JP5132278B2 - Method for producing organic-inorganic composite hydrogel - Google Patents

Method for producing organic-inorganic composite hydrogel Download PDF

Info

Publication number
JP5132278B2
JP5132278B2 JP2007307243A JP2007307243A JP5132278B2 JP 5132278 B2 JP5132278 B2 JP 5132278B2 JP 2007307243 A JP2007307243 A JP 2007307243A JP 2007307243 A JP2007307243 A JP 2007307243A JP 5132278 B2 JP5132278 B2 JP 5132278B2
Authority
JP
Japan
Prior art keywords
acid group
organic
water
inorganic composite
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007307243A
Other languages
Japanese (ja)
Other versions
JP2009127035A (en
Inventor
明 王林
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2007307243A priority Critical patent/JP5132278B2/en
Publication of JP2009127035A publication Critical patent/JP2009127035A/en
Application granted granted Critical
Publication of JP5132278B2 publication Critical patent/JP5132278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は医療、建築、土木、機械、運輸、電子部材、縫製、家庭用品、衛生用品、農業、食品などの分野で用いられる高分子ゲルに関するものである。   The present invention relates to a polymer gel used in the fields of medicine, architecture, civil engineering, machinery, transportation, electronic components, sewing, household goods, sanitary goods, agriculture, foods, and the like.

(メタ)アクリルアミドヒドロゲルは、シリコンゲルやウレタンゲルに比べて良好な親水性を示すが、機械強度が脆弱で取り扱いにくいことが知られている。その機械強度を改良するため、様々な努力がなされていた。例えば、(メタ)アクリルアミドヒドロゲルの力学物性を大きく向上させる方法として、水に均一分散している粘土鉱物の共存下に(メタ)アクリルアミド誘導体の重合を行わせることによって、数十〜数百kPa引張破断強度を有する有機無機複合ヒドロゲルが見出されている(特許文献1)。かかる機械強度の向上により、これらのゲルの実用性が現実的となってきている。一方、いろいろなニーズに対応するため、このヒドロゲルに力学物性だけでなく、水膨潤性、細胞培養性、プロトン伝導性などの機能性を更に改良したり、付与することが望まれている。   It is known that (meth) acrylamide hydrogel exhibits better hydrophilicity than silicon gel and urethane gel, but is weak in mechanical strength and difficult to handle. Various efforts have been made to improve the mechanical strength. For example, as a method for greatly improving the mechanical properties of (meth) acrylamide hydrogels, the polymerization of (meth) acrylamide derivatives is carried out in the presence of clay minerals that are uniformly dispersed in water. An organic-inorganic composite hydrogel having a breaking strength has been found (Patent Document 1). Due to such improvement in mechanical strength, the practicality of these gels has become realistic. On the other hand, in order to meet various needs, it is desired to further improve or impart functionalities such as water swellability, cell culture properties, and proton conductivity to this hydrogel as well as mechanical properties.

なお、特許文献2には、クレイ共存下、アクリルアミド系モノマーの重合により製造される有機無機複合ヒドロゲルに関する技術が開示され、アクリルアミド誘導体とスルホン酸基又はカルボン酸基を有するモノマーを共重合できることが記載されている。しかしながら、該文献にはスルホン酸基又はカルボン酸基を有するモノマーを用いた有機無機複合ヒドロゲルの安定した製造方法の詳細については開示されていない。   Patent Document 2 discloses a technique related to an organic-inorganic composite hydrogel produced by polymerization of an acrylamide monomer in the presence of clay, and describes that an acrylamide derivative and a monomer having a sulfonic acid group or a carboxylic acid group can be copolymerized. Has been. However, this document does not disclose details of a stable method for producing an organic-inorganic composite hydrogel using a monomer having a sulfonic acid group or a carboxylic acid group.

特開2002-053629号公報JP 2002-053629 A 特開2006-169314号公報JP 2006-169314 A

本発明の目的は、高い力学物性を有するだけでなく、高い水膨潤性を有する有機無機複合ヒドロゲルの安定な製造方法を提供することにある。   An object of the present invention is to provide a stable method for producing an organic-inorganic composite hydrogel having not only high mechanical properties but also high water swellability.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた。その結果、ピロリン酸ナトリウム含有水膨潤性粘土鉱物を用い、(メタ)アクリルアミド誘導体及びスルホン酸基又はカルボン酸基を有する重合性モノマーと、ピロリン酸ナトリウム含有水膨潤性粘土鉱物(B)と、水(C)との均一混合溶液の粘度を効果的に下げて、(メタ)アクリルアミド誘導体とスルホン酸基又はカルボン酸基を有する重合性モノマーとの共重合を行わせることによって、スルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルが得られ、上記課題を解決できることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, using a sodium pyrophosphate-containing water-swellable clay mineral, a (meth) acrylamide derivative and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group, a sodium pyrophosphate-containing water-swellable clay mineral (B), water By effectively lowering the viscosity of the homogeneous mixed solution with (C) and copolymerizing a (meth) acrylamide derivative and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group, An organic-inorganic composite hydrogel having an acid group was obtained, and it was found that the above problems could be solved, and the present invention was completed.

即ち、本発明は、上記のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルの製造方法であって、(メタ)アクリルアミド又はその誘導体と、ピロリン酸ナトリウム含有水膨潤性粘土鉱物(B)と、水(C)とを含む均一溶液を調製した後、スルホン酸基又はカルボン酸基を有する重合性モノマーを重合開始剤と同時に又は重合開始剤を添加した後に加えて、前記(メタ)アクリルアミド又はその誘導体と前記スルホン酸基又はカルボン酸基を有する重合性モノマーとを共重合させることを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   That is, the present invention is a method for producing an organic-inorganic composite hydrogel having the above sulfonic acid group or carboxylic acid group, comprising (meth) acrylamide or a derivative thereof, sodium pyrophosphate-containing water-swellable clay mineral (B), Then, after preparing a homogeneous solution containing water (C), a polymerizable monomer having a sulfonic acid group or a carboxylic acid group is added simultaneously with the polymerization initiator or after the polymerization initiator is added, and the (meth) acrylamide or The present invention provides a method for producing an organic-inorganic composite hydrogel characterized by copolymerizing a derivative thereof and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group.

本発明の製造方法によれば、スルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルを安定して製造することができる。そして、本発明にて製造されたヒドロゲルは有機無機複合ヒドロゲルの高い力学物性を保持し、従来の有機架橋ヒドロゲルと比べて優れた機械強度を有する。また、スルホン酸基又はカルボン酸基を有する重合性モノマーを分子鎖に導入したことによって、高い水膨潤性及びプロトン伝導性が得られ、高吸水性樹脂材料や燃料電池用材料としての用途展開が可能になった。   According to the production method of the present invention, an organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group can be produced stably. And the hydrogel manufactured by this invention has the high mechanical physical property of organic-inorganic composite hydrogel, and has the mechanical strength outstanding compared with the conventional organic bridge | crosslinking hydrogel. In addition, by introducing a polymerizable monomer having a sulfonic acid group or a carboxylic acid group into the molecular chain, high water swellability and proton conductivity can be obtained, and application development as a highly water-absorbing resin material or fuel cell material can be achieved. It became possible.

本発明に用いる有機高分子(A)は、スルホン酸基又はカルボン酸基を有する重合性モノマーと(メタ)アクリルアミド及び/又はその誘導体との共重合によって得られるものであって、水に分散した水膨潤性粘土鉱物(B)と水素結合やイオン結合等の非共有結合により三次元網目を形成している。   The organic polymer (A) used in the present invention is obtained by copolymerization of a polymerizable monomer having a sulfonic acid group or a carboxylic acid group and (meth) acrylamide and / or a derivative thereof, and is dispersed in water. A three-dimensional network is formed by non-covalent bonds such as hydrogen bonds and ionic bonds with the water-swellable clay mineral (B).

有機高分子(A)を構成する(メタ)アクリルアミド又はその誘導体としては、N-置換アクリルアミド誘導体、N,N-ジ置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N,N-ジ置換メタクリルアミド誘導体などが挙げられる。具体的には、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-シクロプロピルアクリルアミド、N-イソプロピルアクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-シクロプロピルメタクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N,N-ジエチルアクリルアミド、N-アクリロイルピロリディン、N-アクリロイルピペリディン、N-アクリロイルメチルホモピペラディン、N-アクリロイルメチルピペラディンなどが例示される。その中に、水溶液中でのポリマー物性(親水性と疎水性)がLCST(下限臨界共溶温度)を持つN-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミドなどは機能性の観点から好ましく用いられる。   The (meth) acrylamide or its derivatives constituting the organic polymer (A) includes N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, N, N-disubstituted methacrylamide derivatives. Etc. Specifically, acrylamide, N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, methacrylamide, N-methylmethacrylamide, N-cyclopropylmethacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloyl Examples include piperidin, N-acryloylmethyl homopiperazine, N-acryloylmethylpiperazine and the like. Among them, N-isopropylacrylamide, N, N-diethylacrylamide, and the like having polymer properties (hydrophilicity and hydrophobicity) in an aqueous solution having LCST (lower critical solution temperature) are preferably used from the viewpoint of functionality.

また、有機高分子(A)を構成するスルホン酸基又はカルボン酸基を有する重合性モノマーはスルホン酸基やカルボン酸基を本有機無機複合ヒドロゲルに導入させるものであり、次のようなモノマーを用いることが好ましい。
(1)スルホン酸基を有するモノマー
2-アクリルアミド-2-メチルプロパンスルホン酸、メタクリルアミドスルホン酸、ビニルスルホン酸、アリルスルホン酸、p-スチレンスルホン酸及びこれらの塩類、メタクリロキシオキシエチルスルホン酸ナトリウムなど
(2)カルボン酸基を有するモノマー
アクリル酸、マレイン酸、イタコン酸、クロトン酸、フマル酸などの不飽和カルボン酸及びその塩類
これらの中でも、水膨潤性やプロトン伝導性の優れた有機高分子が得られやすいとの観点から、アクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸が特に好ましく用いられる。
The polymerizable monomer having a sulfonic acid group or a carboxylic acid group constituting the organic polymer (A) is one for introducing a sulfonic acid group or a carboxylic acid group into the organic-inorganic composite hydrogel. It is preferable to use it.
(1) Monomers having sulfonic acid groups
2-acrylamido-2-methylpropanesulfonic acid, methacrylamidesulfonic acid, vinylsulfonic acid, allylsulfonic acid, p-styrenesulfonic acid and their salts, sodium methacryloxyoxyethylsulfonate, etc.
(2) Monomers having a carboxylic acid group Unsaturated carboxylic acids such as acrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid and their salts Among these, organic polymers having excellent water swellability and proton conductivity are used. From the viewpoint of being easily obtained, acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are particularly preferably used.

本発明に用いるピロリン酸ナトリウム含有水膨潤性粘土鉱物(B)は、水に膨潤し均一分散可能なものであり、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。これらの粘土鉱物は、水溶性有機高分子のモノマーが重合する前の水溶液中で微細、且つ均一に分散していることが必要であり、特に水溶液中に単位層レベルで分散していることが望ましい。ここで、水溶液中に粘土鉱物の沈殿となるような粘土鉱物凝集体がないことが必要であり、より好ましくは1〜10層程度のナノオーターの厚みで分散しているもの、特に好ましくは1又は2層程度の厚みで分散しているものである。   The sodium pyrophosphate-containing water-swellable clay mineral (B) used in the present invention is one that swells in water and can be uniformly dispersed, and particularly preferably can be uniformly dispersed in water at a molecular level (single layer) or a level close thereto. It is a layered clay mineral. For example, water-swellable smectite or water-swellable mica is used. Specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Can be mentioned. These clay minerals need to be finely and uniformly dispersed in an aqueous solution before the monomer of the water-soluble organic polymer is polymerized. In particular, the clay mineral must be dispersed at the unit layer level in the aqueous solution. desirable. Here, it is necessary that there is no clay mineral aggregate that causes precipitation of clay mineral in the aqueous solution, more preferably one having a thickness of about 1 to 10 layers dispersed, particularly preferably 1 or It is dispersed with a thickness of about two layers.

上述の粘土鉱物にピロリン酸ナトリウムを添加することが必要である。ピロリン酸ナトリウムを添加することによって、粘土鉱物水分散液の粘度が効果的に下がり、高濃度でも、ゲル化せず、有機高分子のモノマーが均一に重合することができる。スルホン酸基又はカルボン酸基を有するモノマーを用いた場合、粘土鉱物の含有率が低くなると、力学強度を有する複合体ヒドロゲルが得られない。一方、粘土鉱物の含有率を高くすると、溶液がゲル化して、スルホン酸基又はカルボン酸基を有するモノマーの均一な分散、共重合ができなくなる。また、攪拌機を用い、ゲル化した溶液にモノマーを分散させると、強力な攪拌により、スルホン酸基又はカルボン酸基を有するモノマーと粘土鉱物との相互作用が強くなり、無機架橋剤としての粘土鉱物の働きを失い、強い複合体ヒドロゲルが得られなくなる。ピロリン酸ナトリウムを用いることによって、高濃度の粘土鉱物の水溶液でも、溶液がゲル化せず、(メタ)アクリルアミド誘導体とスルホン酸基を有する重合性モノマーとの共重合は均一にできるようになった。   It is necessary to add sodium pyrophosphate to the above clay mineral. By adding sodium pyrophosphate, the viscosity of the clay mineral aqueous dispersion is effectively lowered, and even at high concentrations, the organic polymer monomer can be uniformly polymerized without gelation. When a monomer having a sulfonic acid group or a carboxylic acid group is used, a composite hydrogel having a mechanical strength cannot be obtained if the clay mineral content is low. On the other hand, when the content of the clay mineral is increased, the solution is gelled, and the monomer having a sulfonic acid group or a carboxylic acid group cannot be uniformly dispersed or copolymerized. In addition, when a monomer is dispersed in a gelled solution using a stirrer, strong interaction makes the interaction between the monomer having a sulfonic acid group or a carboxylic acid group and the clay mineral strong, and the clay mineral as an inorganic crosslinking agent Thus, a strong composite hydrogel cannot be obtained. By using sodium pyrophosphate, the solution does not gel even in high-concentration clay mineral aqueous solution, and copolymerization of (meth) acrylamide derivatives and polymerizable monomers having sulfonic acid groups can be performed uniformly. .

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルにおける有機高分子(A)と水に均一分散可能な水膨潤性粘土鉱物(B)との比率は重要であり、好ましくは前記水膨潤性粘土鉱物(B)と前記有機高分子(A)の質量比((B)/(A))は0.05〜5である。また、より好ましくは(B)/(A)の質量比が0.1〜4、特に好ましくは0.2〜3である。   The ratio of the organic polymer (A) and the water-swellable clay mineral (B) that can be uniformly dispersed in water in the organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention is important. The mass ratio ((B) / (A)) of the swellable clay mineral (B) and the organic polymer (A) is 0.05-5. More preferably, the mass ratio of (B) / (A) is 0.1 to 4, particularly preferably 0.2 to 3.

(B)/(A)の質量比が0.05未満では、本発明のヒドロゲルの伸縮性が十分でない場合が多く、5を越えては、得られたヒドロゲルが脆くなるなどの製造上の問題が生じる場合がある。一方、(A)+(B)に対する(C)水の比率は、重合過程での水量調整、もしくはその後の膨潤や乾燥により、目的に応じて広い範囲で任意に設定できる。   When the mass ratio of (B) / (A) is less than 0.05, the stretchability of the hydrogel of the present invention is often insufficient, and when it exceeds 5, problems in production such as the resulting hydrogel become brittle There is a case. On the other hand, the ratio of (C) water to (A) + (B) can be arbitrarily set within a wide range according to the purpose by adjusting the amount of water in the polymerization process or by subsequent swelling or drying.

また、有機高分子(A)のモノマー組成において、スルホン酸基又はカルボン酸基を有する重合性モノマーの共重合比率が高すぎると、得られたヒドロゲルの力学物性は低下する。一方、その共重合比率が低すぎると、本発明のヒドロゲルの高い吸水性やプロトン伝導性は発揮出来なくなる。従って、有機高分子(A)中のスルホン酸基又はカルボン酸基を有する重合性モノマーの共重合比率としては、モノマー全体に対して0.1〜30モル%であることが好ましく、より好ましくは0.3〜25モル%であり、特に好ましくは0.5〜20モル%であり、1〜15モル%であることが最も好ましい。   Further, in the monomer composition of the organic polymer (A), when the copolymerization ratio of the polymerizable monomer having a sulfonic acid group or a carboxylic acid group is too high, the mechanical properties of the obtained hydrogel are lowered. On the other hand, when the copolymerization ratio is too low, the water absorption and proton conductivity of the hydrogel of the present invention cannot be exhibited. Therefore, the copolymerization ratio of the polymerizable monomer having a sulfonic acid group or a carboxylic acid group in the organic polymer (A) is preferably 0.1 to 30 mol%, more preferably 0.3 to 25 mol%, particularly preferably 0.5 to 20 mol%, and most preferably 1 to 15 mol%.

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルには、低温側で透明及び/又は体積膨潤状態にあり、且つ高温側で不透明及び/又は体積収縮状態となる臨界温度(Tc)を有し、Tcを境にした上下の温度変化により透明性や体積を可逆的に変化できる特徴を有するものが含まれる。このような有機無機複合ヒドロゲルは有機モノマーとして水溶液中でLCST(下限臨界共溶温度)を示す有機モノマーを用いて調製できる。   The organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention has a critical temperature (Tc) that is transparent and / or volume swelled on the low temperature side and opaque and / or volume contracted on the high temperature side. And having the characteristic that the transparency and volume can be reversibly changed by changing the temperature above and below Tc. Such an organic-inorganic composite hydrogel can be prepared using an organic monomer exhibiting LCST (lower critical solution temperature) in an aqueous solution as an organic monomer.

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルは、有機無機ヒドロゲルの特徴を保持しており、従来の有機架橋ゲルと比べて、高い吸水率を有する他、優れた力学物性などを示している。例えば、強度、伸び、タフネスなどの力学物性において、本発明のスルホン酸基を有する有機無機複合ヒドロゲルは、有機架橋ゲルよりすべて優れていることが特徴である。   The organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention retains the characteristics of an organic-inorganic hydrogel and has a high water absorption rate as compared with a conventional organic crosslinked gel, as well as excellent mechanical properties. Is shown. For example, the organic / inorganic composite hydrogel having a sulfonic acid group of the present invention is superior to an organic crosslinked gel in terms of mechanical properties such as strength, elongation and toughness.

有機無機複合ヒドロゲルの力学物性は、ヒドロゲルの水含有率及び形状により異なるため、本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルの力学物性は、一定範囲内の水含有率及び断面積を持つヒドロゲルを用いて試験した結果で表される。本明細書では、具体的には、試験開始時のヒドロゲルの断面積(初期断面積)を0.2〜0.5cm2にしたものを試験材料として用い、スルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲル中の前記水(C)の含有率(含水率)が90質量%のものについて力学物性の測定を行った。 Since the mechanical properties of the organic-inorganic composite hydrogel vary depending on the water content and shape of the hydrogel, the mechanical properties of the organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention are within a certain range. It is expressed as a result of testing using a hydrogel having an area. In this specification, specifically, an organic-inorganic composite having a sulfonic acid group or a carboxylic acid group is used as a test material having a hydrogel sectional area (initial sectional area) of 0.2 to 0.5 cm 2 at the start of the test. The mechanical properties of the hydrogel having a water (C) content (water content) of 90% by mass were measured.

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルは、上記の水含有率と初期断面積のヒドロゲルを用いて測定した場合、引張強度が10〜500kPaであり、より好ましくは20〜450kPaであり、特に好ましくは30〜400kPaであること、更に引張破断伸びが100〜3000%であり、より好ましくは200〜2500%であり、特に好ましくは300〜2000%であるものが好ましい。   The organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention has a tensile strength of 10 to 500 kPa, more preferably 20 to 5 when measured using the hydrogel having the above water content and initial cross-sectional area. It is 450 kPa, particularly preferably 30 to 400 kPa, and further, the tensile elongation at break is 100 to 3000%, more preferably 200 to 2500%, and particularly preferably 300 to 2000%.

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルにおいては、平衡膨潤度Wgel/Wdryが50以上であることが好ましい。ここで、平衡膨潤度Wgel/Wdryとは、乾燥ゲル1g当たりに膨潤したヒドロゲルの質量数である。Wdryはヒドロゲルの固形分であり、Wgelはヒドロゲルを大量の水に浸して、その重量を増加しなくなるまでの質量である。平衡膨潤度Wgel/Wdryは50〜2000であることがより好ましく、100〜1500であることが特に好ましい。   In the organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention, the equilibrium swelling degree Wgel / Wdry is preferably 50 or more. Here, the equilibrium swelling degree Wgel / Wdry is the mass number of the hydrogel swollen per 1 g of the dried gel. Wdry is the solid content of the hydrogel, and Wgel is the mass until the hydrogel is soaked in a large amount of water and does not increase its weight. The equilibrium swelling degree Wgel / Wdry is more preferably 50 to 2000, and particularly preferably 100 to 1500.

本発明のスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルは、以下の方法で製造できる。有機高分子(A)のモノマーと、水に均一分散可能なピロリン酸ナトリウム含有水膨潤性粘土鉱物(B)と、水(C)とを含む均一溶液を調製後、層状剥離した水膨潤性粘土鉱物(B)の共存下に有機高分子(A)のモノマーの重合を行わせる。重合過程で有機高分子(A)のモノマーと水膨潤性粘土鉱物(B)との相互作用により水膨潤性粘土鉱物(B)がモノマーの架橋剤の働きをして、有機高分子(A)と水膨潤性粘土鉱物(B)との分子レベルでの複合化が達成され、三次元網目形成によりゲル化したスルホン酸基又はカルボン酸基を有する有機無機複合ヒドロゲルが得られる。   The organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group of the present invention can be produced by the following method. A water-swellable clay that has been exfoliated in layers after preparing a homogeneous solution containing a monomer of organic polymer (A), a sodium pyrophosphate-containing water-swellable clay mineral (B) that can be uniformly dispersed in water, and water (C) Polymerization of the monomer of the organic polymer (A) is carried out in the presence of the mineral (B). The water-swellable clay mineral (B) acts as a monomer cross-linking agent due to the interaction between the monomer of the organic polymer (A) and the water-swellable clay mineral (B) during the polymerization process, and the organic polymer (A) And a water-swellable clay mineral (B) can be combined at the molecular level to obtain an organic-inorganic composite hydrogel having a sulfonic acid group or a carboxylic acid group gelled by forming a three-dimensional network.

具体的には、水中に微細分散したピロリン酸ナトリウム含有水膨潤性粘土鉱物(B)の水溶液に、(メタ)アクリルアミド誘導体を加え、低温にしてスルホン酸基又はカルボン酸基を有する重合性モノマーとラジカル重合開始剤を添加させ、引き続き、所定温度で重合を行わせる。ここで、スルホン酸基又はカルボン酸基を有する重合性モノマーの添加順序は重要である。先にアクリルアミド誘導体と一緒にスルホン酸基又はカルボン酸基を有する重合性モノマーを添加すると、粘土鉱物がスルホン酸基やカルボン酸基と強い相互作用により凝集を生じてしまう。このようにして得られたヒドロゲルは白濁するだけでなく、力学物性も低下する傾向を示す。また、粘土鉱物とスルホン酸基又はカルボン酸基との相互作用により、反応系が著しく増粘し、ゲル化する場合もある。そのため、重合開始剤は反応系内に分散できなくなり、均一なヒドロゲルが得られない。粘土鉱物の凝集を最小限に抑えるため、(メタ)アクリルアミド(誘導体)を先に粘土鉱物水分散液に加え、続いてスルホン酸基又はカルボン酸基を有する重合性モノマーと重合開始剤を一度に添加させること又は重合開始剤を加えた後スルホン酸基又はカルボン酸基を有する重合性モノマーを添加させることによって、モノマーの分散と共にラジカル重合を行わせ、系全体をゲル化させる方法が有効に用いられる。重合開始剤とスルホン酸基又はカルボン酸基を有する重合性モノマーを別々に添加する場合は、重合開始剤を加えた直後にモノマーを加えることが好ましい。重合開始剤を加えると、先に水分散液中に添加されている(メタ)アクリルアミド(誘導体)の重合が開始する。したがって、重合開始剤を添加したら、できるだけ速やかにスルホン酸基を有する重合性モノマーを添加すると、ランダム共重合が進み、本発明の効果を発揮する上で好ましい。   Specifically, a (meth) acrylamide derivative is added to an aqueous solution of a sodium pyrophosphate-containing water-swellable clay mineral (B) finely dispersed in water, and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group at a low temperature A radical polymerization initiator is added, and then polymerization is performed at a predetermined temperature. Here, the addition order of the polymerizable monomer having a sulfonic acid group or a carboxylic acid group is important. When a polymerizable monomer having a sulfonic acid group or a carboxylic acid group is first added together with the acrylamide derivative, the clay mineral is aggregated due to a strong interaction with the sulfonic acid group or the carboxylic acid group. The hydrogel obtained in this way shows not only a cloudiness but also a tendency to decrease the mechanical properties. In addition, the reaction system may remarkably thicken and gel due to the interaction between the clay mineral and the sulfonic acid group or carboxylic acid group. Therefore, the polymerization initiator cannot be dispersed in the reaction system, and a uniform hydrogel cannot be obtained. In order to minimize agglomeration of clay minerals, (meth) acrylamide (derivative) is first added to the clay mineral aqueous dispersion, followed by a polymerizable monomer having a sulfonic acid group or a carboxylic acid group and a polymerization initiator at once. Effectively used is a method in which radical polymerization is carried out together with the dispersion of the monomer by adding a polymerizable monomer having a sulfonic acid group or a carboxylic acid group after the addition or polymerization initiator is added, and gelling the entire system. It is done. When adding a polymerization initiator and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group separately, it is preferable to add the monomer immediately after adding the polymerization initiator. When the polymerization initiator is added, polymerization of (meth) acrylamide (derivative) previously added to the aqueous dispersion starts. Therefore, when a polymerization initiator is added, it is preferable to add a polymerizable monomer having a sulfonic acid group as soon as possible to promote random copolymerization and exhibit the effects of the present invention.

上記のラジカル重合反応は、ラジカル重合開始剤及び/又は放射線照射など公知の方法により行わせることができる。ラジカル重合開始剤及び触媒としては、公知慣用のラジカル重合開始剤及び触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが用いられる。   The above radical polymerization reaction can be performed by a known method such as radical polymerization initiator and / or radiation irradiation. As the radical polymerization initiator and the catalyst, known and commonly used radical polymerization initiators and catalysts can be appropriately selected and used. Preferably, those having water dispersibility and uniformly contained in the entire system are used.

具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、VA-044, V-50, V-501の他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤などが挙げられる。一方、触媒としては、3級アミン化合物であるN,N,N',N'-テトラメチルエチレンジアミンやβ-ジメチルアミノプロピオ二トリルなどがもちろん用いられるが、本発明では、モノマーとして用いられているスルホン酸基又はカルボン酸基を有する重合性モノマーは触媒の働きをしているため、上述のラジカル重合触媒を添加しなくてもよい。   Specifically, as the polymerization initiator, water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, V-501, And water-soluble radical initiators having an ethylene oxide chain. On the other hand, as the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitryl are of course used, but in the present invention, they are used as monomers. Since the polymerizable monomer having a sulfonic acid group or a carboxylic acid group functions as a catalyst, the above-mentioned radical polymerization catalyst may not be added.

重合温度は、開始剤の種類にあわせて0℃〜100℃の範囲で設定できる。重合時間も他の重合条件によって異なり、一般に数十秒〜数十時間の間で行われる。   The polymerization temperature can be set in the range of 0 ° C. to 100 ° C. according to the type of initiator. The polymerization time varies depending on other polymerization conditions, and is generally carried out for several tens of seconds to several tens of hours.

本発明は、次の実施例によって更に具体的に説明する。   The invention is further illustrated by the following examples.

(測定条件)
以下の実施例及び比較例において、引張り試験は、島津製作所(株)製卓上型万能試験機AGS-Hを用いて、未精製の丸棒状のヒドロゲル(直径=5.5mm) 又は平板状のヒドロゲル(幅=10mm,厚み=4.5mm)をチャック部での滑りのないようにして引っ張り試験装置に装着し、標点間距離=30mm、引っ張り速度=100mm/分にて測定を行った。水膨潤度は直径5.5mmの丸棒状ヒドロゲル約0.2gを大量の水の中に浸して、その質量増加の時間依存性から求めた。
(Measurement condition)
In the following Examples and Comparative Examples, the tensile test was performed using an unpurified round bar-shaped hydrogel (diameter = 5.5 mm) or a flat-plate hydrogel (diameter = 5.5 mm) using a tabletop universal testing machine AGS-H manufactured by Shimadzu Corporation. (Width = 10 mm, thickness = 4.5 mm) was mounted on a tensile tester without slipping at the chuck part, and measurement was performed at a distance between gauge points = 30 mm and a pulling speed = 100 mm / min. The degree of water swelling was determined from the time dependence of the mass increase of about 0.2 g of a round rod-shaped hydrogel having a diameter of 5.5 mm immersed in a large amount of water.

(試薬)
・粘土鉱物
XLS: 6%ピロリン酸ナトリウム含有水膨潤性合成ヘクトライト(商標ラポナイトXLS、日本シリカ株式会社製)
XLG: 水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)
・モノマー
DMAA: ジメチルアクリルアミド(和光純薬工業株式会社製)、活性アルミナを用いて重合禁止剤を取り除いてから使用した。
NIPAM: N-イソプロピルアクリルアミド(興人株式会社製)、トルエンとヘキサンの混合溶媒を用いて再結晶し無色針状結晶に精製してから用いた。
AMPS: 2-アクリルアミド-2-メチルプロパンスルホン酸(和光純薬工業株式会社製)
AAc: アクリル酸(和光純薬工業株式会社製)
MESNa: メタクリロキシオキシエチルスルホン酸ナトリウム(和光純薬工業株式会社製)
BIS: N,N'-メチレンビスアクリルアミド(関東化学株式会社製)
・重合開始剤
KPS: ペルオキソ二硫酸カリウム(関東化学株式会社製)、KPS/水=0.2/10(g/g)の割合で純水で希釈し、水溶液にして使用した。
・重合触媒
TEMED: N,N,N',N'-テトラメチルエチレンジアミン(和光純薬工業株式会社製)
(reagent)
・ Clay minerals
XLS: 6% sodium pyrophosphate-containing water-swellable synthetic hectorite (trademark Laponite XLS, manufactured by Nippon Silica Co., Ltd.)
XLG: Water-swellable synthetic hectorite (Trademark LAPONITE XLG, manufactured by Nippon Silica Co., Ltd.)
·monomer
DMAA: Used after removing the polymerization inhibitor using dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) and activated alumina.
NIPAM: N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), recrystallized using a mixed solvent of toluene and hexane and purified to colorless needle crystals before use.
AMPS: 2-acrylamido-2-methylpropanesulfonic acid (Wako Pure Chemical Industries, Ltd.)
AAc: Acrylic acid (Wako Pure Chemical Industries, Ltd.)
MESNa: Sodium methacryloxyoxyethyl sulfonate (Wako Pure Chemical Industries, Ltd.)
BIS: N, N'-methylenebisacrylamide (manufactured by Kanto Chemical Co., Inc.)
・ Polymerization initiator
KPS: potassium peroxodisulfate (manufactured by Kanto Chemical Co., Inc.), diluted with pure water at a ratio of KPS / water = 0.2 / 10 (g / g) and used as an aqueous solution.
・ Polymerization catalyst
TEMED: N, N, N ', N'-tetramethylethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.)

(実施例1及び比較例1,2)
内径25mm,長さ80mmの平底ガラス容器に、純水19gと1.6gのXLSを攪拌して均一な溶液を調製した。これにNIPAM 1.9gを加え、15分間窒素バブリングした。続いて、氷浴下、KPS水溶液1gを攪拌して加えた直後に、AMPS 0.1gとH2O 1gとの透明溶液を加え、均一溶液を得た。得られた均一溶液を速やかに底の閉じた内径5.5mm,長さ150mmのガラス管容器に酸素に触れないようにして移した後、上部を密栓し、20℃で静置重合を行った。15時間後にガラス管容器内に伸縮性、強靭性のある均一な棒状のヒドロゲルが生成された。ヒドロゲルは大量の水に浸して精製した。得られた精製ヒドロゲルを100℃、減圧下にて乾燥して水分を除いたヒドロゲル乾燥体を得た。ゲル乾燥体を20℃の水に浸漬することにより、乾燥前と同じ形状の伸縮性のあるヒドロゲルに戻ることが確認された。また、ゲル乾燥体の熱重量分析(セイコー電子工業株式会社製TG-DTA220:空気流通下、10℃/分で600℃まで昇温)を行い、B/A=0.8(質量比)を得た。
(Example 1 and Comparative Examples 1 and 2)
A uniform solution was prepared by stirring 19 g of pure water and 1.6 g of XLS in a flat bottom glass container having an inner diameter of 25 mm and a length of 80 mm. NIPAM 1.9g was added to this, and nitrogen bubbling was carried out for 15 minutes. Subsequently, immediately after adding 1 g of KPS aqueous solution with stirring in an ice bath, a transparent solution of AMPS 0.1 g and H2O 1 g was added to obtain a uniform solution. The obtained uniform solution was immediately transferred to a glass tube container having an inner diameter of 5.5 mm and a length of 150 mm with a closed bottom so as not to come into contact with oxygen, and the upper part was sealed and subjected to stationary polymerization at 20 ° C. After 15 hours, a uniform rod-like hydrogel having elasticity and toughness was formed in the glass tube container. The hydrogel was purified by immersion in a large amount of water. The obtained purified hydrogel was dried at 100 ° C. under reduced pressure to obtain a dried hydrogel from which moisture was removed. It was confirmed that when the dried gel was immersed in water at 20 ° C., it returned to a stretchable hydrogel having the same shape as before drying. Also, thermogravimetric analysis (TG-DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd .: raised to 600 ° C. at 10 ° C./min under air flow) was performed on the dried gel, and B / A = 0.8 (mass ratio) was obtained. .

以上から、本実施例で得られたゲルは、仕込み組成に沿った成分比を有する、有機高分子(NIPAMとAMPSの共重合体)と粘土鉱物と水からなるヒドロゲルであること、有機高分子の合成において架橋剤を添加していないにもかかわらず、均一なヒドロゲルとなること、ヒドロゲルから水分を除いて得られるゲル乾燥体を水に浸漬することにより再びもとの形状のヒドロゲルに戻ることなどから、有機高分子と粘土鉱物が分子レベルで複合化した三次元網目が水中で形成されていると結論された。   From the above, the gel obtained in this example is a hydrogel composed of an organic polymer (NIPAM and AMPS copolymer), a clay mineral, and water, having a component ratio according to the charged composition, Even if no cross-linking agent is added in the synthesis of, a uniform hydrogel is obtained, and the dried gel obtained by removing water from the hydrogel is immersed in water to return to the original hydrogel. From these results, it was concluded that a three-dimensional network in which organic polymers and clay minerals were combined at the molecular level was formed in water.

なお、粘土鉱物を共存させない以外は同様な条件で合成した有機高分子は高分子水溶液となりヒドロゲルとはならなかった。
未精製の丸棒状のヒドロゲルの引っ張り試験を行い、その結果を図1に示す。また、水膨潤性の測定結果を図3に示す。
The organic polymer synthesized under the same conditions except that no clay mineral coexists became a polymer aqueous solution and did not become a hydrogel.
A tensile test was conducted on an unpurified round rod-shaped hydrogel, and the results are shown in FIG. In addition, the measurement result of water swellability is shown in FIG.

また、粘土鉱物の変わりに有機架橋剤を用いて、スルホン酸基を有する有機架橋ゲルを合成した(比較例1)。比較例1のゲルは極めて脆弱で引っ張り試験を行おうとしたが、チャックに装着前に殆どのサンプルが壊れた。また、チャックに軽く装着したものでも試験直後に破断し、物性値は得られなかった。   In addition, an organic crosslinking gel having a sulfonic acid group was synthesized using an organic crosslinking agent instead of clay mineral (Comparative Example 1). The gel of Comparative Example 1 was extremely brittle and tried to perform a tensile test, but most of the samples were broken before being attached to the chuck. Moreover, even those lightly attached to the chuck were broken immediately after the test, and no physical property values were obtained.

なお、AMPSを用いない以外は実施例1と同様にして比較例2のヒドロゲルを合成した。水膨潤性において、スルホン酸基を有するヒドロゲルの実施例1は比較例2を大きく超え、優れた吸水性を示した(図3)。   A hydrogel of Comparative Example 2 was synthesized in the same manner as Example 1 except that AMPS was not used. In terms of water swellability, Example 1 of the hydrogel having sulfonic acid groups greatly exceeded Comparative Example 2 and showed excellent water absorption (FIG. 3).

(実施例2,3.4)
表1に示した組成で、実施例1と同様に実施例2,3,4のスルホン酸基又はカルボン酸基を有するヒドロゲルを合成した。図1及び図3に示したように、実施例2,3,4のヒドロゲルは優れた力学特性と水膨潤性を示した。
(Example 2,3.4)
A hydrogel having the sulfonic acid group or carboxylic acid group of Examples 2, 3, and 4 was synthesized in the same manner as in Example 1 with the composition shown in Table 1. As shown in FIGS. 1 and 3, the hydrogels of Examples 2, 3, and 4 exhibited excellent mechanical properties and water swellability.

(実施例5,6,7,8,9)
表1に示したように、AMPSの変わりに、AMPSNaを用いた実施例5,6、MESNaを用いた実施例7,8及びAAcNaを用いた実施例9は、実施例1と同様にしてスルホン酸基又はカルボン酸基を有するヒドロゲルを合成した。図2及び図4に示したように、実施例5,6,7,8,9のヒドロゲルは優れた力学特性と水膨潤性を示した。
(Examples 5, 6, 7, 8, 9)
As shown in Table 1, instead of AMPS, Examples 5 and 6 using AMPSNa, Examples 7 and 8 using MESNa, and Example 9 using AAcNa were prepared in the same manner as in Example 1. Hydrogels having acid groups or carboxylic acid groups were synthesized. As shown in FIGS. 2 and 4, the hydrogels of Examples 5, 6, 7, 8, and 9 exhibited excellent mechanical properties and water swellability.

(実施例10及び比較例3)
表1に示した組成で、実施例1と同様にして低クレイ含有率の実施例10のスルホン酸基を有するヒドロゲルを合成した。また、ピロリン酸ナトリウムを使わない以外は実施例10と同様な組成の比較例3のヒドロゲルを作ろうとしたが、AMPSを添加する際、溶液は著しく増粘し、AMPSの均一な分散ができなかった。また、攪拌機を用い、ゲル化した溶液にモノマーを分散させたが、伸縮性のあるヒドロゲルが得られなかった。
(Example 10 and Comparative Example 3)
A hydrogel having the sulfonic acid group of Example 10 having the composition shown in Table 1 and a low clay content was synthesized in the same manner as in Example 1. In addition, the hydrogel of Comparative Example 3 having the same composition as Example 10 was used except that sodium pyrophosphate was not used. However, when AMPS was added, the solution was significantly thickened, and AMPS could not be uniformly dispersed. It was. Moreover, although the monomer was disperse | distributed to the gelatinized solution using the stirrer, the elastic hydrogel was not obtained.

Figure 0005132278
Figure 0005132278

実施例1,2,3,4で得られたヒドロゲルの強度と伸びを示す図である。It is a figure which shows the intensity | strength and elongation of the hydrogel obtained in Example 1,2,3,4. 実施例5,6,7,8,9,10で得られたヒドロゲルの強度と伸びを示す図である。FIG. 4 is a graph showing the strength and elongation of the hydrogels obtained in Examples 5, 6, 7, 8, 9, and 10. 実施例1,2,3,4及び比較例2で得られたヒドロゲルの水膨潤度を示す図である。FIG. 4 is a graph showing the water swelling degree of hydrogels obtained in Examples 1, 2, 3, and Comparative Example 2. 実施例5.6,7,8,9,10で得られたヒドロゲルの水膨潤度を示す図である。It is a figure which shows the water swelling degree of the hydrogel obtained in Example 5.6,7,8,9,10.

Claims (7)

有機高分子(A)と、水膨潤性粘土鉱物(B)とが三次元網目を形成している有機無機複合ヒドロゲルの製造方法であって、(メタ)アクリルアミド又はその誘導体と、ピロリン酸ナトリウム含有水膨潤性粘土鉱物と、水(C)とを含む均一溶液を調製した後、スルホン酸基又はカルボン酸基を有する重合性モノマーを重合開始剤と同時に又は重合開始剤を添加した後に加えて、前記(メタ)アクリルアミド又はその誘導体とスルホン酸基又はカルボン酸基を有する重合性モノマーとを共重合させることにより前記有機高分子(A)を製造することを特徴とする有機無機複合ヒドロゲルの製造方法。 A method for producing an organic-inorganic composite hydrogel in which an organic polymer (A) and a water-swellable clay mineral (B) form a three-dimensional network, comprising (meth) acrylamide or a derivative thereof and sodium pyrophosphate After preparing a uniform solution containing a water-swellable clay mineral and water (C), a polymerizable monomer having a sulfonic acid group or a carboxylic acid group is added simultaneously with the polymerization initiator or after adding the polymerization initiator, A method for producing an organic-inorganic composite hydrogel comprising producing the organic polymer (A) by copolymerizing the (meth) acrylamide or a derivative thereof and a polymerizable monomer having a sulfonic acid group or a carboxylic acid group . 前記水膨潤性粘土鉱物(B)と前記有機高分子(A)の質量比((B)/(A))が0.05〜5である請求項1に記載の有機無機複合ヒドロゲルの製造方法。 2. The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein a mass ratio ((B) / (A)) of the water-swellable clay mineral (B) and the organic polymer (A) is 0.05 to 5. 前記水膨潤性粘土鉱物(B)がピロリン酸ナトリウム含有合成ヘクトライトである請求項1に記載の有機無機複合ヒドロゲルの製造方法。 2. The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the water-swellable clay mineral (B) is sodium pyrophosphate-containing synthetic hectorite. 前記スルホン酸基を有する重合性モノマーが、2-アクリルアミド-2-メチルプロパンスルホン酸又はその塩、あるいはメタクリロキシオキシエチルスルホン酸ナトリウムである請求項1〜3のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The organic-inorganic composite hydrogel according to any one of claims 1 to 3, wherein the polymerizable monomer having a sulfonic acid group is 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof, or sodium methacryloxyoxyethylsulfonate. Manufacturing method. 前記カルボン酸基を有する重合性モノマーがアクリル酸又はその塩である請求項1〜3のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to any one of claims 1 to 3, wherein the polymerizable monomer having a carboxylic acid group is acrylic acid or a salt thereof. 前記有機高分子(A)中のスルホン酸基又はカルボン酸基を有する重合性モノマーの共重合比率が0.1〜30モル%以下である請求項1〜5のいずれか一つに記載の有機無機複合ヒドロゲルの製造方法。 The organic-inorganic composite according to any one of claims 1 to 5, wherein a copolymerization ratio of a polymerizable monomer having a sulfonic acid group or a carboxylic acid group in the organic polymer (A) is 0.1 to 30 mol% or less. A method for producing a hydrogel. 請求項1〜6のいずれかに記載の製造方法により得られる有機無機複合ヒドロゲルであって、前記水(C)の含有率(含水率)が90質量%の時点における、引っ張り強度が10kPa〜500kPaであり、且つ破断伸びが100%〜3000%である有機無機複合ヒドロゲル。 An organic-inorganic composite hydrogel obtained by the production method according to any one of claims 1 to 6, wherein the tensile strength is 10 kPa to 500 kPa when the water (C) content (water content) is 90% by mass. An organic-inorganic composite hydrogel having an elongation at break of 100% to 3000%.
JP2007307243A 2007-11-28 2007-11-28 Method for producing organic-inorganic composite hydrogel Expired - Fee Related JP5132278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307243A JP5132278B2 (en) 2007-11-28 2007-11-28 Method for producing organic-inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307243A JP5132278B2 (en) 2007-11-28 2007-11-28 Method for producing organic-inorganic composite hydrogel

Publications (2)

Publication Number Publication Date
JP2009127035A JP2009127035A (en) 2009-06-11
JP5132278B2 true JP5132278B2 (en) 2013-01-30

Family

ID=40818282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307243A Expired - Fee Related JP5132278B2 (en) 2007-11-28 2007-11-28 Method for producing organic-inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP5132278B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574023B2 (en) 2010-12-15 2017-02-21 The Procter And Gamble Company Water-absorbent edge-modified-clay linked polymers

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840747B2 (en) * 2010-04-15 2011-12-21 一般財団法人川村理化学研究所 Organic-inorganic composite gel foam and method for producing the same
WO2011129197A1 (en) * 2010-04-15 2011-10-20 一般財団法人川村理化学研究所 Organic/inorganic composite gel, organic/inorganic composite gel foam and method for producing the same
SG10201701224UA (en) * 2012-03-12 2017-04-27 Merck Patent Gmbh Removal of protein aggregates from biopharmaceutical preparations in a flowthrough mode
US9238718B2 (en) 2012-09-18 2016-01-19 Nissan Chemical Industries, Ltd. Hydrogel forming composition and hydrogel produced therefrom
KR102172057B1 (en) * 2012-09-18 2020-11-02 고쿠리츠다이가쿠호진 군마다이가쿠 Hydrogel forming composition and hydrogel made from the composition
JP6276927B2 (en) * 2012-09-18 2018-02-07 国立大学法人群馬大学 Hydrogel-forming composition and hydrogel made therefrom
CN104755560B (en) 2012-09-18 2018-05-04 日产化学工业株式会社 Hydrogel-forming composition and the hydrogel being made from it
CN110054661A (en) 2013-12-12 2019-07-26 Emd密理博公司 Use the filter protein isolate containing acrylamide
US10059812B2 (en) 2014-02-24 2018-08-28 Nissan Chemical Industries, Ltd. Method for producing gel
CN108409925A (en) * 2018-03-29 2018-08-17 北京化工大学 A kind of Organic-inorganic covalent cross-linked hydrogel and preparation method thereof
CN109485877B (en) * 2018-11-29 2020-04-24 中南大学 High-temperature and low-temperature resistant high-toughness organic hydrogel and preparation method thereof
CN113861320A (en) * 2021-09-26 2021-12-31 哈尔滨工业大学(深圳) Anti-freezing hydrogel, preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574023B2 (en) 2010-12-15 2017-02-21 The Procter And Gamble Company Water-absorbent edge-modified-clay linked polymers

Also Published As

Publication number Publication date
JP2009127035A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
JP5132300B2 (en) Method for producing cationic organic / inorganic composite hydrogel
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
JP4759165B2 (en) Organic / inorganic composite hydrogel and method for producing the same
KARADAĞ et al. Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
JP2009270048A (en) Method for producing organic-inorganic composite hydrogel having carboxylate structure group or carboxy anion structure group
JP5246854B2 (en) Organic inorganic composite gel
He et al. Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
CN104829780A (en) Preparation method for high-strength hydrogel with rapid response to both pH value and temperature
JP2011153174A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP2010254800A (en) Organic/inorganic composite
JP5598833B2 (en) Method for producing organic / inorganic composite hydrogel
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group
JP5285839B2 (en) Method for producing polymer composite gel
JP2008074925A (en) Borate group-containing organic inorganic composite hydrogel and method for producing the same
JP5371216B2 (en) Method for producing organic-inorganic composite hydrogel
JP4474974B2 (en) Method for producing polymer hydrogel
Thévenot et al. Kinetic aspects, rheological properties and mechanoelectrical effects of hydrogels composed of polyacrylamide and polystyrene nanoparticles
JP4914157B2 (en) Amino group-containing organic-inorganic composite hydrogel and method for producing the same
JP5654208B2 (en) Organic inorganic composite gel
JP6107417B2 (en) Zwitterion-containing polymer gel
CN107629159A (en) Modified Nano wood composite quality and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees