混合によって白色光を作り出すものである。
同様に、LEDチップから出射される光が青色光であっても、青色光に励起されて緑色光及び赤色光にそれぞれ波長変換する2種類の蛍光体を混合したものを用いることにより、LEDチップから出射された青色光が蛍光体を励起することによって波長変換された緑色光及び赤色光と、LEDチップから出射された青色光との混合によって白色光を作り出すものもある。
また、LEDチップから出射される光が紫外光の場合には、紫外光に励起されて青色光、緑色光及び赤色光にそれぞれ波長変換する3種類の蛍光体を混合したものを用いることにより、LEDチップから出射された紫外光が蛍光体を励起することによって波長変換された青色光、緑色光及び赤色光の混合によって白色光を作り出すものもある。
つまり、LEDチップから出射される光の波長と蛍光体とを適宜に組み合わせることによって白色光以外の種々な色調の光を作り出すことができる。
For example, when the light emitted from the LED chip is blue light, the blue light emitted from the LED chip is obtained by using a phosphor that converts the wavelength to yellow light that is excited by the blue light and becomes a complementary color of blue. Produces white light by mixing yellow light wavelength-converted by exciting the phosphor and blue light emitted from the LED chip.
Similarly, even if the light emitted from the LED chip is blue light, the LED chip can be obtained by using a mixture of two types of phosphors that are excited by blue light and wavelength-converted into green light and red light, respectively. In some cases, white light is produced by mixing green light and red light wavelength-converted by exciting the phosphor with blue light emitted from the LED and blue light emitted from the LED chip.
In addition, when the light emitted from the LED chip is ultraviolet light, by using a mixture of three kinds of phosphors that are excited by ultraviolet light and convert the wavelength into blue light, green light, and red light, respectively, In some cases, white light is generated by mixing blue light, green light, and red light, which are wavelength-converted by exciting the phosphor with ultraviolet light emitted from the LED chip.
That is, light of various color tones other than white light can be created by appropriately combining the wavelength of light emitted from the LED chip and the phosphor.

そこで、図2では青色LEDチップから出射された青色光と、LEDチップから出射された青色光に励起されて青色の補色となる黄色光に波長変換する蛍光体を用いて白色光を得るLEDデバイスの光学特性制御方法を示している。   Therefore, in FIG. 2, an LED device that obtains white light using a phosphor that converts the wavelength of the blue light emitted from the blue LED chip and the yellow light that is excited by the blue light emitted from the LED chip into a complementary color of blue. The optical characteristic control method is shown.

青色LEDを封止する透光性樹脂には青色光に励起されて青色の補色となる黄色光に波長変換する蛍光体が混入され、透光性樹脂の光出射面には断面略円弧形状の凹面からなる凹みを設け、凹面が透光性樹脂と大気との界面となり、透光性樹脂の光出射面となるようにしている。従って、透光性樹脂の光出射面は凹面とそれ以外の面とで構成されることになる。   The translucent resin that seals the blue LED is mixed with a phosphor that is excited by blue light and converts the wavelength to yellow light that is a complementary color of blue, and the light exit surface of the translucent resin has a substantially arc-shaped cross section. A recess made of a concave surface is provided so that the concave surface serves as an interface between the translucent resin and the atmosphere and serves as a light exit surface of the translucent resin. Therefore, the light emitting surface of the translucent resin is composed of a concave surface and other surfaces.

そこで、LEDチップの光出射面から出射されてそのまま透光性樹脂の光出射面に至った光の一部は光出射面で屈折されて大気中に出射される(図中では直線1で示される光線)。一方、LEDチップの光出射面から出射されて蛍光体に至って蛍光体を励起し、波長変換されて蛍光体から放出された黄色光のうち、透光性樹脂の光出射面に至った光は光出射面で屈折されて大気中に出射される(図中では直線2で示される光線)。また、蛍光体から放出された黄色光のうち、凹みの凹面に至った光は凹面の入射点における界面の法線との交角(入射角)が臨界角以上のときは大気との界面である凹面で全反射されて再び透光性樹脂内に戻る(図中では直線3で示される光線)   Therefore, a part of the light emitted from the light emitting surface of the LED chip and reaching the light emitting surface of the translucent resin as it is is refracted by the light emitting surface and emitted into the atmosphere (indicated by a straight line 1 in the figure). Light rays). On the other hand, among the yellow light emitted from the light emitting surface of the LED chip and reaching the phosphor to excite the phosphor and being wavelength-converted and emitted from the phosphor, the light reaching the light emitting surface of the translucent resin is The light is refracted at the light exit surface and emitted into the atmosphere (the light beam indicated by the straight line 2 in the drawing). Of the yellow light emitted from the phosphor, the light reaching the concave surface is an interface with the atmosphere when the angle of incidence (incident angle) with the normal of the interface at the incident point of the concave surface is greater than the critical angle. It is totally reflected by the concave surface and returns to the translucent resin again (the light beam indicated by straight line 3 in the figure).

従って、透光性樹脂の光出射面に凹みが形成されていないときには大気中に出射していた光線4が、凹みが形成されたことによって光線3のように内部反射されて大気中に出射されないようになったことになる。つまり、凹面で全反射された光が蛍光体から放出された黄色光であるため、凹みを形成することによって凹みを含む凹み近傍から大気中に出射する黄色光の光量を部分的に抑制することができ、その結果、LEDデバイスから出射される光の色調制御を部分的におこなうことができるものである。   Therefore, when the dent is not formed on the light emitting surface of the translucent resin, the light beam 4 emitted into the atmosphere is internally reflected like the light beam 3 due to the formation of the dent and is not emitted into the atmosphere. It became like that. That is, since the light totally reflected on the concave surface is the yellow light emitted from the phosphor, the amount of yellow light emitted from the vicinity of the concave including the concave to the atmosphere is partially suppressed by forming the concave. As a result, the color tone control of the light emitted from the LED device can be partially performed.

この場合、LEDデバイスからは青色光と黄色光の2種類の光が出射され、この2種類の光を混合して白色の色調の光を得るようになっている。従って、LEDデバイスの光出射面において、青色光の光量が多くて青色みがかった白色の色調を呈しているときは、その部分に凹みを設けることにて青色光の出射を抑制できる。また反対に黄色光の光量が多くて黄色みがかった白色の色調を呈しているときは、その部分に凹みを設けることにて黄色光の出射を抑制できる。つまり、LEDデバイスの出射面全面に亘って同一な色調の光を放出するような制御を行なうことができるものである。   In this case, two types of light, blue light and yellow light, are emitted from the LED device, and the light of white color tone is obtained by mixing the two types of light. Accordingly, when the light emission surface of the LED device has a blue color tone with a large amount of blue light, emission of the blue light can be suppressed by providing a recess in that portion. On the other hand, when the yellow light has a large amount of yellow light and exhibits a yellowish white color tone, it is possible to suppress the emission of yellow light by providing a recess in that portion. That is, it is possible to perform control such that light of the same color tone is emitted over the entire emission surface of the LED device.

なお、凹みは、LEDデバイスの光出射面の大きさ、透光性樹脂の厚みを考慮して、形状(例えば、ドーム形状、筒形状)、大きさ、深さ、配置する間隔、数量等を適宜設定することによって最良の結果を得ることができる。   In addition, considering the size of the light emitting surface of the LED device and the thickness of the light-transmitting resin, the dent is shaped (for example, dome shape, cylindrical shape), size, depth, arrangement interval, quantity, etc. The best result can be obtained by setting appropriately.

LEDデバイスの光出射面に設ける凹みは、図3で示すようにLEDデバイス1の透光性樹脂の光出射面2にレーザ光3を照射することによって形成するものである。凹み4を形成するレーザの種類はCOレーザやエキシマレーザ等の気体レーザ、YAGレーザ等の固体レーザなどが使用されるが、特にこれらに限定されるものではない。またレーザの出力、照射時間、ビーム径等の照射条件は凹みの大きさ、深さ、作業性等を考慮して適宜設定される。 The depression provided on the light emitting surface of the LED device is formed by irradiating the light emitting surface 2 of the translucent resin of the LED device 1 with the laser beam 3 as shown in FIG. The type of laser that forms the recess 4 is a gas laser such as a CO 2 laser or an excimer laser, or a solid-state laser such as a YAG laser, but is not particularly limited thereto. In addition, irradiation conditions such as laser output, irradiation time, and beam diameter are appropriately set in consideration of the size of the dent, depth, workability, and the like.

次に、図4〜図8に於いて具体的な実施形態について説明する。図4及び図5はLEDデバイスの光学特性のうち、指向特性を制御する場合を示しており、図4はLEDデバイスの部分斜視図、図5はLEDデバイスの指向特性である。図4に於いて、LEDデバイス1の下方には図示しないが複数個の同一発光色のLEDチップを所定の間隔をもってマトリックス状に実装している。そして、光出射面2の一部の領域に複数の凹み4を設けている。   Next, a specific embodiment will be described with reference to FIGS. 4 and 5 show a case where the directivity of the optical characteristics of the LED device is controlled. FIG. 4 is a partial perspective view of the LED device, and FIG. 5 shows the directivity of the LED device. In FIG. 4, although not shown below the LED device 1, a plurality of LED chips of the same luminescent color are mounted in a matrix with a predetermined interval. A plurality of recesses 4 are provided in a partial region of the light exit surface 2.

この場合、凹みが設けられた領域は、LEDチップから出射された光の一部が凹みによって内部反射され、外部に出射されるのを阻害されている。従って、この領域は他の光出射面に比べて出射光量が少ない。図5はこのときの指向特性(実線)を,凹みを設けないときの指向特性(点線)と重ねて示したものである。凹みを設けないときの指向特性は、LEDチップの光軸X(指向角0°)に対して対称な指向特性を示しており、明るさも対称的に分布している。それに対し、凹みを設けたときの指向特性は、凹みを設けた方向が凹んだ特性を示しており、明るさの分布が歪んだ特性を有している。このことから、光出射面の適当な部分に凹みを設けることによりLEDデバイスの配向特性を制御できることが検証できた。   In this case, in the region where the recess is provided, a part of the light emitted from the LED chip is prevented from being internally reflected by the recess and emitted to the outside. Therefore, this region has a smaller amount of emitted light than other light emitting surfaces. FIG. 5 shows the directivity (solid line) at this time superimposed on the directivity (dotted line) when no dent is provided. The directivity when no dent is provided shows directivity that is symmetric with respect to the optical axis X (directivity angle 0 °) of the LED chip, and the brightness is also distributed symmetrically. On the other hand, the directivity characteristic when the dent is provided indicates a characteristic in which the direction in which the dent is provided is recessed, and the brightness distribution is distorted. From this, it was verified that the alignment characteristics of the LED device can be controlled by providing a recess in an appropriate portion of the light emitting surface.

図6及び図7はLEDデバイスの光学特性のうち、光度を制御する場合を示しており、図6はLEDデバイスの部分斜視図、図7は光度ランクの最適化を示すものである。図6に於いて、LEDデバイス1の光出射面2に略均等に凹み4を設けている。   6 and 7 show a case where the luminous intensity is controlled among the optical characteristics of the LED device. FIG. 6 is a partial perspective view of the LED device, and FIG. 7 shows optimization of the luminous intensity rank. In FIG. 6, the recesses 4 are provided substantially uniformly on the light emitting surface 2 of the LED device 1.

この場合も上記同様に、LEDチップから出射された光の一部が凹みによって内部反射され、外部に出射されるのを阻害されている。従って、光出射面から出射される光量は光出射面全面に亘って均等に低減されるため、指向特性を変えないで明るさ(光度)のみを制御することができる。   Also in this case, as described above, a part of the light emitted from the LED chip is internally reflected by the dent and is prevented from being emitted to the outside. Accordingly, the amount of light emitted from the light emitting surface is uniformly reduced over the entire surface of the light emitting surface, so that only brightness (luminance) can be controlled without changing the directivity.

この結果を踏まえ、LEDデバイス光度制御を行なうことによって、光度選別の同一ランク内に含まれるLEDデバイスの数量を増やし、単ランク指定の出荷に対して出荷数量の確保が容易にできるようになる。例えば、図7に示すように、LEDデバイスが光度の低い方から順にA〜Fで表される所定の光度範囲内にランク分けされている場合、例えばBランクの明るいLEDデバイスに凹みを設けることによって光度をAランクまで落とし、従来のAランクのLEDデバイスと混合することによってAランクのLEDデバイスの数量を増加させることができる。その結果、AランクのLEDデバイスの大量の要求に対しても対応することができる。また、E、FランクのLEDデバイスをDランクの光度まで下げてDランクのLEDデバイスを多量に確保することも可能である。このように、LEDデバイスの光度を制御することによって必要なランクの数量を容易に確保することができる。   Based on this result, by performing the LED device luminous intensity control, the quantity of LED devices included in the same rank of the luminous intensity selection can be increased, and the shipment quantity can be easily secured for the shipment of the single rank designation. For example, as shown in FIG. 7, when LED devices are ranked in a predetermined light intensity range represented by A to F in order from the lowest light intensity, for example, a recess is provided in a bright LED device of B rank. The number of A rank LED devices can be increased by reducing the luminous intensity to A rank and mixing with conventional A rank LED devices. As a result, it is possible to cope with a large amount of requests for LED devices of A rank. It is also possible to secure a large number of D rank LED devices by lowering the E and F rank LED devices to the D rank luminous intensity. Thus, the required number of ranks can be easily secured by controlling the luminous intensity of the LED device.

このように、明るさの制御が容易にできるために在庫の数を減らすことができ、効率的な生産計画の下に無駄の少ない生産が可能となり、製造コストの低減に寄与するものである。   In this way, since the brightness can be easily controlled, the number of stocks can be reduced, and production with less waste is possible under an efficient production plan, which contributes to a reduction in manufacturing costs.

図8はLEDデバイスの光学特性のうち、色調を制御する場合を示しており、LEDデバイスの部分斜視図である。図8に於いて、LEDデバイス1は白色LEDデバイスであり、LEDデバイス1の下方には図示しないが複数個の青色発光LEDチップが所定の間隔をもってマトリックス状に実装され、LEDデバイス1の光出射面2を形成する透光性樹脂には蛍光体が混入されている。   FIG. 8 is a partial perspective view of the LED device, showing a case where the color tone is controlled among the optical characteristics of the LED device. In FIG. 8, the LED device 1 is a white LED device, and a plurality of blue light emitting LED chips (not shown) are mounted in a matrix at a predetermined interval below the LED device 1, and the light emission of the LED device 1 is performed. The translucent resin forming the surface 2 is mixed with a phosphor.

上記白色LEDデバイス1の光出射面2の中央部は良好な色調の白色光が出射しているが、周辺領域の白色光は黄色みがかった白色光が出射しており、白色LEDデバイスとしては光出射面内において色調ムラのあるLEDデバイスとなっている。   Although the white part of the light emitting surface 2 of the white LED device 1 emits white light having a good color tone, the white light in the peripheral area emits yellowish white light. The LED device has uneven color tone in the light exit surface.

そこで、LEDデバイスの光出射面の黄色みがかった白色の色調の光を出射する領域にのみ凹みを設ける。すると、その領域は蛍光体から放出された黄色光が多いため、図2に示すようなメカニズムによって、黄色光の出射を阻害することによって中央部の白色光領域と同様の色調を出射するように色調制御を行なうことができる。   Therefore, the depression is provided only in the region where the light emitting surface of the LED device emits light of yellowish white color. Then, since there is a lot of yellow light emitted from the phosphor in the area, the same color tone as that of the white light area in the center is emitted by inhibiting the emission of yellow light by the mechanism shown in FIG. Color tone control can be performed.

よって、光出射面の全面に亘って色調ムラのない光を出射するLEDデバイスを実現することができる。なお、蛍光体は一種類に限られるものではなく、LEDチップの発光色やLEDデバイスとして求められる色調等を考慮して2種類以上の蛍光体を使用することも可能である。その場合も、色調を変えたい領域のみに凹みを設けることによってLEDデバイスの色調を制御することができる。   Therefore, it is possible to realize an LED device that emits light without uneven color tone over the entire surface of the light emitting surface. The phosphor is not limited to one type, and two or more types of phosphors can be used in consideration of the emission color of the LED chip, the color tone required for the LED device, and the like. Even in that case, the color tone of the LED device can be controlled by providing a recess only in the region where the color tone is desired to be changed.

なお、ここまでは、LEDデバイスの光出射面に凹みを設けることによって、指向特性、光度、色調を個別に制御する方法を説明してきたが、これらは上記のように単独で制御される場合と、任意に組み合わせた複数の光学特性を同時に制御する場合とが考えられる。   Up to this point, the method of individually controlling the directivity, light intensity, and color tone by providing a recess on the light emitting surface of the LED device has been described. However, these are controlled individually as described above. It is conceivable that a plurality of optical characteristics arbitrarily combined are controlled simultaneously.

ところで、光学特性制御LEDデバイスの製造工程に於いて、該LEDデバイスの光出射面に凹みを設ける工程は、まず、LEDデバイスの光学特性(例えば、光度、指向特性、色調等)を測定し、制御する必要のある項目及びその制御仕様を設定する。次に、制御仕様に基づいてレーザ光で光出射面に凹みを形成する。その後、再度測定して光学特性制御結果を検証する。結果が不十分の場合は再度レーザ光で光出射面に凹みを形成して測定し、光学特性制御結果を検証する。このような過程を繰り返すことによって理想とする特性を得ることができる。なお、多量のLEDデバイスに対して同様の制御仕様が適応できる場合は、レーザ加工の条件出しができれば1つのLEDデバイス対して1回のレーザ加工で求める光学制御が可能となる。   By the way, in the manufacturing process of the optical property control LED device, the step of providing the depression on the light emitting surface of the LED device first measures the optical properties (for example, luminous intensity, directivity, color tone, etc.) of the LED device, Set the items that need to be controlled and their control specifications. Next, a dent is formed in the light emitting surface with laser light based on the control specifications. Thereafter, measurement is performed again to verify the optical property control result. If the result is insufficient, the laser beam is again measured by forming a dent on the light exit surface, and the optical property control result is verified. By repeating such a process, ideal characteristics can be obtained. When the same control specification can be applied to a large number of LED devices, if laser processing conditions can be determined, optical control obtained by one laser processing can be performed for one LED device.

なお、上述の透光性樹脂の替わりに透明ガラスを使用しても同様の作用、効果を齎すものである。   In addition, even if it uses transparent glass instead of the above translucent resin, the same effect | action and effect are shown.

以上説明したように、本発明の光学特性制御LEDデバイス及びその製造方法は、LEDデバイスの光出射面の一部または全面にレーザ光による凹みを設けることによって、凹みを含む凹み近傍から出射する光が外部に出射されるのを阻害するようにしたものである。   As described above, the optical characteristic control LED device and the manufacturing method thereof according to the present invention provide light emitted from the vicinity of the recess including the recess by providing a recess by laser light on a part or the entire surface of the light emission surface of the LED device. Is prevented from being emitted to the outside.

よって、高熱や紫外線等の厳しい環境下に於いても、凹みを設けた効果が影響受けるものではなく、光学特性を長期間に亘って維持できる信頼性のあるLEDデバイスを実現するものである。   Therefore, even in a severe environment such as high heat and ultraviolet rays, the effect of providing the dent is not affected, and a reliable LED device capable of maintaining optical characteristics over a long period of time is realized.

また、塗料を塗布する方法とは異なるため、滲みがなく、光学特性の精度及び再現性の高いLEDデバイスを実現することができる。   Moreover, since it is different from the method of applying a paint, it is possible to realize an LED device that does not bleed and has high optical property accuracy and reproducibility.

また、製造工程に於いて新たな部品を必要とするものではなく、材料費の上昇を伴なわない経済的な手法でもある。   In addition, it does not require new parts in the manufacturing process, and is an economical method that does not involve an increase in material costs.

つまり、上記効果を奏しながら、LEDデバイスの指向特性の調整、色調ムラの改善、光度の適正化等を良好な精度で達成できる光学特性制御LEDデバイス及びその製造方法を実現することができるものである。 In other words, while exhibiting the above effects, it is possible to realize an optical property control LED device and a method for manufacturing the same that can achieve adjustment of directivity of LED devices, improvement of uneven color tone, optimization of luminous intensity, etc. with good accuracy. is there.

本発明に係わる光学特性制御LEDデバイスの原理を説明する説明図である。It is explanatory drawing explaining the principle of the optical characteristic control LED device concerning this invention. 同じく、本発明に係わる光学特性制御LEDデバイスの原理を説明する説明図である。Similarly, it is explanatory drawing explaining the principle of the optical characteristic control LED device concerning this invention. 本発明に係わる光学特性制御LEDデバイスの製造方法を示す概略図である。It is the schematic which shows the manufacturing method of the optical characteristic control LED device concerning this invention. 本発明に係わる光学特性制御LEDデバイスの実施形態を示す部分斜視図である。It is a fragmentary perspective view which shows embodiment of the optical property control LED device concerning this invention. 図4で示す実施形態の指向特性を示すグラフである。It is a graph which shows the directivity of embodiment shown in FIG. 本発明に係わる光学特性制御LEDデバイスの他の実施形態を示す部分斜視図である。It is a fragmentary perspective view which shows other embodiment of the optical property control LED device concerning this invention. LEDデバイスの光度ランクを示す管理図である。It is a management chart which shows the luminous intensity rank of an LED device. 本発明に係わる光学特性制御LEDデバイスの他の実施形態を示す部分斜視図である。It is a fragmentary perspective view which shows other embodiment of the optical property control LED device concerning this invention.

符号の説明Explanation of symbols

1 LEDデバイス
2 光出射面
3 レーザ光
4 凹み
DESCRIPTION OF SYMBOLS 1 LED device 2 Light emission surface 3 Laser light 4 Recess

Claims (3)

少なくとも1個以上の青色LEDチップが少なくとも1種類以上の、前記青色LEDチップの発光によって励起されて蛍光を発する蛍光体が混入されている直方体形状の透光性部材によって封止されたLEDデバイスであって、前記透光性部材の光出射面周辺領域にはレーザ光によって凹みを形成し、光出射面中央部には凹みを形成しないことを特徴とする光学特性制御LEDデバイス。 At least one blue LED chip is an LED device sealed by a translucent member having a rectangular parallelepiped shape in which at least one type of blue LED chip is mixed with a phosphor that emits fluorescence when excited by light emission of the blue LED chip. An optical property control LED device, wherein a recess is formed by a laser beam in a region around the light emitting surface of the translucent member, and no recess is formed in a central portion of the light emitting surface. 前記透光性部材は樹脂及びガラスのうちの1つであることを特徴とする請求項1に記載の光学特性制御LEDデバイス。   The optical property control LED device according to claim 1, wherein the translucent member is one of resin and glass. LEDデバイスの色調を測定する工程と、
前記LEDチップを封止した少なくとも1種類以上の蛍光体が混入されている透光性部材の光出射面周辺領域に少なくとも1個以上の凹みをレーザ光によって形成する工程と、
前記凹みを形成した後に、色調を測定する工程と、
を有する請求項1または2に記載のLEDデバイスの製造方法。
Measuring the color tone of the LED device;
Forming at least one or more dents by laser light in a region around the light emitting surface of the translucent member in which at least one kind of phosphor sealing the LED chip is mixed; and
Measuring the color tone after forming the recess;
The manufacturing method of the LED device of Claim 1 or 2 which has these.
JP2005125101A 2005-04-22 2005-04-22 Optical property control LED device and manufacturing method thereof Expired - Fee Related JP4739805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125101A JP4739805B2 (en) 2005-04-22 2005-04-22 Optical property control LED device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125101A JP4739805B2 (en) 2005-04-22 2005-04-22 Optical property control LED device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006303303A JP2006303303A (en) 2006-11-02
JP4739805B2 true JP4739805B2 (en) 2011-08-03

Family

ID=37471216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125101A Expired - Fee Related JP4739805B2 (en) 2005-04-22 2005-04-22 Optical property control LED device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4739805B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969908B2 (en) 2006-04-04 2015-03-03 Cree, Inc. Uniform emission LED package
JP2008288410A (en) * 2007-05-18 2008-11-27 Toshiba Corp Semiconductor light-emitting device, and manufacturing method thereof
US9401461B2 (en) 2007-07-11 2016-07-26 Cree, Inc. LED chip design for white conversion
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
JP2009158541A (en) * 2007-12-25 2009-07-16 Citizen Electronics Co Ltd Manufacturing method of light emitting diode
EP2257999B1 (en) 2008-03-25 2014-10-01 Kabushiki Kaisha Toshiba Light emitting device, and method and apparatus for manufacturing same
JP5025625B2 (en) * 2008-03-25 2012-09-12 株式会社東芝 Method for manufacturing light emitting device
US8877524B2 (en) * 2008-03-31 2014-11-04 Cree, Inc. Emission tuning methods and devices fabricated utilizing methods
JP2009260174A (en) * 2008-04-21 2009-11-05 Sharp Corp Light-emitting device, backlight device, and liquid crystal display device
JP5355030B2 (en) 2008-04-24 2013-11-27 シチズンホールディングス株式会社 LED light source and chromaticity adjustment method of LED light source
JP5709943B2 (en) * 2008-04-24 2015-04-30 シチズンホールディングス株式会社 LED light source manufacturing method
US8648372B2 (en) 2009-04-14 2014-02-11 Panasonic Corporation Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JP5374332B2 (en) * 2009-11-25 2013-12-25 パナソニック株式会社 Lighting device
US8558252B2 (en) 2011-08-26 2013-10-15 Cree, Inc. White LEDs with emission wavelength correction
JP2015118951A (en) * 2012-04-10 2015-06-25 シャープ株式会社 Light-emitting device and method of manufacturing the same
JP2017126589A (en) * 2014-05-28 2017-07-20 パナソニックIpマネジメント株式会社 Light-emitting device and method of manufacturing light-emitting device
WO2020090625A1 (en) * 2018-11-01 2020-05-07 日本電気硝子株式会社 Production method and production apparatus for glass sheets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08993Y2 (en) * 1989-12-07 1996-01-17 株式会社山本製作所 Coin rice polishing equipment
JP3475797B2 (en) * 1998-07-28 2003-12-08 松下電工株式会社 Manufacturing method of light diffusion plate
JP4292794B2 (en) * 2002-12-04 2009-07-08 日亜化学工業株式会社 Light emitting device, method for manufacturing light emitting device, and method for adjusting chromaticity of light emitting device
JP2004193451A (en) * 2002-12-13 2004-07-08 Citizen Electronics Co Ltd Light emitting diode

Also Published As

Publication number Publication date
JP2006303303A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4739805B2 (en) Optical property control LED device and manufacturing method thereof
US8222054B2 (en) LED light source and chromaticity adjustment method for LED light source
RU2539331C2 (en) Lighting system with luminophor layer placed at distance and/or scattering layer
US7994530B2 (en) Light emitting diode module
JP4862274B2 (en) Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device
CN102537717A (en) Light emitting device
JP2008140704A (en) Led backlight
JP6811432B2 (en) Wavelength converter and lighting device
JP2010118531A (en) White lighting system and lighting fixture for vehicle
JP2005244075A (en) Light emitting device
KR20160036489A (en) Light emitting device
JP2009193995A (en) Led light source and chromaticity adjustment method thereof
JP2018041723A (en) Light emitting module and vehicular headlight
US20130258638A1 (en) Wavelength-converting structure for a light source
WO2011021436A1 (en) Light emitting device
JP2011165827A (en) Method of manufacturing light emitting apparatus
JP2017135130A (en) Light emitting apparatus
KR20180119540A (en) Lighting apparatus based on fluorescent printed type PCB substrate
WO2015194297A1 (en) Light emitting device, wavelength conversion member, and method for producing wavelength conversion member
KR102497138B1 (en) LEDs and multicolor phosphors
JP6410161B2 (en) Light emitting device and method for manufacturing light emitting device
JP6634766B2 (en) Spectral radiant flux measuring device
JP2006128008A (en) Lighting system
KR20180075035A (en) Led module having sheet block
JP2013157166A (en) Light source device and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees