JP4717544B2 - Interlayer insulating material for printed wiring board and electronic component using the same - Google Patents

Interlayer insulating material for printed wiring board and electronic component using the same Download PDF

Info

Publication number
JP4717544B2
JP4717544B2 JP2005222356A JP2005222356A JP4717544B2 JP 4717544 B2 JP4717544 B2 JP 4717544B2 JP 2005222356 A JP2005222356 A JP 2005222356A JP 2005222356 A JP2005222356 A JP 2005222356A JP 4717544 B2 JP4717544 B2 JP 4717544B2
Authority
JP
Japan
Prior art keywords
insulating material
printed wiring
fullerene
dielectric constant
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005222356A
Other languages
Japanese (ja)
Other versions
JP2007042697A (en
Inventor
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2005222356A priority Critical patent/JP4717544B2/en
Publication of JP2007042697A publication Critical patent/JP2007042697A/en
Application granted granted Critical
Publication of JP4717544B2 publication Critical patent/JP4717544B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体素子など電子デバイスを高密度に実装し、信号の高速伝播に適した低誘電率のプリント配線基板用層間絶縁材料と、このような絶縁材料からなる多層基板および、該多層基板からなる大規模集積回路(LSD)等の電子部品に関する。   The present invention relates to an interlayer insulating material for a printed wiring board having a low dielectric constant suitable for high-speed signal propagation by mounting electronic devices such as semiconductor elements at a high density, a multilayer substrate made of such an insulating material, and the multilayer substrate. The present invention relates to an electronic component such as a large scale integrated circuit (LSD).

コンピュータを初めとする電子機器の小型化、高性能化は、年々加速度的に進行している。それを支える主要技術が、半導体パッケージであり、電子部品を実装したプリント配線基板であるが、半導体素子の高速化が著しく、相対的に基板配線部における伝送遅延が、コンピュータの演算速度を左右するようになってきている。したがって、回路配線用絶縁材料として、信号の高速伝播に適したより低誘電率(例えば3未満)の層間絶縁材料が求められている。   The downsizing and higher performance of electronic devices such as computers are accelerating year by year. The main technology that supports this is the semiconductor package, which is a printed wiring board with electronic components mounted on it. However, the speed of the semiconductor elements has increased significantly, and the transmission delay in the board wiring section has a relative influence on the computing speed of the computer. It has become like this. Therefore, a lower dielectric constant (for example, less than 3) interlayer insulating material suitable for high-speed signal propagation is required as an insulating material for circuit wiring.

従来、コンピュータ等の電子機器に使用されている高密度実装基板材料には、エポキシ、ポリイミドなどの樹脂が使用されている。しかし、エポキシやポリイミドは熱可塑性ではないために、電子機器を構成する全部品の再利用化が求められる中、樹脂を再溶融してリサイクルすることができない。また、誘電率が3以上のものしかなく、低誘電率を有していない。
一方、最近では、より低い誘電率を有する樹脂としてオレフィン系やフッ素系の樹脂が注目されている。しかしこれらの樹脂は、比較的誘電率が低いものの、実装工程で求められるハンダ耐熱性が不良であったり、ハンダ耐熱性が良好なものは、熱可塑性ではなかった。また、自己融着性や導体金属との密着性、層間のビア孔加工性等の加工性にも間題があった。
また、例えば特許文献1には、低誘電率樹脂中に独立気泡を有するフィルム材料が開示されており誘電率は確かに低下できるが、気泡のためにビア孔間の絶縁性確保に問題がある。
さらには、特許文献2には、熱硬化性樹脂にフラーレンを添加し誘電率を下げる技術が開示されているが、添加する樹脂がシリコーン樹脂等の熱硬化性樹脂でリサイクル性が乏しいことと、並びに、フラーレンを添加すると樹脂の絶縁破壊抵抗が低下してしまい好ましくない。
Conventionally, resins such as epoxy and polyimide are used for high-density mounting board materials used in electronic devices such as computers. However, since epoxy and polyimide are not thermoplastic, it is impossible to remelt and recycle the resin while it is required to reuse all the parts constituting the electronic device. Moreover, the dielectric constant is only 3 or more, and it does not have a low dielectric constant.
On the other hand, recently, olefin-based and fluorine-based resins have attracted attention as resins having a lower dielectric constant. However, although these resins have a relatively low dielectric constant, those having poor solder heat resistance or good solder heat resistance required in the mounting process were not thermoplastic. In addition, there are problems in workability such as self-bonding property, adhesion to conductive metal, and via hole workability between layers.
Further, for example, Patent Document 1 discloses a film material having closed cells in a low dielectric constant resin, and the dielectric constant can surely be reduced, but there is a problem in securing insulation between via holes due to the bubbles. .
Furthermore, Patent Document 2 discloses a technique for adding a fullerene to a thermosetting resin to lower the dielectric constant. However, the resin to be added is a thermosetting resin such as a silicone resin, and recyclability is poor. In addition, the addition of fullerene is not preferable because the dielectric breakdown resistance of the resin is lowered.

特開平9−100363号公報Japanese Patent Application Laid-Open No. 9-130033 特開平8−181133号公報JP-A-8-181133

すなわち、本発明の目的は、このような現状に鑑み、リサイクル性や絶縁破壊抵抗にも優れる低誘電率のプリント配線基板用絶縁材料、並びに、このような新しい低誘電率絶縁材料から形成した多層基板、および電子部品を提供することにある。 That is, an object of the present invention is to provide a low dielectric constant insulating material for printed wiring boards that is excellent in recyclability and dielectric breakdown resistance, and a multilayer formed from such a new low dielectric constant insulating material. It is to provide a substrate and an electronic component.

本発明者は、特定の熱可塑性樹脂に水素化フラーレンを用いることにより上記課題を解消できることを見出し、本発明を完成するに至った。
すなわち、本発明は、
(1)ガラス転移温度または融点が260℃以上である熱可塑性樹脂に水素化フラーレンを1〜20質量%含むプリント配線基板用層間絶縁材料。
(2) 前記熱可塑性樹脂が、PPS、PEEK、熱可塑性ポリイミド、PEK、PAI及びLCPからなる群から選ばれてなる上記1記載のプリント配線基板用層間絶縁材料。
(3)上記1又は2記載のプリント配線基板用層間絶縁材料を構成素材とする多層基板
(4)上記3記載の多層基板からなる電子部品。
The present inventor has found that the above-mentioned problems can be solved by using hydrogenated fullerene for a specific thermoplastic resin, and has completed the present invention.
That is, the present invention
(1) An interlayer insulating material for printed wiring boards comprising 1 to 20% by mass of hydrogenated fullerene in a thermoplastic resin having a glass transition temperature or melting point of 260 ° C. or higher.
(2) The interlayer insulating material for a printed wiring board according to 1 above, wherein the thermoplastic resin is selected from the group consisting of PPS, PEEK, thermoplastic polyimide, PEK, PAI, and LCP .
(3) A multilayer board comprising the interlayer insulating material for printed wiring boards according to 1 or 2 above as a constituent material.
(4) An electronic component comprising the multilayer substrate as described in 3 above.

本発明によれば、リサイクル性や絶縁破壊抵抗に優れる低誘電率のプリント配線基板用絶縁膜材料を提供すること、及ぴこの絶縁膜を含み高速の信号伝播に適した多層回路基板を含む電子部品を提供することが可能になる。   According to the present invention, there is provided an insulating film material for a printed wiring board having a low dielectric constant excellent in recyclability and dielectric breakdown resistance, and an electron including a multilayer circuit board including the insulating film and suitable for high-speed signal propagation. It becomes possible to provide parts.

近年、炭素数60、70、84等の閉殻構造を有するカーボンクラスターがグラファイト状炭素(すす)から抽出されたり、あるいは合成され、その性質が研究されている。[例えば、NATURE、VOL347、354〜358(1990)等参照]]この特殊な構造を有するカーボンクラスターは、フラーレンとも称され、その分子骨格を構成する炭素数によって、フラーレンC60、同C70、同C84などと呼ばれている。本発明において用いられるフラーレンは、閉殻構造を有していれば、いずれの構造のものも使用できるが、絶縁材料の誘電率の低下に寄与する空間を形成するためには、フラーレンの炭素−炭素間の距離が少なくとも4オングストローム(0.4nm)以上あることが好ましい。炭素−炭素間の距離が4オングストローム(0.4nm)以上のフラーレンの例としては、C20、C24、C26、C28、C30、C32、C36、C50、C60、C70、C76、C78、C80、C180、C240、C320、C540などが挙げられる。   In recent years, carbon clusters having a closed shell structure having 60, 70, 84 carbon atoms, etc., have been extracted or synthesized from graphitic carbon (soot), and their properties have been studied. [See, for example, NATURE, VOL347, 354-358 (1990)]] The carbon cluster having this special structure is also referred to as fullerene, and depending on the number of carbons constituting the molecular skeleton, fullerene C60, C70, C84. And so on. As long as the fullerene used in the present invention has a closed shell structure, any structure can be used. However, in order to form a space that contributes to a decrease in the dielectric constant of the insulating material, carbon-carbon of fullerene is used. The distance between them is preferably at least 4 angstroms (0.4 nm) or more. Examples of fullerene having a carbon-carbon distance of 4 angstroms (0.4 nm) or more include C20, C24, C26, C28, C30, C32, C36, C50, C60, C70, C76, C78, C80, C180, C240, C320, C540 etc. are mentioned.

また、現時点で最も経済性が優れるのはC60であり、この観点から最も好ましく用いられる。本発明においては、このようなフラーレンを水素化処理することが重要である。水素化処理とはフラーレンの炭素炭素二重結合に水素の付加反応を行うものである。
フラーレンの水素化の方法としては、フラーレンC60をアンモニア中で、還元剤(金属リチウム+tert−ブチルアルコール)で処理し、C60H36を得る方法が知られている。[J、Phys、Chem.、94,8634〜8636(1990)]また、別の方法としては、フラーレンC60に、Pd/カーボン、Ru/カーボン等の水添触媒の存在下に水素ガスを反応させるという方法が知られている。(例えば、特開平11−7174号公報参照)
Moreover, C60 is the most economical at the present time, and is most preferably used from this viewpoint. In the present invention, it is important to hydrotreat such fullerenes. Hydrogenation is a process in which hydrogen is added to the carbon-carbon double bond of fullerene.
As a method for hydrogenation of fullerene, a method is known in which fullerene C60 is treated with a reducing agent (metal lithium + tert-butyl alcohol) in ammonia to obtain C60H36. [J, Phys, Chem. 94, 8634-8636 (1990)] As another method, there is known a method in which hydrogen gas is reacted with fullerene C60 in the presence of a hydrogenation catalyst such as Pd / carbon or Ru / carbon. . (See, for example, JP-A-11-7174)

本発明における水素化処理の目的は、一つには添加する樹脂への分散性を上げるためであるが、水素化フラーレンとすることで、絶縁材の絶縁破壊電圧を上げることにある。
理論上フラーレンの炭素の数1つにつき、2つの水素を付加することができる。上記の効果を得るために好適な水素化率は、20〜100%、好ましくは35〜100%、さらに好ましくは50〜100%が望ましい。20%未満では、所望の分散性や絶縁破壊電圧を得られにくい。
本発明の水素化フラーレンを添加する樹脂としては、ガラス転移温度または融点が260℃以上である熱可塑性樹脂であることが重要である。
ガラス転移温度または融点が260℃未満であると、プリント配線基板の実装工程でハンダ浴を通過させた場合に、プリント配線基板が変形したり膨れが発生したりする。
また、熱可塑性樹脂を使用することにより、本発明のプリント配線基板用絶縁材料、多層基板、電子部品等を使用後、プリント配線基板用絶縁材料を再溶融することにより、材料のリサイクルが可能となりリサイクル性が良好になる。
The purpose of the hydrogenation treatment in the present invention is to increase the dispersibility in the resin to be added, but to increase the dielectric breakdown voltage of the insulating material by using hydrogenated fullerene.
Theoretically, two hydrogens can be added per one fullerene carbon. In order to obtain the above effect, a suitable hydrogenation rate is 20 to 100%, preferably 35 to 100%, and more preferably 50 to 100%. If it is less than 20%, it is difficult to obtain desired dispersibility and breakdown voltage.
It is important that the resin to which the hydrogenated fullerene of the present invention is added is a thermoplastic resin having a glass transition temperature or a melting point of 260 ° C. or higher.
When the glass transition temperature or the melting point is less than 260 ° C., the printed wiring board is deformed or swollen when the solder bath is passed in the mounting process of the printed wiring board.
In addition, by using a thermoplastic resin, it is possible to recycle the material by remelting the printed wiring board insulation material after using the printed wiring board insulation material, multilayer board, electronic component, etc. of the present invention. Good recyclability.

特に好ましい樹脂としては、ポリフェニレンサルファイド(PPS、Tg=89℃、Tm=283℃)、ポリエーテルエーテルケトン(略称PEEK、Tg=143℃、Tm=343℃)、ポリエーテルケトン(略称PEK、Tg=205℃、Tm=386℃)、熱可塑性ポリイミド(略称TPI、Tg=264〜275℃)、ポリアミドイミド(略称PAI、Tg=290℃)、液晶ポリマー(略称LCP、Tg=350℃)が挙げられる。   As particularly preferred resins, polyphenylene sulfide (PPS, Tg = 89 ° C., Tm = 283 ° C.), polyether ether ketone (abbreviation PEEK, Tg = 143 ° C., Tm = 343 ° C.), polyether ketone (abbreviation PEK, Tg = 205 ° C., Tm = 386 ° C.), thermoplastic polyimide (abbreviation TPI, Tg = 264-275 ° C.), polyamideimide (abbreviation PAI, Tg = 290 ° C.), liquid crystal polymer (abbreviation LCP, Tg = 350 ° C.). .

これらの樹脂に対し、水素化フラーレンを添加し、分散する方法としては、溶液混合法や、2軸押出機、加圧ニーダー等を用いる溶融混練法等の既知の方法が挙げられる。
水素化フラーレンの添加量としては、1〜50質量%、より好ましくは、2〜40質量%、さらに好ましくは、3〜30質量%の範囲で決められる。かかる範囲であれば、誘電率、絶縁破壊抵抗、分散性、成形加工性のバランスを取ることが容易である。
水素化フラーレンと混合された樹脂は、基板用絶縁材料として、シート状に加工される。射出成形やプレス成形等の加工法を採用することも可能であるが、Tダイを備えた押出機からの溶融押出法が、工業的に最も好ましい加工法である。Tダイからシート状に押し出された樹脂は、キャストロールで冷却され巻き取られる。
この時、キャストロールで冷却されるまでに、基板に加工する後工程を考慮し、銅箔をラミネートすることもある。一旦シートを得た後、接着剤を用いるか、再加熱をして、銅箔を貼ることも可能である。
シートの厚みは、通常0.05〜1mmの範囲で、用途により決定される。
Examples of a method for adding and dispersing hydrogenated fullerene to these resins include known methods such as a solution mixing method, a melt-kneading method using a twin screw extruder, a pressure kneader, and the like.
The addition amount of the hydrogenated fullerene is determined in the range of 1 to 50% by mass, more preferably 2 to 40% by mass, and still more preferably 3 to 30% by mass. Within such a range, it is easy to balance the dielectric constant, dielectric breakdown resistance, dispersibility, and moldability.
The resin mixed with the hydrogenated fullerene is processed into a sheet shape as an insulating material for a substrate. Although it is possible to employ a processing method such as injection molding or press molding, the melt extrusion method from an extruder equipped with a T-die is the most preferable processing method industrially. The resin extruded from the T die into a sheet is cooled by a cast roll and wound up.
At this time, the copper foil may be laminated in consideration of a subsequent process to be processed into a substrate before being cooled by the cast roll. Once the sheet is obtained, it is also possible to use an adhesive or reheat and paste the copper foil.
The thickness of the sheet is usually determined in the range of 0.05 to 1 mm depending on the application.

このようにして得られたシートは、一例として、以下のように多層基板へと加工される。
1)銅箔を貼ったシートを所定の大きさに切断する。
2)銅箔をエッチングするなどして、シートに回路加工を施す。
3)層間の電気的接続をビア孔とビア孔に充填する導電ペースト等で確保し、所定の枚数を重ねて熱プレスにより多層化する。
また、接着剤を用いて、多層化しても構わない。
熱プレス温度としては、樹脂が非晶質材料の場合は、(Tg+10)〜(Tg+50)℃の範囲が、結晶質材料の場合は、(Tm−10)〜(Tm+30)℃の範囲が好ましい。かかる範囲を下回ると、層間接着性が得られず、上回るとシートが変形しやすく、寸法精度の高い多層基板を得難い傾向がある。
多層化されるシートの枚数は、用途によって、2〜50枚に範囲で決められる。
As an example, the sheet thus obtained is processed into a multilayer substrate as follows.
1) A sheet with a copper foil is cut into a predetermined size.
2) Circuit processing is performed on the sheet, for example, by etching the copper foil.
3) The electrical connection between the layers is secured with via holes and conductive paste filling the via holes, and a predetermined number of layers are stacked and multilayered by hot pressing.
Moreover, you may make it multilayer by using an adhesive agent.
The hot pressing temperature is preferably in the range of (Tg + 10) to (Tg + 50) ° C. when the resin is an amorphous material and in the range of (Tm−10) to (Tm + 30) ° C. when the resin is a crystalline material. Below this range, interlaminar adhesion cannot be obtained, while above this range, the sheet tends to deform and it is difficult to obtain a multilayer substrate with high dimensional accuracy.
The number of sheets to be multilayered is determined in the range of 2 to 50 depending on the application.

このようにして得られた多層基板用素板は、実装ラインにて、半導体チップやコネクター等が実装され、多層基板として完成される。
これらの多層基板は、誘電率が低く絶縁破壊電圧が高く、高速信号伝播に優れる基板として、高性能コンピューターを始め、各種電子機器に利用することができる。また、エポキシ樹脂のような熱硬化性樹脂基板と異なり、使用後、基板を構成する熱可塑性樹脂を再加熱することにより、リサイクルも可能である。
The multilayer substrate base plate obtained in this way is completed as a multilayer substrate by mounting semiconductor chips, connectors, and the like on the mounting line.
These multilayer substrates can be used in various electronic devices including high performance computers as substrates having a low dielectric constant and a high dielectric breakdown voltage and excellent high-speed signal propagation. Further, unlike a thermosetting resin substrate such as an epoxy resin, it can be recycled by reheating the thermoplastic resin constituting the substrate after use.

次に、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
(評価項目と評価法)
a)外観
凝集物、ムラ、スジ等の発生有無を目視で確認した。
Next, examples of the present invention will be described, but the present invention is not limited to these examples.
(Evaluation items and evaluation methods)
a) The presence or absence of appearance aggregates, unevenness, streaks, etc. was visually confirmed.

b)絶縁破壊電圧
IPC TM=650 2.5.6.2に準拠し、所定の大きさの試験片の上下に平円板電極を置き、500V/secで電圧を上昇させ以下の式に基づき絶縁破壊電圧を求めた。
E=V/t
E:絶縁破壊電圧 (KV/mm)
V:破壊した時の電圧(KV)
t:シートの厚み(mm)
c)誘電率
ASTM D 5109−94中の電極接触法(ASTM D229)に準拠し、測定した。
b) Dielectric breakdown voltage
In accordance with IPC TM = 650 2.5.6.2, flat disk electrodes were placed above and below a test piece of a predetermined size, the voltage was increased at 500 V / sec, and the dielectric breakdown voltage was determined based on the following formula.
E = V / t
E: Dielectric breakdown voltage (KV / mm)
V: Voltage at the time of destruction (KV)
t: sheet thickness (mm)
c) Dielectric constant Measured according to the electrode contact method (ASTM D229) in ASTM D 5109-94.

(水素化フラーレンの合成)
SUS製700L圧力容器を用い、フラーレンC60(アルドリッチ社製)500gをトルエン500Lに溶解し、これに水添触媒として5%ルテニウムカーボン5000g、ルイス酸化合物としてY型ゼオライト5000gを加え、更に水素ガスを導入して、圧力70kg/cmGに昇圧し昇温した。反応温度が50℃になった時点で水素圧が低下し始め、10kg/cmGまで低下した時点で水素ガスを圧入して水素圧を70kg/cm2Gとした。この操作を繰り返して水素圧の低下がなくなるまで行った。その際の反応温度は約180℃であった。溶媒をドデカンに置換した後に、反応器の温度を280℃、圧力を180kg/cm2Gに高め24時間反応を行なった後、冷却して反応を停止した。反応終了後、得られた生成物より触媒とY型ゼオライトを瀘過により除き、瀘液をエバポレーターにより濃縮することにより結晶が析出した。白色の粉体として得られた最終生成物の収量は121gであった。赤外線吸収スペクトルの分析結果より、水素化率が59%の水素化フラーレン(中心値=C60H36)であることを確認した。この操作を繰り返し必要な量の水素化フラーレンを確保した。
(Synthesis of hydrogenated fullerene)
Using a SUS 700 L pressure vessel, 500 g of fullerene C60 (Aldrich) was dissolved in 500 L of toluene, 5000 g of 5% ruthenium carbon as a hydrogenation catalyst, 5000 g of Y-type zeolite as a Lewis acid compound, and hydrogen gas were further added. The pressure was increased to 70 kg / cm 2 G and the temperature was raised. When the reaction temperature reached 50 ° C., the hydrogen pressure began to decrease, and when the reaction temperature decreased to 10 kg / cm 2 G, hydrogen gas was injected to bring the hydrogen pressure to 70 kg / cm 2 G. This operation was repeated until there was no decrease in hydrogen pressure. The reaction temperature at that time was about 180 ° C. After replacing the solvent with dodecane, the temperature of the reactor was increased to 280 ° C., the pressure was increased to 180 kg / cm 2 G, the reaction was performed for 24 hours, and then the reaction was stopped by cooling. After completion of the reaction, the catalyst and Y-type zeolite were removed from the obtained product by filtration, and the filtrate was concentrated by an evaporator to precipitate crystals. The yield of the final product obtained as a white powder was 121 g. From the analysis results of the infrared absorption spectrum, it was confirmed that the hydrogenation rate was 59% hydrogenated fullerene (center value = C60H36). This operation was repeated to secure a necessary amount of hydrogenated fullerene.

(比較例1)
PEEK樹脂(ビクトレックス社、PEEK381G)を原料に、Tダイを備えた三菱重工(株)製40mmφ2軸押出機(L/D=35)を用いて、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=凝集物、ムラ、スジの発生がなく良好
b) 絶縁破壊電圧=120KV/mm
c) 誘電率=3.2
外観は極めて良好で、絶縁破壊電圧も実用レベルにあるが、誘電率が3を超えており、高性能基板材料としては適さないことが分かる。
(Comparative Example 1)
Using a PEEK resin (Victrex, PEEK381G) as a raw material, a sheet having a thickness of 100 μm was obtained using a 40 mmφ twin screw extruder (L / D = 35) manufactured by Mitsubishi Heavy Industries, Ltd. equipped with a T die. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = Good with no agglomerates, unevenness or streaks
b) Dielectric breakdown voltage = 120KV / mm
c) Dielectric constant = 3.2
The appearance is very good and the dielectric breakdown voltage is at a practical level, but the dielectric constant exceeds 3, indicating that it is not suitable as a high performance substrate material.

(比較例2)
PEEK樹脂(ビクトレックス社、PEEK381G)に、C60フラーレン(アルドリッチ社製)20質量%をドライブレンドし、比較例1と同様の方法で、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=フラーレンの分散不良に起因する凝集物や表面荒れが見られた。
b) 絶縁破壊電圧=33KV/mm
c) 誘電率=3.0
(Comparative Example 2)
20% by mass of C60 fullerene (manufactured by Aldrich) was dry blended with PEEK resin (Victrex, PEEK381G), and a 100 μm thick sheet was obtained in the same manner as in Comparative Example 1. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = Aggregates and surface roughness due to poor dispersion of fullerene were observed.
b) Dielectric breakdown voltage = 33KV / mm
c) Dielectric constant = 3.0

外観の不良発生に加え、比較例1と比べ、絶縁破壊電圧が著しく低下し、基板材料としては適さないことが分かる。
(実施例1)
PEEK樹脂(ビクトレックス社、PEEK381G)に、水素化フラーレン20質量%をドライブレンドし、比較例1と同様の方法で、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=良好
b) 絶縁破壊電圧=120KV/mm
c) 誘電率=2.9
In addition to the occurrence of defects in appearance, the dielectric breakdown voltage is remarkably reduced as compared with Comparative Example 1, indicating that it is not suitable as a substrate material.
Example 1
20% by mass of hydrogenated fullerene was dry blended with PEEK resin (Victrex, PEEK381G), and a 100 μm thick sheet was obtained in the same manner as in Comparative Example 1. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = good
b) Dielectric breakdown voltage = 120KV / mm
c) Dielectric constant = 2.9

比較例2と同じ添加量にも関わらず、外観は著しく改善され、また、比較例1の未添加系と比べ、絶縁破壊電圧は実用レベルで変わらず、誘電率は高性能基板用絶縁材料に求められる3以下に改善されているのが分かる。
(実施例2)
PEEK樹脂(ビクトレックス社、PEEK381G)に、水素化フラーレン5質量%をドライブレンドし、比較例1と同様の方法で、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=良好
b) 絶縁破壊電圧=119KV/mm
c) 誘電率=2.9
Despite the same addition amount as in Comparative Example 2, the appearance is remarkably improved, and the dielectric breakdown voltage does not change at a practical level as compared with the non-added system of Comparative Example 1, and the dielectric constant is as an insulating material for high performance substrates. It can be seen that the required improvement is 3 or less.
(Example 2)
5% by mass of hydrogenated fullerene was dry blended with PEEK resin (Victrex, PEEK381G), and a sheet having a thickness of 100 μm was obtained in the same manner as in Comparative Example 1. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = good
b) Dielectric breakdown voltage = 119 KV / mm
c) Dielectric constant = 2.9

外観は最も良好な比較例1と変わらず、絶縁破壊電圧、誘電率共に実用レベルにある。
(実施例3)
PEEK樹脂(ビクトレックス社、PEEK381G)に、水素化フラーレン40質量%をドライブレンドし、比較例1と同様の方法で、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=やや凝集物が見られるものの実用範囲内
b) 絶縁破壊電圧=143KV/mm
c) 誘電率=2.0
The appearance is the same as in Comparative Example 1, which is the best, and both the breakdown voltage and the dielectric constant are at practical levels.
(Example 3)
A PEEK resin (Victrex, PEEK381G) was dry blended with 40% by mass of hydrogenated fullerene, and a sheet having a thickness of 100 μm was obtained in the same manner as in Comparative Example 1. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = Within practical range although some aggregates are observed
b) Dielectric breakdown voltage = 143 KV / mm
c) Dielectric constant = 2.0

実施例1と比べ、外観がやや悪化したものの、絶縁破壊電圧、誘電率共に、最も高いレベルに改善されているのが分かる。
(比較例3)
PEEK樹脂(ビクトレックス社、PEEK381G)に、水素化フラーレン60質量%をドライブレンドし、比較例1と同様の方法で、100μm厚のシートを得た。このシートの外観、電気特性は、以下の通りであった。
a) 外観=水素化フラーレンの分散不良に起因する凝集物や、著しい表面荒れが見られた。
b) 絶縁破壊電圧=44KV/mm
c) 誘電率=1.7
著しい外観不良とともに、実施例1と比べ、不均一構造に由来すると思われる絶縁破壊電圧の低下が発生し、基板材料としては適さないことが分かる。
It can be seen that the dielectric breakdown voltage and the dielectric constant were improved to the highest level, although the appearance was slightly deteriorated as compared with Example 1.
(Comparative Example 3)
60% by mass of hydrogenated fullerene was dry blended with PEEK resin (Victrex, PEEK381G), and a sheet having a thickness of 100 μm was obtained in the same manner as in Comparative Example 1. The appearance and electrical characteristics of this sheet were as follows.
a) Appearance = Agglomerates due to poor dispersion of hydrogenated fullerene and significant surface roughness were observed.
b) Dielectric breakdown voltage = 44 KV / mm
c) Dielectric constant = 1.7
It can be seen that, together with the remarkable appearance defect, the dielectric breakdown voltage is lowered, which is considered to be derived from the non-uniform structure, as compared with Example 1, and is not suitable as a substrate material.

Claims (4)

ガラス転移温度または融点が260℃以上である熱可塑性樹脂に水素化フラーレンを1〜50質量%含むプリント配線基板用層間絶縁材料。   An interlayer insulating material for printed wiring boards, comprising 1 to 50% by mass of hydrogenated fullerene in a thermoplastic resin having a glass transition temperature or melting point of 260 ° C. or higher. 前記熱可塑性樹脂が、PPS、PEEK、熱可塑性ポリイミド、PEK、PAI及びLCPからなる群から選ばれてなる請求項1記載のプリント配線基板用層絶縁材料。 Wherein the thermoplastic resin, PPS, PEEK, thermoplastic polyimide, PEK, PAI and comprising selected from the group consisting of LCP claim 1 printed wiring between substrate layer insulating material according. 請求項1又は2記載のプリント配線基板用層間絶縁材料を構成素材とする多層基板A multilayer substrate comprising the interlayer insulating material for a printed wiring board according to claim 1 or 2 as a constituent material. 請求項3記載の多層基板からなる電子部品。An electronic component comprising the multilayer substrate according to claim 3.
JP2005222356A 2005-08-01 2005-08-01 Interlayer insulating material for printed wiring board and electronic component using the same Expired - Fee Related JP4717544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222356A JP4717544B2 (en) 2005-08-01 2005-08-01 Interlayer insulating material for printed wiring board and electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222356A JP4717544B2 (en) 2005-08-01 2005-08-01 Interlayer insulating material for printed wiring board and electronic component using the same

Publications (2)

Publication Number Publication Date
JP2007042697A JP2007042697A (en) 2007-02-15
JP4717544B2 true JP4717544B2 (en) 2011-07-06

Family

ID=37800434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222356A Expired - Fee Related JP4717544B2 (en) 2005-08-01 2005-08-01 Interlayer insulating material for printed wiring board and electronic component using the same

Country Status (1)

Country Link
JP (1) JP4717544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935413B2 (en) 2006-09-04 2012-05-23 ソニー株式会社 Upload add-in program, upload auxiliary program, and upload method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214382A (en) * 1998-01-29 1999-08-06 Fujitsu Ltd Low-dielectric-constant insulating material, mounting circuit board, and electric solid device
JPH11263916A (en) * 1998-03-17 1999-09-28 Fujitsu Ltd Low dielectric constant insulating material for wiring circuit and electronic parts using the same
JP2001098160A (en) * 1999-09-30 2001-04-10 Sumitomo Bakelite Co Ltd Resin composition for insulating material and insulating material using the same
JP2004182768A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same
JP2004182771A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214382A (en) * 1998-01-29 1999-08-06 Fujitsu Ltd Low-dielectric-constant insulating material, mounting circuit board, and electric solid device
JPH11263916A (en) * 1998-03-17 1999-09-28 Fujitsu Ltd Low dielectric constant insulating material for wiring circuit and electronic parts using the same
JP2001098160A (en) * 1999-09-30 2001-04-10 Sumitomo Bakelite Co Ltd Resin composition for insulating material and insulating material using the same
JP2004182768A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same
JP2004182771A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Resin composition and method for producing the same

Also Published As

Publication number Publication date
JP2007042697A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP5513840B2 (en) Insulating sheet, circuit board, and insulating sheet manufacturing method
CN1880061B (en) Copper cladded laminates and its production method
KR100704321B1 (en) Resin composition
JP6015445B2 (en) Liquid composition, resistor film using the same, resistor film manufacturing method, resistor element, and wiring board
JP6023474B2 (en) Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof
WO2010035451A1 (en) Semi-cured body, cured body, multilayer body, method for producing semi-cured body, and method for producing cured body
JP5709878B2 (en) Film made of polyarylene ether ketone
WO2007032424A1 (en) Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
KR20110043727A (en) Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
JPWO2011114665A1 (en) Heat-resistant adhesive
TWI721130B (en) Resin sheet
WO2009096507A1 (en) Resin composition and multilayer resin film employing the same
KR100601091B1 (en) The epoxy resin composition for copper clad laminate
JP5118469B2 (en) Copper foil with filler particle-containing resin layer and copper-clad laminate using the filler particle-containing copper foil with resin layer
WO2006132185A1 (en) Insulative and thermally conductive resin composition and formed article, and method for production thereof
JP4717544B2 (en) Interlayer insulating material for printed wiring board and electronic component using the same
JP2010083966A (en) Resin composition, cured body, and laminate
JP5010124B2 (en) Thermoplastic resin composition, sheet, copper foil with resin, printed circuit board, and prepreg
TW201736459A (en) Frp precursor, laminated plate, metal-clad laminate, printed circuit board, semiconductor package, and method for producing same
JP2008105409A (en) Copper foil with resin layer containing filler particle and copper-clad laminated plate using the same
JP2015229772A (en) Production and production method of heat-conductive paste
WO2022141816A1 (en) Resin composition, resin adhesive film, and application thereof
JP4228405B2 (en) Metal thin film laminate film and flexible printed wiring board using the film
JP2004349366A (en) Multilayer wiring board and its manufacturing method
JP2005146234A (en) Method for producing resin sheet and resin sheet for insulating substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees