JP2006291354A - Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor - Google Patents

Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2006291354A
JP2006291354A JP2006071693A JP2006071693A JP2006291354A JP 2006291354 A JP2006291354 A JP 2006291354A JP 2006071693 A JP2006071693 A JP 2006071693A JP 2006071693 A JP2006071693 A JP 2006071693A JP 2006291354 A JP2006291354 A JP 2006291354A
Authority
JP
Japan
Prior art keywords
aluminum material
electrolytic capacitor
aluminum
producing
capacitor electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006071693A
Other languages
Japanese (ja)
Inventor
Hideki Nishimori
秀樹 西森
Tomoaki Yamanoi
智明 山ノ井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006071693A priority Critical patent/JP2006291354A/en
Publication of JP2006291354A publication Critical patent/JP2006291354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing an aluminum material for an electrolytic capacitor electrode having excellent etching properties where, regarding the production of an aluminum material for an electrolytic capacitor electrode in which heating in an oxidizing atmosphere is performed after the completion of cold rolling and before final annealing, the content of a trace element is suitably controlled, thus the problem that the etching characteristics of the aluminum material after final annealing are insufficient is solved, to provide an aluminum material for an electrolytic capacitor electrode, to provide an anode material for an aluminum electrolytic capacitor, to provide a process for producing an anode material for an electrolytic capacitor, and to provide an aluminum electrolytic capacitor. <P>SOLUTION: In the production of an aluminum material for an electrolytic capacitor electrode, the content of Pb in the aluminum material is not less than 0.3 ppm by mass and not more than 2.5 ppm by mass, and, the aluminum material after the completion of cold rolling and before final annealing is heated in an oxidizing atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、アルミニウム電解コンデンサ用陽極材、電解コンデンサ用陽極材の製造方法およびアルミニウム電解コンデンサに関する。   The present invention relates to a method for producing an aluminum material for an electrolytic capacitor electrode, an aluminum material for an electrolytic capacitor electrode, an anode material for an aluminum electrolytic capacitor, a method for producing an anode material for an electrolytic capacitor, and an aluminum electrolytic capacitor.

なお、この明細書において「アルミニウム」の語はその合金を含む意味で用い、アルミニウム材には箔と板およびこれらを用いた成形体が含まれる。   In this specification, the term “aluminum” is used to include alloys thereof, and aluminum materials include foils and plates and molded bodies using these.

アルミニウム電解コンデンサ用電極材料として一般に用いられるアルミニウム材は、静電容量を大きくする目的で、電気化学的あるいは化学的エッチング処理を施して、アルミニウム材の実効面積を拡大することが行われている。   An aluminum material generally used as an electrode material for an aluminum electrolytic capacitor is subjected to electrochemical or chemical etching treatment to increase the effective area of the aluminum material for the purpose of increasing the capacitance.

直流エッチング法でトンネル状ピットを生成させる電解コンデンサ陽極用アルミニウム材の製造においては、アルミニウムの立方体集合組織を発達させるために500℃前後の温度で不活性雰囲気もしくは真空中で最終焼鈍するのが一般的である。最終焼鈍は、冷間圧延より後の工程で行われる。また、冷間圧延工程の途中において、最終焼鈍後の立方体方位占有率を高めるために必要に応じて焼鈍を実施しても良い。上記冷間圧延工程途中の焼鈍を中間焼鈍と称し、一般には窒素やアルゴン等の不活性雰囲気中で実施される。   In the manufacture of aluminum materials for electrolytic capacitor anodes that generate tunnel-like pits by direct current etching, it is common to perform final annealing in an inert atmosphere or vacuum at a temperature of around 500 ° C in order to develop a cubic texture of aluminum. Is. The final annealing is performed in a process after the cold rolling. Moreover, you may implement annealing as needed in order to raise the cube orientation occupation rate after the last annealing in the middle of a cold rolling process. The annealing in the middle of the cold rolling process is referred to as intermediate annealing, and is generally performed in an inert atmosphere such as nitrogen or argon.

最終焼鈍後のアルミニウム材表面の酸化皮膜の特性は、特に電解エッチング初期のピット生成と関係があることから、アルミニウム材表面の酸化処理に関する検討が行われている。また、アルミニウム材中に含まれる微量元素もアルミニウム材のエッチング特性に影響を及ぼす。特に、Pbは最終焼鈍時にアルミニウム材表層に濃化し表層を活性化させ、Cuは電解エッチング時のアルミニウム材の溶解量に影響を及ぼすため含有量を適正化させることは重要である。   Since the characteristics of the oxide film on the surface of the aluminum material after the final annealing are particularly related to the formation of pits at the initial stage of electrolytic etching, studies on the oxidation treatment on the surface of the aluminum material are being conducted. Trace elements contained in the aluminum material also affect the etching characteristics of the aluminum material. In particular, it is important to optimize the content of Pb because it concentrates and activates the surface of the aluminum material during the final annealing, and Cu affects the amount of dissolution of the aluminum material during electrolytic etching.

特許文献1には、アルミニウム箔の表面層を除去する工程と、除去後、温度40〜350℃、露点:0〜80℃、時間:30〜1800秒の条件で加熱酸化する工程と、加熱酸化後、非酸化性雰囲気で焼鈍する工程を実施することにより、焼鈍後のアルミニウム箔表面の酸化膜を薄くでき、かつエッチング液中で速やかに溶解除去することが開示されている。   Patent Document 1 discloses a step of removing a surface layer of an aluminum foil, a step of heat oxidation under conditions of a temperature of 40 to 350 ° C., a dew point of 0 to 80 ° C., and a time of 30 to 1800 seconds after the removal, and heat oxidation. Subsequently, it is disclosed that by performing a step of annealing in a non-oxidizing atmosphere, the oxide film on the surface of the aluminum foil after annealing can be thinned and quickly dissolved and removed in an etching solution.

特許文献2には、コイルから巻き戻したアルミニウム箔を連続的に洗浄して酸化皮膜を除去したのち、アルミニウム箔表面を(酸化性)雰囲気と接触させることにより連続的に酸化処理し、その後高温加熱処理することを特徴とする電解コンデンサ電極用アルミニウム箔の製造方法が記載されている。   In Patent Document 2, after the aluminum foil unwound from the coil is continuously washed to remove the oxide film, the surface of the aluminum foil is continuously oxidized by contacting it with an (oxidizing) atmosphere, and then the high temperature is applied. A method for producing an aluminum foil for electrolytic capacitor electrodes, characterized by heat treatment, is described.

特許文献3には、箔圧延後のアルミニウム箔の表面層を除去したのち、該アルミニウム箔の表面にその平均セルまたはサブグレインサイズが10μm以下の状態のうちに厚さ5〜50オングストロームの酸化皮膜を形成する工程と、その後酸化皮膜の合計厚さが70オングストロームを越えない範囲で高温加熱処理する工程とを経ることを特徴とする電解コンデンサ電極用アルミニウム材の製造方法が示されている。   In Patent Document 3, after removing the surface layer of the aluminum foil after the foil rolling, an oxide film having a thickness of 5 to 50 Å is formed on the surface of the aluminum foil while the average cell or subgrain size is 10 μm or less. The method for producing an aluminum material for electrolytic capacitor electrodes is shown in which a high temperature heat treatment is performed within a range in which the total thickness of the oxide film does not exceed 70 angstroms.

特許文献4には、アルミニウム材を加熱体との接触により加熱する工程を含む電解コンデンサ電極用アルミニウム材の製造方法が開示されている。   Patent Document 4 discloses a method for producing an aluminum material for electrolytic capacitor electrodes, which includes a step of heating an aluminum material by contact with a heating body.

特許文献5では、電解コンデンサ電極用アルミニウム材の製造において、不活性雰囲気中での最終焼鈍の後に、大気中において酸化処理する方法が開示されている。   Patent Document 5 discloses a method of oxidizing in the air after the final annealing in an inert atmosphere in the production of an aluminum material for electrolytic capacitor electrodes.

また、特許文献6には、CuおよびPbの濃度が記載されている。
特開平7−201673号公報 特開平4−127412号公報 特開平3−122260号公報 WO03/091482A1 特開平2−254140号公報 特開2000−239773号公報
Patent Document 6 describes the concentrations of Cu and Pb.
JP-A-7-201673 Japanese Patent Laid-Open No. 4-127412 Japanese Patent Laid-Open No. 3-122260 WO03 / 091482A1 JP-A-2-254140 JP 2000-239773 A

しかしながら、特許文献1〜4では、酸化性雰囲気中での加熱あるいは加熱体との接触による加熱により静電容量の向上が図られているものの、アルミニウム材中に含まれる微量元素の含有量に関する記載がない。また、特許文献5も微量元素の含有量に関する記載がないうえ、酸化処理を最終焼鈍後に行うため、最終焼鈍前に酸化処理を行う場合に比べ、酸化処理によるエッチング特性向上効果が不十分になる恐れがある。   However, in Patent Documents 1 to 4, although the electrostatic capacity is improved by heating in an oxidizing atmosphere or by contact with a heating body, description on the content of trace elements contained in the aluminum material There is no. Further, Patent Document 5 also does not describe the content of trace elements, and since the oxidation treatment is performed after the final annealing, the effect of improving the etching characteristics by the oxidation treatment becomes insufficient compared to the case where the oxidation treatment is performed before the final annealing. There is a fear.

特許文献6では、PbとCuの濃度は規定されているものの酸化性雰囲気中での加熱は実施されておらず、最終焼鈍後のアルミニウム材のエッチング特性の向上は不十分であった。   In Patent Document 6, although the concentrations of Pb and Cu are defined, heating in an oxidizing atmosphere is not performed, and the etching characteristics of the aluminum material after the final annealing are not sufficiently improved.

この発明は、このような技術的背景に鑑みてなされたものであって、冷間圧延終了後最終焼鈍前に酸化性雰囲気中での加熱を実施する電解コンデンサ電極用アルミニウム材の製造において、微量含有元素の含有量を適切に制御することにより、最終焼鈍後のアルミニウム材のエッチング特性が不十分であるという問題点を解決し、エッチング特性に優れた電解コンデンサ電極用アルミニウム材の製造方法、電解コンデンサ電極用アルミニウム材、アルミニウム電解コンデンサ用陽極材、電解コンデンサ用陽極材の製造方法およびアルミニウム電解コンデンサを提供することを課題とする。   The present invention has been made in view of such a technical background, and in manufacturing an aluminum material for electrolytic capacitor electrodes in which heating is performed in an oxidizing atmosphere after the end of cold rolling and before final annealing, By appropriately controlling the content of the contained elements, the problem of insufficient etching characteristics of the aluminum material after the final annealing is solved, and a method for producing an aluminum material for electrolytic capacitor electrodes with excellent etching characteristics, electrolysis It is an object of the present invention to provide an aluminum material for a capacitor electrode, an anode material for an aluminum electrolytic capacitor, a method for producing an anode material for an electrolytic capacitor, and an aluminum electrolytic capacitor.

上記課題を解決するために、この発明は、以下の手段を提供する。
(1)0.3質量ppm以上2.5質量ppm以下のPbを含む冷間圧延終了後のアルミニウム材を酸化性雰囲気中で加熱し、その後最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。
(2)アルミニウム材は10質量ppm以上150質量ppm以下のCuを含む前項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(3)アルミニウム材のアルミニウム純度が99.9質量%以上である前項1または前項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(4)酸化性雰囲気中での加熱温度が50〜400℃である前項1ないし前項3の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(5)酸化性雰囲気中での加熱時間が3秒以上72時間以下である前項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(6)加熱における酸化性雰囲気中の酸素濃度が0.1体積%以上である前項1ないし前項5の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(7)冷間圧延終了前に、アルミニウム材に中間焼鈍、仕上げ冷間圧延を順次実施する前項1ないし前項6の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(8)冷間圧延終了後酸化性雰囲気中での加熱前に洗浄を実施する前項1ないし前項7の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(9)洗浄に用いる洗浄液が有機溶剤、界面活性剤を添加した水、および水溶性有機溶剤と水の混合物、の少なくとも一つである前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(10)洗浄に用いる洗浄液が酸性水溶液およびアルカリ性水溶液の少なくとも一方である前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(11)洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる前項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(12)酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である前項10または前項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(13)アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である前項10または前項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(14)洗浄によるアルミニウム材表面層の平均除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である前項10ないし前項13の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
In order to solve the above problems, the present invention provides the following means.
(1) A method for producing an aluminum material for electrolytic capacitor electrodes, comprising: heating an aluminum material after completion of cold rolling containing Pb of 0.3 mass ppm or more and 2.5 mass ppm or less in an oxidizing atmosphere, followed by final annealing. .
(2) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 1, wherein the aluminum material contains Cu of 10 ppm to 150 ppm by mass.
(3) The method for producing an aluminum material for electrolytic capacitor electrodes as described in (1) or (2) above, wherein the aluminum purity of the aluminum material is 99.9% by mass or more.
(4) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 3 above, wherein the heating temperature in an oxidizing atmosphere is 50 to 400 ° C.
(5) The method for producing an aluminum material for electrolytic capacitor electrodes as described in 4 above, wherein the heating time in the oxidizing atmosphere is 3 seconds or more and 72 hours or less.
(6) The method for producing an aluminum material for electrolytic capacitor electrodes as described in any one of 1 to 5 above, wherein the oxygen concentration in the oxidizing atmosphere during heating is 0.1% by volume or more.
(7) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of the preceding items 1 to 6, wherein intermediate annealing and finish cold rolling are sequentially performed on the aluminum material before the end of the cold rolling.
(8) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of the preceding items 1 to 7, wherein the washing is carried out after the cold rolling and before the heating in the oxidizing atmosphere.
(9) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 8, wherein the cleaning liquid used for cleaning is at least one of an organic solvent, water to which a surfactant is added, and a mixture of a water-soluble organic solvent and water.
(10) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 8, wherein the cleaning liquid used for cleaning is at least one of an acidic aqueous solution and an alkaline aqueous solution.
(11) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in the aforementioned Item 8, wherein the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution.
(12) The production of the aluminum material for electrolytic capacitor electrodes as described in (10) or (11) above, wherein the acid in the acidic aqueous solution is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element Method.
(13) The alkali in the alkaline aqueous solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. 12. The method for producing an aluminum material for electrolytic capacitor electrodes according to 10 or 11 above.
(14) The electrolysis according to any one of items 10 to 13, wherein an average removal amount of the aluminum material surface layer by cleaning is 1 nm or more and 500 nm or less per one side of the aluminum material at a removal amount D (nm) specified below. Manufacturing method of aluminum material for capacitor electrode.

除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウム材の密度
(15)アルミニウム材中のPb濃度が、0.6質量ppm以上2.5質量ppm以下である前項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(16)中間焼鈍が不活性ガス中で行われる前項7ないし前項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(17)最終焼鈍が不活性ガス雰囲気中で行われる前項1ないし前項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(18)最終焼鈍が450℃以上600℃以下の温度で行われる前項1ないし前項17の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
(19)前項1ないし前項18の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。
(20)中圧用または高圧用陽極材として用いられる前項19に記載の電解コンデンサ電極用アルミニウム材。
(21)前項1ないし前項18の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。
(22)エッチングの少なくとも一部が直流電解エッチングである前項21に記載の電解コンデンサ用電極材の製造方法。
(23)エッチング後、化成処理を実施する前項22に記載の電解コンデンサ用電極材の製造方法。
(24)前項22または前項23に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。
(25)電極材として前項21ないし前項23の何れか1項に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
Removal amount D (nm) = E (g / cm 2 ) x 10 7 /2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of the aluminum material (15) The method for producing an aluminum material for electrolytic capacitor electrodes as described in 9 above, wherein the Pb concentration in the aluminum material is 0.6 mass ppm or more and 2.5 mass ppm or less.
(16) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 7 to 15, wherein the intermediate annealing is performed in an inert gas.
(17) The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of items 1 to 16, wherein the final annealing is performed in an inert gas atmosphere.
(18) The method for producing an aluminum material for electrolytic capacitor electrodes as recited in any one of the aforementioned Items 1 to 17, wherein the final annealing is performed at a temperature of 450 ° C. or more and 600 ° C. or less.
(19) An aluminum material for electrolytic capacitor electrodes produced by the production method according to any one of items 1 to 18 above.
(20) The aluminum material for electrolytic capacitor electrodes as described in 19 above, which is used as an anode material for medium pressure or high pressure.
(21) A method for producing an electrode material for an electrolytic capacitor, comprising a step of performing etching on the aluminum material produced by the production method according to any one of items 1 to 18.
(22) The method for producing an electrode material for electrolytic capacitors as described in 21 above, wherein at least a part of the etching is direct current electrolytic etching.
(23) The method for producing an electrode material for electrolytic capacitors as described in 22 above, wherein the chemical conversion treatment is performed after the etching.
(24) An anode material for an aluminum electrolytic capacitor manufactured by the manufacturing method according to item 22 or 23.
(25) An aluminum electrolytic capacitor characterized in that an aluminum electrode material manufactured by the manufacturing method according to any one of items 21 to 23 is used as an electrode material.

前項(1)に係る発明によれば、0.3質量ppm以上2.5質量ppm以下のPbを含む冷間圧延終了後のアルミニウム材を酸化性雰囲気中で加熱しその後最終焼鈍するから、エッチング時のアルミニウム材表面層の溶解性が均一なエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention of the preceding item (1), the aluminum material after cold rolling containing 0.3 mass ppm or more and 2.5 mass ppm or less of Pb is heated in an oxidizing atmosphere and then finally annealed. It is possible to obtain an aluminum material for an electrolytic capacitor electrode that is excellent in etching characteristics with uniform solubility of the surface layer.

前項(2)に係る発明によれば、アルミニウム材が10質量ppm以上150質量ppm以下のCuを含むからエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention according to item (2) above, since the aluminum material contains Cu of 10 ppm by mass or more and 150 ppm by mass or less of the aluminum material, an aluminum material for electrolytic capacitor electrodes having excellent etching characteristics can be obtained.

前項(3)に係る発明によれば、アルミニウム材のアルミニウム純度が99.9質量%以上であるから不純物によるエッチング特性の劣化を防止することができる。   According to the invention according to item (3) above, since the aluminum purity of the aluminum material is 99.9% by mass or more, it is possible to prevent etching characteristics from being deteriorated due to impurities.

前項(4)に係る発明によれば、酸化性雰囲気中での加熱温度が50〜400℃であるため、最終焼鈍後のアルミニウム材をエッチングしたときのアルミニウム材表面層の溶解性が均一になる。   According to the invention according to item (4) above, since the heating temperature in the oxidizing atmosphere is 50 to 400 ° C., the solubility of the aluminum material surface layer becomes uniform when the aluminum material after the final annealing is etched. .

前項(5)に係る発明によれば、酸化性雰囲気中での加熱時間が3秒以上72時間以下であるため、最終焼鈍後のアルミニウム材をエッチングしたときのアルミニウム材表面層の溶解性が均一になる。   According to the invention according to item (5) above, since the heating time in the oxidizing atmosphere is 3 seconds or more and 72 hours or less, the solubility of the aluminum material surface layer is uniform when the aluminum material after the final annealing is etched. become.

前項(6)に係る発明によれば、加熱における酸化性雰囲気中の酸素濃度が0.1体積%以上であるため、最終焼鈍後のアルミニウム材をエッチングしたときのアルミニウム材表面層の溶解性が均一になる。   According to the invention according to item (6) above, since the oxygen concentration in the oxidizing atmosphere during heating is 0.1% by volume or more, the solubility of the aluminum material surface layer when the aluminum material after the final annealing is etched is uniform. Become.

前項(7)に係る発明によれば、中間焼鈍、仕上げ冷間圧延を順次実施したアルミニウム材を酸化性雰囲気中で加熱し、その後最終焼鈍するから、エッチング時のアルミニウム材表面層の溶解性が均一なエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention according to the preceding item (7), the aluminum material that has been subjected to intermediate annealing and finish cold rolling in sequence is heated in an oxidizing atmosphere, and then subjected to final annealing, so the solubility of the aluminum material surface layer during etching is high. An aluminum material for an electrolytic capacitor electrode having excellent uniform etching characteristics can be obtained.

前項(8)に係る発明によれば、冷間圧延終了後酸化性雰囲気中での加熱前に洗浄を実施するから、表面が清浄化され、よりエッチング特性に優れた電解コンデンサ電極用アルミニウム材を得ることができる。   According to the invention of the preceding item (8), since the cleaning is performed before the heating in the oxidizing atmosphere after the end of the cold rolling, the surface of the aluminum material for the electrolytic capacitor electrode with a more excellent etching characteristic is obtained. Obtainable.

前項(9)に係る発明によれば、洗浄に用いる洗浄液が有機溶剤、界面活性剤を添加した水、および水溶性有機溶剤と水の混合物、の少なくとも一つであるため、確実に洗浄を行うことができる。   According to the invention according to item (9) above, since the cleaning liquid used for cleaning is at least one of an organic solvent, water to which a surfactant is added, and a mixture of a water-soluble organic solvent and water, cleaning is performed reliably. be able to.

前項(10)に係る発明によれば、洗浄に用いる洗浄液が酸性水溶液およびアルカリ性水溶液の少なくとも一方であるため、より確実に洗浄を行うことができる。   According to the invention according to item (10), since the cleaning liquid used for cleaning is at least one of an acidic aqueous solution and an alkaline aqueous solution, cleaning can be performed more reliably.

前項(11)に係る発明によれば、洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われるため、より確実に洗浄を行うことができる。   According to the invention relating to the above item (11), the cleaning is performed by the sequential execution of the cleaning with the alkaline aqueous solution and the cleaning with the acidic aqueous solution, so that the cleaning can be performed more reliably.

前項(12)に係る発明によれば、酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上であるため、より確実に洗浄を行うことができる。   According to the invention according to item (12) above, since the acid in the acidic aqueous solution is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element, cleaning is performed more reliably. be able to.

前項(13)に係る発明によれば、アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上であるため、より確実に洗浄を行うことができる。   According to the invention according to the preceding item (13), the alkali in the alkaline aqueous solution is selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. Since it is 1 type or 2 types or more, it can wash | clean more reliably.

前項(14)に係る発明によれば、洗浄によるアルミニウム材表面層の平均除去量D(nm)がアルミニウム材片面あたり1nm以上500nm以下であるため、最終焼鈍後のアルミニウム材をエッチングする時のアルミニウム材表面層の溶解性がより均一になる。   According to the invention according to the preceding item (14), since the average removal amount D (nm) of the aluminum material surface layer by cleaning is 1 nm or more and 500 nm or less per one side of the aluminum material, the aluminum when the aluminum material after the final annealing is etched The solubility of the material surface layer becomes more uniform.

前項(15)に係る発明によれば、仕上げ冷間圧延後酸化性雰囲気中での加熱前に実施する洗浄における洗浄剤として有機溶剤、界面活性剤を添加した水、および水溶性有機溶剤と水の混合物、の少なくとも一つを用いて洗浄する場合、アルミニウム材中のPb濃度が、0.6質量ppm以上2.5質量ppm以下であるから、最終焼鈍後のアルミニウム材をエッチングする時のアルミニウム材表面層の溶解性がより均一になる。   According to the invention according to the preceding item (15), an organic solvent, water to which a surfactant is added, and a water-soluble organic solvent and water as a cleaning agent in cleaning performed after finish cold rolling and before heating in an oxidizing atmosphere. In the case of cleaning with at least one of the mixture, the Pb concentration in the aluminum material is 0.6 mass ppm or more and 2.5 mass ppm or less, so that the aluminum material surface layer when etching the aluminum material after the final annealing is used. Solubility becomes more uniform.

前項(16)に係る発明によれば、中間焼鈍が不活性ガス雰囲気中で行われるから、必要以上の酸化皮膜の厚さの増大化を抑制することができ、エッチング特性に優れた電解コンデンサ用アルミニウム材を得ることができる。   According to the invention according to the item (16), since the intermediate annealing is performed in an inert gas atmosphere, an increase in the thickness of the oxide film more than necessary can be suppressed, and the electrolytic capacitor excellent in etching characteristics can be used. An aluminum material can be obtained.

前項(17)に係る発明によれば、最終焼鈍が不活性ガス雰囲気中で行われるから、必要以上の酸化皮膜の厚さの増大化を抑制することができ、エッチング特性に優れた電解コンデンサ用アルミニウム材を得ることができる。   According to the invention of the preceding item (17), since the final annealing is performed in an inert gas atmosphere, an increase in the thickness of the oxide film more than necessary can be suppressed, and the electrolytic capacitor excellent in etching characteristics An aluminum material can be obtained.

前項(18)に係る発明によれば、最終焼鈍が450℃以上600℃以下の温度で行われるから、エッチピットが均一に生成するアルミニウム材を得ることができる。   According to the invention according to item (18), since the final annealing is performed at a temperature of 450 ° C. or higher and 600 ° C. or lower, an aluminum material in which etch pits are uniformly generated can be obtained.

前項(19)に係る発明によれば、エッチング特性に優れた電解コンデンサ電極用アルミニウム材となし得る。   According to the invention of the previous item (19), an aluminum material for electrolytic capacitor electrodes excellent in etching characteristics can be obtained.

前項(20)に係る発明によれば、エッチング特性に優れた中圧用または高圧用陽極材となし得る。   According to the invention according to the above item (20), it can be an intermediate-pressure or high-pressure anode material excellent in etching characteristics.

前項(21)に係る発明によれば、エッチングにより大きな静電容量を有する電解コンデンサ用電極材を製造することができる。   According to the invention which concerns on the preceding clause (21), the electrode material for electrolytic capacitors which has a big electrostatic capacitance by etching can be manufactured.

前項(22)に係る発明によれば、エッチングの少なくとも一部を直流電解エッチングで行うことにより、深くて太い多数のトンネル状ピットを生成することができ、前記冷間圧延終了後最終焼鈍前の酸化性雰囲気中での加熱の効果を効率的に発揮することができる。   According to the invention of the preceding item (22), by performing at least a part of the etching by direct current electrolytic etching, a large number of deep and thick tunnel-like pits can be generated, and after the end of the cold rolling and before the final annealing. The effect of heating in an oxidizing atmosphere can be efficiently exhibited.

前項(23)に係る発明によれば、エッチング後、化成処理を実施するから、陽極材として好適な電解コンデンサ用電極材を得ることができる。   According to the invention of the preceding item (23), since the chemical conversion treatment is performed after the etching, an electrode material for an electrolytic capacitor suitable as an anode material can be obtained.

前項(24)に係る発明によれば、高静電容量のアルミニウム電解コンデンサ用陽極材となし得る。   According to the invention of the previous item (24), the anode material for an aluminum electrolytic capacitor having a high capacitance can be obtained.

前項(25)に係る発明によれば、高静電容量のアルミニウム電解コンデンサとなし得る。   According to the invention of the preceding item (25), an aluminum electrolytic capacitor having a high capacitance can be obtained.

本願発明者は、電解コンデンサ電極用アルミニウム材の製造において、アルミニウム材のPbの含有量を0.3質量ppm以上2.5質量ppm以下とし、冷間圧延終了後最終焼鈍前のアルミニウム材を必要に応じて洗浄した後、酸化性雰囲気中で加熱することにより、最終焼鈍後のアルミニウム材をエッチングしたときのアルミニウム材表面層の溶解性が均一になり、電解エッチング特性が向上することを見出した。さらに、冷間圧延終了後酸化性雰囲気中での加熱前に実施する洗浄の条件によってPb組成を適正なものとすることにより、更にエッチング特性が向上することを見出した。   The inventor of the present application sets the Pb content of the aluminum material to 0.3 mass ppm or more and 2.5 mass ppm or less in the production of the aluminum material for electrolytic capacitor electrodes, and if necessary, cleans the aluminum material after the cold rolling and before the final annealing. Then, by heating in an oxidizing atmosphere, it was found that the solubility of the surface layer of the aluminum material becomes uniform when the aluminum material after the final annealing is etched, and the electrolytic etching characteristics are improved. Furthermore, it has been found that the etching characteristics can be further improved by making the Pb composition appropriate according to the cleaning conditions performed after heating in the oxidizing atmosphere after the end of cold rolling.

以下に、電解コンデンサ用アルミニウム材の製造方法を詳細に説明する。   Below, the manufacturing method of the aluminum material for electrolytic capacitors is demonstrated in detail.

アルミニウム材のアルミニウム純度は電解コンデンサ用に使用される範囲であれば特に限定されないが、純度99.9質量%以上のものが好ましく、特に99.95質量%以上が好ましい。なお、本発明において、便宜的に、アルミニウム材のアルミニウム純度は100質量%からFe, SiおよびCuの合計濃度(質量%)を差し引いた値とする。   The aluminum purity of the aluminum material is not particularly limited as long as it is within the range used for electrolytic capacitors, but it is preferably 99.9% by mass or more, particularly preferably 99.95% by mass or more. In the present invention, for convenience, the aluminum purity of the aluminum material is a value obtained by subtracting the total concentration (mass%) of Fe, Si and Cu from 100 mass%.

Pbは最終焼鈍時にアルミニウム材表層に濃化し、エッチピット生成に大きく影響を及ぼす。直流エッチング法によりトンネル状エッチピットを生成させる際に、Pbが少なすぎるとエッチピット分散性が悪く、多すぎるとアルミニウム材の表面溶解が多くなる。本願では、酸化性雰囲気中のアルミニウム材の加熱によるエッチング特性向上効果を発揮させるために、Pb濃度を0.3ppm以上2.5ppm以下と規定する。   Pb is concentrated on the surface of the aluminum material at the time of final annealing and greatly affects the formation of etch pits. When tunnel-like etch pits are generated by a direct current etching method, if Pb is too small, etch pit dispersibility is poor, and if it is too large, surface dissolution of the aluminum material increases. In the present application, the Pb concentration is defined as 0.3 ppm or more and 2.5 ppm or less in order to exert an effect of improving etching characteristics by heating an aluminum material in an oxidizing atmosphere.

また、さらにエッチピットの分散性を向上させるため10質量ppm以上150質量ppm以下のCuが含まれていることが好ましい。Cu含有量が10質量ppm未満ではエッチピットの分散性の向上効果に乏しく、150質量ppmを越えると電解エッチング中のアルミニウム材の溶解減量が多くなり静電容量が低下する恐れがある。Cu含有量はさらに15ppm以上100ppm以下が好ましい。   Further, in order to further improve the dispersibility of the etch pit, it is preferable that Cu is contained in an amount of 10 mass ppm to 150 mass ppm. If the Cu content is less than 10 ppm by mass, the effect of improving the dispersibility of etch pits is poor. If the Cu content exceeds 150 ppm by mass, the loss of dissolution of the aluminum material during electrolytic etching increases and the capacitance may decrease. Further, the Cu content is preferably 15 ppm or more and 100 ppm or less.

アルミニウム材の製造工程は、限定されず、一例としてアルミニウム材の溶解成分調整・スラブ鋳造、熱間圧延、冷間圧延、仕上げ冷間圧延(低圧下圧延)を含む冷間圧延、最終焼鈍の順に実施され、冷間圧延後最終焼鈍前に酸化性雰囲気中での加熱を実施することができる。なお、冷間圧延終了後酸化性雰囲気中での加熱前に洗浄を実施することが好ましい。洗浄を実施することで、アルミニウム材の表面が清浄化され、エッチング特性を向上できひいては静電容量の増大につながる。また、冷間圧延工程の途中において、最終焼鈍後の立方体方位占有率を高めてエッチング特性を向上させるために、必要に応じて少なくとも1回の中間焼鈍を実施しても良い。   The production process of the aluminum material is not limited, and as an example, the adjustment of the melting component of the aluminum material, slab casting, hot rolling, cold rolling, cold rolling including finish cold rolling (low pressure rolling), and final annealing in this order It is possible to carry out heating in an oxidizing atmosphere after the cold rolling and before the final annealing. In addition, it is preferable to perform washing before heating in an oxidizing atmosphere after completion of cold rolling. By performing the cleaning, the surface of the aluminum material is cleaned, the etching characteristics can be improved, and the capacitance is increased. Further, during the cold rolling process, at least one intermediate annealing may be performed as necessary in order to increase the cube orientation occupation ratio after the final annealing and improve the etching characteristics.

前記アルミニウム材の洗浄に用いる洗浄液は有機溶剤、界面活性剤を添加した水、アルカリ性水溶液、酸性水溶液を用いることができる。また、水溶性有機溶剤と水の混合物でも良い。   As the cleaning liquid used for cleaning the aluminum material, an organic solvent, water to which a surfactant is added, an alkaline aqueous solution, or an acidic aqueous solution can be used. A mixture of a water-soluble organic solvent and water may also be used.

洗浄によりアルミニウム材表面層を除去する場合には、アルカリ性水溶液および酸性水溶液の少なくとも一方を用いる。洗浄は、単独の洗浄液を用いてもよく、アルカリ性水溶液を用いて実施した後、酸水溶液を用いて洗浄してもよい。   When the aluminum material surface layer is removed by washing, at least one of an alkaline aqueous solution and an acidic aqueous solution is used. Cleaning may be performed using a single cleaning solution, or may be performed using an aqueous alkaline solution and then using an aqueous acid solution.

アルカリ性水溶液および酸性水溶液の少なくとも一方を用いて洗浄によりアルミニウム材表面層を除去する場合のアルミニウム材中のPbの含有量は、本発明の範囲である0.3質量ppm以上2.5質量ppm以下とすればよい。Pb含有量が0.3質量ppm未満ではエッチピット分散性が悪く、2.5質量ppmを越えるとアルミニウム材の表面溶解が多くなり静電容量が低下する。Pb含有量はさらに、0.4質量ppm以上1.8質量ppm以下が好ましく、特に0.5質量ppm以上1.2質量ppm以下が好ましい。   The content of Pb in the aluminum material when the aluminum material surface layer is removed by washing using at least one of an alkaline aqueous solution and an acidic aqueous solution may be 0.3 mass ppm or more and 2.5 mass ppm or less, which is the range of the present invention. . If the Pb content is less than 0.3 mass ppm, the etch pit dispersibility is poor, and if it exceeds 2.5 mass ppm, the surface dissolution of the aluminum material increases and the capacitance decreases. Further, the Pb content is preferably 0.4 mass ppm or more and 1.8 mass ppm or less, and particularly preferably 0.5 mass ppm or more and 1.2 mass ppm or less.

有機溶剤、界面活性剤を添加した水、および水溶性有機溶剤と水の混合物、の少なくとも一つを用いて洗浄する場合のPb含有量は、0.6質量ppm以上2.5質量ppm以下であることが好ましい。Pb含有量が0.6質量ppm未満ではエッチピット分散性が悪くなる恐れがあり、2.5質量ppmを越えるとアルミニウム材の表面溶解が多くなり静電容量が低下する恐れがある。Pb含有量はさらに、0.7質量ppm以上1.8質量ppm以下が好ましく、特に0.7質量ppm以上1.2質量ppm以下が好ましい。   The Pb content in the case of washing with at least one of an organic solvent, water to which a surfactant is added, and a mixture of a water-soluble organic solvent and water is preferably 0.6 mass ppm or more and 2.5 mass ppm or less. . If the Pb content is less than 0.6 mass ppm, the etch pit dispersibility may be deteriorated. If the Pb content exceeds 2.5 mass ppm, the surface dissolution of the aluminum material may increase and the capacitance may decrease. Further, the Pb content is preferably 0.7 mass ppm or more and 1.8 mass ppm or less, particularly preferably 0.7 mass ppm or more and 1.2 mass ppm or less.

洗浄に用いる有機溶剤は特に限定されるものではないが、例として、アルコール、ジオール、トルエン・キシレン等の芳香族炭化水素、アルカン系炭化水素、シクロヘキサン、ケトン、エーテル、エステル、石油製品等があげられる。   The organic solvent used for washing is not particularly limited, but examples include alcohols, diols, aromatic hydrocarbons such as toluene and xylene, alkane hydrocarbons, cyclohexane, ketones, ethers, esters, petroleum products, etc. It is done.

上記アルコールの例としては、メタノール(CH3OH)、エタノール(C2H5OH)、1-プロパノール(CH3CH2CH2OH)、2-プロパノール(CH3CH(OH)CH3)、1-ブタノール(CH3CH2CH2CH2OH)、2-ブタノール(CH3CH2CH(OH)CH3)、1-ペンタノール(CH3CH2CH2CH2CH2OH)、2-ペンタノール(CH3CH2CH2CH(OH)CH3)等が挙げられ、CnH2n+1OH(n=1〜10の自然数)で表されるものが好ましい。また、シクロヘキサノール等の脂環式化合物も用いることが出来る。 Examples of the alcohol include methanol (CH 3 OH), ethanol (C 2 H 5 OH), 1-propanol (CH 3 CH 2 CH 2 OH), 2-propanol (CH 3 CH (OH) CH 3 ), 1-butanol (CH 3 CH 2 CH 2 CH 2 OH), 2-butanol (CH 3 CH 2 CH (OH) CH 3 ), 1-pentanol (CH 3 CH 2 CH 2 CH 2 CH 2 OH), 2 -Pentanol (CH 3 CH 2 CH 2 CH (OH) CH 3 ) and the like are mentioned, and those represented by C n H 2n + 1 OH (n = 1 to 10 natural number) are preferred. An alicyclic compound such as cyclohexanol can also be used.

上記ジオールの例としては1,2-エタンジオール(HOCH2CH2OH)、1,2-プロパンジオール(CH3CH(OH)CH2OH)、1,3-プロパンジオール(HOCH2CH2CH2OH)等が例示できる。 Examples of the diol include 1,2-ethanediol (HOCH 2 CH 2 OH), 1,2-propanediol (CH 3 CH (OH) CH 2 OH), 1,3-propanediol (HOCH 2 CH 2 CH 2 OH).

上記アルカン系炭化水素の例としては、ペンタン(C5H12)、ヘキサン(C6H14)、ヘプタン(C7H16)、オクタン(C8H18)、ノナン(C9H20)、デカン(C10H22)等が挙げられCnH2n+2(n=5〜15の自然数)で表されるものが好ましい。またシクロヘキサン等脂環式炭化水素の適用も可能である。 Examples of the alkane hydrocarbons include pentane (C 5 H 12 ), hexane (C 6 H 14 ), heptane (C 7 H 16 ), octane (C 8 H 18 ), nonane (C 9 H 20 ), decane (C 10 H 22) which like is represented by C n H 2n + 2 include (a natural number of n = 5 to 15) are preferred. Moreover, application of alicyclic hydrocarbons such as cyclohexane is also possible.

上記ケトンの例としてはアセトン(CH3COCH3)、2-ブタノン(CH3COC2H5)、3-ペンタノン(CH3CH2COCH2CH3)、3-メチル-2-ブタノン(CH3COCH(CH3)2)等が例示でき、R1COR2(R1およびR2:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表されるものが好ましい。また、シクロヘシサノン(C6H10O)等環状ケトンを用いても良い。 Examples of the ketone include acetone (CH 3 COCH 3 ), 2-butanone (CH 3 COC 2 H 5 ), 3-pentanone (CH 3 CH 2 COCH 2 CH 3 ), 3-methyl-2-butanone (CH 3 COCH (CH 3 ) 2 ) and the like can be exemplified, and those represented by R1COR2 (R1 and R2: aliphatic hydrocarbon groups, and the total number of carbon atoms of R1 and R2 is 8 or less) are preferable. In addition, cyclic ketones such as cycloheticanone (C 6 H 10 O) may be used.

上記エーテルの例としては、R1-O-R2(R1およびR2:脂肪族炭化水素基であり、R1とR2の炭素数の合計が8以下)で表される物質、2-メトキシエタノール(CH3OCH2CH2OH)、2-エトキシエタノール(CH3CH2OCH2CH2OH)、2-ブトキシエタノール(CH3CH2CH2CH2OCH2CH2OH) 2-(2-エトキシ)エトキシエタノール(CH3CH2OCH2CH2OCH2CH2OH)、等のグリコールエーテルも含まれる。 Examples of the ether include a substance represented by R1-O—R2 (R1 and R2: aliphatic hydrocarbon groups, and the total number of carbon atoms of R1 and R2 is 8 or less), 2-methoxyethanol (CH 3 OCH 2 CH 2 OH), 2-ethoxyethanol (CH 3 CH 2 OCH 2 CH 2 OH), 2-butoxyethanol (CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 OH) 2- (2-ethoxy) ethoxy Also included are glycol ethers such as ethanol (CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 2 OH).

上記エステルの例としては、CH3COOR(R:炭素数1〜5である脂肪族炭化水素基)で表される酢酸エステルが例示できる。 Examples of the ester include acetate represented by CH 3 COOR (R: an aliphatic hydrocarbon group having 1 to 5 carbon atoms).

上記石油製品の例としては、工業ガソリン(JIS K 2201)、自動車ガソリン(JIS K 2202)、航空ガソリン(JIS K 2206)、灯油(JIS K 2203)、軽油(JIS K 2204)、石油エーテル(JIS K 8593)、石油ベンジン(JIS K 8594)、リグロイン(JIS K 8937)、ケロシン等が挙げられる。   Examples of petroleum products include industrial gasoline (JIS K 2201), automotive gasoline (JIS K 2202), aviation gasoline (JIS K 2206), kerosene (JIS K 2203), light oil (JIS K 2204), petroleum ether (JIS K 8593), petroleum benzine (JIS K 8594), ligroin (JIS K 8937), kerosene and the like.

なお、水と混合して使用できる水溶性有機溶剤としては、上記有機溶剤のうち、メタノール、エタノール、プロパノール、アセトン等が挙げられる。   In addition, as a water-soluble organic solvent which can be used by mixing with water, methanol, ethanol, propanol, acetone, etc. are mentioned among the said organic solvents.

前記洗浄に用いる水に界面活性剤を添加した液に含まれる界面活性剤は特に限定されるものではないが、アニオン界面活性剤、カチオン界面活性剤、非イオン性界面活性剤を用いることが出来る。   The surfactant contained in the solution obtained by adding a surfactant to the water used for washing is not particularly limited, but anionic surfactants, cationic surfactants, and nonionic surfactants can be used. .

アニオン界面活性剤として硫酸エステル塩、スルホン酸塩を用いることができる。   As the anionic surfactant, sulfate ester salts and sulfonate salts can be used.

上記硫酸エステル塩としては、R-OSO3Na(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)が利用でき、具体的にはドデシル硫酸ナトリウム(C12H25OSO3Na)、ヘキサデシル硫酸ナトリウム(C16H33OSO3Na)、ステアリル硫酸ナトリウム(C18H37OSO3Na)、オレイル硫酸ナトリウム(C18H35OSO3Na)等が例示できる。 As the sulfate ester salt, R-OSO 3 Na (R = saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond) can be used, specifically sodium dodecyl sulfate. (C 12 H 25 OSO 3 Na), sodium hexadecyl sulfate (C 16 H 33 OSO 3 Na), sodium stearyl sulfate (C 18 H 37 OSO 3 Na), sodium oleyl sulfate (C 18 H 35 OSO 3 Na), etc. It can be illustrated.

上記スルホン酸塩はR-SO3Na(R=炭素数8〜18の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基)もしくはドデシルベンゼンスルホン酸ナトリウム(C12H25-C6H4-SO3Na)等のR-SO3Na(R:アルキル基が炭素数8〜14の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルベンジル基)で表されるものを用いることができる。 The sulfonate is R-SO 3 Na (R = saturated hydrocarbon group having 8 to 18 carbon atoms or unsaturated hydrocarbon group having one double bond) or sodium dodecylbenzenesulfonate (C 12 H 25 -C 6 H 4 -SO 3 Na) and other R-SO 3 Na (R: an alkylbenzyl group in which the alkyl group is a saturated hydrocarbon group having 8 to 14 carbon atoms or an unsaturated hydrocarbon group having one double bond) Can be used.

カチオン界面活性剤としてR-N+ (CH3)3・Cl- (R=炭素数8〜16の飽和炭化水素基)で表される第4級アンモニウム塩を用いることができる。 As a cationic surfactant, a quaternary ammonium salt represented by RN + (CH 3 ) 3 · Cl (R = saturated hydrocarbon group having 8 to 16 carbon atoms) can be used.

非イオン性界面活性剤として、R-O-(-CH2CH2O)nH(R=炭素数8〜16の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基、n=6〜14)またはR-O-(-CH2CH2O)nH(R=アルキル基が炭素数8〜12の飽和炭化水素基もしくは二重結合を一つ有する不飽和炭化水素基であるアルキルフェニル基、n=6〜14)で表されるポリエチレングリコール型非イオン界面活性剤を例示できる。なおnが上記範囲より多いものが非イオン性界面活性剤中に50%以下のモル比で含まれていても良い。 As a nonionic surfactant, RO-(-CH 2 CH 2 O) n H (R = saturated hydrocarbon group having 8 to 16 carbon atoms or unsaturated hydrocarbon group having one double bond, n = 6 -14) or RO - (- CH 2 CH 2 O) n H (R = alkyl group is an alkyl phenyl group which is unsaturated hydrocarbon group having one saturated hydrocarbon group or a double bond having 8 to 12 carbon atoms , N = 6 to 14), and a polyethylene glycol type nonionic surfactant can be exemplified. In addition, what has more n than the said range may be contained in the nonionic surfactant by the molar ratio of 50% or less.

上記界面活性剤の少なくとも1種類以上を水に添加し洗浄液として用いる事ができる。界面活性剤の炭素数が上記範囲より少ない界面活性剤が50%以下のモル比で添加されていても良い。なお、アニオン界面活性剤とカチオン界面活性剤を水中で混合させると沈殿が生成するため、混合はさけることが好ましい。   At least one of the above surfactants can be added to water and used as a cleaning liquid. A surfactant having a surfactant whose carbon number is less than the above range may be added in a molar ratio of 50% or less. In addition, when an anionic surfactant and a cationic surfactant are mixed in water, a precipitate is generated. Therefore, it is preferable to avoid mixing.

界面活性剤の添加濃度は特に規定されないが洗浄効果を発揮させるために臨界ミセル濃度以上であることが好ましい。   The addition concentration of the surfactant is not particularly defined, but is preferably not less than the critical micelle concentration in order to exert a cleaning effect.

洗浄に用いるアルカリ性水溶液中のアルカリとしては、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムが例示でき、これらアルカリの中から選ばれた1種あるいは2種以上を水に溶解させ洗浄液として用いることができる。   Examples of the alkali in the alkaline aqueous solution used for washing include sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate, and were selected from these alkalis. One or more types can be dissolved in water and used as a cleaning solution.

洗浄に用いる酸性水溶液中の酸としては、塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれる1種または2種以上を用いる。リン元素を含む酸としてはオルトリン酸(以後リン酸と称す)、ピロリン酸、メタリン酸、ポリリン酸を例示できる。また、過塩素酸及び次亜塩素酸を利用しても良い。   As the acid in the acidic aqueous solution used for washing, one or more selected from acids containing hydrochloric acid, sulfuric acid, nitric acid, and phosphorus elements are used. Examples of the acid containing phosphorus element include orthophosphoric acid (hereinafter referred to as phosphoric acid), pyrophosphoric acid, metaphosphoric acid, and polyphosphoric acid. Perchloric acid and hypochlorous acid may also be used.

アルカリ性水溶液または酸性水溶液によるアルミニウム材の表面層除去量は、アルカリまたは酸の濃度、アルカリまたは酸水溶液の温度およびアルミニウム材とアルカリまたは酸水溶液との接触時間を適正なものにすることにより調節される。また、アルミニウム材表面層の洗浄効果を高める目的で洗浄液に界面活性剤やキレート剤を添加しても良い。   The removal amount of the surface layer of the aluminum material by the alkaline aqueous solution or the acidic aqueous solution is adjusted by adjusting the concentration of the alkali or acid, the temperature of the alkali or acid aqueous solution, and the contact time between the aluminum material and the alkali or acid aqueous solution. . Further, a surfactant or chelating agent may be added to the cleaning liquid for the purpose of enhancing the cleaning effect of the aluminum material surface layer.

前記洗浄によるアルミニウム材表面層の除去量は平均値で、アルミニウム材片面あたり1nm以上500nm以下であることが好ましい。表面層除去量が1nm未満の場合アルミニウム材表面層の酸化膜の除去が不十分な恐れがあり、500nmより多く表層を除去するとアルミニウム材表面層のエッチピット核の生成が抑制されるため却ってエッチング特性が悪く静電容量が低下する恐れがある。洗浄による特に好ましい表面層除去量は1.5nm以上200nm以下であり、さらに5nm以上200nm以下が好ましく、10nm以上150nm以下がより好ましい。   The removal amount of the aluminum material surface layer by the cleaning is an average value, and is preferably 1 nm or more and 500 nm or less per one side of the aluminum material. If the removal amount of the surface layer is less than 1 nm, the removal of the oxide film on the surface layer of the aluminum material may be insufficient, and if the surface layer is removed more than 500 nm, the formation of etch pit nuclei on the surface layer of the aluminum material is suppressed, and etching is performed instead. The characteristics are poor and the capacitance may decrease. A particularly preferable surface layer removal amount by washing is 1.5 nm or more and 200 nm or less, further preferably 5 nm or more and 200 nm or less, and more preferably 10 nm or more and 150 nm or less.

なお、アルミニウム材表面層酸化膜と金属のアルミニウムは密度が異なるが、本願においてアルミニウム材の表面層除去量D(nm)は洗浄による単位表面積当たりの質量減E(g/cm2)とアルミニウムの密度2.7g/cm3を用いて、D(nm)=E×107/2.7と規定する。 The density of the aluminum surface layer oxide film and the metallic aluminum is different, but in this application the surface layer removal amount D (nm) of the aluminum material is the mass loss E (g / cm 2 ) per unit surface area due to cleaning and the aluminum Using a density of 2.7 g / cm 3 , D (nm) = E × 10 7 /2.7 is specified.

洗浄液とアルミニウム材との接触方法としては、特に限定されないが、浸漬、洗浄液表面へのアルミニウム材の接触、スプレー等があげられる。   A method for contacting the cleaning liquid with the aluminum material is not particularly limited, and examples include immersion, contact of the aluminum material with the surface of the cleaning liquid, and spraying.

酸化性雰囲気中での加熱方法は限定されないが、送風加熱、輻射加熱などを例示できる。また、加熱されるアルミニウム材の形態も特に限定されるものではなく、コイルに巻き取った状態でバッチ加熱しても良いし、コイルを巻き戻し連続加熱したのちコイルに巻き取っても良い。   The heating method in the oxidizing atmosphere is not limited, and examples thereof include blast heating and radiation heating. Moreover, the form of the aluminum material to be heated is not particularly limited, and batch heating may be performed in a state where the coil is wound around the coil, or winding may be performed after the coil is rewound and continuously heated.

酸化性雰囲気中でのアルミニウム材の加熱温度は50〜400℃であることが好ましい。加熱温度が50℃未満では、最終焼鈍後のアルミニウム材のエッチング時のアルミニウム材表面層の溶解性が不均一になる恐れがある。加熱温度が400℃を越えるとアルミニウム材表層酸化膜が厚くなりすぎるために、最終焼鈍後のアルミニウム材のエッチング特性が低下する恐れがある。特に好ましいアルミニウム材の加熱温度は70〜350℃である。   The heating temperature of the aluminum material in the oxidizing atmosphere is preferably 50 to 400 ° C. If the heating temperature is less than 50 ° C., the solubility of the surface layer of the aluminum material at the time of etching the aluminum material after the final annealing may be uneven. When the heating temperature exceeds 400 ° C., the surface oxide film of the aluminum material becomes too thick, so that the etching characteristics of the aluminum material after the final annealing may be deteriorated. The heating temperature of the particularly preferable aluminum material is 70 to 350 ° C.

加熱時間は3秒以上72時間以下であることが好ましい。加熱時間が3秒未満では最終焼鈍後のアルミニウム材のエッチング時のアルミニウム材表面層の溶解性が不均一になる恐れがあり、加熱時間が72時間を越えるとアルミニウム材表面層の溶解均一性は殆ど変わらなくなり、加熱時のエネルギー消費によりコスト高となる恐れがある。特に好ましい加熱時間は10秒以上48時間以下であり、とりわけ70秒以上48時間以下が良い。   The heating time is preferably 3 seconds or more and 72 hours or less. If the heating time is less than 3 seconds, the solubility of the aluminum material surface layer may become uneven when the aluminum material is etched after the final annealing. If the heating time exceeds 72 hours, the dissolution uniformity of the aluminum material surface layer is There is almost no change, and there is a risk that the cost will increase due to energy consumption during heating. A particularly preferable heating time is 10 seconds to 48 hours, particularly 70 seconds to 48 hours.

酸化性雰囲気中での加熱温度と時間は、加熱方法により適正な条件が選択される。例えば、コイルとして巻き取った状態でアルミニウム材を加熱する場合には、50℃〜280℃にて30分から72時間加熱されることが好ましい。また、コイルを巻き解いた状態のアルミニウム材あるいはシート状にカットしたアルミニウム材を加熱する場合の加熱時間t(時間)は、加熱温度をx(℃)とすると、10/(1.44×x1.5)≦t≦72であることが好ましく、さらに、10/(1.44×x1.5)≦t≦48であることが好ましい。 Appropriate conditions for the heating temperature and time in the oxidizing atmosphere are selected depending on the heating method. For example, when the aluminum material is heated in the state of being wound as a coil, it is preferably heated at 50 ° C. to 280 ° C. for 30 minutes to 72 hours. In addition, the heating time t (hour) when heating the aluminum material with the coil unwound or cut into a sheet is 10 / (1.44 × x 1.5 ), where the heating temperature is x (° C.). ≦ t ≦ 72 is preferable, and 10 / (1.44 × x 1.5 ) ≦ t ≦ 48 is more preferable.

酸化性雰囲気中でのアルミニウム材の加熱における酸化性雰囲気中の酸素濃度は0.1体積%以上であることが好ましい。酸素濃度が0.1体積%未満では加熱時にアルミニウム材表面が十分酸化されない恐れがある。酸素濃度は特に1体積%以上であることが好ましく、とりわけ5体積%以上であることが好ましく、空気を酸化性雰囲気として好適に利用できる。   The oxygen concentration in the oxidizing atmosphere in heating the aluminum material in the oxidizing atmosphere is preferably 0.1% by volume or more. If the oxygen concentration is less than 0.1% by volume, the surface of the aluminum material may not be sufficiently oxidized during heating. The oxygen concentration is particularly preferably 1% by volume or more, particularly preferably 5% by volume or more, and air can be suitably used as the oxidizing atmosphere.

アルミニウム材の最終焼鈍における処理雰囲気は特に限定されるものではないが、酸化皮膜の厚さを増大させすぎないように、水分および酸素の少ない雰囲気中で加熱するのが好ましい。具体的には、アルゴン、窒素などの不活性ガス中あるいは0.1Pa以下の真空中で加熱することが好ましい。また、最終焼鈍の雰囲気として水素ガスも好適に利用できる。   The treatment atmosphere in the final annealing of the aluminum material is not particularly limited, but it is preferable to heat in an atmosphere with less moisture and oxygen so as not to increase the thickness of the oxide film. Specifically, it is preferable to heat in an inert gas such as argon or nitrogen or in a vacuum of 0.1 Pa or less. Moreover, hydrogen gas can also be suitably used as the atmosphere for final annealing.

最終焼鈍後のアルミニウム材の立方体方位占有率は90%以上が好ましい。   The cubic occupancy ratio of the aluminum material after the final annealing is preferably 90% or more.

最終焼鈍の方法は特に限定されるものではなく、コイルに巻き取った状態でバッチ焼鈍しても良く、コイルを巻き戻し連続焼鈍したのちコイルに巻き取っても良く、バッチ焼鈍と連続焼鈍の少なくともどちらかを複数回行っても良い。   The method of final annealing is not particularly limited, and batch annealing may be performed in a state of being wound around the coil, and the coil may be rewound and continuously annealed, and then wound on the coil, and at least batch annealing and continuous annealing may be performed. Either one may be performed multiple times.

焼鈍時の温度、時間は特に限定されるものではないが、例えばバッチ焼鈍を行う場合には、450〜600℃にて10分〜50時間焼鈍するのが好ましい。温度が450℃未満、時間が10分未満では、エッチピットが均一に生成する表面が得られない恐れがある。逆に600℃を越えて焼鈍すると、アルミニウム材が密着を起こし易くなり、また50時間を超えて焼鈍してもエッチングによる拡面効果は飽和し、却って熱エネルギーコストの増大を招く。特に460〜570℃にて20分〜40時間焼鈍されることが好ましい。   Although the temperature and time during annealing are not particularly limited, for example, when performing batch annealing, it is preferable to perform annealing at 450 to 600 ° C. for 10 minutes to 50 hours. If the temperature is less than 450 ° C. and the time is less than 10 minutes, a surface on which etch pits are uniformly generated may not be obtained. On the other hand, when the annealing temperature exceeds 600 ° C., the aluminum material is likely to be adhered, and even if annealing is performed for more than 50 hours, the surface expansion effect by etching is saturated, and the heat energy cost is increased. In particular, it is preferably annealed at 460 to 570 ° C. for 20 minutes to 40 hours.

また、昇温速度・パターンは特に限定されず、一定速度で昇温させても良く、昇温、温度保持を繰り返しながらステップ昇温・冷却させても良く、焼鈍工程にて450〜600℃の温度域で合計10分〜50時間焼鈍されれば良い。   The temperature raising rate / pattern is not particularly limited, and may be raised at a constant rate, may be stepped up and cooled while repeating the temperature raising and temperature holding, and is 450 to 600 ° C. in the annealing process. It may be annealed in the temperature range for a total of 10 minutes to 50 hours.

本発明で規定した以外の工程および工程条件については、特に限定されることはなく、常法に従って行えば良い。また、アルミニウム材のエッチング条件との関係で、アルミニウム材の製造方法は適宜変更される。   Processes and process conditions other than those specified in the present invention are not particularly limited, and may be performed according to a conventional method. Moreover, the manufacturing method of an aluminum material is changed suitably according to the relationship with the etching conditions of an aluminum material.

最終焼鈍後に得られる電解コンデンサ電極用アルミニウム材の厚さは特に規定されない。箔と称される200μm以下のものも、それ以上の厚いものも本発明に含まれる。   The thickness of the aluminum material for electrolytic capacitor electrodes obtained after the final annealing is not particularly defined. Those having a thickness of 200 μm or less, referred to as foil, and those having a thickness larger than that are also included in the present invention.

最終焼鈍を経たアルミニウム材には、拡面率向上のためエッチング処理を実施する。エッチング処理条件は特に限定されないが、好ましくは直流エッチング法を採用するのが良い。直流エッチング法によって、前記焼鈍において生成が促進されたエッチピットの核となる部分において、深く太くエッチングされ、多数のトンネル状ピットが生成され、高静電容量が実現される。   The aluminum material that has undergone final annealing is subjected to an etching process in order to improve the surface expansion ratio. Etching conditions are not particularly limited, but preferably a direct current etching method is employed. By the direct current etching method, the portion that becomes the nucleus of the etch pit promoted in the annealing is deeply and thickly etched to generate a large number of tunnel-like pits, thereby realizing a high capacitance.

エッチング処理後、望ましくは化成処理を行って陽極材とするのが良く、特に、中圧用および高圧用の電解コンデンサ電極材として用いるのが良いが、陰極材として用いることを妨げるものではない。また、この電極材を用いた電解コンデンサは大きな静電容量を実現できる。   After the etching treatment, a chemical conversion treatment is preferably performed to obtain an anode material. In particular, it is preferably used as an electrolytic capacitor electrode material for medium pressure and high pressure, but it does not preclude use as a cathode material. Moreover, the electrolytic capacitor using this electrode material can realize a large capacitance.

なお、静電容量の測定は常法に従えば良く、化成処理されたエッチド箔について、例えば30℃の80g/Lのホウ酸アンモニウム水溶液中で、ステンレス板を対極として120Hzにて測定する方法を例示できる。   The capacitance may be measured in accordance with a conventional method. For example, a method of measuring a chemically treated etched foil at 80 Hz in an 80 g / L ammonium borate aqueous solution at 30 ° C. using a stainless steel plate as a counter electrode. It can be illustrated.

以下に本発明の実施例および比較例を示す。   Examples of the present invention and comparative examples are shown below.

表1記載のFe, Si, Cu, Pbを含有するアルミニウムスラブを用意した。アルミニウムスラブを熱間圧延して得られた板を厚さ130μmまで冷間圧延し、窒素雰囲気で250℃18時間中間焼鈍した後、さらに仕上げ冷間圧延を施し、厚さ110μm、幅500mm、長さ2000m、純度99.99質量%のアルミニウム材とした。表2に冷間圧延後に実施した工程の種類(工程1〜工程3)、表3〜表5に表2中の洗浄(工程1)の条件、表6に表2中の酸化性雰囲気中での加熱(工程2)の条件を示す。   Aluminum slabs containing Fe, Si, Cu, and Pb listed in Table 1 were prepared. A sheet obtained by hot rolling an aluminum slab is cold-rolled to a thickness of 130 μm, annealed in a nitrogen atmosphere at 250 ° C. for 18 hours, and then further cold-rolled to a thickness of 110 μm, width 500 mm, long An aluminum material having a thickness of 2000 m and a purity of 99.99% by mass was used. Table 2 shows the types of steps carried out after cold rolling (Step 1 to Step 3), Tables 3 to 5 show the conditions for cleaning (Step 1) in Table 2, and Table 6 shows the oxidizing atmosphere in Table 2. The conditions for heating (step 2) are shown.

なお、アルミニウム材表面層除去量は、アルカリ性水溶液による洗浄、酸性水溶液による洗浄の場合には、洗浄液への浸漬時間を調整することにより制御し、アルカリ水溶液による洗浄後に酸性水溶液による洗浄を実施する場合には、アルカリ性水溶液への浸漬時間を調整することにより制御した。
実施例1
表1の組成6のアルミニウムスラブを用い、上述した仕上げ冷間圧延までの工程を実施してアルミニウム材とした。
The removal amount of the aluminum material surface layer is controlled by adjusting the immersion time in the cleaning solution in the case of cleaning with an alkaline aqueous solution or cleaning with an acidic aqueous solution, and when cleaning with an acidic aqueous solution is performed after cleaning with an alkaline aqueous solution. Was controlled by adjusting the immersion time in the alkaline aqueous solution.
Example 1
Using the aluminum slab of composition 6 in Table 1, the steps up to the finish cold rolling described above were carried out to obtain an aluminum material.

次に、このアルミニウム材を、表5の条件29に示す条件にて80℃20質量%H2SO4水溶液で洗浄し、アルミニウム材表面層を10nm除去した後(工程1)、表6条件H4に示す条件にて空気中で200℃×8時間加熱し(工程2)、さらにアルゴン雰囲気で540℃×4時間最終焼鈍し、電解コンデンサ電極用アルミニウム材を得た。
実施例2〜実施例77、比較例1〜比較例5
表7〜表10に示す各種組成(具体的な組成は表1に示す)のアルミニウムスラブを用い、上述した仕上げ冷間圧延までの工程を実施してアルミニウム材とした。
Next, this aluminum material was washed with an 80 ° C., 20 mass% H 2 SO 4 aqueous solution under the conditions shown in Condition 29 in Table 5 to remove the surface layer of the aluminum material by 10 nm (Step 1), and then Table 6 Condition H4 Were heated in air at 200 ° C. for 8 hours under the conditions shown in (Step 2) and further annealed in an argon atmosphere at 540 ° C. for 4 hours to obtain an aluminum material for electrolytic capacitor electrodes.
Examples 2 to 77, Comparative Examples 1 to 5
Aluminum slabs having various compositions shown in Tables 7 to 10 (specific compositions are shown in Table 1) were used, and the steps up to the finish cold rolling described above were performed to obtain aluminum materials.

次に、得られた各アルミニウム材を、表7〜表10に示す条件にて処理し、電解コンデンサ電極用アルミニウム材を得た。   Next, each obtained aluminum material was processed on the conditions shown in Table 7-Table 10, and the aluminum material for electrolytic capacitor electrodes was obtained.

上記の各実施例および比較例で得られたアルミニウム材を、HCl 1.0mol/LとH2SO4 3.5mol/Lを含む液温75℃の水溶液に浸漬した後、電流密度0.2A/cm2で電解処理を施した。電解処理後のアルミニウム材をさらに前記組成の塩酸―硫酸混合水溶液に90℃にて360秒間浸漬し、ピット径を太くしエッチド箔を得た。得られたエッチド箔を化成電圧270VにてEIAJ規格に従い化成処理し、静電容量測定用サンプルとした。 After immersing the aluminum material obtained in each of the above Examples and Comparative Examples in an aqueous solution containing HCl 1.0 mol / L and H 2 SO 4 3.5 mol / L at a liquid temperature of 75 ° C., the current density was 0.2 A / cm 2. The electrolytic treatment was applied. The aluminum material after the electrolytic treatment was further immersed in a hydrochloric acid-sulfuric acid mixed aqueous solution having the above composition at 90 ° C. for 360 seconds to increase the pit diameter and obtain an etched foil. The obtained etched foil was subjected to chemical conversion treatment according to the EIAJ standard at a chemical conversion voltage of 270 V to obtain a sample for measuring capacitance.

表7〜表10に比較例1の静電容量を100としたときの相対静電容量を示す。   Tables 7 to 10 show relative capacitances when the capacitance of Comparative Example 1 is 100.

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

Figure 2006291354
Figure 2006291354

上記表の結果から理解されるように、本願規定の濃度範囲のPbを含有するアルミニウム材を酸化性雰囲気中で加熱した後最終焼鈍することにより、エッチング特性に優れた電解コンデンサ用アルミニウム材を得ることができる。また、Cu含有量が10ppm以上150ppm以下である実施例は、同条件の酸化性雰囲気中加熱および最終焼鈍を施したCu含有量10ppm未満あるいはCu含有量150ppmを越える実施例に比べ、より静電容量が高い。   As understood from the results in the above table, an aluminum material containing Pb in the concentration range specified in the present application is heated in an oxidizing atmosphere and then annealed to obtain an aluminum material for an electrolytic capacitor having excellent etching characteristics. be able to. In addition, the example in which the Cu content is 10 ppm or more and 150 ppm or less is more electrostatic than the example in which the Cu content is less than 10 ppm or the Cu content is more than 150 ppm after heating in an oxidizing atmosphere and final annealing under the same conditions. High capacity.

一方、比較例1は酸化性雰囲気中の加熱を実施しないため静電容量が実施例に比べ低い。比較例2は酸化性雰囲気中の加熱を実施したため、酸化性雰囲気中の加熱を実施しなかった比較例3に比べ静電容量が向上するものの、比較例2および比較例3はPb含有量が0.1質量ppm未満であるため静電容量が実施例に比べ低い。また、比較例4はPb含有量が本願規定の下限未満であり、比較例5はPb含有量が本願規定の上限を越えるためどちらも静電容量が低い。   On the other hand, since Comparative Example 1 does not carry out heating in an oxidizing atmosphere, the capacitance is lower than that of the Example. Since Comparative Example 2 performed heating in an oxidizing atmosphere, the capacitance was improved compared to Comparative Example 3 where heating was not performed in an oxidizing atmosphere, but Comparative Examples 2 and 3 had a Pb content. Since it is less than 0.1 ppm by mass, the capacitance is lower than that of the example. Further, Comparative Example 4 is less than the lower limit of Pb content application defined, Comparative Example 5 is lower both capacitance for exceeding the upper limit of the present provisions Pb content.

Claims (25)

0.3質量ppm以上2.5質量ppm以下のPbを含む冷間圧延終了後のアルミニウム材を酸化性雰囲気中で加熱し、その後最終焼鈍することを特徴とする電解コンデンサ電極用アルミニウム材の製造方法。   A method for producing an aluminum material for electrolytic capacitor electrodes, comprising: heating an aluminum material after completion of cold rolling containing 0.3 mass ppm or more and 2.5 mass ppm or less of Pb in an oxidizing atmosphere, followed by final annealing. アルミニウム材は10質量ppm以上150質量ppm以下のCuを含む請求項1に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1, wherein the aluminum material contains Cu of 10 mass ppm to 150 mass ppm. アルミニウム材のアルミニウム純度が99.9質量%以上である請求項1または請求項2に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 1 or 2, wherein the aluminum material has an aluminum purity of 99.9% by mass or more. 酸化性雰囲気中での加熱温度が50〜400℃である請求項1ないし請求項3の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 3, wherein the heating temperature in an oxidizing atmosphere is 50 to 400 ° C. 酸化性雰囲気中での加熱時間が3秒以上72時間以下である請求項4に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 4, wherein the heating time in the oxidizing atmosphere is 3 seconds or more and 72 hours or less. 加熱における酸化性雰囲気中の酸素濃度が0.1体積%以上である請求項1ないし請求項5の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 5, wherein the oxygen concentration in the oxidizing atmosphere during heating is 0.1 vol% or more. 冷間圧延終了前に、アルミニウム材に中間焼鈍、仕上げ冷間圧延を順次実施する請求項1ないし請求項6の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 6, wherein intermediate annealing and finish cold rolling are sequentially performed on the aluminum material before the end of the cold rolling. 冷間圧延終了後酸化性雰囲気中での加熱前に洗浄を実施する請求項1ないし請求項7の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 7, wherein washing is performed after the cold rolling and before heating in an oxidizing atmosphere. 洗浄に用いる洗浄液が有機溶剤、界面活性剤を添加した水、および水溶性有機溶剤と水の混合物、の少なくとも一つである請求項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 8, wherein the cleaning liquid used for cleaning is at least one of an organic solvent, water to which a surfactant is added, and a mixture of a water-soluble organic solvent and water. 洗浄に用いる洗浄液が酸性水溶液およびアルカリ性水溶液の少なくとも一方である請求項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 8, wherein the cleaning liquid used for cleaning is at least one of an acidic aqueous solution and an alkaline aqueous solution. 洗浄は、アルカリ性水溶液による洗浄と酸性水溶液による洗浄の順次的実施により行われる請求項8に記載の電解コンデンサ電極用アルミニウム材の製造方法。   9. The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 8, wherein the cleaning is performed by sequential execution of cleaning with an alkaline aqueous solution and cleaning with an acidic aqueous solution. 酸性水溶液中の酸が塩酸、硫酸、硝酸、リン元素を含む酸の中から選ばれた1種または2種以上である請求項10または請求項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 10 or 11, wherein the acid in the acidic aqueous solution is one or more selected from hydrochloric acid, sulfuric acid, nitric acid, and an acid containing phosphorus element. . アルカリ性水溶液中のアルカリが水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸三ナトリウム、炭酸ナトリウムの中から選ばれた1種または2種以上である請求項10または請求項11に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The alkali in the alkaline aqueous solution is one or more selected from sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium orthosilicate, sodium metasilicate, trisodium phosphate, and sodium carbonate. Or the manufacturing method of the aluminum material for electrolytic capacitor electrodes of Claim 11. 洗浄によるアルミニウム材表面層の平均除去量が、以下に規定する除去量D(nm)においてアルミニウム材片面あたり1nm以上500nm以下である請求項10ないし請求項13の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。
除去量D(nm)=E(g/cm2)×107/2.7(g/cm3
ただし、Eは洗浄による単位表面積当たりの質量減
2.7g/cm3はアルミニウム材の密度
14. The electrolytic capacitor according to claim 10, wherein an average removal amount of the aluminum material surface layer by the cleaning is 1 nm or more and 500 nm or less per one side of the aluminum material at a removal amount D (nm) specified below. Manufacturing method of aluminum material for electrodes.
Removal amount D (nm) = E (g / cm 2 ) x 10 7 /2.7 (g / cm 3 )
Where E is the weight loss per unit surface area due to cleaning
2.7 g / cm 3 is the density of aluminum material
アルミニウム材中のPb濃度が、0.6質量ppm以上2.5質量ppm以下である請求項9に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to claim 9, wherein the Pb concentration in the aluminum material is 0.6 mass ppm or more and 2.5 mass ppm or less. 中間焼鈍が不活性ガス中で行われる請求項7ないし請求項15の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 7 to 15, wherein the intermediate annealing is performed in an inert gas. 最終焼鈍が不活性ガス雰囲気中で行われる請求項1ないし請求項16の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 16, wherein the final annealing is performed in an inert gas atmosphere. 最終焼鈍が450℃以上600℃以下の温度で行われる請求項1ないし請求項17の何れか1項に記載の電解コンデンサ電極用アルミニウム材の製造方法。   The method for producing an aluminum material for electrolytic capacitor electrodes according to any one of claims 1 to 17, wherein the final annealing is performed at a temperature of 450 ° C or higher and 600 ° C or lower. 請求項1ないし請求項18の何れか1項に記載の製造方法によって製造された電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes manufactured by the manufacturing method of any one of Claims 1 thru | or 18. 中圧用または高圧用陽極材として用いられる請求項19に記載の電解コンデンサ電極用アルミニウム材。   The aluminum material for electrolytic capacitor electrodes according to claim 19, which is used as an anode material for medium pressure or high pressure. 請求項1ないし請求項18の何れか1項に記載の製造方法によって製造されたアルミニウム材に、エッチングを実施する工程を含むことを特徴とする電解コンデンサ用電極材の製造方法。   The manufacturing method of the electrode material for electrolytic capacitors characterized by including the process of etching the aluminum material manufactured by the manufacturing method of any one of Claims 1 thru | or 18. エッチングの少なくとも一部が直流電解エッチングである請求項21に記載の電解コンデンサ用電極材の製造方法。   The method for producing an electrode material for an electrolytic capacitor according to claim 21, wherein at least a part of the etching is direct current electrolytic etching. エッチング後、化成処理を実施する請求項22に記載の電解コンデンサ用電極材の製造方法。   The method for producing an electrode material for an electrolytic capacitor according to claim 22, wherein a chemical conversion treatment is performed after the etching. 請求項22または請求項23に記載の製造方法によって製造されたアルミニウム電解コンデンサ用陽極材。   The anode material for aluminum electrolytic capacitors manufactured by the manufacturing method of Claim 22 or Claim 23. 電極材として請求項21ないし請求項23の何れか1項に記載の製造方法によって製造されたアルミニウム電極材が用いられていることを特徴とするアルミニウム電解コンデンサ。
24. An aluminum electrolytic capacitor characterized in that an aluminum electrode material manufactured by the manufacturing method according to any one of claims 21 to 23 is used as an electrode material.
JP2006071693A 2005-03-17 2006-03-15 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor Pending JP2006291354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071693A JP2006291354A (en) 2005-03-17 2006-03-15 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005077776 2005-03-17
JP2006071693A JP2006291354A (en) 2005-03-17 2006-03-15 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011144325A Division JP5749586B2 (en) 2005-03-17 2011-06-29 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2006291354A true JP2006291354A (en) 2006-10-26

Family

ID=37412221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071693A Pending JP2006291354A (en) 2005-03-17 2006-03-15 Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2006291354A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127412A (en) * 1990-09-18 1992-04-28 Showa Alum Corp Manufacture of aluminum foil for electrolytic-capacitor electrode use
JPH05200407A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JPH07201673A (en) * 1993-12-29 1995-08-04 Showa Alum Corp Manufacture of aluminum material for electrolytic capacitor electrode
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2000204456A (en) * 1999-01-14 2000-07-25 Mitsubishi Alum Co Ltd Production of aluminum foil for electrolytic capacitor electrode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127412A (en) * 1990-09-18 1992-04-28 Showa Alum Corp Manufacture of aluminum foil for electrolytic-capacitor electrode use
JPH05200407A (en) * 1992-01-27 1993-08-10 Showa Alum Corp Production of aluminum foil for electrolytic capacitor
JPH05279815A (en) * 1992-03-30 1993-10-26 Nippon Foil Mfg Co Ltd Production of aluminum foil for electrolytic capacitor anode
JPH07201673A (en) * 1993-12-29 1995-08-04 Showa Alum Corp Manufacture of aluminum material for electrolytic capacitor electrode
JPH10140276A (en) * 1996-11-11 1998-05-26 Toyo Alum Kk Aluminum alloy for electrolytic capacitor high tension anode and its foil
JP2000204456A (en) * 1999-01-14 2000-07-25 Mitsubishi Alum Co Ltd Production of aluminum foil for electrolytic capacitor electrode
JP2001210561A (en) * 2000-01-24 2001-08-03 Mitsubishi Alum Co Ltd Aluminium foil for electrolytic capacitor and production method for alminium foil

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5501152B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5833151B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5551743B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4708808B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874596B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
KR101283824B1 (en) Aluminum material for electrolytic capacitor electrode, electrolytic capacitor electrode material, and aluminum electrolytic capacitor
JP4652205B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874589B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP5123479B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP4874600B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006291354A (en) Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, process for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP6166410B2 (en) Method for producing electrode material for electrolytic capacitor and method for producing aluminum electrolytic capacitor
JP5955679B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP5950959B2 (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP2006210894A (en) Manufacturing method, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and the aluminum electrolytic capacitor of aluminum material for electrolytic capacitor electrode
JP2007247023A (en) Aluminum material for electrolytic capacitor electrode, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP2004165599A (en) Aluminium material for electrode of electrolytic capacitor, process for producing electrode materialof electrolytic capacitor and electrolytic capacitor
WO2005078751A1 (en) Method of manufacturing aluminum material for electrolytic capacitor electrodes, aluminum material for electrolytic capacitor electrodes, anode material for aluminum electrolytic capacitors, and aluminum electrolytic capacitors
JP2006186341A (en) Aluminum material for electrolytic capacitor electrodes, method of manufacturing the same, aluminum electrolytic capacitors, and anode material therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329