JP4732892B2 - Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP4732892B2
JP4732892B2 JP2005372679A JP2005372679A JP4732892B2 JP 4732892 B2 JP4732892 B2 JP 4732892B2 JP 2005372679 A JP2005372679 A JP 2005372679A JP 2005372679 A JP2005372679 A JP 2005372679A JP 4732892 B2 JP4732892 B2 JP 4732892B2
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
aluminum
capacitor electrodes
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005372679A
Other languages
Japanese (ja)
Other versions
JP2006210894A (en
Inventor
秀樹 西森
敏 穂積
豊 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005372679A priority Critical patent/JP4732892B2/en
Publication of JP2006210894A publication Critical patent/JP2006210894A/en
Application granted granted Critical
Publication of JP4732892B2 publication Critical patent/JP4732892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

この発明は、電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、アルミニウム電解コンデンサ用陽極材およびアルミニウム電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for electrolytic capacitor electrodes, an aluminum material for electrolytic capacitor electrodes, an anode material for aluminum electrolytic capacitors, and an aluminum electrolytic capacitor.

なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。   In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.

アルミニウム電解コンデンサ用電極材料として一般に用いられるアルミニウム材は、静電容量を大きくする目的で、電気化学的あるいは化学的エッチング処理を施して、アルミニウム材の実効面積を拡大することが行われている。   An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is subjected to electrochemical or chemical etching treatment to increase the effective area of the aluminum material for the purpose of increasing the capacitance.

直流エッチング法でトンネル状ピットを生成させる電解コンデンサ陽極用アルミニウム材の製造においては、アルミニウムの立方体集合組織を発達させるために、冷間圧延工程の途中に中間焼鈍を実施し、仕上げ冷間圧延(低圧下率圧延)を行った後、500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍するのが一般的である(例えば特許文献1)。また、特許文献2に記載されているように、仕上げ冷間圧延の代わりにアルミニウム材に引張歪を付与することによってもアルミニウムの立方体集合組織を発達させることができる。   In the manufacture of aluminum materials for electrolytic capacitor anodes that generate tunnel-like pits by direct current etching, in order to develop a cubic texture of aluminum, intermediate annealing is performed during the cold rolling process, and finish cold rolling ( After performing low-pressure rolling (low-rate rolling), final annealing is generally performed at a temperature of about 500 ° C. in an inert atmosphere or vacuum (for example, Patent Document 1). Moreover, as described in Patent Document 2, an aluminum cubic texture can be developed also by applying tensile strain to an aluminum material instead of finish cold rolling.

最終焼鈍後のアルミニウム材のエッチング特性は、焼鈍前のアルミニウム材の特性に大きく依存することから、アルミニウム材表面層の特性を均一化するために、冷間圧延の途中や冷間圧延終了後にアルミニウムを溶解する液で洗浄することが検討されている。   Since the etching characteristics of the aluminum material after the final annealing largely depend on the characteristics of the aluminum material before the annealing, in order to make the characteristics of the surface layer of the aluminum material uniform, the aluminum material is in the middle of cold rolling or after the end of the cold rolling. It has been studied to wash with a solution that dissolves.

特許文献3では、純度99.96〜99.98%の純アルミニウム材を使用し、中間焼鈍を200〜500℃の温度で1時間以上行い、中間焼鈍後最終焼鈍までの間にアルミニウム箔の表層部を厚さ方向に0.1μm以上除去することを特徴とする電解コンデンサ電極用アルミニウム箔の製造方法が記載されている。   In Patent Document 3, a pure aluminum material having a purity of 99.96 to 99.98% is used, intermediate annealing is performed at a temperature of 200 to 500 ° C. for 1 hour or longer, and the surface layer portion of the aluminum foil is thickened between the intermediate annealing and the final annealing. A method for producing an aluminum foil for electrolytic capacitor electrodes, characterized in that 0.1 μm or more is removed in the direction, is described.

また、特許文献4には、アルミニウム箔の表面層を除去する工程と、除去後、温度:40〜350℃、露点:0〜80℃、時間:30〜1800秒の条件で加熱酸化する工程と、加熱酸化後、非酸化性雰囲気で焼鈍する工程を実施することにより、焼鈍後のアルミニウム箔表層の酸化膜を薄くでき、かつエッチング液中で速やかに溶解除去できることが開示されている。
特公昭54−11242号公報 WO 2004/003248 A1 特開平10−81945号公報 特開平7−201673号公報
Patent Document 4 includes a step of removing a surface layer of an aluminum foil, a step of heat oxidation under conditions of temperature: 40 to 350 ° C., dew point: 0 to 80 ° C., and time: 30 to 1800 seconds after the removal. In addition, it is disclosed that by performing a step of annealing in a non-oxidizing atmosphere after heat oxidation, the oxide film on the surface of the aluminum foil after annealing can be thinned and dissolved and removed quickly in an etching solution.
Japanese Patent Publication No.54-11242 WO 2004/003248 A1 JP-A-10-81945 JP-A-7-201673

しかしながら、化学的処理によって表層部を除去すると、表層除去前のアルミニウム材表面の耐食性が不均質なため、化学的処理によって表層部を均一に除去することは困難であり、静電容量の向上には限界があった。   However, if the surface layer is removed by chemical treatment, the corrosion resistance of the surface of the aluminum material before removal of the surface layer is inhomogeneous, so it is difficult to remove the surface layer uniformly by chemical treatment, which increases the capacitance. There was a limit.

また、特許文献4の方法では、焼鈍前の加熱酸化はアルミニウム材表層酸化膜の均質化に寄与するが、除去前のアルミニウム材表面層の特性は不均質であり、洗浄した後の表面層は洗浄前の表面層の不均質さの影響を受けるため、その後の加熱酸化による均質化は不十分でありエッチング特性の向上には限界があった。   Further, in the method of Patent Document 4, heating oxidation before annealing contributes to homogenization of the surface oxide film of the aluminum material, but the characteristics of the surface layer of the aluminum material before removal are inhomogeneous, and the surface layer after cleaning is Since it is affected by the non-uniformity of the surface layer before cleaning, the subsequent homogenization by heating oxidation is insufficient, and there is a limit to improving the etching characteristics.

この発明は、従来の電解コンデンサ用アルミニウム材の製造法において、アルミニウム材表面層を洗浄により溶解させる際に、アルミニウム材表面層の溶け方が不均質であるため最終焼鈍後のアルミニウム材のエッチング特性が不十分であるという問題点を解決し、エッチング特性に優れ高静電容量を実現できる電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、アルミニウム電解コンデンサ用陽極材およびアルミニウム電解コンデンサを提供することを課題とする。   This invention is a conventional method for producing an aluminum material for electrolytic capacitors. When the aluminum material surface layer is dissolved by washing, the aluminum material surface layer is not homogeneously melted, so the etching characteristics of the aluminum material after the final annealing are as follows. Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor It is an issue to provide.

上記課題は以下の手段によって解決される。
(1)熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、引張歪を付与したのち、最終焼鈍を施して電解コンデンサ電極用アルミニウム材を製造するに際し、前記中間焼鈍を酸化性雰囲気中で行い、かつ中間焼鈍より後であって最終焼鈍より前の工程において少なくとも1回アルミニウム材表面層を洗浄により除去することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)洗浄によるアルミニウム材表面層の除去が引張歪付与後であって最終焼鈍前に行われる前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3)洗浄によるアルミニウム材表面層の除去が中間焼鈍後であって引張歪付与前に行われる前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4)引張歪付与後であって最終焼鈍前に、アルミニウム材を酸化性雰囲気中で加熱した後アルミニウム材表面層を洗浄により除去する前項1ないし前項3の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5)洗浄に用いる洗浄液がアルカリ性水溶液である前項1ないし前項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)洗浄に用いる洗浄液が酸性水溶液である前項1ないし前項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)洗浄が、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる前項1ないし前項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である前項5または前項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9)酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である前項6または前項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)中間焼鈍より後に行う酸化性雰囲気中での加熱後の洗浄によるアルミニウム材表面層除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である前項1ないし前項9の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
The above problem is solved by the following means.
(1) Hot rolling and cold rolling are performed, then intermediate annealing is performed, and after the intermediate annealing, the final annealing is applied, and then the final annealing is performed to provide aluminum for electrolytic capacitor electrodes. When producing a material, the intermediate annealing is performed in an oxidizing atmosphere, and the aluminum material surface layer is removed by washing at least once in the process after the intermediate annealing and before the final annealing. Manufacturing method of aluminum material for capacitor electrode.
(2) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the removal of the surface layer of the aluminum material by washing is performed after applying the tensile strain and before the final annealing.
(3) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the removal of the surface layer of the aluminum material by washing is performed after the intermediate annealing and before applying the tensile strain.
(4) The electrolytic capacitor according to any one of the preceding items 1 to 3, wherein the aluminum material is heated in an oxidizing atmosphere after the tensile strain is applied and before the final annealing, and then the aluminum material surface layer is removed by washing. Manufacturing method of aluminum material for electrodes.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 4 above, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of (1) to (4) above, wherein the cleaning solution used for cleaning is an acidic aqueous solution.
(7) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of (1) to (4) above, wherein the washing is performed by sequential execution of washing with an alkaline aqueous solution and washing with an acidic aqueous solution.
(8) The alkali in the alkaline aqueous solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. 8. The method for producing an aluminum material for electrolytic capacitor electrodes according to 5 or 7 above.
(9) Manufacture of the aluminum material for electrolytic capacitor electrodes according to (6) or (7), wherein the acid in the acidic aqueous solution is one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid, and phosphorus elements Method.
(10) The preceding item 1 in which the removal amount of the aluminum material surface layer by cleaning after heating in an oxidizing atmosphere after the intermediate annealing is 1 nm or more and 500 nm or less per one surface of the aluminum material at the removal amount D (nm) specified below. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of any one of thru | or previous clause 9.

除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウムの密度
(11)引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱温度が50〜400℃である前項4ないし前項10の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱時間が3秒以上72時間以下である前項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)酸化性雰囲気中での中間焼鈍を200℃以上300℃以下の温度で実施する前項1ないし前項12の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(14)引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上である前項4ないし前項13の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(15)中間焼鈍における酸化性雰囲気中の酸素濃度が0.1体積%以上である前項1ないし前項14の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(16)最終焼鈍が450℃以上600℃以下の温度で行われる前項1ないし前項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(17)アルミニウム材のアルミニウム純度が99.9質量%以上である前項1ないし前項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(18)前項1ないし前項17の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。
(19)中圧用または高圧用陽極材として用いられる前項18に記載の電解コンデンサ電極用アルミニウム材。
(20)前項1ないし前項17の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。
(21)エッチングの少なくとも一部が直流エッチングである前項20に記載の電解コンデンサ用電極材の製造方法。
(22)前項21または前項22に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。
(23)電極材として前項20または前項21に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
Removal amount D (nm) = E (g / cm 2 ) x 10 7 /2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of aluminum (11) After applying the tensile strain and heating temperature in an oxidizing atmosphere performed before final annealing is 50 to 400 ° C. The manufacturing method of the aluminum material for electrolytic capacitor electrodes of description.
(12) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (11) above, wherein the heating time in an oxidizing atmosphere after applying tensile strain and before final annealing is 3 seconds or more and 72 hours or less.
(13) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 12, wherein the intermediate annealing in an oxidizing atmosphere is performed at a temperature of 200 ° C. or more and 300 ° C. or less.
(14) The electrolysis according to any one of (4) to (13), wherein the oxygen concentration in the atmosphere in the heating in the oxidizing atmosphere performed after applying the tensile strain and before the final annealing is 0.1% by volume or more. Manufacturing method of aluminum material for capacitor electrode.
(15) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 14, wherein the oxygen concentration in the oxidizing atmosphere in the intermediate annealing is 0.1% by volume or more.
(16) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 15, wherein the final annealing is performed at a temperature of 450 ° C. or more and 600 ° C. or less.
(17) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 16 above, wherein the aluminum purity of the aluminum material is 99.9% by mass or more.
(18) An aluminum material for electrolytic capacitor electrodes produced by the production method according to any one of items 1 to 17 above.
(19) The aluminum material for electrolytic capacitor electrodes as described in 18 above, which is used as an anode material for medium pressure or high pressure.
(20) A method for producing an electrode material for an electrolytic capacitor, comprising a step of performing etching on the aluminum material produced by the production method according to any one of items 1 to 17 above.
(21) The method for producing an electrode material for electrolytic capacitors as described in 20 above, wherein at least part of the etching is direct current etching.
(22) An anode material for an aluminum electrolytic capacitor produced by the production method according to item 21 or 22 above.
(23) An aluminum electrolytic capacitor characterized in that an aluminum electrode material produced by the production method according to item 20 or 21 is used as an electrode material.

前項(1)に係る発明によれば、熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、引張歪を付与したのち、最終焼鈍を施して電解コンデンサ電極用アルミニウム材を製造するに際し、前記中間焼鈍を酸化性雰囲気中で行い、かつ中間焼鈍より後であって最終焼鈍より前の工程において少なくとも1回アルミニウム材表面層を洗浄により除去するから、洗浄時にアルミニウム材を均一に溶解することができ、その後最終焼鈍により、エッチング特性に優れ、ひいては高静電容量の電解コンデンサ電極用アルミニウム材とすることができる。   According to the invention according to the preceding item (1), hot rolling and cold rolling are performed, then intermediate annealing is performed, and after the intermediate annealing, the final annealing is started, and then the final annealing is performed. When the aluminum material for electrolytic capacitor electrodes is manufactured by performing the intermediate annealing, the intermediate annealing is performed in an oxidizing atmosphere, and the aluminum material surface layer is washed at least once in the process after the intermediate annealing and before the final annealing. Since it is removed, the aluminum material can be uniformly dissolved at the time of washing, and then by the final annealing, it is possible to obtain an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics and high capacitance.

前項(2)に係る発明によれば、洗浄によるアルミニウム材表面層の除去が引張歪付与後であって最終焼鈍前に行われるから、洗浄時にアルミニウム材を均一に溶解することができ、その後最終焼鈍により、エッチング特性に優れ、ひいては高静電容量の電解コンデンサ電極用アルミニウム材とすることができる。   According to the invention of the preceding item (2), since the removal of the aluminum material surface layer by washing is performed after the tensile strain is applied and before the final annealing, the aluminum material can be uniformly dissolved at the time of washing, and then the final By annealing, it is possible to obtain an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics and high capacitance.

前項(3)に係る発明によれば、洗浄によるアルミニウム材表面層の除去が中間焼鈍後であって引張歪付与前に行われるから、洗浄時にアルミニウム材を均一に溶解することができ、その後最終焼鈍により、エッチング特性に優れ、ひいては高静電容量の電解コンデンサ電極用アルミニウム材とすることができる。   According to the invention according to the preceding item (3), the removal of the aluminum material surface layer by cleaning is performed after the intermediate annealing and before applying the tensile strain, so that the aluminum material can be uniformly dissolved during the cleaning, and then the final By annealing, it is possible to obtain an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics and high capacitance.

前項(4)に係る発明によれば、引張歪付与後であって最終焼鈍前に、アルミニウム材を酸化性雰囲気中で加熱した後アルミニウム材表面層を洗浄により除去するから、酸化性雰囲気中での中間焼鈍および酸化性雰囲気中での加熱により、洗浄時のアルミニウム材表層の溶解性が均一になり、よりエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention of the preceding item (4), after the tensile strain is applied and before the final annealing, the aluminum material is heated in an oxidizing atmosphere and then the aluminum material surface layer is removed by washing. By the intermediate annealing and heating in an oxidizing atmosphere, the solubility of the surface layer of the aluminum material at the time of cleaning becomes uniform, and an aluminum material for an electrolytic capacitor electrode with better etching characteristics can be obtained.

前項(5)に係る発明によれば、洗浄に用いる洗浄液がアルカリ性水溶液であるから、アルミニウム材表面層を洗浄により確実に除去することができる。   According to the invention according to item (5) above, since the cleaning liquid used for cleaning is an alkaline aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.

前項(6)に係る発明によれば、洗浄に用いる洗浄液が酸性水溶液であるから、アルミニウム材表面層を洗浄により確実に除去することができる。   According to the invention according to item (6) above, since the cleaning liquid used for cleaning is an acidic aqueous solution, the aluminum material surface layer can be reliably removed by cleaning.

前項(7)に係る発明によれば、洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われるから、アルミニウム材表面層をさらに確実に除去することができる。   According to the invention according to item (7) above, the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution, so that the aluminum material surface layer can be more reliably removed.

前項(8)に係る発明によれば、アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上であるから、より効果的な表面層の除去を行うことができる。   According to the invention according to item (8), the alkali in the alkaline aqueous solution is selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. Since it is 1 type or 2 types or more, the more effective removal of a surface layer can be performed.

前項(9)に係る発明によれば、酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上であるから、より効果的な表面層の除去を行うことができる。   According to the invention according to item (9) above, the acid in the acidic aqueous solution is one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid, and phosphorus element, so that a more effective surface layer Can be removed.

前項(10)に係る発明によれば、酸化性雰囲気中での加熱後の洗浄によるアルミニウム材表面層除去量がアルミニウム材片面あたり1nm以上500nm以下であるから、アルミニウム材の均一溶解による静電容量の増大効果を確実に得ることができる。   According to the invention of the preceding item (10), since the aluminum material surface layer removal amount by cleaning after heating in an oxidizing atmosphere is 1 nm or more and 500 nm or less per one side of the aluminum material, the capacitance due to uniform dissolution of the aluminum material The increase effect can be obtained with certainty.

前項(11)に係る発明によれば、引張歪付与後であって最終焼鈍前に実施する酸化性雰囲気中での加熱温度が50〜400℃であるから、アルミニウム材の表面層を過度の厚さの酸化膜の生成を抑制しながら十分に酸化させることができ、その後の洗浄による表面層の除去時に表面層を均一に溶解することができる。   According to the invention according to item (11) above, since the heating temperature in the oxidizing atmosphere after applying the tensile strain and before the final annealing is 50 to 400 ° C., the surface layer of the aluminum material is excessively thick. Further, it is possible to sufficiently oxidize while suppressing the formation of the oxide film, and to uniformly dissolve the surface layer when the surface layer is removed by subsequent cleaning.

前項(12)に係る発明によれば、引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱時間が3秒以上72時間以下であるから、アルミニウム材の表面層を無駄なエネルギ消費を抑制しながら十分に酸化させることができ、その後の洗浄による表面層の除去時に表面層を均一に溶解することができる。   According to the invention according to item (12) above, since the heating time in the oxidizing atmosphere after applying the tensile strain and before the final annealing is 3 seconds or more and 72 hours or less, the surface layer of the aluminum material is wasted. Oxidation can be sufficiently performed while suppressing energy consumption, and the surface layer can be uniformly dissolved when the surface layer is removed by subsequent cleaning.

前項(13)に係る発明によれば、酸化性雰囲気中での中間焼鈍を200℃以上300℃以下の温度で実施するから、アルミニウム材表層の溶解性が均一になる。   According to the invention according to item (13) above, the intermediate annealing in an oxidizing atmosphere is performed at a temperature of 200 ° C. or higher and 300 ° C. or lower, so the solubility of the aluminum material surface layer becomes uniform.

前項(14)に係る発明によれば、引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上であるから、アルミニウム材表面層を十分に酸化させることができる。   According to the invention of the preceding item (14), since the oxygen concentration in the atmosphere in the heating in the oxidizing atmosphere performed after applying the tensile strain and before the final annealing is 0.1% by volume or more, the aluminum material surface layer Can be sufficiently oxidized.

前項(15)に係る発明によれば、中間焼鈍における酸化性雰囲気中の酸素濃度が0.1体積%以上であるから、アルミニウム材表面層を十分に酸化させることができる。   According to the invention relating to the above item (15), since the oxygen concentration in the oxidizing atmosphere in the intermediate annealing is 0.1% by volume or more, the aluminum material surface layer can be sufficiently oxidized.

前項(16)に係る発明によれば、最終焼鈍が450℃以上600℃以下で行われるから、エッチピットが均一に生成するアルミニウム材表面を得ることができる。   According to the invention according to item (16), since the final annealing is performed at 450 ° C. or more and 600 ° C. or less, an aluminum material surface on which etch pits are uniformly generated can be obtained.

前項(17)に係る発明によれば、アルミニウム純度が99.9質量%以上であるから、不純物が多すぎることによるエッチング特性の劣化を防止することができる。   According to the invention relating to item (17) above, since the aluminum purity is 99.9% by mass or more, it is possible to prevent deterioration of etching characteristics due to excessive impurities.

前項(18)に係る発明によれば、エッチング特性に優れた電解コンデンサ電極用アルミニウム材となしうる。   According to the invention according to item (18) above, an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics can be obtained.

前項(19)に係る発明によれば、エッチング特性に優れた中圧用または高圧用陽極材として用いることができる。   According to the invention according to item (19), it can be used as an anode material for medium pressure or high pressure excellent in etching characteristics.

前項(20)に係る発明によれば、エッチングにより大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention of the preceding item (20), an electrode material for an electrolytic capacitor having a large capacitance can be manufactured by etching.

前項(21)に係る発明によれば、エッチングの少なくとも一部を直流エッチングで行うことにより、深くて太い多数のトンネル状ピットを生成することができ、前記酸化性雰囲気中での加熱及び洗浄による表面層除去による前記効果を効率的に発揮させることができる。   According to the invention of the preceding item (21), by performing at least a part of etching by direct current etching, a large number of deep and thick tunnel-like pits can be generated, and heating and cleaning in the oxidizing atmosphere are performed. The effect by removing the surface layer can be efficiently exhibited.

前項(22)に係る発明によれば、高静電容量のアルミニウム電解コンデンサ用陽極材となし得る。   According to the invention which concerns on the preceding clause (22), it can be set as the anode material for aluminum electrolytic capacitors with a high electrostatic capacity.

前項(23)に係る発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention relating to item (23), an aluminum electrolytic capacitor having a high capacitance can be obtained.

本願発明者は、熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、引張歪を付与し、最終焼鈍を施す電解コンデンサ電極用アルミニウム材を製造するに際し、前記中間焼鈍を酸化性雰囲気中で行い、かつ中間焼鈍より後であって最終焼鈍より前の工程においてアルミニウム材表面層を洗浄により除去すると、酸化性雰囲気中の中間焼鈍によるアルミニウム材の酸化によりその後に実施する洗浄におけるアルミニウム材表層の溶解性が均一になり、最終焼鈍後のアルミニウム材のエッチング特性が顕著に向上することを見出した。さらに、酸化性雰囲気中での中間焼鈍、引張歪付与を行った後、酸化性雰囲気中での加熱、洗浄によるアルミニウム材表面層の除去、最終焼鈍を順次実施すると、酸化性雰囲気中での中間焼鈍に加え、引張歪付与後の酸化性雰囲気中での加熱によってよりエッチング特性に優れたものとすることができる。   The inventor of the present application performs hot rolling and cold rolling, and then performs intermediate annealing, and after applying the intermediate annealing until applying the final annealing and applying the final annealing, the aluminum for electrolytic capacitor electrodes When the material is manufactured, the intermediate annealing is performed in an oxidizing atmosphere, and the aluminum material surface layer is removed by washing in the process after the intermediate annealing and before the final annealing. It has been found that the solubility of the surface layer of the aluminum material in the subsequent cleaning is made uniform by the oxidation of the aluminum material, and the etching characteristics of the aluminum material after the final annealing are remarkably improved. Furthermore, after intermediate annealing in an oxidizing atmosphere and imparting tensile strain, heating in an oxidizing atmosphere, removal of the aluminum material surface layer by cleaning, and final annealing are performed sequentially. In addition to annealing, it can be made more excellent in etching characteristics by heating in an oxidizing atmosphere after imparting tensile strain.

前述のように、引張歪付与は最終焼鈍においてアルミニウムの立方体集合組織を発達させるために仕上げ冷間圧延の代わりに実施される工程であるが、適正な引張歪は仕上げ冷間圧延による加工率に比べ低いため(特許文献1および特許文献2参照)、前工程の中間焼鈍を酸化性雰囲気中で実施し、仕上げ冷間圧延後にアルミニウム材表面層を洗浄により除去する場合よりアルミニウム材表面の溶解性が均一になりエッチング特性の向上が大きい。   As described above, tensile straining is a process performed in place of finish cold rolling to develop a cubic texture of aluminum in final annealing, but proper tensile strain depends on the processing rate by finish cold rolling. Compared to the case (see Patent Literature 1 and Patent Literature 2), the intermediate annealing in the previous process is performed in an oxidizing atmosphere, and the aluminum material surface layer is more soluble than the case where the aluminum material surface layer is removed by washing after finish cold rolling. As a result, the etching characteristics are greatly improved.

以下に、電解コンデンサ用アルミニウム材の製造方法を詳細に説明する。   Below, the manufacturing method of the aluminum material for electrolytic capacitors is demonstrated in detail.

アルミニウム材の純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明においてアルミニウム材の純度は便宜的に100%からFe, SiおよびCuの合計濃度(質量%)を差し引いた値とする。   The purity of the aluminum material is not particularly limited as long as it is within the range used for electrolytic capacitors, but it is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, the purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si and Cu from 100% for convenience.

Pbは最終焼鈍時にアルミニウム材表層に濃化し、エッチピット生成に大きく影響を及ぼす。直流エッチング法によりトンネル状エッチピットを生成させる際に、Pbが少なすぎるとエッチング法によってはエッチピット分散性が悪く、多すぎるとアルミニウム材の表面溶解が多くなることから、必要に応じて適量のPbがアルミニウム材中に含まれていてもよい。例えば、アルミニウム材中に0.00002〜0.0002質量%のPbが含まれるようアルミニウム材溶解時に調整することが推奨できる。   Pb is concentrated on the surface of the aluminum material at the time of final annealing and greatly affects the formation of etch pits. When generating tunnel-like etch pits by the direct current etching method, if Pb is too small, etch pit dispersibility is poor depending on the etching method, and if it is too much, the surface dissolution of the aluminum material will increase. Pb may be contained in the aluminum material. For example, it can be recommended to adjust at the time of melting aluminum material so that 0.00002 to 0.0002 mass% of Pb is contained in the aluminum material.

アルミニウム材の製造工程は、限定されないが、アルミニウム材の溶解成分調整・スラブ鋳造、熱間圧延、冷間圧延、酸化性雰囲気中での中間焼鈍、引張歪付与、最終焼鈍の順に実施することができ、中間焼鈍後最終焼鈍前に洗浄によるアルミニウム材表面層の除去が行われる。洗浄によるアルミニウム材表面層の除去は少なくとも1回以上実施され、例えば酸化性雰囲気中での中間焼鈍後引張歪付与前に洗浄を実施した後さらに引張歪付与後最終焼鈍前に洗浄を実施してもよい。   Although the manufacturing process of the aluminum material is not limited, it may be carried out in the order of adjustment of the melting component of the aluminum material, slab casting, hot rolling, cold rolling, intermediate annealing in an oxidizing atmosphere, imparting tensile strain, and final annealing. It is possible to remove the aluminum surface layer by washing after the intermediate annealing and before the final annealing. The removal of the aluminum material surface layer by cleaning is performed at least once. For example, after the intermediate annealing in an oxidizing atmosphere and after the tensile strain is applied, the cleaning is further performed after the tensile strain and before the final annealing. Also good.

また、上記製造工程に加え、引張歪付与後最終焼鈍前に酸化性雰囲気中での加熱を行うことがさらに好ましく、引張歪付与後最終焼鈍前に酸化性雰囲気中での加熱を行う場合は、酸化性雰囲気中の加熱後最終焼鈍前に洗浄によるアルミニウム材表面層の除去が実施される。また、酸化性雰囲気中での中間焼鈍後酸化性雰囲気中での加熱前および酸化性雰囲気中での加熱後最終焼鈍前にそれぞれアルミニウム材表面層の除去を行ってもよい。   In addition to the above manufacturing process, it is more preferable to perform heating in an oxidizing atmosphere before final annealing after applying tensile strain, and when heating in an oxidizing atmosphere before final annealing after applying tensile strain, The aluminum material surface layer is removed by cleaning after heating in an oxidizing atmosphere and before final annealing. Alternatively, the surface layer of the aluminum material may be removed after intermediate annealing in an oxidizing atmosphere, before heating in the oxidizing atmosphere, and after heating in the oxidizing atmosphere and before final annealing.

引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱とその後の洗浄によるアルミニウム材表面層の除去はそれぞれ一回ずつ行っても良く、酸化性雰囲気中での加熱とその後の洗浄によるアルミニウム材表面層除去を交互に複数回行っても良い。   The heating in the oxidizing atmosphere after applying the tensile strain and before the final annealing and the removal of the surface layer of the aluminum material by the subsequent cleaning may be performed once each, and the heating in the oxidizing atmosphere and the subsequent The aluminum material surface layer removal by washing may be alternately performed a plurality of times.

前記酸化性雰囲気中での中間焼鈍は、加熱体との接触によるものではなく、雰囲気加熱により行われる。雰囲気加熱は、アルミニウム材と加熱体が接触しないため、加熱体との接触加熱のように加熱時に皺や疵が発生する恐れがないため、本発明では雰囲気加熱により中間焼鈍を実施する。   The intermediate annealing in the oxidizing atmosphere is not performed by contact with a heating body, but is performed by atmospheric heating. In the atmosphere heating, since the aluminum material and the heating body do not come into contact with each other, there is no fear that wrinkles and wrinkles are generated during heating unlike the contact heating with the heating body. Therefore, in the present invention, the intermediate annealing is performed by the atmosphere heating.

酸化性雰囲気中での中間焼鈍時の加熱方法としては、送風加熱、輻射加熱などを例示できる。また、アルミニウム材を酸化性雰囲気中で加熱する際の昇温速度・パターンは特に限定されないが、最終焼鈍後の立方体方位占有率が高くなる条件で行われる。また、加熱されるアルミニウム材の形態は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良いし、コイルを巻き戻し連続焼鈍したのちコイルに巻き取っても良い。   Examples of the heating method at the time of intermediate annealing in an oxidizing atmosphere include blast heating and radiation heating. Further, the rate of temperature increase / pattern when heating the aluminum material in an oxidizing atmosphere is not particularly limited, but is performed under the condition that the cube orientation occupation ratio after the final annealing is high. Moreover, the form of the aluminum material to be heated is not particularly limited, and batch annealing may be performed in a state where the coil is wound around the coil, or winding may be performed after the coil is rewound and continuously annealed.

中間焼鈍における酸化性雰囲気中の酸素濃度は0.1体積%以上であることが好ましい。酸素濃度が0.1体積%未満では加熱時にアルミニウム材表面が十分酸化されない恐れがある。   The oxygen concentration in the oxidizing atmosphere in the intermediate annealing is preferably 0.1% by volume or more. If the oxygen concentration is less than 0.1% by volume, the surface of the aluminum material may not be sufficiently oxidized during heating.

酸素濃度は特に1体積%以上であることが好ましく、とりわけ5体積%以上であることが好ましく、空気を酸化性雰囲気として好適に利用できる。空気を酸化性雰囲気として利用する場合は、酸素濃度制御の必要がなく中間焼鈍工程のコストダウンを図ることができる。   The oxygen concentration is particularly preferably 1% by volume or more, particularly preferably 5% by volume or more, and air can be suitably used as the oxidizing atmosphere. When air is used as the oxidizing atmosphere, it is not necessary to control the oxygen concentration, and the cost of the intermediate annealing process can be reduced.

酸化性雰囲気中での中間焼鈍温度は、200℃以上300℃以下が好ましい。上記温度範囲における中間焼鈍によりアルミニウム材が酸化されアルミニウム材表層の溶解性が均一になる。上記中間焼鈍温度範囲が好ましいのは、中間焼鈍温度が200℃未満では最終焼鈍時に立方体方位を有する再結晶粒が優先成長するのに十分な組織が得られず、300℃を超えると最終焼鈍時の立方体方位粒の優先成長を阻害する再結晶粒が成長するからである。なお、良好な立方体方占有率が得られる中間焼鈍温度および時間はアルミニウム材の組成に依存し、最終焼鈍後に高い立方体方位占有率が得られる条件が選択される。   The intermediate annealing temperature in the oxidizing atmosphere is preferably 200 ° C. or higher and 300 ° C. or lower. By the intermediate annealing in the above temperature range, the aluminum material is oxidized and the solubility of the aluminum material surface layer becomes uniform. The intermediate annealing temperature range is preferable because if the intermediate annealing temperature is less than 200 ° C, a sufficient structure cannot be obtained for pre-growth of recrystallized grains having a cubic orientation at the time of final annealing. This is because recrystallized grains that hinder the preferential growth of cubic orientation grains grow. Note that the intermediate annealing temperature and time at which a good cubic occupancy is obtained depend on the composition of the aluminum material, and the conditions for obtaining a high cubic orientation occupancy after the final annealing are selected.

引張歪付与は中間焼鈍と組み合わせて立方体方位の制御のため行われる工程である。引張歪付与は仕上げ冷間圧延のように多量の潤滑油がアルミニウム材表面に付着するという問題がないため、その後に酸化性雰囲気中での加熱を実施する場合にはアルミニウム材表面を酸化させやすい。また、引張歪付与は仕上げ冷間圧延に比べ箔が厚くても最終焼鈍時にアルミニウム結晶粒の粗大化が起こりにくく、厚いアルミニウム材を製造しやすいという特長を有する。引張歪付与方法は特に限定されないが、特許文献2に記載されている方法を適用することができる。   The application of tensile strain is a process performed for controlling the cube orientation in combination with intermediate annealing. Since there is no problem that a large amount of lubricating oil adheres to the surface of the aluminum material as in the case of finish cold rolling, it is easy to oxidize the surface of the aluminum material when heating in an oxidizing atmosphere afterwards. . Further, imparting tensile strain has the advantage that even if the foil is thicker than finish cold rolling, the aluminum crystal grains are less likely to be coarsened during the final annealing, and a thick aluminum material can be easily manufactured. The method for imparting tensile strain is not particularly limited, but the method described in Patent Document 2 can be applied.

引張歪を付与するときの引張歪は1%以上15%以下であることが好ましい。引張歪が1%未満では立方体方位を有する結晶粒を優先成長させるための加工歪が不十分であり、15%を越えると引張過程でアルミニウム材が破断する恐れがある。引張歪の付与は、アルミニウム材に対して1方向、例えば長さ方向のみに引張歪を付与する一軸引張でも良いし、異なる2方向、例えば長さ方向と幅方向に引張歪を付与する二軸引張によっても良い。また、アルミニウム材を曲げ変形させて引張歪を生じさせても良い。   The tensile strain when applying the tensile strain is preferably 1% or more and 15% or less. If the tensile strain is less than 1%, the processing strain for preferential growth of crystal grains having a cubic orientation is insufficient, and if it exceeds 15%, the aluminum material may break during the tensile process. The tensile strain may be applied to the aluminum material by uniaxial tension that imparts tensile strain in one direction, for example, only in the length direction, or biaxial that imparts tensile strain in two different directions, for example, the length direction and the width direction. It may be by tension. Further, the aluminum material may be bent and deformed to generate tensile strain.

引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱は、加熱体との接触によるものではなく、雰囲気加熱により行われる。雰囲気加熱は、アルミニウム材と加熱体が接触しないため、加熱体との接触加熱のように加熱時に皺や疵が発生する恐れがないため、本発明では雰囲気加熱が行われる。   The heating in the oxidizing atmosphere that is performed after the application of the tensile strain and before the final annealing is not performed by contact with the heating body, but is performed by atmospheric heating. In the atmosphere heating, since the aluminum material and the heating body do not come into contact with each other, there is no fear that wrinkles and wrinkles are generated during heating unlike the contact heating with the heating body. Therefore, the atmosphere heating is performed in the present invention.

引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱方法としては、送風加熱、輻射加熱などを例示できる。また、加熱されるアルミニウム材の形態は特に限定されるものではなく、コイルに巻き取った状態でバッチ加熱しても良いし、コイルを巻き戻し連続加熱したのちコイルに巻き取っても良い。   Examples of the heating method in an oxidizing atmosphere that is performed after the application of tensile strain and before the final annealing include blast heating and radiation heating. Moreover, the form of the aluminum material to be heated is not particularly limited, and batch heating may be performed while being wound around the coil, or winding may be performed after the coil is rewound and continuously heated.

引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中でのアルミニウム材の加熱温度は50〜400℃であることが好ましい。   It is preferable that the heating temperature of the aluminum material in the oxidizing atmosphere after the tensile strain is applied and before the final annealing is 50 to 400 ° C.

加熱温度が50℃未満では、アルミニウム材表層の酸化が不十分でアルミニウム材表面層除去時にアルミニウム材が均一に溶解しない恐れがある。加熱温度が400℃を越えるとアルミニウム材表層酸化膜が厚くなりアルミニウム材の溶解性が低下し、アルミニウム材を均一に溶解させ難くなる。特に好ましいアルミニウム材の加熱温度は70〜350℃であり、とりわけ70〜240℃が好ましい。   If the heating temperature is less than 50 ° C., the surface layer of the aluminum material is not sufficiently oxidized, and the aluminum material may not be uniformly dissolved when the surface layer of the aluminum material is removed. When the heating temperature exceeds 400 ° C., the surface oxide film of the aluminum material becomes thick and the solubility of the aluminum material decreases, making it difficult to uniformly dissolve the aluminum material. The heating temperature of the particularly preferable aluminum material is 70 to 350 ° C, and 70 to 240 ° C is particularly preferable.

引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱時間は3秒以上72時間以下であることが好ましい。加熱時間が3秒未満ではアルミニウム材表面層の酸化が不十分であるため、表面層除去時にアルミニウム材が均一に溶解し難く、加熱時間が72時間を超えるとアルミニウム材表面層除去時の溶解均一性は殆ど変わらなくなるため、加熱時のエネルギー消費によりコスト高となる。特に好ましい加熱時間は10秒以上48時間以下であり、とりわけ70秒以上48時間以下が良い。   The heating time in an oxidizing atmosphere after applying tensile strain and before final annealing is preferably 3 seconds or more and 72 hours or less. If the heating time is less than 3 seconds, oxidation of the surface layer of the aluminum material is insufficient, so it is difficult for the aluminum material to dissolve uniformly when the surface layer is removed. Since the property hardly changes, the energy consumption during heating increases the cost. A particularly preferable heating time is 10 seconds to 48 hours, particularly 70 seconds to 48 hours.

酸化性雰囲気中での加熱温度と時間は、加熱方法により適正な条件が選択される。例えば、コイルとして巻き取った状態でアルミニウム材を加熱する場合には、50℃〜240℃にて30分から72時間加熱されることが好ましく、さらに70℃〜240℃にて1時間から48時間加熱されることが好ましい。また、コイルを巻き解いた状態のアルミニウム材あるいはシート状にカットしたアルミニウム材を加熱する場合の加熱時間t(時間)は加熱温度をx(℃)とすると、10/(1.44×x1.5)≦t≦72であることが好ましくさらに、10/(1.44×x1.5)≦t≦48であることが好ましい。 Appropriate conditions for the heating temperature and time in the oxidizing atmosphere are selected depending on the heating method. For example, when an aluminum material is heated in a state of being wound as a coil, it is preferably heated at 50 ° C. to 240 ° C. for 30 minutes to 72 hours, and further heated at 70 ° C. to 240 ° C. for 1 hour to 48 hours. It is preferred that In addition, the heating time t (hour) when heating the aluminum material with the coil unwound or cut into a sheet shape is 10 / (1.44 × x 1.5 ) ≦ when the heating temperature is x (° C.). It is preferable that t ≦ 72, and more preferably 10 / (1.44 × x 1.5 ) ≦ t ≦ 48.

引張歪付与後であって最終焼鈍前に行われるアルミニウム材の加熱における酸化性雰囲気中の酸素濃度は0.1体積%以上であることが好ましい。酸素濃度が0.1体積%未満では加熱時にアルミニウム材表面が十分酸化されない恐れがある。酸素濃度は特に1体積%以上であることが好ましく、とりわけ5体積%以上であることが好ましく、空気を酸化性雰囲気として好適に利用できる。   It is preferable that the oxygen concentration in the oxidizing atmosphere in the heating of the aluminum material after the tensile strain is applied and before the final annealing is 0.1% by volume or more. If the oxygen concentration is less than 0.1% by volume, the surface of the aluminum material may not be sufficiently oxidized during heating. The oxygen concentration is particularly preferably 1% by volume or more, particularly preferably 5% by volume or more, and air can be suitably used as the oxidizing atmosphere.

酸化性雰囲気中での中間焼鈍後であって最終焼鈍前に実施される洗浄によるアルミニウム材表面層の除去に用いる洗浄液は特に限定されないが、アルカリ性水溶液、酸性水溶液を用いることができる。表面層の除去は、アルカリ性水溶液あるいは酸性水溶液のどちらかを用いて行ってもよく、アルカリ性水溶液を用いて実施した後酸性水溶液を用いて洗浄しても良い。   The cleaning solution used for removing the aluminum material surface layer by the cleaning performed after the intermediate annealing in the oxidizing atmosphere and before the final annealing is not particularly limited, and an alkaline aqueous solution or an acidic aqueous solution can be used. The removal of the surface layer may be performed using either an alkaline aqueous solution or an acidic aqueous solution, or may be performed using an alkaline aqueous solution and then washed using an acidic aqueous solution.

アルカリ性水溶液中のアルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムが例示でき、これらアルカリの中から選ばれた1種あるいは2種以上を水に溶解させ洗浄液として用いることができる。   Examples of the alkali in the alkaline aqueous solution include sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. One selected from these alkalis or Two or more types can be dissolved in water and used as a cleaning solution.

酸性水溶液中の酸としては、塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれる1種または2種以上を用いる。リン元素を含む酸としてはオルトリン酸(以後リン酸と称す。)、ピロリン酸、メタリン酸、ポリリン酸を例示できる。   As the acid in the acidic aqueous solution, one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element are used. Examples of the acid containing phosphorus element include orthophosphoric acid (hereinafter referred to as phosphoric acid), pyrophosphoric acid, metaphosphoric acid, and polyphosphoric acid.

アルミニウム材の表面層除去量は、アルカリまたは酸の濃度、アルカリ性または酸性水溶液の温度およびアルミニウム材とアルカリまたは酸水溶液との接触時間を適正なものにすることにより調節される。   The surface layer removal amount of the aluminum material is adjusted by adjusting the alkali or acid concentration, the temperature of the alkaline or acidic aqueous solution, and the contact time between the aluminum material and the alkaline or acidic aqueous solution.

また、アルミニウム材表面層の洗浄効果を高める目的で洗浄液に界面活性剤やキレート剤を添加しても良い。   Further, a surfactant or chelating agent may be added to the cleaning liquid for the purpose of enhancing the cleaning effect of the aluminum material surface layer.

酸化性雰囲気中の加熱後の洗浄によるアルミニウム材表面層除去量はアルミニウム材片面あたり1nm以上500nm以下であることが好ましい。表面層除去量が1nm未満の場合アルミニウム材表面層の酸化膜の除去が不十分な恐れがあり、500nmより多く表層を除去するとアルミニウム材表面層のエッチピット核の生成が抑制されるため却ってエッチング特性が悪く静電容量が低下する恐れがある。より好ましい表面層除去量は1.5nm以上200nm以下であり、さらに5nm以上200nm以下が好ましく、10nm以上150nm以下がより好ましい。   The removal amount of the aluminum material surface layer by washing after heating in an oxidizing atmosphere is preferably 1 nm or more and 500 nm or less per side of the aluminum material. If the removal amount of the surface layer is less than 1 nm, the removal of the oxide film on the surface layer of the aluminum material may be insufficient, and if the surface layer is removed more than 500 nm, the formation of etch pit nuclei on the surface layer of the aluminum material is suppressed, and etching is performed instead. The characteristics are poor and the capacitance may decrease. The removal amount of the surface layer is more preferably 1.5 nm or more and 200 nm or less, further preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 150 nm or less.

なお、アルミニウム材表面層酸化膜と金属のアルミニウムは密度が異なるが、本願においてアルミニウム材の表面層除去量D(nm)は洗浄による単位表面積当たりの質量減E(g/cm2)とアルミニウムの密度2.7g/cm3を用いて、D(nm)=E×107/2.7と規定する。 The density of the aluminum surface layer oxide film and the metallic aluminum is different, but in this application the surface layer removal amount D (nm) of the aluminum material is the mass loss E (g / cm 2 ) per unit surface area due to cleaning and the aluminum Using a density of 2.7 g / cm 3 , D (nm) = E × 10 7 /2.7 is specified.

洗浄液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等があげられる。   A method for contacting the cleaning liquid with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the cleaning liquid, and spraying.

洗浄によるアルミニウム材表面層の除去は中間焼鈍後であって、引張歪付与後に行われる酸化性雰囲気中での加熱より前の工程で行っても良く、洗浄条件は前記酸化性雰囲気加熱後の洗浄条件の範囲で実施することができる。   The removal of the surface layer of the aluminum material by cleaning may be performed after the intermediate annealing and before the heating in the oxidizing atmosphere performed after applying the tensile strain, and the cleaning conditions are the cleaning after the heating in the oxidizing atmosphere. It can be implemented within a range of conditions.

また、熱間圧延後であって中間焼鈍より前の工程において、洗浄によりアルミニウム材表面層を除去してもよい。熱間圧延後であって中間焼鈍より前の工程での洗浄に用いる洗浄液は目的に応じて選択され特に限定されないが、前記酸化性雰囲気中の加熱後の洗浄に用いられるものと同じものを用いることができる。   Moreover, you may remove an aluminum material surface layer by washing | cleaning in the process after hot rolling and before intermediate annealing. The cleaning liquid used for cleaning in the process after the hot rolling and before the intermediate annealing is selected according to the purpose and is not particularly limited, but the same one as used for cleaning after heating in the oxidizing atmosphere is used. be able to.

アルミニウム材の最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。   The treatment atmosphere in the final annealing of the aluminum material is not particularly limited, but it is preferable to heat in an atmosphere with less moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less.

最終焼鈍後のアルミニウム材の立方体方位占有率は90%以上が好ましい。   The cubic occupancy ratio of the aluminum material after the final annealing is preferably 90% or more.

最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍したのちコイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。   The method of final annealing is not particularly limited, and batch annealing may be performed in a state of being wound around the coil, and the coil may be rewound and continuously annealed, and then wound on the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.

焼鈍時の温度、時間は特に限定されるものではないが、例えばコイルの状態でバッチ焼鈍を行う場合には、450〜600℃にて10分〜50時間焼鈍するのが好ましい。温度が450℃未満、時間が10分未満では、エッチピットが均一に生成する表面が得られず、立方体方位の結晶の発達も不十分となる恐れがあるからである。逆に600℃を越えて焼鈍すると、コイルでバッチ焼鈍する場合はアルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチングによる拡面効果は飽和し、却って熱エネルギーコストの増大を招く。特に好ましい焼鈍温度は460〜570℃である。特に好ましい焼鈍時間は20分〜40時間である。   Although the temperature and time during annealing are not particularly limited, for example, when batch annealing is performed in a coil state, it is preferable to perform annealing at 450 to 600 ° C. for 10 minutes to 50 hours. This is because if the temperature is less than 450 ° C. and the time is less than 10 minutes, a surface on which etch pits are uniformly generated cannot be obtained, and the development of crystals having a cubic orientation may be insufficient. Conversely, when annealing is performed at temperatures exceeding 600 ° C., the aluminum material is likely to adhere when batch annealing is performed with a coil, and even if annealing is performed for more than 50 hours, the surface expansion effect by etching is saturated, and the heat energy cost is reduced. Incurs an increase. A particularly preferable annealing temperature is 460 to 570 ° C. A particularly preferable annealing time is 20 minutes to 40 hours.

また、昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にて450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。   Further, the rate of temperature rise / pattern is not particularly limited, and the temperature may be raised at a constant rate, or may be stepped up / cooled while repeating the temperature rise and temperature holding, and the temperature is 450 to 600 ° C. in the annealing process. What is necessary is just to anneal for a total of 10 minutes-50 hours in a temperature range.

最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly defined. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are also included in the present invention.

最終焼鈍を経たアルミニウム材には、拡面率向上のためエッチング処理を実施する。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。   The aluminum material that has undergone final annealing is subjected to an etching process in order to improve the surface expansion ratio. Etching conditions are not particularly limited, but preferably a direct current etching method is employed. By the direct current etching method, the portion that becomes the nucleus of the etch pit promoted in the annealing is deeply and thickly etched to generate a large number of tunnel-like pits, thereby realizing a high capacitance.

エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良いが、陰極材として用いることを妨げるものではない。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる。   After the etching treatment, a chemical conversion treatment is preferably performed to obtain an anode material. In particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure, but it does not preclude use as a cathode material. Moreover, the electrolytic capacitor using this electrode material can realize a large capacitance.

本発明で規定した以外の工程および工程条件は限定されず、常法に従って行われる。また、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造工程は適宜変更される。   Processes and process conditions other than those specified in the present invention are not limited and are carried out according to a conventional method. Moreover, the manufacturing process of an aluminum material is changed suitably according to the relationship with the etching conditions of an aluminum material.

なお、静電容量の測定は常法に従えば良く、化成処理されたエッチド箔について、例えば30℃の80g/Lのホウ酸アンモニウム水溶液中で、ステンレス板を対極として120Hzにて測定する方法を例示できる。   The capacitance may be measured in accordance with a conventional method. For example, a method of measuring a chemically treated etched foil at 120 Hz in an 80 g / L ammonium borate aqueous solution at 30 ° C. using a stainless steel plate as a counter electrode. It can be illustrated.

以下に本発明の実施例および比較例を示す。   Examples of the present invention and comparative examples are shown below.

組成の異なるアルミニウム鋳塊を準備した。表1に鋳塊中に含まれるFe, Si, およびCuの濃度を示す。これらのアルミニウム鋳塊を熱間圧延して得られた板を冷間圧延しシート状アルミニウム材を用意した。表2に中間焼鈍から最終焼鈍までの工程、表3に表2中の工程1(中間焼鈍)の条件、表4および表5に表2中の工程2および工程6(洗浄によるアルミニウム材表面層の除去)の条件、表6に表2中の工程5および工程7(酸化性雰囲気中での加熱)の条件を示す。最終焼鈍後に得られるアルミニウム材の厚さは、中間焼鈍以前に行う冷間圧延の圧下率を調節することにより全て110μmとした。   Aluminum ingots having different compositions were prepared. Table 1 shows the concentrations of Fe, Si, and Cu contained in the ingot. A plate obtained by hot rolling these aluminum ingots was cold-rolled to prepare a sheet-like aluminum material. Table 2 shows the steps from intermediate annealing to final annealing, Table 3 shows the conditions of Step 1 (intermediate annealing) in Table 2, Tables 4 and 5 show Steps 2 and 6 in Table 2 (aluminum material surface layer by washing) Table 6 shows the conditions of Step 5 and Step 7 (heating in an oxidizing atmosphere) in Table 2. The thickness of the aluminum material obtained after the final annealing was all set to 110 μm by adjusting the reduction ratio of the cold rolling performed before the intermediate annealing.

なお、アルミニウム材表面層除去量は洗浄液への浸漬時間により制御し、アルカリ洗浄の後に酸洗浄を実施する場合にはアルカリ洗浄液への浸漬時間を調節することにより除去量を制御した。   In addition, the removal amount of the aluminum material surface layer was controlled by the immersion time in the cleaning liquid, and when the acid cleaning was performed after the alkali cleaning, the removal amount was controlled by adjusting the immersion time in the alkaline cleaning liquid.

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

[実施例1]
表1記載のFe0.0015質量%, Si0.0022質量%, Cu0.0055質量%(組成3)のアルミニウム鋳塊を熱間圧延して得られた板を冷間圧延して得たアルミニウム材に表7に記載のように、空気中で260℃にて12時間の中間焼鈍を行った後(工程1、条件D)、6%の引張歪を付与した(工程3)。引張歪付与後のアルミニウム材を150℃にて24時間空気中で加熱し(工程5、条件H4)、さらに80℃20質量%硫酸水溶液中に浸漬することによりアルミニウム材表面層を10nm除去した後(工程6、条件27)、アルゴン雰囲気中で550℃にて5時間最終焼鈍し(工程8)、電解コンデンサ電極用アルミニウム材を得た。
[実施例2〜実施例139、比較例1〜比較例5]
表1に示す組成を有する鋳塊を熱間圧延して得られた板を冷間圧延して得たアルミニウム材を表7〜表16に示す条件にて処理し、電解コンデンサ電極用アルミニウム材を得た。
[Example 1]
An aluminum material obtained by cold rolling a plate obtained by hot rolling an aluminum ingot of 0.0015 mass% Fe, 0.0022 mass% Si, 0.0055 mass% Cu (Composition 3) shown in Table 1 As shown in Table 7, after intermediate annealing at 260 ° C. for 12 hours in air (Step 1, Condition D), 6% tensile strain was applied (Step 3). After removing the aluminum material surface layer by 10 nm by heating the aluminum material after imparting the tensile strain in air at 150 ° C. for 24 hours (step 5, condition H4) and further immersing it in a 20% by mass sulfuric acid aqueous solution at 80 ° C. (Step 6, Condition 27) and final annealing at 550 ° C. for 5 hours in an argon atmosphere (Step 8) to obtain an aluminum material for electrolytic capacitor electrodes.
[Example 2 to Example 139, Comparative Example 1 to Comparative Example 5]
An aluminum material obtained by cold rolling a plate obtained by hot rolling an ingot having the composition shown in Table 1 was treated under the conditions shown in Tables 7 to 16, and an aluminum material for an electrolytic capacitor electrode was obtained. Obtained.

上記の各実施例および比較例で得られたアルミニウム材を、HCl 1.0mol/LとH2SO4 3.5mol/Lを含む液温75℃の水溶液に一定時間浸漬した後、同組成、同温度の水溶液中で電流密度0.2A/cm2で電解処理を施した。電解処理後のアルミニウム材をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒間浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理し、静電容量測定用サンプルとした。 The aluminum material obtained in each of the above Examples and Comparative Examples was immersed in an aqueous solution having a liquid temperature of 75 ° C. containing HCl 1.0 mol / L and H 2 SO 4 3.5 mol / L for a predetermined time, and then the same composition and the same temperature. In an aqueous solution at a current density of 0.2 A / cm 2 . The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil. The obtained etched foil was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V to obtain a sample for measuring capacitance.

表7〜表16に比較例4の静電容量を100としたときの相対静電容量(%)を示す。   Tables 7 to 16 show the relative capacitance (%) when the capacitance of Comparative Example 4 is 100.

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

Figure 0004732892
Figure 0004732892

上記のように、熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、引張歪を付与し、最終焼鈍を施して電解コンデンサ電極用アルミニウム材を製造するに際し、前記中間焼鈍を酸化性雰囲気中で行い、かつ中間焼鈍より後であって最終焼鈍より前の工程においてアルミニウム材表面層を洗浄により除去することにより得られるアルミニウム材のエッチング特性を優れたものにすることができる。   As described above, hot rolling and cold rolling are performed, then intermediate annealing is performed, and after the intermediate annealing, until final annealing is started, tensile strain is applied and final annealing is performed for electrolytic capacitor electrodes. When producing an aluminum material, the intermediate material is etched in an oxidizing atmosphere, and the aluminum material is etched by removing the surface layer of the aluminum material by washing after the intermediate annealing and before the final annealing. The characteristics can be improved.

さらに、酸化性雰囲気中での中間焼鈍、引張歪付与を行った後、酸化性雰囲気中での加熱、洗浄によるアルミニウム材表面層の除去、最終焼鈍を順次実施することによってよりエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   Furthermore, after performing intermediate annealing and imparting tensile strain in an oxidizing atmosphere, heating in an oxidizing atmosphere, removal of the aluminum material surface layer by washing, and final annealing were sequentially performed, resulting in superior etching characteristics. An aluminum material for electrolytic capacitor electrodes can be obtained.

一方、99.99体積%以上の窒素雰囲気中での中間焼鈍、引張歪付与を順次実施した後、洗浄によるアルミニウム材表面層除去を実施せずに最終焼鈍した比較例1はエッチング時のアルミニウム材表面の溶解性が不均一であり実施例より静電容量が低い。また99.99体積%以上の窒素雰囲気中での中間焼鈍、仕上げ冷間圧延、洗浄によるアルミニウム材表面層を順次実施した後最終焼鈍した比較例2では洗浄時のアルミニウム材の溶解性が不均一であり、99.99体積%以上の窒素雰囲気中での中間焼鈍、仕上げ冷間圧延、酸化性雰囲気中での加熱を順次実施した後、アルミニウム材の表面層除去を行わずに最終焼鈍した比較例3では圧延時の汚染層や油分が多く残留するために何れも静電容量が低い。99.99体積%以上の窒素雰囲気中での中間焼鈍後に仕上げ冷間圧延、洗浄によるアルミニウム材表面層除去、酸化性雰囲気中での加熱、最終焼鈍を順次実施した比較例4では、比較例1〜比較例3に比べ静電容量が高いが、洗浄時に不均質に溶解したアルミニウム材表面層を酸化性雰囲気中での加熱により十分均質化できないため実施例には及ばない。   On the other hand, Comparative Example 1 in which the intermediate annealing in a nitrogen atmosphere of 99.99% by volume or more and the application of tensile strain were sequentially performed, and then the final annealing was performed without removing the surface layer of the aluminum material by cleaning was performed on the surface of the aluminum material during etching. The solubility is non-uniform and the capacitance is lower than in the examples. Further, in Comparative Example 2 in which the final annealing was performed after the intermediate annealing in the nitrogen atmosphere of 99.99% by volume or more, finish cold rolling, and cleaning were sequentially performed, the solubility of the aluminum material during cleaning was not uniform. In Comparative Example 3 where intermediate annealing in a nitrogen atmosphere of 99.99% by volume or more, finish cold rolling, and heating in an oxidizing atmosphere were sequentially performed, and then final annealing was performed without removing the surface layer of the aluminum material. Capacitance is low because many contaminated layers and oil remain. In Comparative Example 4 in which finish cold rolling, aluminum surface layer removal by washing, heating in an oxidizing atmosphere, and final annealing were sequentially performed after intermediate annealing in a nitrogen atmosphere of 99.99% by volume or more, Comparative Examples 1 to 1 were compared. Although the electrostatic capacity is higher than that of Example 3, the aluminum material surface layer dissolved inhomogeneously at the time of washing cannot be sufficiently homogenized by heating in an oxidizing atmosphere.

酸化性雰囲気中で中間焼鈍を行った後仕上げ冷間圧延を行い最終焼鈍する比較例5は洗浄によるアルミニウム材表面層の除去を行わないためアルミニウム材表面酸化膜が厚く静電容量が低い。   In Comparative Example 5, in which the final annealing is performed after the intermediate annealing is performed in the oxidizing atmosphere and then the final annealing is performed, the aluminum material surface layer is not removed by cleaning, so the aluminum material surface oxide film is thick and the capacitance is low.

Claims (23)

熱間圧延及び冷間圧延を行い、次いで中間焼鈍を施し、中間焼鈍後で最終焼鈍を開始するまでの間に、引張歪を付与したのち、最終焼鈍を施して電解コンデンサ電極用アルミニウム材を製造するに際し、
前記中間焼鈍を酸化性雰囲気中で行い、かつ中間焼鈍より後であって最終焼鈍より前の工程において少なくとも1回アルミニウム材表面層を洗浄により除去することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
Hot rolling and cold rolling are performed, then intermediate annealing is performed, and after applying the tensile annealing until the final annealing is started after the intermediate annealing, the final annealing is performed to produce an aluminum material for electrolytic capacitor electrodes. When doing
An aluminum material for electrolytic capacitor electrodes, characterized in that the intermediate annealing is performed in an oxidizing atmosphere and the surface layer of the aluminum material is removed by washing at least once after the intermediate annealing and before the final annealing. Production method.
洗浄によるアルミニウム材表面層の除去が引張歪付与後であって最終焼鈍前に行われる請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the removal of the surface layer of the aluminum material by washing is performed after applying the tensile strain and before the final annealing. 洗浄によるアルミニウム材表面層の除去が中間焼鈍後であって引張歪付与前に行われる請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the removal of the surface layer of the aluminum material by washing is performed after the intermediate annealing and before the application of the tensile strain. 引張歪付与後であって最終焼鈍前に、アルミニウム材を酸化性雰囲気中で加熱した後アルミニウム材表面層を洗浄により除去する請求項1ないし請求項3の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The electrolytic capacitor electrode according to any one of claims 1 to 3, wherein the aluminum material surface layer is removed by washing after heating the aluminum material in an oxidizing atmosphere after applying the tensile strain and before the final annealing. Method for manufacturing aluminum material. 洗浄に用いる洗浄液がアルカリ性水溶液である請求項1ないし請求項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein the cleaning liquid used for cleaning is an alkaline aqueous solution. 洗浄に用いる洗浄液が酸性水溶液である請求項1ないし請求項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein the cleaning liquid used for cleaning is an acidic aqueous solution. 洗浄が、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる請求項1ないし請求項4の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 4, wherein the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution. アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である請求項5または請求項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。   6. The alkali in the alkaline aqueous solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate and sodium carbonate. Or the manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 7. 酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である請求項6または請求項7に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 6 or 7, wherein the acid in the acidic aqueous solution is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element. . 引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱後の洗浄によるアルミニウム材表面層除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である請求項4ないし請求項9の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウムの密度
Aluminum material surface layer removal amount by heating after heating in an oxidizing atmosphere after applying tensile strain and before final annealing is 1 nm or more and 500 nm or less per aluminum material surface at a removal amount D (nm) specified below. The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 4 to 9.
Removal amount D (nm) = E (g / cm 2 ) × 10 7 /2.7 (g / cm 3 )
Where E is the mass loss per unit surface area due to cleaning 2.7 g / cm 3 is the density of aluminum
引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱温度が50〜400℃である請求項4ないし請求項10の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The manufacturing method of the aluminum material for electrolytic capacitor electrodes according to any one of claims 4 to 10, wherein a heating temperature in an oxidizing atmosphere after applying tensile strain and before final annealing is 50 to 400 ° C. Method. 引張歪付与後であって最終焼鈍前に行う酸化性雰囲気中での加熱時間が3秒以上72時間以下である請求項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 11, wherein the heating time in an oxidizing atmosphere performed after applying the tensile strain and before the final annealing is 3 seconds or more and 72 hours or less. 酸化性雰囲気中での中間焼鈍を200℃以上300℃以下の温度で実施する請求項1ないし請求項12の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 12, wherein the intermediate annealing in an oxidizing atmosphere is performed at a temperature of 200 ° C or higher and 300 ° C or lower. 引張歪付与後であって最終焼鈍前に行われる酸化性雰囲気中での加熱における雰囲気中の酸素濃度が0.1体積%以上である請求項4ないし請求項13の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The oxygen concentration in the atmosphere in the heating in the oxidizing atmosphere performed after the tensile strain and before the final annealing is 0.1% by volume or more. 14. Manufacturing method of aluminum material for electrolytic capacitor electrodes. 中間焼鈍における酸化性雰囲気中の酸素濃度が0.1体積%以上である請求項1ないし請求項14の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 14, wherein the oxygen concentration in the oxidizing atmosphere in the intermediate annealing is 0.1 vol% or more. 最終焼鈍が450℃以上600℃以下の温度で行われる請求項1ないし請求項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 15, wherein the final annealing is performed at a temperature of 450 ° C or higher and 600 ° C or lower. アルミニウム材のアルミニウム純度が99.9質量%以上である請求項1ないし請求項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 16, wherein the aluminum material has an aluminum purity of 99.9% by mass or more. 請求項1ないし請求項17の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes manufactured by the manufacturing method of any one of Claims 1 thru | or 17. 中圧用または高圧用陽極材として用いられる請求項18に記載の電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes according to claim 18, which is used as an anode material for medium pressure or high pressure. 請求項1ないし請求項17の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。   The manufacturing method of the electrode material for electrolytic capacitors characterized by including the process of etching to the aluminum material manufactured by the manufacturing method of any one of Claim 1 thru | or 17. エッチングの少なくとも一部が直流エッチングである請求項20に記載の電解コンデンサ用電極材の製造方法。   The method for producing an electrode material for electrolytic capacitors according to claim 20, wherein at least a part of the etching is direct current etching. 請求項21または請求項22に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。   An anode material for an aluminum electrolytic capacitor produced by the production method according to claim 21 or 22. 電極材として請求項20または請求項21に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。   An aluminum electrolytic capacitor, wherein an aluminum electrode material produced by the production method according to claim 20 or 21 is used as an electrode material.
JP2005372679A 2004-12-27 2005-12-26 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor Expired - Fee Related JP4732892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005372679A JP4732892B2 (en) 2004-12-27 2005-12-26 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004377539 2004-12-27
JP2004377539 2004-12-27
JP2005372679A JP4732892B2 (en) 2004-12-27 2005-12-26 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006210894A JP2006210894A (en) 2006-08-10
JP4732892B2 true JP4732892B2 (en) 2011-07-27

Family

ID=36967324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005372679A Expired - Fee Related JP4732892B2 (en) 2004-12-27 2005-12-26 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4732892B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5041757B2 (en) 2006-08-02 2012-10-03 パナソニック株式会社 Camera control device and camera control system
CN103046051B (en) * 2012-12-13 2016-05-04 苏州赛斯德工程设备有限公司 Surface corrosion processing method before water electrolysis pole plate plating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186160B2 (en) * 1992-01-27 2001-07-11 昭和アルミニウム株式会社 Manufacturing method of aluminum foil for electrolytic capacitor
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JPH07180006A (en) * 1993-12-24 1995-07-18 Kobe Steel Ltd Production of aluminum foil for electrolytic capacitor electrode
JP3308456B2 (en) * 1996-09-05 2002-07-29 住友軽金属工業株式会社 Manufacturing method of aluminum foil for electrode of electrolytic capacitor
JP3370246B2 (en) * 1996-11-11 2003-01-27 東洋アルミニウム株式会社 Aluminum alloy and foil for high pressure anode of electrolytic capacitor
JP3852632B2 (en) * 1997-07-15 2006-12-06 三菱アルミニウム株式会社 Method for producing aluminum foil for electrolytic capacitor
KR100974372B1 (en) * 2001-08-03 2010-08-05 쇼와 덴코 가부시키가이샤 Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4767480B2 (en) * 2001-08-03 2011-09-07 昭和電工株式会社 Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for electrolytic capacitor electrode, and manufacturing method of electrode material for electrolytic capacitor
JP4498682B2 (en) * 2002-04-25 2010-07-07 昭和電工株式会社 The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP2004088069A (en) * 2002-07-05 2004-03-18 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode, aluminum anode material for the same, and manufacturing method of electrode material for electrolytic capacitor
CN1294291C (en) * 2002-06-28 2007-01-10 昭和电工株式会社 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode and electrolytic capacitor

Also Published As

Publication number Publication date
JP2006210894A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP5551743B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4498682B2 (en) The manufacturing method of the aluminum material for electrolytic capacitor electrodes, the manufacturing method of the electrode material for electrolytic capacitors, and an aluminum electrolytic capacitor.
JP4690182B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP2003193260A (en) Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4793827B2 (en) Aluminum foil for electrolytic capacitor and manufacturing method thereof
JP4105565B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4037203B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing the same, and electrolytic capacitor
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
JP4105558B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and electrolytic capacitor
JP2006152363A (en) Aluminum foil for electrolytic-capacitor anode and its production method
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4732892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees