JP3186160B2 - Manufacturing method of aluminum foil for electrolytic capacitor - Google Patents

Manufacturing method of aluminum foil for electrolytic capacitor

Info

Publication number
JP3186160B2
JP3186160B2 JP01190892A JP1190892A JP3186160B2 JP 3186160 B2 JP3186160 B2 JP 3186160B2 JP 01190892 A JP01190892 A JP 01190892A JP 1190892 A JP1190892 A JP 1190892A JP 3186160 B2 JP3186160 B2 JP 3186160B2
Authority
JP
Japan
Prior art keywords
rolling
aluminum foil
foil
thickness
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01190892A
Other languages
Japanese (ja)
Other versions
JPH05200406A (en
Inventor
忠雄 藤平
豊 加藤
永三 礒山
健司 御所名
Original Assignee
昭和アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和アルミニウム株式会社 filed Critical 昭和アルミニウム株式会社
Priority to JP01190892A priority Critical patent/JP3186160B2/en
Publication of JPH05200406A publication Critical patent/JPH05200406A/en
Application granted granted Critical
Publication of JP3186160B2 publication Critical patent/JP3186160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は電解コンデンサ用アル
ミニウム箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum foil for an electrolytic capacitor.

【0002】[0002]

【従来の技術】アルミニウム電解コンデンサ用電極材と
して一般に用いられるAl箔には、その実効面積を拡大
して単位面積当りの静電容量を増大するため、通常、電
気化学的あるいは化学的エッチング処理が施される。
2. Description of the Related Art An aluminum foil generally used as an electrode material for an aluminum electrolytic capacitor is usually subjected to an electrochemical or chemical etching treatment in order to increase its effective area and increase the capacitance per unit area. Will be applied.

【0003】しかし、箔を単にエッチング処理するのみ
では十分な静電容量が得られない。このため、一般的に
は箔圧延後の最終焼鈍工程において、立方体方位を多く
有する集合組織にして箔のエッチング特性を向上させる
べく、450℃程度以上の高温加熱処理が施されている
が、昨今の電解コンデンサの高静電容量化の要求に対し
て十分な満足を得るものではなかった。
[0003] However, a sufficient capacitance cannot be obtained simply by etching the foil. For this reason, generally in the final annealing step after foil rolling, high-temperature heat treatment of about 450 ° C. or more has been performed in order to improve the etching characteristics of the foil into a texture having many cubic orientations. However, it has not been possible to sufficiently satisfy the demand for higher capacitance of the electrolytic capacitor described above.

【0004】そこで、最近では、箔圧延工程の前及び/
又は後に硝酸を主成分とする洗浄剤でアルミニウム箔地
を脱脂して電解コンデンサ用アルミニウム箔となすこと
が提案されている(特開昭60−92489号)。
Therefore, recently, before the foil rolling step and / or
Alternatively, it has been proposed that the aluminum foil base is degreased with a cleaning agent containing nitric acid as a main component to form an aluminum foil for electrolytic capacitors (Japanese Patent Application Laid-Open No. 60-92489).

【0005】この提案によれば、硝酸を主成分とする洗
浄剤で脱脂するため、アルミニウム箔地の表面溶解を押
さえつつ表面に付着している圧延油が除去され、エッチ
ング処理後に大きな静電容量が得られるとされている。
According to this proposal, since degreasing is performed with a cleaning agent containing nitric acid as a main component, the rolling oil adhering to the surface of the aluminum foil is removed while suppressing the surface dissolution of the aluminum foil, and a large capacitance is obtained after etching. It is said that is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかし、かかる先行提
案によってもなお、静電容量の増大には限界があった。
しかも、高温加熱処理による最終焼鈍を経たアルミニウ
ム箔にエッチングを施すと、アルミニウム箔の幅方向で
静電容量にバラツキを生じるという欠点もあった。
However, even with such prior proposals, there is a limit to the increase in capacitance.
In addition, when etching is performed on the aluminum foil that has been subjected to final annealing by high-temperature heat treatment, there is a disadvantage that the capacitance varies in the width direction of the aluminum foil.

【0007】この発明は、かかる事情に鑑みてなされた
ものであって、エッチング性能に優れ、ひいては高静電
容量を得ることができ、かつ幅方向における静電容量の
バラツキを改善し得る電解コンデンサ用アルミニウム箔
の製作提供を目的とするものである。
The present invention has been made in view of the above circumstances, and is an electrolytic capacitor which is excellent in etching performance, can obtain a high capacitance, and can improve the variation in the capacitance in the width direction. The purpose is to manufacture and provide aluminum foil for use.

【0008】[0008]

【課題を解決するための手段】上記目的において、発明
者は鋭意研究を重ねた結果、まず、静電容量の増大化の
阻害要因は箔表面の付着圧延油ではなく、圧延工程にお
いてアルミニウム箔地表面に形成される疵状の凹部や表
面に埋込まれたAl酸化物、カーボン等埋込物の存在に
専ら起因していることを知見した。つまり、アルミニウ
ム箔表面に存在する疵状の凹部や埋込物は、電解コンデ
ンサ用アルミニウム箔に一般に施すエッチング処理にお
いてエッチングピットの開始点を形成する一要因となる
ため、これを均一に分散させることができればエッチン
グピットを均一に発生させることができ静電容量の増大
に寄与し得る。しかし凹部や埋込物を均一に分散させる
こと自体実際上極めて困難であり、部分的な局部集中を
不可避的に生じる。かかる局部集中があるとその周辺が
粗大なエッチングピットとなり、却って十分な拡面率ひ
いては大きな静電容量を得られないことがわかった。即
ち、凹部や埋込物がエッチングピットの均一発生を却っ
て阻害しており、むしろ凹凸や埋込物はこれをできるだ
け少なくした方がエッチングピットを均一に発生させる
ことができ、十分な拡面率ひいては大きな静電容量が得
られることがわかった。
Means for Solving the Problems For the above purpose, the present inventors have conducted intensive studies. As a result, the cause of the inhibition of the increase in capacitance is not the rolling oil adhering to the foil surface, but the aluminum foil base in the rolling process. It has been found that it is mainly caused by the presence of flaw-shaped concave portions formed on the surface and embedded materials such as Al oxide and carbon embedded in the surface. In other words, the flaw-shaped concave portions and the embedded material existing on the surface of the aluminum foil are one of the factors that form the starting point of the etching pit in the etching process generally performed on the aluminum foil for electrolytic capacitors. If this is achieved, etching pits can be generated uniformly, which can contribute to an increase in capacitance. However, it is extremely difficult in practice to uniformly disperse the concave portions and the embedded material, and partial local concentration inevitably occurs. It has been found that if such local concentration is present, the surrounding area becomes coarse etching pits, and consequently, a sufficient area coverage and, consequently, a large capacitance cannot be obtained. In other words, the concave portions and the buried objects rather hinder the uniform generation of the etching pits. Rather, it is possible to uniformly generate the etching pits by reducing the unevenness and the buried objects as much as possible, and to obtain a sufficient area coverage. As a result, it was found that a large capacitance could be obtained.

【0009】一方、アルミニウム箔の幅方向にバラツキ
を生じる原因についても、発明者は実験と研究の結果、
かかるバラツキはアルミニウム箔表面に形成された酸化
皮膜の厚さに起因するものであることを知見した。即
ち、実生産においては、アルミニウム箔は圧延後最終焼
鈍に至るまでコイル状に巻かれた状態で取扱われる関係
上、コイルの幅方向の両端部分が中央部よりも環境(温
度、湿度等)の影響を受けやすく、従って幅方向両端部
において酸化皮膜が厚く中央部が薄く形成される。この
ため、エッチングの際にアルミニウム箔の端部と中央部
とで溶解形態に差を生じ、これが静電容量のバラツキと
なって表れるものであった。そして、酸化皮膜厚さの幅
方向のバラツキは、最終焼鈍のときだけに起こるもので
はなく、むしろ該処理工程に入る前の保管時においてそ
の大部分がすでに生じており、この時のバラツキが最終
焼鈍においてもそのまま維持されることがわかった。
[0009] On the other hand, the inventors of the present invention have also conducted experiments and studies on the cause of the variation in the width direction of the aluminum foil.
It has been found that such variation is caused by the thickness of the oxide film formed on the surface of the aluminum foil. That is, in actual production, since the aluminum foil is handled in a state of being wound in a coil form until the final annealing after rolling, both ends in the width direction of the coil are more environmentally friendly (temperature, humidity, etc.) than the center part. Therefore, the oxide film is thick at both ends in the width direction and thin at the center. For this reason, at the time of etching, a difference occurs in the dissolution form between the end portion and the center portion of the aluminum foil, which appears as a variation in capacitance. The variation in the thickness of the oxide film in the width direction does not occur only at the time of the final annealing. Rather, most of the variation has already occurred at the time of storage before entering the processing step. It was found that it was maintained as it was during annealing.

【0010】この発明は、かかる種々の知見に基いてな
されたものであって、純度99.9%以上のアルミニウ
ムスラブに、熱間圧延、冷間圧延を実施した後、さらに
最終仕上圧延を含む箔圧延を実施し、その後最終焼鈍を
実施して電解コンデンサ用アルミニウム箔を製造するに
際し、前記熱間圧延後最終仕上圧延前に、アルミニウム
箔地に対して少なくとも1回の表面層除去洗浄を実施
し、かつ前記箔圧延後最終焼鈍前にコイルから巻き戻し
たアルミニウム箔を、100℃を越え200℃以下の温
度で10秒〜5分、連続的に低温加熱処理することを特
徴とする電解コンデンサ用アルミニウム箔の製造方法を
要旨とする。
The present invention has been made on the basis of such various findings, and includes hot rolling and cold rolling on an aluminum slab having a purity of 99.9% or more, and further includes final finishing rolling. Perform foil rolling, and then perform final annealing to produce an aluminum foil for electrolytic capacitors, and perform at least one surface layer removal cleaning on the aluminum foil substrate before the final finish rolling after the hot rolling. And the aluminum foil unwound from the coil after the foil rolling and before the final annealing is heated to a temperature exceeding 100 ° C. and 200 ° C. or less.
A method for producing an aluminum foil for an electrolytic capacitor , comprising continuously performing a low-temperature heat treatment at a temperature of 10 seconds to 5 minutes .

【0011】まず、アルミニウム箔の純度が99.9%
以上に規定されるのは、99.9%未満の純度では電解
エッチング時にエッチングピットの成長が多くの不純物
の存在によって阻害され、均一なピットを形成できず、
従って静電容量の増大効果が得られないからである。
First, the purity of the aluminum foil is 99.9%.
What is defined above is that if the purity is less than 99.9%, the growth of etching pits is inhibited by the presence of many impurities during electrolytic etching, and uniform pits cannot be formed.
Therefore, the effect of increasing the capacitance cannot be obtained.

【0012】電解コンデンサ用アルミニウム箔は、一般
に、熱間圧延、冷間圧延、最終仕上圧延を含む箔圧延の
各圧延工程を実施したのち、最終焼鈍を実施することに
より製作される。而して、上記圧延工程においては、ア
ルミニウム箔の表面に、圧延方向を長さ方向とする細長
いあるいは長円形状の多数の疵状凹部が生じる。この主
な原因は、Al2 O3 等のアルミニウム酸化物や炭化し
た圧延油のカーボンが圧延ロールによってアルミニウム
箔表面上を引きずられるためであると考えられる。しか
も、これら酸化物やカーボンは疵状凹部の原因となるの
みならず、圧延によってアルミニウム箔表面に多数埋め
込まれる。従って、一般に圧延後のアルミニウム箔表面
には、前記疵状凹部とアルミニウム酸化物、カーボン等
の埋込物とが多数併存し、しかも部分的に局部集中を生
じた状態となっている。この凹部や埋込物の局部集中箇
所にはその後に実施するエッチング処理において粗大な
エッチングピットが形成され、静電容量の増大を却って
阻害する。
An aluminum foil for an electrolytic capacitor is generally manufactured by performing each rolling step of foil rolling including hot rolling, cold rolling and final finishing rolling, and then performing final annealing. Thus, in the above-mentioned rolling step, a large number of elongated or oval flaw-shaped recesses whose length is in the rolling direction are formed on the surface of the aluminum foil. It is considered that the main reason for this is that aluminum oxide such as Al2 O3 and carbon of carbonized rolling oil are dragged on the aluminum foil surface by the rolling roll. In addition, these oxides and carbon not only cause flaw-shaped concave portions but also a large number are embedded in the surface of the aluminum foil by rolling. Therefore, in general, a large number of the flaw-shaped concave portions and the embedded materials such as aluminum oxide and carbon coexist on the surface of the rolled aluminum foil, and local concentration is partially caused. Coarse etching pits are formed in the concave portions and the locally concentrated portions of the buried objects in the etching process performed thereafter, which hinders an increase in capacitance.

【0013】そこでこの発明では、上記のような凹部や
埋込物を除去すべく、アルミニウム箔地の表面層の除去
洗浄を実施する。この洗浄によって除去される表面層の
厚さは0.01μm以上とするのが良い。0.01μm
未満では表面の凹部や埋込物の除去効果に乏しいからで
ある。また、除去厚さが5μmを越える処理はもはや凹
部や埋込物の存在量が少なくなっているため無益であ
り、従って0.01〜3μm程度の除去厚さに設定する
のが良い。最も好ましい除去厚さは0.1〜1μmであ
る。
Therefore, in the present invention, the surface layer of the aluminum foil base is removed and washed in order to remove the above-mentioned concave portions and embedded materials. It is preferable that the thickness of the surface layer removed by this cleaning be 0.01 μm or more. 0.01 μm
If the amount is less than the above, the effect of removing the concave portions and the embedded matter on the surface is poor. Further, the treatment with the removal thickness exceeding 5 μm is useless because the existing amount of the concave portion and the buried substance is reduced. Therefore, the removal thickness is preferably set to about 0.01 to 3 μm. The most preferred removal thickness is 0.1-1 μm.

【0014】表面層除去洗浄の具体的処理方法は特に限
定されないが、アルカリや酸による化学的溶解洗浄が処
理の簡便性の面から好ましい。この化学的溶解洗浄の望
ましい条件を挙げると、洗浄液としては濃度1〜7%、
液温40〜70℃の苛性ソーダや、濃度10〜30%、
液温70〜90℃の硫酸を用い、浸漬時間:10秒〜1
0分程度に設定するのが良い。
The specific treatment method for the surface layer removal cleaning is not particularly limited, but chemical dissolution cleaning using an alkali or an acid is preferred from the viewpoint of simplicity of the treatment. When the desirable conditions for this chemical dissolution cleaning are listed, the concentration of the cleaning solution is 1 to 7%,
Caustic soda with a liquid temperature of 40 to 70 ° C, a concentration of 10 to 30%,
Using sulfuric acid at a liquid temperature of 70 to 90 ° C, immersion time: 10 seconds to 1
It is better to set it to about 0 minutes.

【0015】かかるアルミニウム箔地の表面層除去洗浄
は熱間圧延後に行わなければならない。この理由は、前
述の凹部や埋込物の多くが熱間圧延によって生じるから
である。また、最終圧延工程である箔圧延の終了後に行
ってはならない。この理由は次のとおりである。即ち、
エッチングピットの発生は凹部や埋込物のみならず箔表
面の転位密度とも関連しており、最終の箔圧延後に表面
層の除去洗浄を行うと表面層の高転位密度部が除去され
てしまいエッチングピットが少なくなって拡面率ひいて
は静電容量の増大を図れないからである。このため、圧
延終了後においても高転位密度部をアルミニウム箔表面
に残存させるために、箔地の表面層除去後にさらに圧延
を行う必要がある。従って、表面層除去洗浄は熱間圧延
後箔圧延工程における最終仕上圧延工程前に実施しなけ
ればならない。具体的には、熱間圧延後、箔圧延前に行
っても良く(以下、前洗浄という)、箔圧延の途中に行
っても良い(以下、中間洗浄という)。また、前洗浄の
時期も熱間圧延と冷間圧延との間、冷間圧延の途中、冷
間圧延と箔圧延との間のいずれでも良い。また、中間洗
浄の時期も、箔圧延後最終仕上圧延前であればいずれで
も良い。また、表面層除去洗浄の回数も前洗浄ないし中
間洗浄を1回のみ実施しても良く、前洗浄を2回以上実
施しても良く、中間洗浄を2回以上実施しても良く、さ
らには前洗浄と中間洗浄とを取り混ぜて1回ずつあるい
は複数回実施しても良い。好ましくは埋込物等を効果的
に除去すべく、箔圧延の途中に中間洗浄を行うのが良
く、最も好ましくは、最終仕上圧延直前に中間洗浄を実
施するのが、凹部や埋込物の十分な除去と箔表面におけ
る高転位密度部の形成とを効果的に実現しうる点で望ま
しい。
The cleaning of removing the surface layer of the aluminum foil material must be performed after hot rolling. The reason for this is that many of the above-mentioned concave portions and embedded materials are generated by hot rolling. It should not be performed after the end of foil rolling, which is the final rolling step. The reason is as follows. That is,
The occurrence of etching pits is related to the dislocation density of the foil surface as well as the recesses and buried objects.If the surface layer is removed and washed after the final foil rolling, the high dislocation density portion of the surface layer will be removed and the etching will occur. This is because the number of pits is reduced, and it is impossible to increase the area coverage and, consequently, the capacitance. For this reason, it is necessary to perform further rolling after the removal of the surface layer of the foil base so that the high dislocation density portion remains on the surface of the aluminum foil even after the rolling is completed. Therefore, the surface layer removing cleaning must be performed before the final finish rolling step in the hot rolling and foil rolling step. Specifically, it may be performed after hot rolling and before foil rolling (hereinafter, referred to as pre-cleaning), or may be performed during foil rolling (hereinafter, referred to as intermediate cleaning). Also, the pre-cleaning time may be between hot rolling and cold rolling, during cold rolling, or between cold rolling and foil rolling. Also, the timing of the intermediate cleaning may be any time after the foil rolling and before the final finish rolling. In addition, the number of times of the surface layer removal cleaning may be such that pre-cleaning or intermediate cleaning may be performed only once, pre-cleaning may be performed two or more times, and intermediate cleaning may be performed two or more times. The pre-wash and the intermediate wash may be mixed and performed once or plural times. Preferably, in order to effectively remove the embedded material and the like, it is good to perform intermediate cleaning during the foil rolling, and most preferably, to perform the intermediate cleaning immediately before the final finish rolling, for the concave portion and the embedded material. It is desirable in that sufficient removal and formation of a high dislocation density portion on the foil surface can be effectively achieved.

【0016】なお、圧延終了後に最終圧延で付着した油
分や圧延時に生成された酸化膜等の除去のための洗浄
(以下、後洗浄という)を実施することも、後述の低温
加熱処理によって生成される酸化皮膜をより均一化しえ
て静電容量を増大させ得る点で推奨される。ただし、こ
の後洗浄による表面除去厚さが厚すぎると、アルミニウ
ム箔表面に形成されている高転位密度部が除去されてし
まうため、後洗浄を実施する場合の除去厚さは300オ
ングストローム以下とするのが良い。かかる脱脂洗浄も
例えば濃度:0.01〜1%、液温:30〜60℃の苛
性ソーダを用い、5〜200秒浸漬することにより行え
ば良い。
It should be noted that washing after removal of the oil (eg, post-washing) for removing oil adhering in the final rolling and oxide films generated during the rolling is also performed by a low-temperature heat treatment described later. It is recommended because the oxide film can be made more uniform and the capacitance can be increased. However, if the thickness of the surface removed by the post-cleaning is too large, the high dislocation density portion formed on the surface of the aluminum foil is removed. Therefore, the thickness of the post-cleaning removal is 300 Å or less. Is good. Such degreasing and washing may be performed, for example, by dipping for 5 to 200 seconds using caustic soda having a concentration of 0.01 to 1% and a liquid temperature of 30 to 60 ° C.

【0017】その後、アルミニウム箔には最終焼鈍前に
低温加熱処理を実施する。この低温加熱処理は連続式加
熱処理、換言すればコイルから巻き戻したアルミニウム
箔を連続的に処理する方法で行うが、最終仕上圧延後に
コイルに巻き取ったアルミニウム箔を巻き戻しながら行
っても良く、あるいはコイルに巻き取ったアルミニウム
箔を巻き戻しながら最終仕上圧延を行い、そのまま連続
して低温加熱処理に移行させても良い。かかる加熱処理
前に、アルミニウム箔には既に自然酸化皮膜が形成され
ているが、連続的低温加熱処理を実施することにより箔
の全表面が雰囲気と直接接触した状態で加熱処理される
ことになり、特に酸化皮膜厚さの薄い幅方向中央部にお
いて酸化皮膜の成長が促進され、酸化皮膜はその厚さが
箔の幅方向において均一化される。かかる低温加熱を施
すのは、仕上げ圧延で形成したアルミニウム箔表面の転
移に対応して微欠陥を有した酸化皮膜をコイル幅方向に
均一に形成するためである。高温加熱では、転移密度が
減少してしまうので、低温でまず酸化皮膜を形成する。
即ち、低温加熱は皮膜の微欠陥形成に寄与し、連続処理
はコイル幅方向の酸化皮膜の均一化に寄与する。かかる
低温加熱は100℃を越え200℃以下の温度で行う。
100℃以下では酸化皮膜の成長が遅く均一化を図れな
い恐れがある。一方、200℃を越える温度では酸化皮
膜が過度に成長してエッチング性能を阻害する恐れがあ
る。また、低温加熱の雰囲気は酸化皮膜の形成を可能と
するため酸化性雰囲気とするのが良い。一例として、大
気中雰囲気とか酸素等を含む不活性ガス雰囲気等を挙げ
得る。アルミニウム箔の雰囲気中への滞留時間は10秒
〜5分に設定する10秒未満では酸化皮膜の成長が遅
すぎ結果的に均一な酸化皮膜を形成することができない
恐れがある。一方、5分を越える滞留時間では生産性が
著しく低下する恐れがある。このような連続式低温加熱
処理は1回のみ行っても良く、あるいは1回では均一な
酸化皮膜の形成が困難である場合には2回以上にわたっ
て行っても良い。
Thereafter, the aluminum foil is subjected to a low-temperature heat treatment before final annealing. This low-temperature heat treatment is performed by a continuous heat treatment, in other words, a method of continuously treating the aluminum foil unwound from the coil, but may be performed while unwinding the aluminum foil wound on the coil after the final finish rolling. Alternatively, the final finish rolling may be performed while unwinding the aluminum foil wound around the coil, and the process may be continuously shifted to the low-temperature heat treatment. Before such a heat treatment, a natural oxide film is already formed on the aluminum foil, but by performing a continuous low-temperature heat treatment, the heat treatment is performed in a state where the entire surface of the foil is in direct contact with the atmosphere. In particular, the growth of the oxide film is promoted particularly in the central portion in the width direction where the thickness of the oxide film is small, and the thickness of the oxide film is made uniform in the width direction of the foil. This low-temperature heating is performed in order to uniformly form an oxide film having fine defects in the coil width direction corresponding to the transition of the surface of the aluminum foil formed by the finish rolling. Since the transition density is reduced by heating at a high temperature, an oxide film is first formed at a low temperature.
That is, the low temperature heating contributes to the formation of fine defects in the film, and the continuous treatment contributes to the uniformization of the oxide film in the coil width direction. Such low-temperature heating is performed at a temperature exceeding 100 ° C. and 200 ° C. or less.
If the temperature is lower than 100 ° C. , the growth of the oxide film may be slow and uniformity may not be achieved. On the other hand, I fear there is at temperatures above 200 ° C. to inhibit etching performance oxide film grows excessively
You. Further, the atmosphere for the low-temperature heating is preferably an oxidizing atmosphere in order to enable formation of an oxide film. As an example, an atmosphere in the air, an atmosphere of an inert gas containing oxygen, or the like can be given. The residence time of the aluminum foil in the atmosphere is 10 seconds
Set to ~ 5 minutes . If the time is less than 10 seconds , the growth of the oxide film may be too slow, and as a result, a uniform oxide film may not be formed. On the other hand, if the residence time exceeds 5 minutes , the productivity may be significantly reduced. Such continuous low-temperature heat treatment may be performed only once, or may be performed two or more times when it is difficult to form a uniform oxide film by one time.

【0018】連続式低温加熱処理を終えたアルミニウム
箔には、続いて結晶粒を(100)面にそろえるための
高温最終焼鈍を実施する。この焼鈍処理において、箔組
織の改善がなされるとともに、前記低温加熱で形成され
た微欠陥を有する酸化皮膜が最終焼鈍においても継承さ
れるものと考えられる。最終焼鈍の加熱条件は従来から
行われている条件を適宜採択すれば良いが、好ましくは
温度450〜580℃、時間10秒〜30時間とするの
が良い。450℃未満の温度、10秒未満の時間では組
織の改善効果が少なく、一方温度が580℃を越えある
いは時間が30時間を越える処理を施しても該効果が飽
和しエネルギーの無駄を招くのみならず、酸化皮膜の過
度の成長を招いて却ってエッチング特性の向上を妨げる
恐れがあるからである。処理形態はバッチ式、連続式い
ずれでも良い。この高温加熱処理において、アルミニウ
ム箔の表面には前記低温加熱処理により形成された酸化
皮膜の上にさらに酸化皮膜が形成されるが、アルミニウ
ム箔の幅方向における酸化皮膜厚さのバラツキは主に連
続式低温加熱処理により影響され該低温加熱処理により
厚さの均一化された酸化皮膜が形成されているから、最
終焼鈍をバッチ式で行った場合にも最早酸化皮膜の厚さ
の幅方向における顕著なバラツキは生じない。しかし、
連続式低温加熱処理により形成された酸化皮膜厚さの均
一性をより完全に維持するために、連続式の処理を採用
するのが好ましい。
The aluminum foil which has been subjected to the continuous low-temperature heat treatment is subsequently subjected to high-temperature final annealing for aligning crystal grains with the (100) plane. In this annealing treatment, it is considered that the foil structure is improved and the oxide film having fine defects formed by the low-temperature heating is inherited also in the final annealing. Heating conditions for the final annealing may be appropriately selected from those conventionally used, but are preferably set to a temperature of 450 to 580 ° C. and a time of 10 seconds to 30 hours. If the temperature is lower than 450 ° C. and the time is shorter than 10 seconds, the effect of improving the structure is small, while if the temperature exceeds 580 ° C. or the time exceeds 30 hours, the effect is saturated and energy is wasted. In other words, excessive growth of the oxide film may be caused, which may hinder improvement in etching characteristics. The processing form may be either a batch type or a continuous type. In this high-temperature heat treatment, an oxide film is further formed on the surface of the aluminum foil on the oxide film formed by the low-temperature heat treatment, but the variation in the oxide film thickness in the width direction of the aluminum foil is mainly continuous. Since the oxide film having a uniform thickness is formed by the low-temperature heat treatment due to the low-temperature heat treatment, even when the final annealing is performed by a batch method, the thickness of the oxide film is remarkable in the width direction. No significant variation occurs. But,
In order to more completely maintain the uniformity of the thickness of the oxide film formed by the continuous low-temperature heat treatment, it is preferable to employ a continuous treatment.

【0019】上記により製作したアルミニウム箔は、そ
の後化学的あるいは電気化学的なエッチング処理を実施
して電解コンデンサ電極箔として使用する。このエッチ
ング処理においては、箔表面の疵状の凹部やAl酸化物
等埋込物の局部集中は最早存在せず、箔表面に存在して
いた高転位密度部の対応位置に多数のエッチングピット
が形成される。また、アルミニウム箔の表面に形成され
た酸化皮膜は、幅方向全体にわたって厚さが均一化され
ているから、エッチングに際しても均一なエッチングが
施され、ひいてはバラツキのない安定した静電容量が得
られる。
The aluminum foil produced as described above is then subjected to a chemical or electrochemical etching treatment and used as an electrolytic capacitor electrode foil. In this etching process, the local concentration of flaw-shaped concave portions or embedded materials such as Al oxide on the foil surface is no longer present, and a large number of etching pits are formed at positions corresponding to the high dislocation density portions existing on the foil surface. It is formed. In addition, since the oxide film formed on the surface of the aluminum foil has a uniform thickness throughout the width direction, uniform etching is performed even when etching, and a stable capacitance without variation can be obtained. .

【0020】なお、このアルミニウム箔は陽極用、陰極
用いずれに用いても良いが、Al純度を99.9%以上
とする関係上、一般に高Al純度が要請される陽極箔と
して用いるのが好ましい。
The aluminum foil may be used for either an anode or a cathode, but is preferably used as an anode foil generally required to have a high Al purity because the Al purity is 99.9% or more. .

【0021】[0021]

【実施例】次にこの発明の実施例を示す。 (実施例1) 純度99.99%のアルミニウムスラブを常法に従い厚
さ5mmまで熱間圧延したのち、さらに厚さ0.4mm
まで冷間圧延し、続いて厚さ0.2mmまで第1次箔圧
延を行った。
Next, an embodiment of the present invention will be described. (Example 1) An aluminum slab having a purity of 99.99% was hot-rolled to a thickness of 5 mm according to a conventional method, and then further 0.4 mm in thickness.
, And then the first foil rolling was performed to a thickness of 0.2 mm.

【0022】次に、得られたアルミニウム箔地を濃度5
%、温度50℃の苛性ソーダに90秒間浸漬して、表面
層除去のための中間洗浄を行った。この洗浄により除去
した表面層の厚さは1μmであった。
Next, the obtained aluminum foil was subjected to a concentration of 5
%, And immersed in caustic soda at a temperature of 50 ° C. for 90 seconds to perform intermediate cleaning for removing the surface layer. The thickness of the surface layer removed by this washing was 1 μm.

【0023】続いて、厚さ0.1mmまで最終仕上げ圧
延を行い幅500mmのアルミニウム箔コイルを得た。
Subsequently, final finish rolling was performed to a thickness of 0.1 mm to obtain an aluminum foil coil having a width of 500 mm.

【0024】次に、上記アルミニウム箔をコイルから巻
き戻しながら大気中にて120℃×5分連続的に低温加
熱した。
Next, the aluminum foil was continuously heated at a low temperature of 120 ° C. for 5 minutes in the air while being unwound from the coil.

【0025】次に、上記アルミニウム箔コイルにバッチ
式にて1×10-4Torr以下の真空中で500℃×5
時間の最終焼鈍処理を実施し最終箔を得た。 (実施例2) 純度99.99%のアルミニウムスラブを常法に従い厚
さ5mmまで熱間圧延したのち、さらに厚さ0.4mm
まで冷間圧延し、続いて厚さ0.2mmまで第1次箔圧
延を行った。
Next, the aluminum foil coil is batch-processed at 500 ° C. × 5 in a vacuum of 1 × 10 −4 Torr or less.
A final annealing treatment was performed for a time to obtain a final foil. (Example 2) An aluminum slab having a purity of 99.99% was hot-rolled to a thickness of 5 mm according to a conventional method, and then further 0.4 mm in thickness.
, And then the first foil rolling was performed to a thickness of 0.2 mm.

【0026】次に、得られたアルミニウム箔地を濃度5
%、温度50℃の苛性ソーダに90秒間浸漬して、表面
層除去のための中間洗浄を行った。この洗浄により除去
した表面層の厚さは1μmであった。
Next, the obtained aluminum foil was subjected to a concentration of 5
%, And immersed in caustic soda at a temperature of 50 ° C. for 90 seconds to perform intermediate cleaning for removing the surface layer. The thickness of the surface layer removed by this washing was 1 μm.

【0027】続いて、厚さ0.1mmまで最終仕上げ圧
延を行いアルミニウム箔コイルを得た。
Subsequently, final finishing rolling was performed to a thickness of 0.1 mm to obtain an aluminum foil coil.

【0028】次に、得られたアルミニウム箔を濃度0.
1%、温度50℃の苛性ソーダに10秒間浸漬して後洗
浄を行った。この洗浄により除去した表面層の厚さは1
00オングストロームであった。
Next, the obtained aluminum foil was concentrated to a concentration of 0.
Post washing was performed by immersing in 1% caustic soda at a temperature of 50 ° C. for 10 seconds. The thickness of the surface layer removed by this washing is 1
00 angstroms.

【0029】次に、上記アルミニウム箔をコイルから巻
き戻しながら大気中にて120℃×5分連続的に低温加
熱した。
Next, the aluminum foil was continuously heated at a low temperature of 120 ° C. for 5 minutes in the air while being unwound from the coil.

【0030】次に、上記アルミニウム箔コイルにバッチ
式にて1×10-4Torr以下の真空中で500℃×5
時間の最終焼鈍処理を実施し最終箔を得た。 (比較例1) 実施例1における中間洗浄処理、及び最終焼鈍前の連続
的低温加熱処理を行わなかった以外は、実施例1と同一
条件でアルミニウム箔を製造した。
Next, the aluminum foil coil was batch-processed at 500 ° C. × 5 in a vacuum of 1 × 10 −4 Torr or less.
A final annealing treatment was performed for a time to obtain a final foil. (Comparative Example 1) An aluminum foil was manufactured under the same conditions as in Example 1 except that the intermediate cleaning treatment in Example 1 and the continuous low-temperature heat treatment before final annealing were not performed.

【0031】上記により得た3種類のアルミニウム箔
を、5%塩酸、80℃中で電流密度を直流10A/dm
2 として7分間電解エッチング処理した。そして、その
後硼酸浴中で380℃に化成処理したのち、各電極箔の
幅方向中央部、両端部の静電容量を測定した。なお、両
端部の測定位置は箔端縁から50mm内方の位置とし
た。その結果を、比較例1の中央部の静電容量を100
とした場合の相対比較にて表1に示す。
The three types of aluminum foils obtained above were subjected to a current density of 10 A / dm in 5% hydrochloric acid at 80 ° C.
2 was subjected to electrolytic etching for 7 minutes. Then, after a chemical conversion treatment at 380 ° C. in a boric acid bath, the capacitance at the center and both ends in the width direction of each electrode foil was measured. In addition, the measurement position of both ends was made into the position inside 50 mm from the foil edge. The result was obtained by setting the capacitance at the center of Comparative Example 1 to
Table 1 shows the relative comparison when

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果からわかるように、熱間圧延後
最終仕上圧延前に表面層除去洗浄を実施した本発明実施
品は、比較品に対して静電容量が増大していることがわ
かる。また連続的低温加熱処理することで幅方向の静電
容量のバラツキを改善し得ることがわかる。また、実施
例1と実施例2の比較から、最終仕上圧延後に後洗浄を
実施することにより、さらに静電容量を増大しうること
がわかる。
As can be seen from the results shown in Table 1, the product of the present invention in which the surface layer was removed and washed after the hot rolling and before the final finish rolling had an increased capacitance as compared with the comparative product. . It can also be seen that the continuous low-temperature heat treatment can reduce the variation in the capacitance in the width direction. Further, from a comparison between Example 1 and Example 2, it is understood that the post-cleaning after the final finish rolling can further increase the capacitance.

【0034】[0034]

【作用】熱間圧延後最終仕上圧延前に実施するアルミニ
ウム箔地の表面層除去洗浄により、圧延工程においてア
ルミニウム箔地表面に形成された疵状の凹部や表面に埋
込まれたAl酸化物、カーボン等埋込物が除去され、こ
れら凹部や埋込物の不可避的な局部集中が解消される。
従って、その後に施すエッチング処理において、凹部や
埋込物の局部集中に起因して発生していた粗大なエッチ
ングピットがなくなり、表面洗浄後に少なくとも実施さ
れる仕上圧延によって形成された高転位密度部に基くと
推測されるエッチングピットが均一に形成される。
After removing the surface layer of the aluminum foil and washing it after hot rolling and before the final finish rolling, the aluminum oxide embedded in the flaw-shaped recesses and the surface formed on the aluminum foil ground in the rolling process; The embedded material such as carbon is removed, and the inevitable local concentration of these concave portions and the embedded material is eliminated.
Therefore, in the etching process performed thereafter, the coarse etching pits generated due to the local concentration of the concave portions and the buried objects are eliminated, and the high dislocation density portions formed by the finish rolling performed at least after the surface cleaning are removed. Etching pits presumed to be based are formed uniformly.

【0035】また、前記箔圧延後最終焼鈍前にコイルか
ら巻き戻したアルミニウム箔を連続的に低温加熱処理す
ることで、箔表面の酸化皮膜の厚さが均一化され、エッ
チング後の幅方向の静電容量のバラツキが抑制される。
The aluminum foil unwound from the coil after the above-mentioned foil rolling and before the final annealing is continuously subjected to a low-temperature heat treatment, so that the thickness of the oxide film on the foil surface is made uniform and the width in the width direction after the etching is obtained. Variation in capacitance is suppressed.

【0036】[0036]

【発明の効果】この発明は、上述の次第で、純度99.
9%以上のアルミニウムスラブに、熱間圧延、冷間圧延
を実施した後、さらに最終仕上圧延を含む箔圧延を実施
してアルミニウム箔を製造するに際し、前記熱間圧延後
最終仕上圧延前に、アルミニウム箔地に対して少なくと
も1回の表面層除去洗浄を実施するものであるから、圧
延工程においてアルミニウム箔地表面に形成される疵状
の凹部や表面に埋込まれたAl酸化物、カーボン等埋込
物を除去することができる。従って、従来エッチング処
理において均一なエッチングピットの形成を妨げていた
疵状の凹部や埋込物の局部集中に起因する粗大なエッチ
ングピットをなくすことができるから、エッチングピッ
トを均一に発生させることができ、太くて深いエッチン
グピットを箔表面全体に亘って均一高密度に形成するこ
とができる。その結果、アルミニウム箔の拡面率を格段
に増大でき、ひいては静電容量の増大を実現しうる。
According to the present invention, the purity of 99.degree.
9% or more of the aluminum slab is subjected to hot rolling and cold rolling, and then to foil rolling including final finishing rolling to produce an aluminum foil. After the hot rolling and before final finishing rolling, Since at least one surface layer removal cleaning is performed on the aluminum foil ground, flaw-shaped recesses formed on the aluminum foil ground surface in the rolling step, Al oxide, carbon, and the like embedded in the surface. The implant can be removed. Therefore, it is possible to eliminate the flaw-like concave portions and the coarse etching pits caused by the local concentration of the buried material, which have prevented the formation of the uniform etching pits in the conventional etching process. As a result, thick and deep etching pits can be formed uniformly and densely over the entire foil surface. As a result, the area expansion rate of the aluminum foil can be significantly increased, and the capacitance can be increased.

【0037】しかも、箔圧延後最終焼鈍前にコイルから
巻き戻したアルミニウム箔を、100℃を越え200℃
以下の温度で10秒〜5分、連続的に低温加熱処理する
から、最終焼鈍前にアルミニウム箔の表面に形成される
酸化皮膜の幅方向の厚さを予め均一化することができ
る。従って、その後の最終焼鈍において酸化皮膜が成長
してももはや均一化された厚さを維持しつつ成長するか
ら、最終的に箔の幅方向における酸化皮膜厚さのバラツ
キの少ないアルミニウム箔となし得る。その結果、エッ
チング処理において均一なエッチングを施すことがで
き、静電容量のバラツキの少ない品質の安定した電解コ
ンデンサ用アルミニウム箔を得ることができる。
Moreover, the aluminum foil unwound from the coil after the foil rolling and before the final annealing is heated to a temperature exceeding 100 ° C. and 200 ° C.
Since the low-temperature heat treatment is continuously performed at the following temperature for 10 seconds to 5 minutes, the thickness in the width direction of the oxide film formed on the surface of the aluminum foil before the final annealing can be made uniform in advance. Therefore, even if the oxide film grows in the subsequent final annealing, the oxide film no longer grows while maintaining a uniform thickness, so that the aluminum foil can be finally formed with less variation in the oxide film thickness in the width direction of the foil. . As a result, uniform etching can be performed in the etching process, and a stable quality aluminum foil for electrolytic capacitors with little variation in capacitance can be obtained.

【0038】また、表面層除去厚さを0.01μm以上
に設定した場合にはアルミニウム箔表面の凹部や埋込物
をさらに効果的に除去し得て、益々静電容量を増大する
ことができる。
When the thickness of the surface layer is set to 0.01 μm or more, the recesses and buried objects on the surface of the aluminum foil can be more effectively removed, and the capacitance can be further increased. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 御所名 健司 大阪府堺市海山町6丁224番地 昭和ア ルミニウム株式会社内 (56)参考文献 特開 平3−257147(JP,A) 特開 平4−4903(JP,A) 特開 昭60−92489(JP,A) 特開 平2−148711(JP,A) 特開 平3−122260(JP,A) 特開 平4−28851(JP,A) 特開 平5−200405(JP,A) 特許2735970(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B21B 1/40 B21B 3/00 H01G 9/055 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kenji Goshoname 6, 224 Kaiyama-cho, Sakai-shi, Osaka Showa Aluminum Co., Ltd. (56) References JP-A-3-257147 (JP, A) JP-A Heisei 4-4903 (JP, A) JP-A-60-92489 (JP, A) JP-A-2-148711 (JP, A) JP-A-3-122260 (JP, A) JP-A-4-28851 (JP, A A) JP-A-5-200405 (JP, A) Patent 2735970 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) B21B 1/40 B21B 3/00 H01G 9/055

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 純度99.9%以上のアルミニウムスラ
ブに、熱間圧延、冷間圧延を実施した後、さらに最終仕
上圧延を含む箔圧延を実施し、その後最終焼鈍を実施し
て電解コンデンサ用アルミニウム箔を製造するに際し、
前記熱間圧延後最終仕上圧延前に、アルミニウム箔地に
対して少なくとも1回の表面層除去洗浄を実施し、かつ
前記箔圧延後最終焼鈍前にコイルから巻き戻したアルミ
ニウム箔を、100℃を越え200℃以下の温度で10
秒〜5分、連続的に低温加熱処理することを特徴とする
電解コンデンサ用アルミニウム箔の製造方法。
1. An aluminum slab having a purity of 99.9% or more is subjected to hot rolling and cold rolling, followed by foil rolling including final finish rolling, and then final annealing to perform electrolytic rolling. When manufacturing aluminum foil,
Before the final rolling after the hot rolling, the aluminum foil substrate was subjected to at least one surface layer removal cleaning, and the aluminum foil unwound from the coil before the final annealing after the foil rolling was heated to 100 ° C. Over 200 ° C and below 10
A method for producing an aluminum foil for an electrolytic capacitor, wherein a low-temperature heat treatment is continuously performed for a period of seconds to 5 minutes .
【請求項2】 表面層除去厚さが0.01μm以上であ
る請求項1に記載の電解コンデンサ用アルミニウム箔の
製造方法。
2. The method for producing an aluminum foil for an electrolytic capacitor according to claim 1, wherein the thickness of the surface layer removed is 0.01 μm or more.
JP01190892A 1992-01-27 1992-01-27 Manufacturing method of aluminum foil for electrolytic capacitor Expired - Lifetime JP3186160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01190892A JP3186160B2 (en) 1992-01-27 1992-01-27 Manufacturing method of aluminum foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01190892A JP3186160B2 (en) 1992-01-27 1992-01-27 Manufacturing method of aluminum foil for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05200406A JPH05200406A (en) 1993-08-10
JP3186160B2 true JP3186160B2 (en) 2001-07-11

Family

ID=11790823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01190892A Expired - Lifetime JP3186160B2 (en) 1992-01-27 1992-01-27 Manufacturing method of aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3186160B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4938226B2 (en) * 2003-06-03 2012-05-23 昭和電工株式会社 Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4732892B2 (en) * 2004-12-27 2011-07-27 昭和電工株式会社 Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
CN112658624B (en) * 2020-12-31 2024-03-29 镇江龙源铝业有限公司 Preparation method of ultra-long aluminum strip for submarine optical cable
CN116445768A (en) * 2023-04-20 2023-07-18 天津忠旺铝业有限公司 Production process of 8021 alloy battery flexible package aluminum foil

Also Published As

Publication number Publication date
JPH05200406A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP5749586B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
KR100974372B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor, aluminum material for electrolytic capacitor, method for producing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP3186160B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP2735970B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JP3852632B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPS5825218A (en) Method of producing low voltage electrolytic condenser electrode foil
JP2774894B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH0722094B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode
JP4732892B2 (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JPH05200405A (en) Production of aluminum foil for electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JPH04127412A (en) Manufacture of aluminum foil for electrolytic-capacitor electrode use
JP2001006985A (en) Manufacture of aluminum foil for electrode of electronic capacitor
JP3320467B2 (en) Aluminum material for electrolytic capacitor electrode and method for producing the same
JP2635357B2 (en) Manufacturing method of aluminum material for electrolytic capacitor
JP2000228333A (en) Manufacture of aluminum foil for electrolytic capacitor electrode
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JP3685820B2 (en) Aluminum foil for electrolytic capacitors
JPH03129814A (en) Manufacture of aluminum foil for electrolytic capacitor
KR100935502B1 (en) Process for producing aluminum material for electrode of electrolytic capacitor
JP4981932B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP3337506B2 (en) Method for producing aluminum material for electrolytic capacitor electrode
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11