JP4862274B2 - Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device - Google Patents

Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device Download PDF

Info

Publication number
JP4862274B2
JP4862274B2 JP2005121962A JP2005121962A JP4862274B2 JP 4862274 B2 JP4862274 B2 JP 4862274B2 JP 2005121962 A JP2005121962 A JP 2005121962A JP 2005121962 A JP2005121962 A JP 2005121962A JP 4862274 B2 JP4862274 B2 JP 4862274B2
Authority
JP
Japan
Prior art keywords
light
emitting device
led chip
light emitting
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005121962A
Other languages
Japanese (ja)
Other versions
JP2006303140A (en
Inventor
哲 森
勝 杉本
拓磨 橋本
正喜 小林
英二 塩濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005121962A priority Critical patent/JP4862274B2/en
Publication of JP2006303140A publication Critical patent/JP2006303140A/en
Application granted granted Critical
Publication of JP4862274B2 publication Critical patent/JP4862274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、LEDチップと蛍光体を含有する波長変換部とを組合せて白色光を発光する発光装置の製造方法及び該発光装置を用いた発光装置ユニットの製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device that emits white light by combining an LED chip and a wavelength conversion unit containing a phosphor, and a method for manufacturing a light emitting device unit using the light emitting device.

近年、窒化ガリウム系化合物半導体による青色光を放射するLED(Light Emitting Diode:発光ダイオード)チップや紫外線を放射するLEDチップが開発されている。このようなLEDチップを蛍光顔料、蛍光染料などの種々の波長変換材料と組合わせることにより、LEDチップの発光色とは異なる色合いの光や白色光を発光する発光装置の開発が行われている。LED発光装置は、小型、軽量、省電力といった長所があり、現在、表示用光源、小型電球の代替、液晶パネル用光源等として広く用いられている。   In recent years, LED (Light Emitting Diode) chips that emit blue light and LED chips that emit ultraviolet light have been developed using gallium nitride compound semiconductors. By combining such LED chips with various wavelength conversion materials such as fluorescent pigments and fluorescent dyes, light emitting devices that emit light of a color different from the emission color of LED chips or white light have been developed. . The LED light emitting device has advantages such as small size, light weight, and power saving, and is currently widely used as a light source for display, an alternative to a small light bulb, a light source for a liquid crystal panel, and the like.

上述のような発光装置における波長変換材料の固定方法として、波長変換材料を樹脂に含有させてLEDチップの載置部に充填する方法が一般的に行われている。しかし、充填による固定方法の工程は煩雑であると共に樹脂滴下量の制御が困難という問題があるため、発光装置毎の色ばらつきや光量ばらつきが大きいという問題点がある。そこで、実装基板の凹部内にLEDチップを配置し、別部材として作成した波長変換材料を含む樹脂部を実装基板の凹部とその周囲とを覆うように配置した発光装置が考案されている。この発光装置では、樹脂部が別部材であり、その外形寸法や波長変換材料中の蛍光体の濃度を別途調整できるので、発光装置の製造工程が簡略化されると共に、発光装置毎の色ばらつきや光量ばらつきが改善されるという結果が得られている。   As a method of fixing the wavelength conversion material in the light emitting device as described above, a method of filling the LED chip mounting portion with the wavelength conversion material contained in a resin is generally performed. However, there is a problem that the process of the fixing method by filling is complicated and that it is difficult to control the resin dripping amount, so that there is a large color variation and light amount variation for each light emitting device. In view of this, a light emitting device has been devised in which an LED chip is disposed in a concave portion of a mounting substrate, and a resin portion containing a wavelength conversion material prepared as a separate member is disposed so as to cover the concave portion of the mounting substrate and its periphery. In this light-emitting device, the resin part is a separate member, and its external dimensions and the concentration of the phosphor in the wavelength conversion material can be adjusted separately, so that the manufacturing process of the light-emitting device is simplified and the color variation among the light-emitting devices As a result, the light intensity variation is improved.

ところで、LEDチップ自体に発光輝度と発光波長のばらつきがあることから、このようなLEDチップと波長変換材料と組合せて構成した、例えば白色光の発光装置において、発光装置毎に色調がばらつくという問題がある。この問題を解決するため、LEDチップの発光輝度及び発光波長に基づくランク分けを行い、波長変換材料及び輝度調整用の減光材の組合せから成る被覆部材を組合せ条件を変えて形成し、ランク分けしたLEDチップとそのランクに対応する所定の組合せ条件の被覆部材とを組合わせて発光装置を製造するという製造方法が知られている(例えば、特許文献1参照)。
特開2004−119743号公報
By the way, since the LED chip itself has variations in emission luminance and emission wavelength, for example, in a white light emitting device configured by combining such an LED chip and a wavelength conversion material, the color tone varies for each light emitting device. There is. In order to solve this problem, ranking is performed based on the light emission luminance and light emission wavelength of the LED chip, and a covering member made of a combination of a wavelength conversion material and a light-reducing material for brightness adjustment is formed by changing the combination conditions. A manufacturing method is known in which a light emitting device is manufactured by combining the LED chip and a covering member having a predetermined combination condition corresponding to the rank (for example, see Patent Document 1).
JP 2004-119743 A

しかしながら、上述した特許文献1に示される従来の発光装置の製造方法においては、LEDチップのランク分けのため発光輝度や発光波長の計測を工程中のどのタイミングで行うのが良いか明確な言及がない。発光装置の量産においては、工程中のタイミング、すなわち製品のどのような状態において発光特性を計測するかは、最終製品の性能に大きく影響する。また、この製造方法では、被覆部材に加える減光材の加減によって色調と輝度のばらつきを抑えるので、輝度の高いLEDチップの輝度が減光材によって抑えられる結果、LEDチップ本来の効率が低下することになる。   However, in the conventional method for manufacturing a light-emitting device disclosed in Patent Document 1 described above, there is a clear reference to which timing in the process of measuring light emission luminance and light emission wavelength for ranking LED chips. Absent. In mass production of light emitting devices, the timing during the process, that is, in what state of the product the light emission characteristics are measured, greatly affects the performance of the final product. Further, in this manufacturing method, variation in color tone and luminance is suppressed by adjusting the light reducing material applied to the covering member, and as a result, the luminance of the LED chip having high luminance is suppressed by the light reducing material, resulting in a reduction in the original efficiency of the LED chip. It will be.

上述の従来の発光装置の製造方法では、LEDチップの発光輝度の計測に際し、平坦なサブマウント上のLEDチップの上方においてLEDチップからの直接光を計測している。このような輝度の計測方法によると、一般に出射角度依存性を有するLEDチップからの光出力を正しく評価できない。これを説明する。出射角度依存性すなわち配光分布は、LEDチップの発光部を構成する層構造における各層の厚みや形状などによって決まる。その層構造は、LEDチップ毎にばらつきを有し、配光分布がLEDチップ毎に異なる。従って、LEDチップからの直接光のみの計測では、実装された使用状態における実装基板からの反射光などを含む発光装置としての光出力を正しく計測できず、色合わせの基礎となる輝度を適切に評価しているとは言い難い。   In the above-described conventional method for manufacturing a light emitting device, when measuring the light emission luminance of the LED chip, direct light from the LED chip is measured above the LED chip on the flat submount. According to such a luminance measurement method, it is generally impossible to correctly evaluate the light output from the LED chip having the emission angle dependency. This will be explained. The emission angle dependency, that is, the light distribution is determined by the thickness and shape of each layer in the layer structure constituting the light emitting portion of the LED chip. The layer structure varies from LED chip to LED chip, and the light distribution varies from LED chip to LED chip. Therefore, in the measurement of only the direct light from the LED chip, the light output as the light emitting device including the reflected light from the mounting substrate in the mounted use state cannot be correctly measured, and the luminance that is the basis of color matching is appropriately set. It is hard to say that they are evaluating.

また、上述の従来の発光装置の製造方法におけるLEDチップの発光波長の計測方法によると、色合わせや蛍光体の光励起確率決定の基礎データとなる発光波長、より一般的には発光スペクトルを正しく評価できない。これを説明する。LEDチップから外部に放出される光出力の出射角度依存性は、上述同様にLEDチップの層構造に起因して、さらに波長依存性を有する。従って、発光スペクトルが角度依存性を有するので、発光スペクトルの評価には、LEDチップから全方位に放射された光の発光スペクトルを平均化したものを用いるのがより好ましい。しかしながら、上述の製造方法においては、一部の光の発光スペクトルしか用いていないことになる。   In addition, according to the measurement method of the emission wavelength of the LED chip in the above-described conventional method of manufacturing a light emitting device, the emission wavelength that is the basic data for determining the color matching and the photoexcitation probability of the phosphor, more generally, the emission spectrum is correctly evaluated. Can not. This will be explained. The output angle dependency of the light output emitted from the LED chip to the outside is further dependent on the wavelength due to the layer structure of the LED chip as described above. Therefore, since the emission spectrum has angle dependency, it is more preferable to use an averaged emission spectrum of light emitted from the LED chip in all directions for the evaluation of the emission spectrum. However, in the manufacturing method described above, only a part of the emission spectrum of light is used.

本発明は、上記課題を解消するものであって、LEDチップと波長変換部との最適組合せを実現して発光装置毎の色ばらつきの低減を実現できる発光装置の製造方法及び該発光装置を用いた発光装置ユニットの製造方法を提供することを目的とする。   The present invention solves the above-described problem, and a method for manufacturing a light emitting device capable of realizing an optimum combination of an LED chip and a wavelength conversion unit to reduce color variation for each light emitting device and the light emitting device are used. It is an object of the present invention to provide a method for manufacturing a light emitting device unit.

上記課題を達成するために、請求項1の発明は、LEDチップと前記LEDチップからの放射光を吸収して可視域の光を生成するための蛍光体を含有する波長変換部とを組合せて白色光を生成して発光する発光装置の製造方法において、前記LEDチップを発光装置本体の実装部に実装した後、前記LEDチップと前記波長変換部と組み合わせる前における使用状態の条件のもとで前記LEDチップの発光特性を計測し、前記計測によって得られる、LEDチップの放射エネルギ又はその放射エネルギから算出される明るさに関する特性、及びLEDチップの発光スペクトルの特性の2つの特性に基づいて当該LEDチップをランク分けし、予めLEDチップの各ランクに対応させて作製した設計条件の異なる前記波長変換部を、LEDチップを発光装置本体の実装部に実装して構成した波長変換部ランク分け用の装置を用いて行う色度座標の計測に基づいて、ランク分けし、これらのランク分けした波長変換部から適するものを選択し、互いにランクの対応するLEDチップと波長変換部とを組合せるものである。 In order to achieve the above object, the invention of claim 1 is a combination of an LED chip and a wavelength converter containing a phosphor for generating visible light by absorbing light emitted from the LED chip. In a method of manufacturing a light emitting device that generates and emits white light, after mounting the LED chip on the mounting portion of the light emitting device main body, under the condition of the use state before combining the LED chip and the wavelength conversion unit Measure the light emission characteristics of the LED chip, and based on the two characteristics obtained by the measurement, the characteristics relating to the brightness of the LED chip or the brightness calculated from the radiation energy, and the characteristics of the emission spectrum of the LED chip the LED chip ranks, different the wavelength converting part of the design condition manufactured in correspondence with the rank of the pre-LED chips, LED chips The based on the measurement of chromaticity coordinates performed by using an apparatus for wavelength conversion unit ranking configured and mounted on the mounting portion of the light emitting device main body, and ranking, those suitable of these ranking the wavelength converting portion The LED chip and the wavelength conversion unit which are selected and correspond to each other in rank are combined.

請求項2の発明は、請求項1に記載の発光装置の製造方法において、前記実装部は発光装置本体の有する実装基板に設けた凹部であり、前記LEDチップは前記凹部の底面に実装され、前記凹部は光拡散性の内壁面を有し、かつ当該凹部の底面から開口方向に向かい末広がりとなるテーパ形状を有するものである。   Invention of Claim 2 is the manufacturing method of the light-emitting device of Claim 1, The said mounting part is a recessed part provided in the mounting substrate which a light-emitting device main body has, The said LED chip is mounted in the bottom face of the said recessed part, The concave portion has a light diffusing inner wall surface and has a tapered shape that widens toward the opening direction from the bottom surface of the concave portion.

請求項3の発明は、請求項1又は請求項2に記載の発光装置の製造方法において、前記LEDチップは可視域の光を放射する可視LEDチップであり、前記可視LEDチップからの光と前記波長変換部の蛍光体によって生成された光の混色により白色光を生成するものである。   According to a third aspect of the present invention, in the method of manufacturing the light emitting device according to the first or second aspect, the LED chip is a visible LED chip that emits light in a visible range, and the light from the visible LED chip and the light The white light is generated by the color mixture of the light generated by the phosphor of the wavelength conversion unit.

請求項4の発明は、請求項3に記載の発光装置の製造方法において、前記発光スペクトルの特性として色度座標値を用いるものである。   According to a fourth aspect of the present invention, in the method for manufacturing a light emitting device according to the third aspect, a chromaticity coordinate value is used as a characteristic of the emission spectrum.

請求項5の発明は、請求項1又は請求項2に記載の発光装置の製造方法において、前記LEDチップは紫外線を放射する紫外LEDチップであり、前記波長変換部は前記紫外LEDチップからの紫外線を吸収して可視域の光を放出する蛍光体を1種類以上含み、前記発光スペクトルの特性としてピーク波長及びそのピークの半値幅を用いるものである。   According to a fifth aspect of the present invention, in the method of manufacturing a light emitting device according to the first or second aspect, the LED chip is an ultraviolet LED chip that emits ultraviolet light, and the wavelength conversion unit is an ultraviolet light from the ultraviolet LED chip. One or more phosphors that absorb visible light and emit visible light are used, and the peak wavelength and the half width of the peak are used as the characteristics of the emission spectrum.

請求項6の発明は、請求項1乃至請求項5のいずれかに記載の製造方法を用いて製造した発光装置を用いて発光装置ユニットを製造する方法であって、該発光装置の発光特性を計測して当該発光装置をランク分けし、前記発光装置を異なるランクから適宜選択してユニットとし、該ユニットが所定の発光特性となるようにする製造方法である。   The invention of claim 6 is a method of manufacturing a light-emitting device unit using the light-emitting device manufactured by using the manufacturing method according to any one of claims 1 to 5, wherein the light-emitting device has a light-emitting characteristic. This is a manufacturing method in which the light emitting devices are ranked by measurement, the light emitting devices are appropriately selected from different ranks to form units, and the units have predetermined light emission characteristics.

請求項1の発明によれば、LEDチップを発光装置本体の実装部に実装した後、実装された状態のLEDチップの発光特性を計測してLEDチップをランク分けするので、実装部表面の光吸収率などを含めた使用状態の条件のもとでランク分けができ、従来例に比べてLEDチップと波長変換部とのより最適な組合せを実現して発光装置毎の色ばらつきの低減を実現できる。   According to the first aspect of the present invention, after the LED chip is mounted on the mounting portion of the light emitting device body, the LED chip is ranked by measuring the light emission characteristics of the mounted LED chip. Ranks can be classified under the conditions of use, including the absorptance, etc., and a more optimal combination of LED chip and wavelength conversion unit compared to the conventional example is achieved to reduce color variation for each light emitting device it can.

請求項2の発明によれば、LEDチップから全方位への発光が光拡散性の内壁面によって反射されて角度依存性が平均化されるので、実装状態のLEDチップの発光特性の計測がより容易となる。すなわち、全光束の測定ではなく一部の光束の測定によっても精度良く測定できる。   According to the invention of claim 2, since the light emitted from the LED chip in all directions is reflected by the light diffusive inner wall surface and the angle dependence is averaged, the measurement of the light emission characteristics of the mounted LED chip is more possible. It becomes easy. That is, it is possible to measure with high accuracy not only by measuring the total luminous flux but also by measuring a part of the luminous flux.

請求項3の発明によれば、発光装置毎の色ばらつきを低減した発光装置が得られる。   According to invention of Claim 3, the light-emitting device which reduced the color variation for every light-emitting device is obtained.

請求項4の発明によれば、発光ピーク波長の違いに基づいてランク分けする場合に比べて、より適切なランク分けができる。また、人の色感に即して色合わせできる。   According to the invention of claim 4, it is possible to perform more appropriate ranking as compared with the case of ranking based on the difference in emission peak wavelength. In addition, color matching can be performed in accordance with human color.

請求項5の発明によれば、発光装置毎の色ばらつきを低減した発光装置が得られる。   According to the fifth aspect of the present invention, a light emitting device with reduced color variation for each light emitting device can be obtained.

請求項6の発明によれば、ランク分けされた発光装置を適宜選択して用いるので、ユニット毎の発光特性のばらつきが少なく所望の発光特性を有する発光装置ユニットを容易に実現できる。   According to the invention of claim 6, since the ranked light-emitting devices are appropriately selected and used, a light-emitting device unit having a desired light-emitting characteristic can be easily realized with little variation in the light-emitting characteristic of each unit.

以下、本発明の実施形態に係る発光装置の製造方法及びユニット化した発光装置の製造方法について、図面を参照して説明する。図1は本発明の製造方法により製造された発光装置1を示す。発光装置1は、LEDチップ2とLEDチップ2からの放射光を吸収して可視域の光を生成する蛍光体を含有した波長変換部3とを組合せることにより、白色光を生成して発光する装置である。LEDチップ2は、発光装置本体4に設けられた実装部である凹部41の底面に実装され、LEDチップ2に発光用の電力を供給する電極42に電気接続されている。   Hereinafter, a method for manufacturing a light emitting device and a method for manufacturing a unitized light emitting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a light emitting device 1 manufactured by the manufacturing method of the present invention. The light emitting device 1 generates white light and emits light by combining the LED chip 2 and the wavelength conversion unit 3 containing a phosphor that absorbs radiation light from the LED chip 2 and generates light in the visible range. It is a device to do. The LED chip 2 is mounted on the bottom surface of a recess 41 that is a mounting portion provided in the light emitting device body 4, and is electrically connected to an electrode 42 that supplies power for light emission to the LED chip 2.

発光装置1の製造方法を図2、図3(a)(b)、図4を参照して説明する。図2は製造工程のフローチャートを示す。また、図3(a)はLEDチップ2を実装する工程、(b)は同LEDチップ2の発光特性を計測する工程を示し、図4はLEDチップ2と波長変換部3とを組合せて発光装置1を組み立てる工程を示す。まず、多数のLED(発光ダイオード)を表面に一括製造した基板をダイシングして得たLEDチップ2と、発光装置本体4に実装用凹部41及びLEDチップ2への電流供給用の電極42を備えて成る実装基板とを作成する(S1)。次に、図3(a)に示すように、LEDチップ2を実装基板の凹部41の底面に実装する(S2)。この実装は、例えば、フリップチップ実装法を用いて行われる(図6の断面図参照)。   A method for manufacturing the light emitting device 1 will be described with reference to FIGS. 2, 3 (a), 3 (b), and 4. FIG. 2 shows a flowchart of the manufacturing process. 3A shows a process of mounting the LED chip 2, FIG. 3B shows a process of measuring the light emission characteristics of the LED chip 2, and FIG. 4 shows light emission by combining the LED chip 2 and the wavelength conversion unit 3. The process of assembling the apparatus 1 is shown. First, an LED chip 2 obtained by dicing a substrate on which a large number of LEDs (light-emitting diodes) are collectively manufactured, and a light-emitting device body 4 are provided with a mounting recess 41 and an electrode 42 for supplying current to the LED chip 2. A mounting board is prepared (S1). Next, as shown in FIG. 3A, the LED chip 2 is mounted on the bottom surface of the recess 41 of the mounting substrate (S2). This mounting is performed by using, for example, a flip chip mounting method (see the cross-sectional view of FIG. 6).

次に、図3(b)に示すように、発光装置本体の実装部に実装されたLEDチップ2に電力を供給し、LEDチップ2の発光に基づく光Lの発光特性を計測装置Dによって計測する(S3)。実装状態のLEDチップ2は、計測によって得られる2つの特性に基づいて、予め設定された所定のランク毎にランク分けされる(S4)。この2つの特性は、LEDチップ2の放射エネルギ又はその放射エネルギから算出される明るさに関する特性、及びLEDチップの発光スペクトルの特性である。   Next, as shown in FIG. 3B, power is supplied to the LED chip 2 mounted on the mounting portion of the light emitting device body, and the light emission characteristics of the light L based on the light emission of the LED chip 2 are measured by the measuring device D. (S3). The mounted LED chips 2 are ranked for each predetermined rank set based on two characteristics obtained by measurement (S4). These two characteristics are a characteristic relating to the radiant energy of the LED chip 2 or brightness calculated from the radiant energy, and a characteristic of the emission spectrum of the LED chip.

また、上述のLEDチップ2に関する工程S1〜S4と並行し、又は前後する別工程により波長変換部3の作製が行われる。波長変換部3は、LEDチップ2の所定のランクに対応させて各ランク毎に設計され(S5)、設計条件の異なる条件のもとで作製される(S6)。次に、図4に示すように、ランク分けしたLEDチップ2に対し、発光装置1としての発光に所定の色合いを実現するため、複数の波長変換部3から適するものを選択し(S7)、互いにランクの対応するLEDチップ2と波長変換部3とを組合せて発光装置1を組み立てる(S8)。以下において、より詳細な説明を行う。   In addition, the wavelength conversion unit 3 is manufactured by a separate process in parallel with or before and after the processes S1 to S4 related to the LED chip 2 described above. The wavelength conversion unit 3 is designed for each rank corresponding to a predetermined rank of the LED chip 2 (S5), and is manufactured under conditions with different design conditions (S6). Next, as shown in FIG. 4, in order to realize a predetermined color for light emission as the light emitting device 1 for the LED chips 2 classified by rank, a suitable one from a plurality of wavelength conversion units 3 is selected (S7), The light emitting device 1 is assembled by combining the LED chip 2 and the wavelength conversion unit 3 corresponding to each other in rank (S8). In the following, a more detailed description will be given.

図1に示す発光装置1のLEDチップ2は、青色光を発光する青色LEDであり、波長変換部3は、青色LEDの発光を吸収して黄色系の光を発生する蛍光体を含有する部材からなる。発光装置1は、このようなLEDチップ2と波長変換部3との組合せにより、次に示すようにして白色光を生成する。LEDチップ2によって発生した青色光の一部は、蛍光体により吸収されて黄色系の光に変換されて発光装置1から外部へ放射されるが、一部は蛍光体に吸収されることなく青色光のまま発光装置1から外部へ放射される。発光装置1から放射された青色光と蛍光体から放射された黄色系の光とは互いに補色の関係に当たるので、これらの光が適切な強度バランスで混色されることにより白色光が生成される。LEDチップ2は、例えば、ドミナント波長460nm〜465nmの窒化ガリウム系青色LEDである。   The LED chip 2 of the light emitting device 1 shown in FIG. 1 is a blue LED that emits blue light, and the wavelength conversion unit 3 is a member that contains a phosphor that absorbs the light emitted from the blue LED and generates yellow light. Consists of. The light emitting device 1 generates white light by the combination of the LED chip 2 and the wavelength conversion unit 3 as follows. Part of the blue light generated by the LED chip 2 is absorbed by the phosphor, converted into yellow light, and emitted from the light emitting device 1 to the outside, but part of the blue light is not absorbed by the phosphor and is blue The light is emitted from the light emitting device 1 to the outside as it is. Since the blue light emitted from the light emitting device 1 and the yellow light emitted from the phosphor have a complementary color relationship, white light is generated by mixing these lights with an appropriate intensity balance. The LED chip 2 is, for example, a gallium nitride blue LED having a dominant wavelength of 460 nm to 465 nm.

発光装置本体4の寸法例を示す。外形は、縦7mm、横8mm、高さ2.5mmの略直方体形状、凹部41の開口の最大直径が約5mm、凹部41の深さが約1.5mm、凹部41の底面の直径が約2.5mmである。発光装置1の発光装置本体4の材質は、セラミックスである。なお、発光装置本体4の形状寸法は、これらの数値に限定されるものではなく、また、材質は、特にセラミックスに限定されるものではない。   The example of the dimension of the light-emitting device main body 4 is shown. The outer shape is a substantially rectangular parallelepiped shape having a length of 7 mm, a width of 8 mm, and a height of 2.5 mm, the maximum diameter of the opening of the recess 41 is about 5 mm, the depth of the recess 41 is about 1.5 mm, and the diameter of the bottom surface of the recess 41 is about 2. .5 mm. The material of the light emitting device body 4 of the light emitting device 1 is ceramic. The shape and size of the light emitting device main body 4 are not limited to these numerical values, and the material is not particularly limited to ceramics.

凹部41は、断面が開口方向に向かい末広がりとなる逆台形状に形成され、その内壁面はその面に入射する光を拡散する光拡散性を有している。このような光拡散性の内壁面を実現するには、例えば、その表面の凹凸(表面粗度)を少なくとも約1μm程度以上とすればよい。また、発光装置本体4を形成するセラミックスは、例えば、純度90%〜96%の多結晶アルミナを用いることができる。このような純度のアルミナは、若干の光透過性を有する。従って、内壁面に入射した光はセラミックス内部に入り込み、結晶粒界で散乱され、拡散光となってセラミックス外部へと再放射される。このように、発光装置本体4の材質が、内部に光が入り込むことのできるアルミナのような場合、凹部41の内壁面の凹凸(表面粗度)が1μm未満でも、その内壁面は光拡散面として機能する。   The recess 41 is formed in an inverted trapezoidal shape with a cross section extending toward the opening direction, and its inner wall surface has a light diffusibility that diffuses light incident on the surface. In order to realize such a light diffusing inner wall surface, for example, the surface irregularities (surface roughness) may be at least about 1 μm or more. Moreover, the ceramic which forms the light-emitting device main body 4 can use, for example, polycrystalline alumina having a purity of 90% to 96%. Alumina of such purity has some light transmission. Accordingly, the light incident on the inner wall surface enters the ceramic, is scattered at the crystal grain boundary, and is re-radiated to the outside of the ceramic as diffused light. As described above, when the material of the light emitting device body 4 is alumina such that light can enter inside, the inner wall surface is a light diffusion surface even if the inner wall surface of the recess 41 has an unevenness (surface roughness) of less than 1 μm. Function as.

発光特性の計測を説明する。この計測は、図3(b)に示したように、LEDチップ2を実装した発光装置本体4の正面前方(光放射方向、図の上部)に計測装置Dの受光部を設置して行われる。計測される光Lには、LEDチップ2からの直接光とともに、凹部41の内壁面によって反射した光、及び吸収され拡散され再放射された光が含まれている。計測した発光スペクトルは、発光色度(XYZ表色系)に換算する。なお、発光色度は、発光スペクトルの計測とその後の換算によらずに、色彩色度計を用いて直接に発光色度を計測してもよい。これらの計測が行われた実装状態の各LEDチップ2は、光出力、及び発光色度に応じてランク分けされる。   The measurement of the light emission characteristics will be described. As shown in FIG. 3B, this measurement is performed by installing a light receiving unit of the measuring device D in front of the light emitting device main body 4 on which the LED chip 2 is mounted (light emission direction, upper part of the drawing). . The light L to be measured includes direct light from the LED chip 2 as well as light reflected by the inner wall surface of the recess 41 and light that is absorbed, diffused, and re-radiated. The measured emission spectrum is converted into emission chromaticity (XYZ color system). Note that the emission chromaticity may be directly measured using a color chromaticity meter without depending on the measurement of the emission spectrum and the subsequent conversion. The mounted LED chips 2 on which these measurements are performed are ranked according to the light output and the light emission chromaticity.

波長変換部3を説明する。LEDチップ2のランクに応じて、調合条件の異なる黄色蛍光体を含有する波長変換部3を設計し、それら異なる設計条件に基づいた種類の異なる波長変換部3を作製する。黄色系蛍光体として、共にケイ酸塩系の蛍光体で、発光波長域の異なる2種類の蛍光体(蛍光体A、蛍光体Bとする)を用いる。蛍光体A、蛍光体Bのピーク波長は、例えば、各々565nm、593nmである。蛍光体A、蛍光体Bを混合し、さらに透光性のシリコーン樹脂に混合して縦横5mm、厚さ0.5mmのシート状に成形して波長変換部3を作製する。蛍光体A、蛍光体Bの混合比、及びこれらの全重量を変化させつつ波長変換部3を作製する。   The wavelength conversion unit 3 will be described. According to the rank of the LED chip 2, the wavelength conversion unit 3 containing yellow phosphors with different preparation conditions is designed, and different types of wavelength conversion units 3 based on the different design conditions are produced. As the yellow phosphor, two types of phosphors (referred to as phosphor A and phosphor B), both of which are silicate phosphors and have different emission wavelength ranges, are used. The peak wavelengths of phosphor A and phosphor B are, for example, 565 nm and 593 nm, respectively. The phosphor A and the phosphor B are mixed, further mixed with a translucent silicone resin, and formed into a sheet shape having a length and width of 5 mm and a thickness of 0.5 mm to produce the wavelength conversion unit 3. The wavelength conversion unit 3 is manufactured while changing the mixing ratio of the phosphor A and the phosphor B and the total weight thereof.

作製した波長変換部3は、実装してランク分したLEDチップ2のランクに対応してランク分けされる。このランク分けは、波長変換部ランク分け用の装置を用いて行う。ランク分け用の装置は、LEDチップ2を発光装置本体4の凹部41の底面に実装して構成したものである。波長変換部3は、この装置を用いて発光装置1の完成品と同じ設定で励起され、発光装置1として放射される白色光のXYZ表色系の色度座標の計測に基づいて、LEDチップ2の各ランクに対応してランク分けされる。   The produced wavelength conversion units 3 are ranked according to the ranks of the LED chips 2 mounted and ranked. This ranking is performed using a wavelength conversion unit ranking apparatus. The rank dividing device is configured by mounting the LED chip 2 on the bottom surface of the recess 41 of the light emitting device body 4. The wavelength conversion unit 3 is an LED chip based on measurement of chromaticity coordinates of the XYZ color system of white light that is excited with the same setting as the completed product of the light emitting device 1 and radiated as the light emitting device 1 using this device. Ranks are assigned to each of the two ranks.

実装されてランク分けされたLEDチップ2のそれぞれと、作製されランク分けされた波長変換部3のそれぞれとから、互いに適合する色合いを形成するように組合せが選択され、その組合せにより発光装置1が組み立てられる。このようにして組み立てられた発光装置1は、青色LEDチップ2が発光装置本体4の凹部41底面に実装されており、青色LEDチップ2から放射された光は、その一部が凹部41の側面や底面で吸収され、残りが光取り出し面側(凹部41の開口側)へ出射される。   A combination is selected from each of the mounted and ranked LED chips 2 and each of the produced and ranked wavelength conversion units 3 so as to form a color that matches each other. Assembled. In the light emitting device 1 assembled in this way, the blue LED chip 2 is mounted on the bottom surface of the recess 41 of the light emitting device body 4, and a part of the light emitted from the blue LED chip 2 is the side surface of the recess 41. Or the bottom is absorbed, and the remainder is emitted to the light extraction surface side (opening side of the recess 41).

凹部41の側面や底面における光吸収率は、波長、凹部41の表面材質、表面状態、側面の開口部に向けての傾斜角度などに依存する。これらは、製造上のばらつきに起因して、発光装置本体4毎にばらつきを有する。従って、単体のLEDチップ、つまり、発光装置本体4に実装されていない状態のLEDチップ2からの光出力や発光スペクトルと、発光装置本体4に実装されているLEDチップ2からの光出力や発光スペクトルとは同一のものとはならない。さらに、単体のLEDチップと、実装状態のLEDチップとの、それぞれに対する光出力や発光スペクトルの計測値は、互いに1対1に対応づけられるとは限らない。   The light absorptance at the side surface and the bottom surface of the recess 41 depends on the wavelength, the surface material of the recess 41, the surface state, the angle of inclination toward the opening of the side surface, and the like. These have variations for each light-emitting device body 4 due to manufacturing variations. Accordingly, the light output and emission spectrum from a single LED chip, that is, the LED chip 2 that is not mounted on the light emitting device body 4, and the light output and light emission from the LED chip 2 mounted on the light emitting device body 4. The spectrum is not the same. Furthermore, the measured values of the light output and the emission spectrum of each of the single LED chip and the mounted LED chip are not necessarily associated with each other on a one-to-one basis.

従って、発光装置1の最終形態に近い状態で光特性を計測し、その結果に基づいてランク分けを行うことにより、より実情に即した適切なランク分けが可能となる。実際の発光装置1内において波長変換部3に入射されるべき光の光特性を計測してランク分けできることから、LEDチップ2と波長変換部3との組合せを、従来よりも最適に実現して、所定の色合いとなる発光装置1を実現できる。その結果、LEDチップ2の青色と波長変換部3によって発生した黄色光との混色により生成する白色光の色ばらつきを、従来に比べてさらに抑制することができ、また、このようにして製造された発光装置1は、発光装置1毎の色ばらつきの低減も実現される。   Therefore, by measuring the optical characteristics in a state close to the final form of the light emitting device 1 and performing ranking based on the result, it is possible to perform appropriate ranking according to the actual situation. Since it is possible to measure and rank the light characteristics of light that should be incident on the wavelength conversion unit 3 in the actual light emitting device 1, the combination of the LED chip 2 and the wavelength conversion unit 3 is realized more optimally than before. The light emitting device 1 having a predetermined color can be realized. As a result, it is possible to further suppress the color variation of the white light generated by the color mixture of the blue color of the LED chip 2 and the yellow light generated by the wavelength conversion unit 3 as compared with the conventional one, and it is manufactured in this way. In addition, the light emitting device 1 can also reduce color variation for each light emitting device 1.

また、凹部41が開口方向に向かって末広がりとなることにより、LEDチップ2の側面方向(開口方向に直交する方向)に放射された光も、発光装置1の正面方向(開口方向)へ向かうことができる。また、LEDチップ2から全方位に光が放射されるが、凹部41の内壁面が光拡散性であることにより、発光スペクトルは方位について平均化されたものとなる。従って、計測装置Dの受光部を発光装置本体4の正面方向のみに設置した場合であっても、従来の実装状態にない単体のLEDチップ、又は平坦な基板上に実装されたLEDチップからの発光を計測するような計測方法に比べて、より実際の状況に近い状態で、発光スペクトルが得られる。   Moreover, the light emitted in the side surface direction (the direction orthogonal to the opening direction) of the LED chip 2 is also directed toward the front direction (opening direction) of the light emitting device 1 because the concave portion 41 becomes wider toward the opening direction. Can do. In addition, light is emitted from the LED chip 2 in all directions, but the emission spectrum is averaged with respect to the direction because the inner wall surface of the recess 41 is light diffusive. Therefore, even when the light-receiving unit of the measuring device D is installed only in the front direction of the light-emitting device body 4, it can be obtained from a single LED chip that is not in a conventional mounting state or an LED chip mounted on a flat substrate. Compared to a measurement method that measures light emission, an emission spectrum can be obtained in a state closer to the actual situation.

LEDチップ2から全方位への発光が光拡散性の内壁面によって反射されて角度依存性が平均化されるので、実装状態のLEDチップ2の発光特性の計測がより容易となる。すなわち、全光束の測定ではなく一部の光束の測定によっても精度良く測定できる。また、光出力についても、角度依存性が平均化されるので、計測装置Dの受光部を発光装置本体4の正面方向のみに設置した場合であっても、全体の光出力に比例した量が計測されるので、従来例に比べてLEDチップ2の光出力性能をより正しく評価できる。   Since light emitted from the LED chip 2 in all directions is reflected by the light diffusing inner wall surface and the angle dependence is averaged, it is easier to measure the light emission characteristics of the mounted LED chip 2. That is, it is possible to measure with high accuracy not only by measuring the total luminous flux but also by measuring a part of the luminous flux. In addition, since the angular dependence of the light output is also averaged, even when the light receiving unit of the measuring device D is installed only in the front direction of the light emitting device body 4, an amount proportional to the total light output is obtained. Since it is measured, the light output performance of the LED chip 2 can be more correctly evaluated as compared with the conventional example.

上述のようにLEDチップ2の発光色と波長変換部3の発光色との混色により白色を生成する場合、LEDチップ2と波長変換部3の各々の発光色度座標が分かれば、混色により生成する発光の色度座標値は、それら2点を結ぶ直線上の値として求められる。その直線上のどこにくるかは、LEDチップ2の発光色と波長変換部3の発光色の各々の発光強度比により決まる。従って、LEDチップ2の光出力を計測し、その強度に合う発光強度の波長変換部3を作製できれば、波長変換部3とLEDチップ2とを適切に組み合わせ、て、設計条件に合致する発光色を実現する発光装置1を得ることができる。   As described above, when the white color is generated by mixing the emission color of the LED chip 2 and the emission color of the wavelength conversion unit 3, if the emission chromaticity coordinates of the LED chip 2 and the wavelength conversion unit 3 are known, the color generation is performed. The chromaticity coordinate value of the emitted light is obtained as a value on a straight line connecting these two points. Where on the straight line is determined by the emission intensity ratio of each of the emission color of the LED chip 2 and the emission color of the wavelength conversion unit 3. Therefore, if the light output of the LED chip 2 is measured and the wavelength conversion unit 3 having a light emission intensity suitable for the intensity can be produced, the wavelength conversion unit 3 and the LED chip 2 are appropriately combined, and the emission color that matches the design conditions. The light-emitting device 1 which implement | achieves can be obtained.

なお、個々のLEDチップ2の発光スペクトルを詳細に調べると、同じピーク波長を持つLEDチップ2であっても、発光色度(XYZ表色系)に変換すると、サンプルによりx座標で最大0.01程度の差を生じていることがわかる。従って、発光スペクトルのピーク波長は発光色度と1対1に対応しない。故に、LEDチップ2を発光ピーク波長の違いに基づいてランク分けする場合に比べて、本発明の製造方法におけるように、発光色度に基づいてランク分けする方が、より適切なランク分け方法となっている。   In addition, when the emission spectrum of each LED chip 2 is examined in detail, even if the LED chip 2 has the same peak wavelength, when converted to the emission chromaticity (XYZ color system), the maximum x. It can be seen that there is a difference of about 01. Therefore, the peak wavelength of the emission spectrum does not correspond to the emission chromaticity on a one-to-one basis. Therefore, as compared with the case where the LED chips 2 are ranked based on the difference in the emission peak wavelength, it is more appropriate to rank based on the emission chromaticity as in the manufacturing method of the present invention. It has become.

次に、LEDチップ2として、上述の青色LEDチップ2とは異なる紫外LEDチップ2を用いる発光装置1の製造方法について説明する。この発光装置1のLEDチップ2は、紫外線を放射する紫外LEDであり、波長変換部3は、紫外LEDチップ2からの紫外線を吸収して可視域の光を放出する蛍光体を1種類以上含む。そして、発光装置1の製造において、実装されたLEDチップ2のランク分けに用いる発光特性として、発光スペクトルにおけるピーク波長及びそのピークの半値幅を用いる。   Next, the manufacturing method of the light-emitting device 1 using the ultraviolet LED chip 2 different from the above-mentioned blue LED chip 2 as the LED chip 2 will be described. The LED chip 2 of the light emitting device 1 is an ultraviolet LED that emits ultraviolet rays, and the wavelength conversion unit 3 includes one or more phosphors that absorb ultraviolet rays from the ultraviolet LED chip 2 and emit visible light. . And in manufacture of the light-emitting device 1, the peak wavelength in a light emission spectrum and the half value width of the peak are used as a light emission characteristic used for ranking of the mounted LED chip 2. FIG.

このような発光装置1の概略構造は、図1に示したものと同様である。相違点は、この発光装置1のLEDチップ2が紫外線を放射するLEDチップ2であること、波長変換部3に、LEDチップ2の発光に基づく紫外線を吸収して赤色系の発光をする蛍光体R、紫外線を吸収して緑色系の発光をする蛍光体G、紫外線を吸収して青色系の発光をする蛍光体Bが含有されていることである。   The schematic structure of such a light emitting device 1 is the same as that shown in FIG. The difference is that the LED chip 2 of the light emitting device 1 is an LED chip 2 that radiates ultraviolet rays, and the wavelength converter 3 absorbs ultraviolet rays based on the light emission of the LED chips 2 to emit red light. R, a phosphor G that absorbs ultraviolet rays and emits green light, and a phosphor B that absorbs ultraviolet rays and emits blue light.

この発光装置1は、蛍光体R,G,Bの各々がそれぞれ紫外LEDチップ2からの紫外線を吸収し、赤色系、緑色系、青色系の光(蛍光色)を生成し、それらの蛍光色が適切な強度バランスで混色されることにより、白色光を生成して放射する。   In the light emitting device 1, each of the phosphors R, G, and B absorbs ultraviolet rays from the ultraviolet LED chip 2 to generate red, green, and blue light (fluorescent colors), and the fluorescent colors thereof. Are mixed with an appropriate intensity balance to generate and emit white light.

このLEDチップ2は、可視波長域に発光を有さないので蛍光体の発光色との混色の作用は有しない。しかし、紫外LEDチップ2の発光特性(光出力、発光スペクトル)が変わると、蛍光体R,G,Bの各々の発光効率が個別に増減するので、紫外LEDチップ2の発光特性がばらつくことによって、発光装置1における混色の強度バランスが変化して発光装置1の発光に色ばらつきが生じる。このような不具合は、以下に示す本発明の製造方法により解消される。   Since the LED chip 2 does not emit light in the visible wavelength range, it does not have a color mixing effect with the emission color of the phosphor. However, if the light emission characteristics (light output, light emission spectrum) of the ultraviolet LED chip 2 change, the light emission efficiency of each of the phosphors R, G, and B individually increases and decreases, so that the light emission characteristics of the ultraviolet LED chip 2 vary. The intensity balance of the mixed colors in the light emitting device 1 changes, and color variations occur in the light emission of the light emitting device 1. Such a problem is solved by the manufacturing method of the present invention described below.

発光装置1に用いる紫外LEDチップ2は、例えば、ピーク波長約360nmのGaN系化合物半導体から成る。発光装置本体4の凹部41の底面に実装した紫外LEDチップ2に基づく発光は、上述の青色LEDチップ2に対する計測系と同じ計測系を用いて、その光出力、及び発光スペクトルが計測される。そして、実装状態の紫外LEDチップ2は、光出力、発光ピーク波長、半値幅に応じてランク分けされる。   The ultraviolet LED chip 2 used in the light emitting device 1 is made of, for example, a GaN compound semiconductor having a peak wavelength of about 360 nm. Light emission based on the ultraviolet LED chip 2 mounted on the bottom surface of the recess 41 of the light emitting device body 4 is measured for its light output and emission spectrum using the same measurement system as the measurement system for the blue LED chip 2 described above. The mounted ultraviolet LED chips 2 are ranked according to the light output, emission peak wavelength, and half width.

他方、波長変換部3が、蛍光体R、蛍光体G、蛍光体Bを混合し、さらに透光性のシリコーン樹脂に混合して、例えば、縦横5mm、厚さ0.5mmのシート状に作製される。各蛍光体の材料は、例えば、蛍光体RとしてYS:Eu、蛍光体Gとして3(Ba,Mg,Eu,Mn)O・8Al、蛍光体Bとして(Sr,Ca,Ba,Eu)10(PO・Clを用いることができる。なお、蛍光体材料の種類は、これらに限定されるものではない。蛍光体材料は、紫外LEDチップ2の放射する紫外線で励起されて赤、緑、青いずれかの可視光を発光可能な蛍光体材料であればよい。 On the other hand, the wavelength conversion unit 3 mixes phosphor R, phosphor G, and phosphor B, and further mixes with a translucent silicone resin, for example, to form a sheet having a length and width of 5 mm and a thickness of 0.5 mm. Is done. The material of each phosphor is, for example, Y 2 O 2 S: Eu as the phosphor R, 3 (Ba, Mg, Eu, Mn) O · 8Al 2 O 3 as the phosphor G, and (Sr, Ca as the phosphor B). , Ba, Eu) 10 (PO 4 ) 6 · Cl 2 can be used. In addition, the kind of fluorescent material is not limited to these. The phosphor material may be any phosphor material that can be excited by ultraviolet rays emitted from the ultraviolet LED chip 2 and emit visible light of red, green, or blue.

蛍光体材料の他の例を示す。蛍光体Rとしては、硫化物系蛍光体、例えば、ZnS:Cu、アルカリ土類金属珪酸塩蛍光体、例えば、(Sr,Ca,Ba)SiOなどでもよい。また、蛍光体Gとしては、金属アルミネート系蛍光体、例えば、Ba0.97Eu0.03Al、アルカリ土類金属珪酸塩系蛍光体、例えば、(Sr,Ca,Ba)SiOで、蛍光体Rとして用いたものに比べてSr/Ba比が相対的に小さいものなどでもよい。また、蛍光体Bの例としては、他に硫化物系蛍光体、例えば、ZnS:Ag、金属アルミネート系蛍光体、例えば、(Ca,Sr)0.97Eu0.03Alなどでもよい。 Another example of the phosphor material is shown. The phosphor R may be a sulfide-based phosphor, for example, ZnS: Cu, an alkaline earth metal silicate phosphor, for example, (Sr, Ca, Ba) 2 SiO 4 or the like. Further, as the phosphor G, a metal aluminate phosphor, for example, Ba 0.97 Eu 0.03 Al 2 O 4 , an alkaline earth metal silicate phosphor, for example, (Sr, Ca, Ba) 2 SiO 4 having a relatively small Sr / Ba ratio as compared with the phosphor R may be used. Other examples of the phosphor B include sulfide phosphors such as ZnS: Ag, metal aluminate phosphors such as (Ca, Sr) 0.97 Eu 0.03 Al 2 O 4 and the like. But you can.

ランク分けしたLEDに応じて、蛍光体R,G,Bを含有する設計条件の異なる波長変換部3を作製する。設計条件は、例えば、蛍光体の混合比、混合した蛍光体の全重量である。これらを変数として変化させることにより、LEDチップ2の各ランクに対応する波長変換部3を作製する。   Depending on the ranked LEDs, the wavelength converters 3 containing phosphors R, G, and B with different design conditions are produced. The design conditions are, for example, the mixing ratio of the phosphors and the total weight of the mixed phosphors. By changing these as variables, the wavelength converter 3 corresponding to each rank of the LED chip 2 is produced.

条件を変えて作製した波長変換部3は、紫外LEDチップ2を発光装置本体4の凹部41の底面に実装した波長変換部ランク分け用の装置を用いてランク分けされる。波長変換部3は、この装置を用いて発光装置1の完成品と同じ設定で励起され、発光装置1として放射される白色光のXYZ表色系の色度座標の計測に基づいて、紫外LEDチップ2の各ランクに対応させてランク分けされる。   The wavelength conversion units 3 produced by changing the conditions are ranked using a wavelength conversion unit ranking apparatus in which the ultraviolet LED chip 2 is mounted on the bottom surface of the recess 41 of the light emitting device body 4. The wavelength conversion unit 3 is an ultraviolet LED based on the measurement of the chromaticity coordinates of the XYZ color system of white light that is excited with the same setting as the completed product of the light emitting device 1 using this device and is emitted as the light emitting device 1. The rank is divided corresponding to each rank of the chip 2.

実装されてランク分けされた紫外LEDチップ2のそれぞれと、作製されランク分けされた波長変換部3のそれぞれとから、互いに適合する色合いを形成する組合せが選択され、その組合せを用いて発光装置1が組み立てられる。   A combination that forms colors that match each other is selected from each of the mounted and ranked ultraviolet LED chips 2 and each of the wavelength converters 3 that are manufactured and ranked, and the light emitting device 1 is used by using the combination. Is assembled.

上述のように、紫外LEDチップ2の適切なランク分け、及び波長変換部のランク分けがより実情に即して行われるので、従来と比べてより適合するようにLEDチップ2と波長変換部3との組合せを選択することができる。その結果、波長変換部3によって発生した赤色光、緑色光、青色光の混色により生成される白色光における色ばらつきが、低減された発光装置1が得られる。   As described above, since the proper ranking of the ultraviolet LED chip 2 and the ranking of the wavelength conversion unit are performed according to the actual situation, the LED chip 2 and the wavelength conversion unit 3 are more adapted to the conventional case. Can be selected. As a result, it is possible to obtain the light emitting device 1 in which the color variation in the white light generated by the color mixture of the red light, the green light, and the blue light generated by the wavelength conversion unit 3 is reduced.

次に、図5、図6を参照して、上述の製造方法を用いて製造した発光装置1を複数用いてユニット化した発光装置(発光装置ユニット)10の製造方法を説明する。本発明によると、このようなユニット化した発光装置10において、ユニット毎の発光特性のばらつきの少ないユニット化した発光装置を容易に実現できる。図5に示す発光装置10は、上述の青色LEDチップ2や紫外LEDチップ2を7個用いてユニット化したものである。ユニット化するに当たり、発光装置1の発光特性を計測して発光装置1をランク分けし、これらの異なるランクから発光装置1を適宜選択し、選択した7個の発光装置1を組合せる。このように、ランク分けして選択された複数の発光装置1を用いることにより、複数のユニットが略同じ発光特性となるように発光装置10を製造することができる。   Next, with reference to FIG. 5 and FIG. 6, a manufacturing method of a light emitting device (light emitting device unit) 10 in which a plurality of light emitting devices 1 manufactured using the above manufacturing method are unitized will be described. According to the present invention, in such a unitized light emitting device 10, a unitized light emitting device with little variation in the light emission characteristics of each unit can be easily realized. The light emitting device 10 shown in FIG. 5 is a unit obtained by using seven of the blue LED chips 2 and the ultraviolet LED chips 2 described above. In unitization, the light emission characteristics of the light emitting device 1 are measured, the light emitting devices 1 are ranked, the light emitting devices 1 are appropriately selected from these different ranks, and the seven selected light emitting devices 1 are combined. Thus, by using the plurality of light emitting devices 1 selected by ranking, the light emitting device 10 can be manufactured so that the plurality of units have substantially the same light emission characteristics.

ここで、発光装置10の構造を説明する。発光装置10は、図5に示すように、円盤状の基板5に7個の発光装置1が互いに略等間隔で配置されている。各発光装置1には、電極53aから配線パターン53を介して電力が供給される。基板5は、図6に示すように、金属、例えば銅、からなるベース基板50の上に絶縁層52が設けられ、絶縁層52の上に配線パターン53を形成した構造に成っている。また、ベース基板50の発光装置1が実装される領域は、他の部分よりも突出した凸部51となっており、この凸部51には、絶縁層52が設けられていなく、発光装置1の底面に直接、接合して放熱を図る構造に成っている。   Here, the structure of the light emitting device 10 will be described. As shown in FIG. 5, in the light emitting device 10, seven light emitting devices 1 are arranged on a disk-shaped substrate 5 at substantially equal intervals. Electric power is supplied to each light emitting device 1 from the electrode 53 a via the wiring pattern 53. As shown in FIG. 6, the substrate 5 has a structure in which an insulating layer 52 is provided on a base substrate 50 made of metal, for example, copper, and a wiring pattern 53 is formed on the insulating layer 52. Moreover, the area | region where the light-emitting device 1 of the base substrate 50 is mounted becomes the convex part 51 which protruded rather than the other part, and the insulating layer 52 is not provided in this convex part 51, but the light-emitting device 1 The structure is designed to directly dissipate heat from the bottom of the plate.

発光装置1の底面には、凸部51に対応して、金属層43が形成されており、金属層43と凸部51はハンダ54によって接合される。また、LEDチップ2は、発光装置本体4の凹部41の底面にフリップチップ実装される。発光装置本体4の電極42は、凹部41内でLEDチップ2の電極に接続され、発光装置本体4の外側面を経て底面に至って、基板5の配線パターン53にハンダ54によって接続される。   A metal layer 43 is formed on the bottom surface of the light emitting device 1 corresponding to the convex portions 51, and the metal layer 43 and the convex portions 51 are joined by solder 54. The LED chip 2 is flip-chip mounted on the bottom surface of the recess 41 of the light emitting device body 4. The electrode 42 of the light emitting device body 4 is connected to the electrode of the LED chip 2 in the recess 41, reaches the bottom surface through the outer surface of the light emitting device body 4, and is connected to the wiring pattern 53 of the substrate 5 by solder 54.

上述の発光装置1のランク分けは、発光装置1の光出力、発光色度の計測結果に基づいて行われる。ユニットを構成する発光装置1は、各発光装置1による光出力の総和が、所定の一定値となるように7個1組の発光装置群として選択される。このような発光装置10の構成方法は、予め光出力を所定値に揃えた発光装置を必要個数搭載するという構成方法に比べて、発光装置1の状態で各光出力を揃える必要がなく、製造が容易である。また、出力のばらつきの結果大きな出力を有する発光装置1に対して、その出力を強制的に低下させる必要がなく、発光装置1の本来の効率を落とすことがない。従って、本来の発光効率を維持して、発光効率の高いユニット化した発光装置10が得られる。   The ranking of the light emitting device 1 described above is performed based on the measurement result of the light output and light emission chromaticity of the light emitting device 1. The light-emitting devices 1 constituting the unit are selected as a set of seven light-emitting devices so that the total light output from each light-emitting device 1 becomes a predetermined constant value. Such a configuration method of the light-emitting device 10 does not need to align each light output in the state of the light-emitting device 1 as compared with a configuration method in which a necessary number of light-emitting devices whose light outputs are previously set to a predetermined value are mounted. Is easy. Further, it is not necessary to forcibly reduce the output of the light emitting device 1 having a large output as a result of output variations, and the original efficiency of the light emitting device 1 is not reduced. Accordingly, it is possible to obtain a light emitting device 10 that is unitized with high luminous efficiency while maintaining the original luminous efficiency.

また、全体の光出力の総和が一定となるように7個1組の発光装置1の群を選択する代わりに、ユニットとして全体の発光色度が所定の一定値となるように7個1組の発光装置1の群を選択してもよい。これにより、個々の発光装置1の色ばらつきが平均化され、さらに色ばらつきが改善された発光装置10が得られる。   Further, instead of selecting a group of seven light-emitting devices 1 so that the total sum of the total light outputs is constant, one set of seven so that the entire emission chromaticity as a unit becomes a predetermined constant value. A group of the light emitting devices 1 may be selected. Thereby, the color variation of each light-emitting device 1 is averaged, and the light-emitting device 10 in which the color variation is further improved is obtained.

なお、本発明は、上記構成に限られることなく種々の変形が可能である。LEDチップ2を実装する凹部41は、円形開口でなく矩形開口でもよい。LEDチップ2の実装は、フリップチップ実装に限らず、他の実装方法、例えばワイヤボンディング法でもよい。また、ユニット化した発光装置10において、発光装置1の個数は7個に限らず複数であればよい。   The present invention is not limited to the above-described configuration, and various modifications can be made. The recess 41 for mounting the LED chip 2 may be a rectangular opening instead of a circular opening. The mounting of the LED chip 2 is not limited to the flip chip mounting, but may be another mounting method such as a wire bonding method. Further, in the unitized light emitting device 10, the number of the light emitting devices 1 is not limited to seven and may be plural.

本発明の一実施形態に係る発光装置の製造方法により製造された発光装置の斜視図。The perspective view of the light-emitting device manufactured by the manufacturing method of the light-emitting device which concerns on one Embodiment of this invention. 同上製造方法の製造工程のフローチャート。The flowchart of the manufacturing process of a manufacturing method same as the above. (a)は同上製造方法におけるLEDチップを実装する工程を示す斜視図、(b)は同方法におけるLEDチップの発光特性を計測する工程を示す斜視図。(A) is a perspective view which shows the process of mounting the LED chip in a manufacturing method same as the above, (b) is a perspective view which shows the process of measuring the light emission characteristic of the LED chip in the same method. 同上製造方法におけるLEDチップと波長変換部とを組合せて発光装置を組み立てる工程を示す斜視図。The perspective view which shows the process of assembling a light-emitting device combining the LED chip and wavelength conversion part in a manufacturing method same as the above. 同上製造方法を用いて製造した発光装置を組合せてユニット化した発光装置の平面図。The top view of the light-emitting device which united the light-emitting device manufactured using the manufacturing method same as the above. 図5におけるX−X断面図。XX sectional drawing in FIG.

符号の説明Explanation of symbols

1 発光装置
2 LEDチップ
3 波長変換部
4 発光装置本体
10 発光装置(発光装置ユニット)
41 凹部
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 LED chip 3 Wavelength conversion part 4 Light-emitting device main body 10 Light-emitting device (light-emitting device unit)
41 recess

Claims (6)

LEDチップと前記LEDチップからの放射光を吸収して可視域の光を生成するための蛍光体を含有する波長変換部とを組合せて白色光を生成して発光する発光装置の製造方法において、
前記LEDチップを発光装置本体の実装部に実装した後、前記LEDチップと前記波長変換部と組み合わせる前における使用状態の条件のもとで前記LEDチップの発光特性を計測し、前記計測によって得られる、LEDチップの放射エネルギ又はその放射エネルギから算出される明るさに関する特性、及びLEDチップの発光スペクトルの特性の2つの特性に基づいて当該LEDチップをランク分けし、
予めLEDチップの各ランクに対応させて作製した設計条件の異なる前記波長変換部を、LEDチップを発光装置本体の実装部に実装して構成した波長変換部ランク分け用の装置を用いて行う色度座標の計測に基づいて、ランク分けし、
これらのランク分けした波長変換部から適するものを選択し、互いにランクの対応するLEDチップと波長変換部とを組合せることを特徴とする発光装置の製造方法。
In a method for manufacturing a light emitting device that generates white light by combining a LED chip and a wavelength conversion unit containing a phosphor for generating visible light by absorbing radiation emitted from the LED chip,
After the LED chip is mounted on the mounting portion of the light emitting device main body, the light emission characteristics of the LED chip are measured under the condition of the usage state before being combined with the LED chip and the wavelength conversion unit, and obtained by the measurement. The LED chips are ranked based on the two characteristics of the LED chip radiant energy or the brightness characteristic calculated from the radiant energy, and the LED chip emission spectrum characteristic,
A color that is formed by using a wavelength conversion unit ranking device that is configured by mounting the LED chip on the mounting portion of the light-emitting device main body, the wavelength conversion portion having a different design condition prepared in advance corresponding to each rank of the LED chip. Based on the measurement of degree coordinates, ranks,
A method for manufacturing a light-emitting device, wherein a suitable one of these wavelength-converted wavelength conversion units is selected, and LED chips and wavelength conversion units corresponding to ranks are combined with each other.
前記実装部は発光装置本体の有する実装基板に設けた凹部であり、前記LEDチップは前記凹部の底面に実装され、前記凹部は光拡散性の内壁面を有し、かつ当該凹部の底面から開口方向に向かい末広がりとなるテーパ形状を有することを特徴とする請求項1に記載の発光装置の製造方法。   The mounting portion is a recess provided on a mounting substrate of a light emitting device body, the LED chip is mounted on a bottom surface of the recess, the recess has a light diffusing inner wall surface, and is opened from the bottom surface of the recess. The method for manufacturing a light emitting device according to claim 1, wherein the light emitting device has a tapered shape that widens toward the direction. 前記LEDチップは可視域の光を放射する可視LEDチップであり、前記可視LEDチップからの光と前記波長変換部の蛍光体によって生成された光の混色により白色光を生成することを特徴とする請求項1又は請求項2に記載の発光装置の製造方法。   The LED chip is a visible LED chip that emits light in a visible range, and generates white light by mixing colors of light from the visible LED chip and light generated by a phosphor of the wavelength conversion unit. The manufacturing method of the light-emitting device of Claim 1 or Claim 2. 前記発光スペクトルの特性として色度座標値を用いることを特徴とする請求項3に記載の発光装置の製造方法。   The method of manufacturing a light emitting device according to claim 3, wherein chromaticity coordinate values are used as the characteristics of the emission spectrum. 前記LEDチップは紫外線を放射する紫外LEDチップであり、前記波長変換部は前記紫外LEDチップからの紫外線を吸収して可視域の光を放出する蛍光体を1種類以上含み、前記発光スペクトルの特性としてピーク波長及びそのピークの半値幅を用いることを特徴とする請求項1又は請求項2に記載の発光装置の製造方法。   The LED chip is an ultraviolet LED chip that emits ultraviolet light, and the wavelength conversion unit includes at least one phosphor that absorbs ultraviolet light from the ultraviolet LED chip and emits light in the visible range, and has characteristics of the emission spectrum. The method for manufacturing a light emitting device according to claim 1, wherein a peak wavelength and a half width of the peak are used. 請求項1乃至請求項5のいずれかに記載の製造方法を用いて製造した発光装置を用いて発光装置ユニットを製造する方法であって、
該発光装置の発光特性を計測して当該発光装置をランク分けし、前記発光装置を異なるランクから適宜選択してユニットとし、該ユニットが所定の発光特性となるようにすることを特徴とする発光装置ユニットの製造方法。
A method of manufacturing a light emitting device unit using a light emitting device manufactured using the manufacturing method according to claim 1,
Measuring light emission characteristics of the light emitting devices, ranking the light emitting devices, selecting the light emitting devices from different ranks as units, and making the units have predetermined light emission characteristics Device unit manufacturing method.
JP2005121962A 2005-04-20 2005-04-20 Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device Active JP4862274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121962A JP4862274B2 (en) 2005-04-20 2005-04-20 Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121962A JP4862274B2 (en) 2005-04-20 2005-04-20 Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device

Publications (2)

Publication Number Publication Date
JP2006303140A JP2006303140A (en) 2006-11-02
JP4862274B2 true JP4862274B2 (en) 2012-01-25

Family

ID=37471082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121962A Active JP4862274B2 (en) 2005-04-20 2005-04-20 Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device

Country Status (1)

Country Link
JP (1) JP4862274B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7518158B2 (en) * 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
JP2008147563A (en) * 2006-12-13 2008-06-26 Sharp Corp Manufacturing method of uniform backlight using led having variation
JP4771179B2 (en) * 2007-05-31 2011-09-14 東芝ライテック株式会社 Lighting device
US7988311B2 (en) * 2008-06-30 2011-08-02 Bridgelux, Inc. Light emitting device having a phosphor layer
US8410681B2 (en) 2008-06-30 2013-04-02 Bridgelux, Inc. Light emitting device having a refractory phosphor layer
EP2541631A4 (en) * 2010-02-25 2015-03-18 Lightizer Korea Co Ltd Light emitting diode and method for manufacturing same
JP5580100B2 (en) * 2010-04-09 2014-08-27 株式会社朝日Fr研究所 Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode
KR20120067153A (en) 2010-12-15 2012-06-25 삼성엘이디 주식회사 Light emitting device, light emitting device package, manufacturing method of light emitting device, and packaging method of light emitting device
WO2013065542A1 (en) * 2011-10-31 2013-05-10 シャープ株式会社 Display device, television reception device, and method for producing display device
JP2013105826A (en) * 2011-11-11 2013-05-30 Citizen Holdings Co Ltd Semiconductor light-emitting device, electronic apparatus equipped with the same, and manufacturing method of the same
JP2012060192A (en) * 2011-12-26 2012-03-22 Toshiba Corp Light emitting device, method for manufacturing the light emitting device, and light emitting device manufacturing apparatus
CN103447247B (en) * 2013-09-02 2015-12-23 深圳市华星光电技术有限公司 Be applicable to screening technique and the backlight module of the fluorescent material blooming piece of backlight module
KR101573452B1 (en) 2014-01-21 2015-12-01 정선호 Methods for reducing heat loss from LED

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4018757B2 (en) * 1995-12-14 2007-12-05 ローム株式会社 Light-emitting element appearance inspection method and apparatus
JP2000156528A (en) * 1998-11-19 2000-06-06 Sharp Corp Luminous element
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP4350232B2 (en) * 1999-10-05 2009-10-21 株式会社朝日ラバー Fluorescent coating manufacturing support method and manufacturing support system thereof
JP2002246650A (en) * 2001-02-13 2002-08-30 Agilent Technologies Japan Ltd Light-emitting diode and its manufacturing method
JP4122738B2 (en) * 2001-07-26 2008-07-23 松下電工株式会社 Method for manufacturing light emitting device
JP3948650B2 (en) * 2001-10-09 2007-07-25 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Light emitting diode and manufacturing method thereof
JP2004063494A (en) * 2002-07-24 2004-02-26 Sumitomo Electric Ind Ltd Light emitting device and its manufacturing method
JP4201167B2 (en) * 2002-09-26 2008-12-24 シチズン電子株式会社 Manufacturing method of white light emitting device

Also Published As

Publication number Publication date
JP2006303140A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4862274B2 (en) Method for manufacturing light emitting device and method for manufacturing light emitting device unit using the light emitting device
JP5005712B2 (en) Light emitting device
US8033692B2 (en) Lighting device
JP6063500B2 (en) Solid color lighting system with improved color quality
JP5624031B2 (en) Solid-state lighting device with mixed light
US10151434B2 (en) Light emitting module and lighting apparatus
JP5827895B2 (en) Light emitting means
WO2012121304A1 (en) Light-emitting device, and lighting device equipped with light-emitting device
JP5210109B2 (en) LED light emitting device
EP2334147B1 (en) Illumination device
JP2008140704A (en) Led backlight
US7994530B2 (en) Light emitting diode module
KR20100030470A (en) Light emitting device and system providing white light with various color temperatures
JP2013012711A (en) Semiconductor light-emitting device, semiconductor light-emitting system and lighting apparatus
KR20140005389U (en) Double-chip light emitting diode
JP2012191225A (en) Light-emitting device
JP2013182898A (en) Light-emitting device and luminaire incorporating the same
JP6583572B2 (en) Light emitting device
JP2014150293A (en) Light-emitting device
JP2013012778A (en) Lighting apparatus
JP2017117853A (en) Light emitting device and luminaire
JP6410161B2 (en) Light emitting device and method for manufacturing light emitting device
KR102550462B1 (en) Light emitting device package
JP2020196824A (en) Phosphor, wavelength conversion member and illumination device
JP2010010379A (en) Light emitting device and lighting unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150