JP4730725B2 - Method for producing polymer hydrogel - Google Patents

Method for producing polymer hydrogel Download PDF

Info

Publication number
JP4730725B2
JP4730725B2 JP2004058905A JP2004058905A JP4730725B2 JP 4730725 B2 JP4730725 B2 JP 4730725B2 JP 2004058905 A JP2004058905 A JP 2004058905A JP 2004058905 A JP2004058905 A JP 2004058905A JP 4730725 B2 JP4730725 B2 JP 4730725B2
Authority
JP
Japan
Prior art keywords
water
clay mineral
polymer
soluble organic
organic monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004058905A
Other languages
Japanese (ja)
Other versions
JP2005247963A (en
Inventor
和敏 原口
歓軍 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2004058905A priority Critical patent/JP4730725B2/en
Publication of JP2005247963A publication Critical patent/JP2005247963A/en
Application granted granted Critical
Publication of JP4730725B2 publication Critical patent/JP4730725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は有機高分子と粘土鉱物とが三次元網目を形成してなる高分子ヒドロゲルの製造方法に関する。   The present invention relates to a method for producing a polymer hydrogel in which an organic polymer and a clay mineral form a three-dimensional network.

近年、本発明者らは、水溶性の有機モノマー、例えば水溶性アクリルアミド誘導体モノマーの重合物と膨潤性粘土鉱物との三次元網目を有する高分子ゲルを開発し、得られた高分子ゲルが特異的に優れた物性を示すことを報告している(例えば、特許文献1及び2参照)。即ち、得られた高分子ゲル(以下、ナノコンポジット型ゲル:NCゲルと呼ぶ)は、従来の有機架橋剤により調製された有機架橋ゲルに比べて、高延伸性、高強度、また優れた機能性(例えば、高膨潤性、高速温度応答性)を示す特徴を有する。更に、NCゲルの組成、即ち、粘土鉱物濃度、有機ポリマー濃度、水含有率を変化させることにより、引っ張り試験における力学物性の内、弾性率および強度が広い範囲で制御できることが明らかとなった(非特許文献1参照)。しかしながら、NCゲルの延伸性(破断伸び)をより高くする方向での制御法は見出されていなかった。より高い延伸性を有するNCゲルは、ゲルの伸縮性を利用した用途、例えば、延伸性基材、振動吸収剤、変形可能保護膜などにおいて強く要望されていた。   In recent years, the present inventors have developed a polymer gel having a three-dimensional network of a water-soluble organic monomer, for example, a polymer of a water-soluble acrylamide derivative monomer and a swellable clay mineral. Have been reported to exhibit excellent physical properties (see, for example, Patent Documents 1 and 2). That is, the obtained polymer gel (hereinafter referred to as “nanocomposite gel: NC gel”) has higher stretchability, higher strength, and superior function compared to organic crosslinked gels prepared with conventional organic crosslinking agents. Characteristics (for example, high swellability, high-speed temperature response). Furthermore, it became clear that by changing the composition of the NC gel, that is, the clay mineral concentration, the organic polymer concentration, and the water content, the elastic modulus and strength of the mechanical properties in the tensile test can be controlled in a wide range ( Non-patent document 1). However, no control method has been found for increasing the stretchability (breaking elongation) of the NC gel. NC gels having higher stretchability have been strongly demanded in applications utilizing the stretchability of gels, such as stretchable substrates, vibration absorbers, and deformable protective films.

特開平2002-053629号公報Japanese Unexamined Patent Publication No. 2002-053629 特開平2002-053672号公報Japanese Patent Laid-Open No. 2002-053672 American Chemical Society「Macromolecules」2002, vol35, p10162-10171;2003, vol36, p5732-5741American Chemical Society “Macromolecules” 2002, vol35, p10162-10171; 2003, vol36, p5732-5741

本発明が解決しようとする課題は、より高い延伸性を有する高分子ヒドロゲルの製造方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing a polymer hydrogel having higher stretchability.

本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、膨潤性粘土鉱物として、水膨潤性粘土鉱物にフッ素変性やアミド基または水酸基含有有機化合物による変性を行ったものを用いることにより、より高い延伸性を安定的に発現できる高分子ヒドロゲルが得られることを見出し、本発明を完成するに至った。
即ち、本発明は、フッ素変性粘土鉱物及び/またはアミド基または水酸基含有有機分子による変性粘土鉱物(A)と水溶性有機モノマー(B)と重合開始剤(C)を、水または水と有機溶媒との混合溶媒中に溶解または均一に分散させた後、該水溶性有機モノマーを重合させることを特徴とする高分子ヒドロゲルの製造方法を提供する。
As a result of diligent research to solve the above problems, the present inventors use, as a swellable clay mineral, a water-swellable clay mineral that has been modified with fluorine or modified with an amide group or hydroxyl group-containing organic compound. Thus, it was found that a polymer hydrogel capable of stably expressing higher stretchability was obtained, and the present invention was completed.
That is, the present invention relates to fluorine-modified clay mineral and / or modified clay mineral (A), water-soluble organic monomer (B) and polymerization initiator (C) with an amide group or hydroxyl group-containing organic molecule, water or water and an organic solvent. The polymer hydrogel is polymerized after being dissolved or uniformly dispersed in a mixed solvent with the polymer, and a method for producing a polymer hydrogel is provided.

本発明の製造方法により得られる高分子ヒドロゲルは、変性された膨潤性粘土鉱物を用いるため、引っ張り試験における破断伸びが未変性の水膨潤性粘土鉱物を用いた場合と比べて増加する。かかる高分子ゲルは、優れた柔軟性や屈曲性を有し、高い可逆的伸縮性を有する材料として有効に用いられ、特に、伸縮性、柔軟性を必要とする、振動吸収材料、延伸装置部品材料、人工臓器用材料、治療用材料などとして用いられる。   Since the polymer hydrogel obtained by the production method of the present invention uses a modified swellable clay mineral, the elongation at break in the tensile test is increased as compared with the case of using an unmodified water-swellable clay mineral. Such a polymer gel has excellent flexibility and flexibility, and is effectively used as a material having high reversible stretchability. In particular, the vibration-absorbing material and the stretching device component that require stretchability and flexibility. Used as materials, artificial organ materials, therapeutic materials, etc.

本発明における高分子ヒドロゲルの製造方法は、水膨潤性粘土鉱物を変性して得られる上記粘土鉱物(A)と水溶性有機モノマー(B)と重合開始剤(C)、更に必要に応じて触媒(D)及び/または有機架橋剤(E)を、水または水と有機溶媒との混合溶媒中に溶解または均一に分散させた後、(B)を重合させる高分子ヒドロゲルの製造方法であり、その結果、水溶性有機モノマーの重合物と膨潤性粘土鉱物が複合化して形成された三次元網目が変化され、未変性粘土鉱物を用いた高分子ゲルと比べて延伸性がより高く制御された高分子ヒドロゲルが得られる。   The method for producing a polymer hydrogel in the present invention comprises the above clay mineral (A) obtained by modifying a water-swellable clay mineral, a water-soluble organic monomer (B), a polymerization initiator (C), and, if necessary, a catalyst. (D) and / or an organic crosslinking agent (E) is dissolved or uniformly dispersed in water or a mixed solvent of water and an organic solvent, and then (B) is polymerized, and then the polymer hydrogel is produced. As a result, the three-dimensional network formed by combining the polymer of the water-soluble organic monomer and the swellable clay mineral was changed, and the stretchability was controlled to be higher than that of the polymer gel using the unmodified clay mineral. A polymeric hydrogel is obtained.

本発明において用いられる水膨潤性粘土鉱物は、水中で膨潤性を有するものであり、好ましくは水中で少なくとも一部が層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。水膨潤性粘土鉱物としては、例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。   The water-swellable clay mineral used in the present invention is swellable in water, preferably at least partially exfoliated and dispersed in water, particularly preferably 1 to 10 layers in water. It is a layered clay mineral that can be uniformly dispersed by peeling into layers with a thickness of within. As the water-swellable clay mineral, for example, water-swellable smectite or water-swellable mica is used. More specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable Examples thereof include saponite and water-swelling synthetic mica.

本発明で用いられるフッ素変性粘土鉱物は、好ましくは水膨潤性粘土鉱物をフッ素変性したものであり、例えば合成時にフッ化アンモニウムを導入することで、水膨潤性粘土鉱物の水酸基の少なくとも一部がフッ素に置換されたものが好ましく用いられる。かかるフッ素変性粘土鉱物は、水溶性有機モノマー(B)の重合時に該モノマーと三次元網目構造を形成する必要から水膨潤性を損なわない程度にフッ素の量が置換されるべきであり、好ましくはフッ素含有率が粘土鉱物の0.5〜8質量%程度が好ましい。   The fluorine-modified clay mineral used in the present invention is preferably a fluorine-modified water-swellable clay mineral. For example, by introducing ammonium fluoride at the time of synthesis, at least a part of the hydroxyl groups of the water-swellable clay mineral can be obtained. Those substituted with fluorine are preferably used. In such a fluorine-modified clay mineral, the amount of fluorine should be substituted so as not to impair the water swellability because it is necessary to form a three-dimensional network structure with the monomer during polymerization of the water-soluble organic monomer (B), preferably The fluorine content is preferably about 0.5 to 8% by mass of the clay mineral.

アミド基または水酸基含有の有機化合物で変性された粘土鉱物としては、水膨潤性粘土鉱物にアミド基または水酸基含有の有機化合物、例えばジメチルアセトアミド、ジメチルホルムアミドなどを粘土鉱物の1〜500質量%添加し含ませたものや、プロピレングリコールやエチレングリコール等の水酸基含有有機化合物を粘土鉱物の1〜500質量%添加し含ませたものが挙げられる。   As a clay mineral modified with an amide group- or hydroxyl group-containing organic compound, an amide group- or hydroxyl group-containing organic compound such as dimethylacetamide or dimethylformamide is added to the water-swellable clay mineral in an amount of 1 to 500 mass% of the clay mineral. Examples thereof include those containing 1 to 500% by mass of a clay mineral and a hydroxyl group-containing organic compound such as propylene glycol or ethylene glycol.

本発明において用いられる水溶性有機モノマー(B)は、水に溶解する性質を有し、形成するポリマーが前記変性粘土鉱物(A)と三次元網目を構成するものである。例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する水溶性有機モノマーが挙げられ、なかでもアミド基またはエステル基を有する水溶性有機モノマーが好ましく用いられ、特に好ましくはアミド基を有する水溶性有機モノマーである。なお、本発明で言う水には、水単独以外に、水と混和する有機溶媒との混合溶媒で水を主成分とするものが含まれる。
アミド基を有する水溶性有機モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。なお、より好ましくは、N−アルキルアクリルアミドまたはN,N−ジアルキルアクリルアミド、メタクリルアミドが用いられ、特に好ましくはN−アルキルアクリルアミドまたはN,N−ジアルキルアクリルアミドが用いられる。アルキル基としては、炭素数が1〜4のものが好ましく選択される。一方、エステル基を有する水溶性有機モノマーとしては、(メタ)アクリル酸エステルが用いられ、具体的には、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどが挙げられる。
The water-soluble organic monomer (B) used in the present invention has a property of being dissolved in water, and the polymer to be formed constitutes a three-dimensional network with the modified clay mineral (A). For example, those having a functional group capable of forming a hydrogen bond, an ionic bond, a coordinate bond, a covalent bond and the like with a clay mineral are preferable. Specific examples of water-soluble organic monomers having these functional groups include water-soluble organic monomers having an amide group, amino group, hydroxyl group, tetramethylammonium group, silanol group, epoxy group, and the like. A water-soluble organic monomer having a group or an ester group is preferably used, and a water-soluble organic monomer having an amide group is particularly preferable. In addition, the water said by this invention contains what has water as a main component in the mixed solvent with the organic solvent miscible with water other than water alone.
Specific examples of the water-soluble organic monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N-dialkylmethacrylamide, and methacrylamide. And other methacrylamides. More preferably, N-alkyl acrylamide, N, N-dialkyl acrylamide, or methacrylamide is used, and particularly preferably N-alkyl acrylamide or N, N-dialkyl acrylamide is used. As the alkyl group, those having 1 to 4 carbon atoms are preferably selected. On the other hand, (meth) acrylic acid ester is used as the water-soluble organic monomer having an ester group, and specific examples include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, ethoxyethyl methacrylate and the like.

かかる水溶性有機モノマーの重合物としては、以上のような単一水溶性有機モノマーからの重合物の他、これらから選ばれる複数の異なる水溶性有機モノマーを重合して得られる共重合物を用いることも有効である。また上記水溶性有機モノマーとそれ以外の有機溶媒可溶性有機モノマーとの共重合物も、得られた重合物が膨潤性粘土鉱物と三次元網目を形成するものであれば使用することが出来る。本発明における水溶性有機モノマーの重合物としては、水溶性または水を吸湿する性質を有する親水性又は両親媒性を有するもの、また水と親和性を有さない疎水性のいずれもが用いられる。   As the polymer of the water-soluble organic monomer, in addition to the polymer from the single water-soluble organic monomer as described above, a copolymer obtained by polymerizing a plurality of different water-soluble organic monomers selected from these is used. It is also effective. A copolymer of the above water-soluble organic monomer and other organic solvent-soluble organic monomer can also be used as long as the obtained polymer forms a three-dimensional network with the swellable clay mineral. As the polymer of the water-soluble organic monomer in the present invention, either water-soluble or hydrophilic or amphiphilic having water-absorbing properties, or hydrophobic having no affinity for water is used. .

本発明において用いられる重合開始剤(C)および触媒(D)としては、公知のラジカル重合開始剤や触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤(C)として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物などが例示される。また、触媒(D)としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒は必ずしも用いなくてもよい。重合温度は、重合触媒や開始剤の種類に合わせて例えば0℃〜100℃が用いられる。重合時間も数十秒〜数十時間の間で行うことが出来る。 As the polymerization initiator (C) and the catalyst (D) used in the present invention, known radical polymerization initiators and catalysts can be appropriately selected and used. Preferably, those having water dispersibility and uniformly contained in the entire system are preferably used. Specifically, as the polymerization initiator (C), water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, and V-501 (any of them) (Made by Wako Pure Chemical Industries, Ltd.), and a mixture of Fe 2+ and hydrogen peroxide. As the catalyst (D), a tertiary amine compound such as N, N, N ′, N′-tetramethylethylenediamine is preferably used. However, the catalyst is not necessarily used. The polymerization temperature is, for example, 0 ° C. to 100 ° C. according to the type of polymerization catalyst or initiator. The polymerization time can also be carried out for several tens of seconds to several tens of hours.

本発明において必要に応じて用いられる有機架橋剤(E)としては、汎用の多官能有機架橋剤が用いられ、もっとも代表的にはN,N’−メチレンビスアクリルアミドが例示される。   As the organic crosslinking agent (E) used as necessary in the present invention, a general-purpose polyfunctional organic crosslinking agent is used, and representatively N, N'-methylenebisacrylamide is exemplified.

本発明においては、高分子ヒドロゲルの三次元網目形成を変性粘土鉱物で行うことが必須であり、通常の有機架橋剤を全く用いないで該粘土鉱物と水溶性有機モノマー(B)とで三次元網目を形成することが可能である。特に好ましくは、有機架橋剤を用いずに調製されるが、物性制御のためには、有機架橋剤を併用することが好ましい場合もある。例えば、有機架橋剤を変性粘土鉱物と併用して用いると、過度になった延伸性を減少させ、弾性率を増加させる制御が行える。併用して用いる有機架橋剤の量としては、物性制御に有効であれば良く必ずしも限定されないが、好ましくはモノマーに対して1モル%以下、より好ましくは0.5モル%以下、特に好ましくは0.3モル%以下である。   In the present invention, it is essential to form a three-dimensional network of a polymer hydrogel with a modified clay mineral, and without using any ordinary organic cross-linking agent, the clay mineral and the water-soluble organic monomer (B) are three-dimensional. It is possible to form a mesh. Particularly preferably, it is prepared without using an organic crosslinking agent. However, in order to control physical properties, it may be preferable to use an organic crosslinking agent in combination. For example, when an organic cross-linking agent is used in combination with a modified clay mineral, it is possible to control to decrease the excessive stretchability and increase the elastic modulus. The amount of the organic crosslinking agent used in combination is not necessarily limited as long as it is effective for controlling the physical properties, but is preferably 1 mol% or less, more preferably 0.5 mol% or less, particularly preferably 0, relative to the monomer. .3 mol% or less.

本発明における水溶性有機モノマー(B)の重合物に対する変性粘土鉱物(A)の質量比としては、0.003〜3であることが好ましく、より好ましくは0.005〜2、特に好ましくは0.01〜1である。該質量比が0.003未満では機械的性質が不十分となりやすく、3を超えては粘土鉱物の均一微細分散が困難となりやすい。   In the present invention, the mass ratio of the modified clay mineral (A) to the polymer of the water-soluble organic monomer (B) is preferably 0.003 to 3, more preferably 0.005 to 2, particularly preferably 0. .01 to 1. If the mass ratio is less than 0.003, the mechanical properties tend to be insufficient, and if it exceeds 3, uniform fine dispersion of the clay mineral tends to be difficult.

本発明において得られる高分子ゲルは、変性粘土鉱物(A)と水溶性有機モノマー(B)の重合体とが相互作用して三次元網目を形成している。相互作用は、効果的な三次元網目を形成できれば、イオン結合、水素結合、疎水結合、配位結合、共有結合などのいずれか一つまたは複数であって良い。本発明で得られる高分子ゲルは、用いる変性粘土鉱物(A)が水膨潤性粘土鉱物を変性したものであるため、引っ張り試験における破断伸びが未変性の水膨潤性粘土鉱物を用いた場合と比べて増加しているのが特徴である。具体的な破断伸びとしては、用いる水溶性有機モノマー(B)の種類によって異なるが、好ましくは、1000%以上、より好ましくは、1500%以上、特に好ましくは1800%の破断伸びを有するものである。かかる破断伸びの増加は、変性粘土鉱物(A)と水溶性モノマー(B)の重合体との相互作用の少なくとも一部が、未変性の粘土鉱物の場合と比べて、局所的または全面的に弱くなる為であると考えられる。具体的には三次元網目を形成する架橋密度が未変性の粘土鉱物を用いた高分子ゲルに比べて小さく、また粘土鉱物間を結合する高分子鎖の長さが長くなることによると推定される。この結果、多くの場合、得られた高分子ゲルの弾性率は、未変性の粘土鉱物を用いた場合と比べて低い値となる傾向を示す。
なお、かかる三次元網目形成を妨げない限り、またはそれを促進する目的で、または得られる高分子ゲルに機能性を付与する目的で有機または無機の各種機能性分子や生体適合性高分子、または粒子などを添加してよい。
In the polymer gel obtained in the present invention, the modified clay mineral (A) and the polymer of the water-soluble organic monomer (B) interact to form a three-dimensional network. The interaction may be any one or more of an ionic bond, a hydrogen bond, a hydrophobic bond, a coordination bond, a covalent bond, and the like as long as an effective three-dimensional network can be formed. In the polymer gel obtained in the present invention, since the modified clay mineral (A) to be used is a modified water-swellable clay mineral, the case where a water-swellable clay mineral having an unmodified elongation in a tensile test is used. It is characterized by an increase. The specific elongation at break varies depending on the type of the water-soluble organic monomer (B) to be used, but is preferably 1000% or more, more preferably 1500% or more, and particularly preferably 1800%. . The increase in the elongation at break is such that at least a part of the interaction between the modified clay mineral (A) and the polymer of the water-soluble monomer (B) is locally or completely compared to the case of the unmodified clay mineral. This is thought to be weak. Specifically, it is estimated that the crosslink density that forms the three-dimensional network is smaller than that of polymer gels using unmodified clay minerals, and that the length of polymer chains that bond between clay minerals is increased. The As a result, in many cases, the elastic modulus of the obtained polymer gel tends to be lower than that when an unmodified clay mineral is used.
Various organic or inorganic functional molecules or biocompatible polymers, for the purpose of promoting or promoting the formation of such a three-dimensional network, or for the purpose of imparting functionality to the resulting polymer gel, or Particles or the like may be added.

得られた高分子ゲルは、優れた柔軟性や屈曲性を有し、高い可逆的伸縮性を有する材料として有効に用いられる。特に、本発明の高分子ゲルは、円柱状、棒状、フィルム状、糸状などの各種形状に成形でき、伸縮性、柔軟性を必要とする、振動吸収材料、延伸装置部品材料、人工臓器用材料、治療用材料などとして用いられる。   The obtained polymer gel has excellent flexibility and flexibility, and is effectively used as a material having high reversible stretchability. In particular, the polymer gel of the present invention can be molded into various shapes such as a columnar shape, a rod shape, a film shape, and a thread shape, and requires a stretchability and flexibility, a vibration absorbing material, a stretching device component material, and an artificial organ material. Used as a therapeutic material.

次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited only to the Example shown below from the first.

(参考例1)
粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na0.66 の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッドアディティブ社製)を用いた。水溶性有機モノマーとしてはN,N−ジメチルアクリルアミド(DMAA:和光純薬工業株式会社製)を用い、DMAA100mlに対してシリカゲルカラム(メルク社製)80mlの容積で重合禁止剤を取り除いてから使用した。重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.192/10(g/g)の割合で純水で希釈し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED:関東化学株式会社製)をそのまま使用した。水は、イオン交換水を蒸留した純粋を用い、高純度窒素を予め3時間以上バブリングさせ含有酸素を除去してから使用した。
(Reference Example 1)
As the clay mineral, a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood Additive Co., Ltd.) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na 0.66 + is used. Using. As the water-soluble organic monomer, N, N-dimethylacrylamide (DMAA: manufactured by Wako Pure Chemical Industries, Ltd.) was used, and after removing the polymerization inhibitor in a volume of 80 ml of silica gel column (Merck) with respect to 100 ml of DMAA, it was used. . As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Inc.) was diluted with pure water at a ratio of KPS / water = 0.192 / 10 (g / g) and used as an aqueous solution. As the catalyst, N, N, N ′, N′-tetramethylethylenediamine (TEMED: manufactured by Kanto Chemical Co., Inc.) was used as it was. Pure water obtained by distilling ion-exchanged water was used, and high-purity nitrogen was bubbled for 3 hours or more in advance to remove oxygen contained.

内部を窒素置換したガラス容器に、純水19.02gとラポナイトXLG0.61gからなる無色透明の溶液を調製した。これにDMAA1.98gを加え無色透明溶液を得た。次に、KPS水溶液1g、TEMED16μlを加え、この溶液を内径5.5mm、長さ150mmのガラス管容器5本に移した後、上部に密栓をし、20℃の恒温水槽中で20時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から20時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靱性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が772質量%のヒドロゲルであった。棒状に調製したヒドロゲル(断面積は0.237cm)を引っ張り試験装置(株式会社島津製作所製、卓上型万能試験機AGS−H)に装着し、評点間距離30mm、引っ張り速度100mm/分にて引っ張り試験を行った。ここでは水含有率を一定にして評価するため未精製のゲルを用いた。その結果、引っ張り強度が130kPa、破断伸びが1480%、弾性率が6.55kPaであった。なお、弾性率は引っ張り荷重が0.05N〜0.3Nでの傾きを用い、断面積は強度、弾性率共に初期断面積を用いた。 A colorless and transparent solution composed of 19.02 g of pure water and 0.61 g of Laponite XLG was prepared in a glass container whose interior was purged with nitrogen. To this was added 1.98 g of DMAA to obtain a colorless transparent solution. Next, 1 g of KPS aqueous solution and 16 μl of TEMED were added, and this solution was transferred to five glass tube containers having an inner diameter of 5.5 mm and a length of 150 mm, and then sealed at the top and allowed to stand in a constant temperature water bath at 20 ° C. for 20 hours. Then, polymerization was performed. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. Twenty hours after the start of the polymerization, a colorless and transparent, uniform cylindrical polymer gel composed of an organic polymer and a clay mineral and having elasticity and toughness was produced in a glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 772% by mass. The hydrogel prepared in a rod shape (cross-sectional area is 0.237 cm 2 ) is attached to a tensile testing device (manufactured by Shimadzu Corporation, tabletop universal testing machine AGS-H), with a distance between ratings of 30 mm and a pulling speed of 100 mm / min. A tensile test was performed. Here, an unpurified gel was used for evaluation with a constant water content. As a result, the tensile strength was 130 kPa, the breaking elongation was 1480%, and the elastic modulus was 6.55 kPa. In addition, the elastic modulus used the inclination with a tensile load of 0.05N-0.3N, and the cross-sectional area used the initial cross-sectional area for both strength and elastic modulus.

(実施例1、2)
膨潤性粘土鉱物として、水膨潤性合成ヘクトライトの合成時にフッ素源(例:フッ化アンモニウム)を導入して得られた二種のフッ素変性粘土鉱物を用いること、即ち、実施例1ではフッ素含有率が2.9質量%であるフッ素変性粘土鉱物(コープケミカル(株)製SWF)、実施例2ではフッ素含有率が5.6質量%であるフッ素変性粘土鉱物(ロックウッドアディティブ社製ラポナイトB)を用いる以外は、参考例1と同様にして高分子ゲルを合成し、引っ張り力学試験を行った。いずれの場合も均一な高分子ゲルが得られ、引っ張り試験の結果、表1に示すようなより高い延伸性(破断伸び)が観測された。
(Examples 1 and 2)
As the swellable clay mineral, two types of fluorine-modified clay minerals obtained by introducing a fluorine source (eg, ammonium fluoride) during the synthesis of water-swellable synthetic hectorite are used. Fluorine-modified clay mineral (SWF manufactured by Coop Chemical Co., Ltd.) having a rate of 2.9% by mass, and Fluorine-modified clay mineral (Laponite B manufactured by Rockwood Additives) having a fluorine content of 5.6% by mass in Example 2 ) Was used in the same manner as in Reference Example 1 except that a tensile strength test was conducted. In any case, a uniform polymer gel was obtained, and as a result of the tensile test, higher stretchability (elongation at break) as shown in Table 1 was observed.

(実施例3、4)
膨潤性粘土鉱物として、水膨潤性合成ヘクトライトにプロピレングリコールを26質量%(実施例3)、260質量%(実施例4)含有させた膨潤性粘土鉱物を用いる以外は、参考例1と同様にして高分子ゲルを合成し、引っ張り力学試験を行った。均一な高分子ゲルが得られ、引っ張り試験の結果、表1に示すようなより高い延伸性(破断伸び)が観測された。
(Examples 3 and 4)
As the swelling clay mineral, the same as in Reference Example 1 except that a swelling clay mineral containing 26% by mass (Example 3) and 260% by mass (Example 4) of propylene glycol in a water-swellable synthetic hectorite is used. Thus, a polymer gel was synthesized and subjected to a tensile mechanical test. A uniform polymer gel was obtained. As a result of the tensile test, higher stretchability (elongation at break) as shown in Table 1 was observed.

(実施例5)
膨潤性粘土鉱物として、水膨潤性合成ヘクトライトにジメチルアセトアミドを228質量%含有させた膨潤性粘土鉱物を用いる以外は、参考例1と同様にして高分子ゲルを合成し、引っ張り力学試験を行った。均一な高分子ゲルが得られ、引っ張り試験の結果、表1に示すようなより高い延伸性(破断伸び)が観測された。
(Example 5)
A polymer gel was synthesized in the same manner as in Reference Example 1 except that a swellable clay mineral containing 228% by mass of dimethylacetamide in a water-swellable synthetic hectorite was used as a swellable clay mineral, and a tensile mechanical test was performed. It was. A uniform polymer gel was obtained. As a result of the tensile test, higher stretchability (elongation at break) as shown in Table 1 was observed.

(表1)

弾性率 破断強度 破断伸び
(kPa) (kPa) (%)
実施例1 1.85 99 2017
実施例2 0.43 71 2710
実施例3 6.20 128 1700
実施例4 2.24 108 2350
実施例5 0.62 85 2600

(Table 1)

Elastic modulus Breaking strength Breaking elongation
(KPa) (kPa) (%)
Example 1 1.85 99 2017
Example 2 0.43 71 2710
Example 3 6.20 128 1700
Example 4 2.24 108 2350
Example 5 0.62 85 2600

Claims (4)

フッ素変性粘土鉱物及び/またはアミド基または水酸基含有有機化合物による変性粘土鉱物(A)と水溶性有機モノマー(B)と重合開始剤(C)を、水または水と有機溶媒との混合溶媒中に溶解または均一に分散させた後、該水溶性有機モノマーを重合させることを特徴とする高分子ヒドロゲルの製造方法であって、
前記水溶性有機モノマー(B)が、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート又はエトキシエチルメタクリレートである、
高分子ヒドロゲルの製造方法。
Fluorine-modified clay mineral and / or modified clay mineral (A), water-soluble organic monomer (B) and polymerization initiator (C) with an amide group or hydroxyl group-containing organic compound are mixed in water or a mixed solvent of water and an organic solvent. A method for producing a polymer hydrogel, wherein the water-soluble organic monomer is polymerized after being dissolved or uniformly dispersed ,
The water-soluble organic monomer (B) is N-alkylacrylamide, N, N-dialkylacrylamide, acrylamide, N-alkylmethacrylamide, N, N-dialkylmethacrylamide, methacrylamide, methoxyethyl acrylate, ethoxyethyl acrylate, methoxy Ethyl methacrylate or ethoxyethyl methacrylate,
A method for producing a polymer hydrogel.
前記フッ素変性粘土鉱物が、水膨潤性粘土鉱物を処理してフッ素変性してなるものであり、且つ前記水溶性有機モノマーと三次元網目構造を形成する請求項1記載の高分子ヒドロゲルの製造方法。 The method for producing a polymer hydrogel according to claim 1, wherein the fluorine-modified clay mineral is obtained by treating a water-swellable clay mineral to be fluorine-modified, and forms a three-dimensional network structure with the water-soluble organic monomer. . 前記変性粘土鉱物が、水膨潤性粘土鉱物をアミド基または水酸基含有の有機化合物で処理してなるものであり、且つ前記水溶性有機モノマーと三次元網目構造を形成する請求項1記載の高分子ヒドロゲルの製造方法。 The polymer according to claim 1, wherein the modified clay mineral is obtained by treating a water-swellable clay mineral with an organic compound containing an amide group or a hydroxyl group, and forms a three-dimensional network structure with the water-soluble organic monomer. A method for producing a hydrogel. 更に触媒(D)を添加して重合する請求項1乃至3のいずれかに記載の高分子ヒドロゲルの製造方法。 The method for producing a polymer hydrogel according to any one of claims 1 to 3, wherein the polymerization is performed by further adding a catalyst (D).
JP2004058905A 2004-03-03 2004-03-03 Method for producing polymer hydrogel Expired - Fee Related JP4730725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058905A JP4730725B2 (en) 2004-03-03 2004-03-03 Method for producing polymer hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058905A JP4730725B2 (en) 2004-03-03 2004-03-03 Method for producing polymer hydrogel

Publications (2)

Publication Number Publication Date
JP2005247963A JP2005247963A (en) 2005-09-15
JP4730725B2 true JP4730725B2 (en) 2011-07-20

Family

ID=35028758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058905A Expired - Fee Related JP4730725B2 (en) 2004-03-03 2004-03-03 Method for producing polymer hydrogel

Country Status (1)

Country Link
JP (1) JP4730725B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625959B2 (en) * 2005-11-29 2011-02-02 国立大学法人横浜国立大学 Liquid feeding system
EP2465547B1 (en) * 2010-12-15 2017-03-08 The Procter and Gamble Company Method for making water-absorbent modified clay-linked polymers
JP2014060012A (en) * 2012-09-14 2014-04-03 Nissan Motor Co Ltd Laminated structure battery
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP6748934B2 (en) * 2015-07-22 2020-09-02 株式会社リコー Solid modeling model, organ model for practice training, and method of manufacturing the same
CN105175755B (en) * 2015-08-27 2018-01-05 华南理工大学 High stretching dual network physical cross-linking hydrogel of a kind of high intensity and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053762A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic and inorganic composite hydrogel and its producing method
WO2003102672A1 (en) * 2002-06-03 2003-12-11 Staar Surgical Company High refractive index, optically clear and soft hydrophobic acrylamide copolymers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778089B2 (en) * 1987-03-26 1995-08-23 株式会社豊田中央研究所 Method of manufacturing composite material
WO1991005736A1 (en) * 1989-10-19 1991-05-02 Shiseido Company, Ltd. Hydrophilic polymer-silicate mineral composite and its use
JPH08259616A (en) * 1995-03-24 1996-10-08 Kao Corp Azo-based radical polymerization initiator-containing laminar silicate compound and thin laminar silicate composition obtained by using the same
CA2182557A1 (en) * 1995-12-22 1997-06-23 Gary W. Beall Intercalates and exfoliates formed with functional monomeric organic compounds; composite materials containing same and methods of modifying rheology therewith
JP4195391B2 (en) * 2002-02-04 2008-12-10 エルジー・ケム・リミテッド Organic-inorganic nanocomposite and method for producing the same
JP2003327851A (en) * 2002-05-16 2003-11-19 National Institute Of Advanced Industrial & Technology Method for producing layer inorganic crystal substance- polymer composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053762A (en) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res Organic and inorganic composite hydrogel and its producing method
WO2003102672A1 (en) * 2002-06-03 2003-12-11 Staar Surgical Company High refractive index, optically clear and soft hydrophobic acrylamide copolymers

Also Published As

Publication number Publication date
JP2005247963A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
US9334337B2 (en) Enhanced water swellable compositions
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
JP2009149759A (en) Preparation of cationic organic-inorganic composite hydrogel
WO2009099210A1 (en) Hydrogel and process for producing the same
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP3914501B2 (en) Polymer gel composite and method for producing the same
JP4730725B2 (en) Method for producing polymer hydrogel
JP5138632B2 (en) Pregel solution and polymer composition, and method for producing polymer composition
JP2011153174A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP5371216B2 (en) Method for producing organic-inorganic composite hydrogel
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP4297666B2 (en) Optically anisotropic
JP5133209B2 (en) Organogel and method for producing the same
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group
JP5028082B2 (en) Locally swollen polymer gel
JP5435835B2 (en) Polymer gel and method for producing the same
JP4245406B2 (en) Gel foam and method for producing the same
JP2004091724A (en) Organic/inorganic composite and method for producing the same
JP2008074925A (en) Borate group-containing organic inorganic composite hydrogel and method for producing the same
JP2009256629A (en) Organic-inorganic composite hydrogel and method for producing the same
JP6107417B2 (en) Zwitterion-containing polymer gel
JP4914157B2 (en) Amino group-containing organic-inorganic composite hydrogel and method for producing the same
JP5544719B2 (en) Gel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees