JP4716082B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4716082B2
JP4716082B2 JP2004126686A JP2004126686A JP4716082B2 JP 4716082 B2 JP4716082 B2 JP 4716082B2 JP 2004126686 A JP2004126686 A JP 2004126686A JP 2004126686 A JP2004126686 A JP 2004126686A JP 4716082 B2 JP4716082 B2 JP 4716082B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
cured product
composition according
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004126686A
Other languages
Japanese (ja)
Other versions
JP2005307031A (en
Inventor
邦裕 森永
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2004126686A priority Critical patent/JP4716082B2/en
Publication of JP2005307031A publication Critical patent/JP2005307031A/en
Application granted granted Critical
Publication of JP4716082B2 publication Critical patent/JP4716082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

本発明は、耐熱性、耐湿性が良好で、特に誘電特性(低誘電率、低誘電正接)に優れ、プリント基板用樹脂組成物、電子部品の封止材用樹脂組成物等に好適に用いることができるエポキシ樹脂組成物及びそれを用いて得られる硬化物に関する。   The present invention has good heat resistance and moisture resistance, and particularly excellent dielectric properties (low dielectric constant, low dielectric loss tangent), and is suitably used for a resin composition for printed circuit boards, a resin composition for encapsulants for electronic components, and the like. The present invention relates to an epoxy resin composition that can be used and a cured product obtained using the same.

近年、電子機器、通信機器等に用いられる半導体パッケージ基板には、半導体デバイスの小型化、配線の高集積化に基づく処理能力の飛躍的向上に起因して、発熱対策や高周波数領域での電気性能などが問題となっている。特に近年、ボールグリッドアレイ(BGA)等のチップスケールパッケージ(CSP)などに使用される半導体パッケ−ジ基板等には、優れた耐熱性に加えて、耐湿性、低誘電率、低誘電正接、低線膨張係数等の特性を高いレベルで兼備することが強く要求されている。これらの要求特性は、該用途に限らず電気・電子分野では共通の課題である。   In recent years, semiconductor package substrates used in electronic equipment, communication equipment, etc., have been developed to take measures against heat generation and provide electrical power in a high frequency range due to dramatic improvements in processing capabilities based on downsizing of semiconductor devices and high integration of wiring. Performance is a problem. In particular, in recent years, semiconductor package substrates used for chip scale packages (CSP) such as ball grid arrays (BGA), in addition to excellent heat resistance, moisture resistance, low dielectric constant, low dielectric loss tangent, There is a strong demand to combine characteristics such as a low linear expansion coefficient at a high level. These required characteristics are common problems not only in the application but also in the electric / electronic field.

このような要求を満たすものとして、従来エポキシ樹脂組成物が使用されている。しかしながら、一般に汎用のグリシジルエーテル型エポキシ樹脂と硬化剤(フェノール系硬化剤、アミン系硬化剤、カルボン酸系硬化剤の如き活性水素を持つ硬化剤)とを使用した場合には、エポキシ基と活性水素の反応により高極性のアルコール性水酸基が発生し、特に充分な耐熱性を付与するために架橋密度を上げると硬化物中の該水酸基濃度を上昇させ、誘電率、誘電正接といった電気特性の低下を招く問題がある。逆に、架橋密度を下げると電気特性は向上するものの、耐熱性が著しく低下することになり、上記した特性を高レベルで兼備させることは難しい。これらの解決策として、例えば、ジシクロペンタジエン型エポキシ樹脂を用いた組成物が提案されている(例えば、特許文献1参照)が、近年の高周波化の進行度合いは著しく、特に1GHzを超える高周波数領域での低誘電率、低誘電正接といった電気特性が十分満足できるレベルに達していないという欠点があり、改良が求められている。   Conventionally, epoxy resin compositions have been used to satisfy such requirements. However, in general, when a general-purpose glycidyl ether type epoxy resin and a curing agent (a curing agent having active hydrogen such as a phenolic curing agent, an amine curing agent, or a carboxylic acid curing agent) are used, an epoxy group and an activity The reaction of hydrogen generates highly polar alcoholic hydroxyl groups. Increasing the crosslink density to give sufficient heat resistance, in particular, increases the hydroxyl group concentration in the cured product, resulting in a decrease in electrical properties such as dielectric constant and dielectric loss tangent. There is a problem that invites. Conversely, when the crosslink density is lowered, the electrical characteristics are improved, but the heat resistance is remarkably lowered, and it is difficult to combine the above characteristics at a high level. As a solution to these problems, for example, a composition using a dicyclopentadiene type epoxy resin has been proposed (see, for example, Patent Document 1). However, the degree of progress of high frequency in recent years has been remarkable, and in particular, a high frequency exceeding 1 GHz. There is a drawback that electrical characteristics such as a low dielectric constant and a low dielectric loss tangent in a region do not reach a sufficiently satisfactory level, and improvement is required.

特開2001−240654号公報(第2〜4頁)Japanese Patent Laid-Open No. 2001-240654 (pages 2 to 4)

従って、本発明が解決しようとする課題は、耐熱性、耐湿性が良好で、特に誘電特性(低誘電率、低誘電正接)に優れ、プリント基板用樹脂組成物、電子部品の封止材用樹脂組成物等、特に半導体パッケ−ジ基板の樹脂成分として好適に用いることが出来、高周波数領域での低誘電率、低誘電正接を達成することができるエポキシ樹脂組成物、及びそれを用いて得られる硬化物を提供することにある。   Therefore, the problem to be solved by the present invention is that the heat resistance and moisture resistance are good, especially the dielectric properties (low dielectric constant, low dielectric loss tangent) are excellent, and the resin composition for printed circuit boards and the sealing material for electronic parts are used. Epoxy resin composition which can be suitably used as a resin component of a resin composition, particularly a semiconductor package substrate, and can achieve a low dielectric constant and a low dielectric loss tangent in a high frequency region, and using the same It is in providing the hardened | cured material obtained.

本発明者等は上記課題を解決すべく鋭意検討した結果、β−メチル基置換型エポキシ基をもつエポキシ樹脂と硬化剤とを必須成分とし、得られる硬化物の周波数1GHzでの誘電率が3.0以下であるエポキシ樹脂組成物が、成形性を損なわず、且つ耐熱性、耐湿性に優れ、低誘電率、低誘電正接等の電気特性が必要な回路基板や半導体装置用の樹脂成分として好適に用いることが出来ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have an epoxy resin having a β-methyl group-substituted epoxy group and a curing agent as essential components, and the obtained cured product has a dielectric constant of 3 at a frequency of 1 GHz. An epoxy resin composition of 0.0 or less as a resin component for circuit boards and semiconductor devices that does not impair moldability, is excellent in heat resistance and moisture resistance, and requires electrical properties such as low dielectric constant and low dielectric loss tangent The inventors have found that it can be suitably used and have completed the present invention.

即ち、本発明は、β−メチル基置換型エポキシ基を有するエポキシ樹脂(A)と硬化剤(B)とを含有し、得られる硬化物の周波数1GHzでの誘電率が3.0以下であることを特徴とするエポキシ樹脂組成物及びそれを用いて得られる硬化物を提供するものである。   That is, the present invention contains an epoxy resin (A) having a β-methyl group-substituted epoxy group and a curing agent (B), and the resulting cured product has a dielectric constant of 3.0 or less at a frequency of 1 GHz. It is an object of the present invention to provide an epoxy resin composition and a cured product obtained by using the epoxy resin composition.

本発明によれば、従来のエポキシ樹脂組成物と同等の生産性、密着性を有し、高耐熱性、高耐湿性、低線膨張率、低誘電率、低誘電正接を兼備する硬化物が得られるエポキシ樹脂組成物を提供でき、特に半導体パッケージ用基板に用いた場合には、信頼性に優れた半導体装置を提供することができる。   According to the present invention, a cured product having productivity and adhesion equivalent to those of a conventional epoxy resin composition and having both high heat resistance, high moisture resistance, low linear expansion coefficient, low dielectric constant, and low dielectric loss tangent. The resulting epoxy resin composition can be provided, and particularly when used for a substrate for a semiconductor package, a highly reliable semiconductor device can be provided.

以下、本発明を詳細に説明する。
本発明で用いるβ−メチル基置換型エポキシ基を有するエポキシ樹脂(A)は、下記構造式(1)
Hereinafter, the present invention will be described in detail.
The epoxy resin (A) having a β-methyl group-substituted epoxy group used in the present invention has the following structural formula (1).

Figure 0004716082
で表されるメチルグリシジル基を有するエポキシ樹脂である。
Figure 0004716082
It is an epoxy resin having a methyl glycidyl group represented by:

従来、エポキシ樹脂は下記構造式(2)   Conventionally, epoxy resin has the following structural formula (2)

Figure 0004716082
で表されるグリシジル基を有するものである。ここで、特筆すべき点としては、従来の前記構造式(2)で表されるグリシジル基を有するエポキシ樹脂(以下、従来品と略記する。)を用いて得られる硬化物の誘電率、誘電正接は、グリシジル基の開環に基づく硬化反応によって生じる水酸基の濃度に強く依存し、より水酸基濃度が低い場合に低誘電率、低誘電正接が発現されるという特徴を有するものであるが、β−メチル基置換型エポキシ基を有するエポキシ樹脂(A)を用いて得られる硬化物は、硬化物中の水酸基濃度が従来品を用いた場合と同程度においても低誘電率、低誘電正接を発現することができ、然も、その水準が従来品を用いて得られる硬化物の性能を遥かに超えている点にある。従って、架橋密度を上げ耐熱性を付与した場合(即ち、活性水素を有する硬化剤との反応でエポキシ基の開環反応が起こり、硬化物中の水酸基濃度が高い場合)においても低誘電率、低誘電正接である硬化物を得ることが出来、電気・電子分野、特に半導体パッケージ基板用の層間絶縁材料等に好適に使用することが可能となる。
Figure 0004716082
It has glycidyl group represented by these. Here, it should be noted that the dielectric constant and dielectric of a cured product obtained using a conventional epoxy resin having a glycidyl group represented by the structural formula (2) (hereinafter abbreviated as a conventional product). The tangent is strongly dependent on the concentration of the hydroxyl group generated by the curing reaction based on the ring opening of the glycidyl group, and is characterized by low dielectric constant and low dielectric loss tangent when the hydroxyl group concentration is lower. -The cured product obtained using the epoxy resin (A) having a methyl group-substituted epoxy group exhibits a low dielectric constant and a low dielectric loss tangent even when the hydroxyl group concentration in the cured product is the same as when using a conventional product. However, the level is far in excess of the performance of a cured product obtained using a conventional product. Therefore, even when the crosslink density is increased and heat resistance is imparted (that is, when the epoxy group undergoes a ring-opening reaction in the reaction with a curing agent having active hydrogen and the hydroxyl group concentration in the cured product is high), the low dielectric constant, A cured product having a low dielectric loss tangent can be obtained, and can be suitably used in the electrical / electronic field, particularly for an interlayer insulating material for a semiconductor package substrate.

前記エポキシ樹脂(A)としては、得られる硬化物の耐熱性に優れ、且つ硬化剤との反応性が良好である点から、エポキシ当量が230〜400g/eq.の範囲にあるものが好ましい。   As said epoxy resin (A), the epoxy equivalent is 230-400 g / eq. From the point which is excellent in the heat resistance of the hardened | cured material obtained, and the reactivity with a hardening | curing agent is favorable. Those within the range are preferred.

前記エポキシ樹脂(A)の構造としては、β−メチル基置換型エポキシ基を有すること以外に特に限定されるものではないが、本発明で用いることができる該エポキシ樹脂(A)は、得られる硬化物の周波数1GHzにおける誘電率が3.0以下であることを必須とする。例えば、β−アルキルグリシジル基をエポキシ基として有する多価エポキシ化合物を半導体封止材料用のエポキシ樹脂組成物として用いる技術しては、特開平8−283379号に提案されているが、該文献には得られる硬化物の電気特性に関する記載は無く、実施例で合成されたβ−メチルグリシジル基を有するビスフェノールA型エポキシ樹脂及び1,6−ジヒドロキシナフタレンから誘導されるエポキシ樹脂を用いた樹脂組成物から得られる硬化物は、明細書中比較例に記載の通り、該誘電率が3.0を超えるものであり、実用レベルには達しないものである。本発明者らの検討では、該誘電率が3.0以下の硬化物を容易に得られる事から、前記エポキシ樹脂(A)としては、脂肪族環状骨格(x)を有することが好ましく、特に、該脂肪族環状骨格(x)がヒドロキシ基含有芳香族炭化水素類の連結基として樹脂骨格中に組み込まれ、該芳香族炭化水素類中のヒドロキシ基中の水素原子が前記構造式(1)で示されるメチルグリシジル基に置換された構造であることが好ましい。   The structure of the epoxy resin (A) is not particularly limited except that it has a β-methyl group-substituted epoxy group, but the epoxy resin (A) that can be used in the present invention is obtained. It is essential that the dielectric constant of the cured product at a frequency of 1 GHz is 3.0 or less. For example, as a technique for using a polyvalent epoxy compound having a β-alkylglycidyl group as an epoxy group as an epoxy resin composition for a semiconductor sealing material, Japanese Patent Laid-Open No. 8-283379 has been proposed. There is no description about the electrical characteristics of the cured product obtained, and a resin composition using a bisphenol A type epoxy resin having a β-methylglycidyl group synthesized in Examples and an epoxy resin derived from 1,6-dihydroxynaphthalene The cured product obtained from No. 1 has a dielectric constant exceeding 3.0 as described in Comparative Examples in the specification, and does not reach a practical level. In the study by the present inventors, it is preferable that the epoxy resin (A) has an aliphatic cyclic skeleton (x), since a cured product having a dielectric constant of 3.0 or less can be easily obtained. The aliphatic cyclic skeleton (x) is incorporated into a resin skeleton as a linking group of a hydroxy group-containing aromatic hydrocarbon, and the hydrogen atom in the hydroxy group in the aromatic hydrocarbon is represented by the structural formula (1) It is preferable that it is the structure substituted by the methylglycidyl group shown by these.

前記芳香族炭化水素類としては、芳香族性ヒドロキシ基を有するものであれば特に限定されるものではないが、例えば、フェノール、及びアルキル基、アルケニル基、アリル基、アリール基、アラルキル基或いはハロゲン基等が結合した置換フェノール類が挙げられる。具体的に例示すると、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−イソプロピルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−sec−ブチルフェノール、p−tert−ブチルフェノール、p−シクロヘキシルフェノール、p−クロロフェノール、o−ブロモフェノール、m−ブロモフェノール、p−ブロモフェノール等のフェノール類、α−ナフトール、β−ナフトール等のナフトール類、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール等のキシレノール類等の一価フェノール類;レゾルシン、カテコール、ハイドロキノン、2,2−ビス(4’−ヒドロキシフェニル)プロパン、1,1’−ビス(ジヒドロキシフェニル)メタン、1,1’−ビス(ジヒドロキシナフチル)メタン、テトラメチルビフェノール、ビフェノール、ヘキサメチルビフェノール、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のナフタレンジオール類等の二価フェノール類;トリスヒドロキシフェニルメタン等の三価フェノール類等が挙げられ、単独でも2種以上の混合物として使用しても良い。これらの中でも得られるエポキシ樹脂組成物の流動性及び硬化性に優れる点から、フェノール及び/又はクレゾールを用いることが好ましい。   The aromatic hydrocarbon is not particularly limited as long as it has an aromatic hydroxy group, and examples thereof include phenol, alkyl groups, alkenyl groups, allyl groups, aryl groups, aralkyl groups, and halogens. Examples thereof include substituted phenols to which groups and the like are bonded. Specific examples include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-isopropylphenol, m-propylphenol, p-propylphenol, phenols such as p-sec-butylphenol, p-tert-butylphenol, p-cyclohexylphenol, p-chlorophenol, o-bromophenol, m-bromophenol, p-bromophenol, α-naphthol, β-naphthol, etc. Monohydric phenols such as naphthols, 2,4-xylenol, 2,5-xylenol, xylenols such as 2,6-xylenol; resorcin, catechol, hydroquinone, 2,2-bis (4′-hydroxyphenyl) propane , 1, 1 ' -Bis (dihydroxyphenyl) methane, 1,1'-bis (dihydroxynaphthyl) methane, tetramethylbiphenol, biphenol, hexamethylbiphenol, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, etc. Dihydric phenols such as naphthalenediols; trihydric phenols such as trishydroxyphenylmethane, etc., may be used alone or in admixture of two or more. Among these, it is preferable to use phenol and / or cresol from the viewpoint of excellent fluidity and curability of the epoxy resin composition obtained.

前記脂肪族環状骨格(x)としては、シクロヘキサン環及び/又はシクロヘキセン環を有するものが、得られる硬化物の耐熱性と耐水性向上効果に優れる点から好ましい。それらの中でも特にこの効果が顕著である点から、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、ジシクロペンタジエン、トリシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、リモネン等の不飽和脂肪族環状骨格の残基(分子骨格中の不飽和結合に起因する2価の複合脂肪族環状骨格)であることが好ましく、1分子中の脂肪族環状骨格(x)が1種類からなるものであっても、2種類以上が共存していても良い。これらの中でも得られる硬化物の耐熱性及び耐湿性を一層向上させることができる点から、ジシクロペンタジエン残基、トリシクロペンタジエン残基であることが好ましい。   As the aliphatic cyclic skeleton (x), those having a cyclohexane ring and / or a cyclohexene ring are preferable from the viewpoint of excellent heat resistance and water resistance improvement effect of the obtained cured product. Unsaturation such as 5-vinylnorborna-2-ene, α-pinene, β-pinene, dicyclopentadiene, tricyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, limonene, etc., because the effect is particularly remarkable among them. It is preferably a residue of an aliphatic cyclic skeleton (a divalent complex aliphatic cyclic skeleton resulting from an unsaturated bond in the molecular skeleton), and one kind of the aliphatic cyclic skeleton (x) in one molecule Even two or more types may coexist. Among these, a dicyclopentadiene residue and a tricyclopentadiene residue are preferable from the viewpoint that the heat resistance and moisture resistance of the obtained cured product can be further improved.

これらの脂肪族環状骨格を樹脂骨格中に導入するためには、上述したヒドロキシ基含有芳香族炭化水素類と、前記脂肪族環状骨格(x)を有する化合物とを重付加反応させる方法が挙げられる。ここで用いることが出来る脂肪族環状骨格(x)を有する化合物しては、例えば、ジシクロペンタジエン、トリシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等が挙げられる。これらの中でも得られる硬化物の特性バランス、特に耐熱性、耐湿性に優れる点からジシクロペンタジエン、トリシクロペンタジエンを用いることが好ましい。ジシクロペンタジエン、トリシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエン、及び工業用トリシクロペンタジエンには他の脂肪族或いは芳香族性ジエン類等が不純物として含有されることがあるが、得られる樹脂組成物の硬化性、成形性が良好で、硬化物の耐熱性に優れる点から、ジシクロペンタジエンの純度90重量%以上の製品及び/又はトリシクロペンタジエンの純度90重量%以上の製品を用いることが望ましい。   In order to introduce these aliphatic cyclic skeletons into the resin skeleton, a method of subjecting the above-mentioned hydroxy group-containing aromatic hydrocarbons to a polyaddition reaction with the compound having the aliphatic cyclic skeleton (x) can be mentioned. . Examples of the compound having an aliphatic cyclic skeleton (x) that can be used here include dicyclopentadiene, tricyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorborna-2-ene, α-pinene, β-pinene, limonene and the like can be mentioned. Among these, it is preferable to use dicyclopentadiene or tricyclopentadiene from the viewpoint of excellent balance of properties of the obtained cured product, particularly heat resistance and moisture resistance. Since dicyclopentadiene and tricyclopentadiene are contained in petroleum fractions, industrial dicyclopentadiene and industrial tricyclopentadiene must contain other aliphatic or aromatic dienes as impurities. However, from the viewpoint of good curability and moldability of the resulting resin composition and excellent heat resistance of the cured product, a product having a purity of 90% by weight or more of dicyclopentadiene and / or a purity of 90% by weight of tricyclopentadiene. It is desirable to use more than% product.

この重付加反応の製造方法としては、特に限定されるものではないが、得られる硬化物の耐熱性と耐湿性に優れる点から、ヒドロキシ基含有芳香族炭化水素類/脂肪族環状骨格(x)を有する化合物=2.5/1〜10/1(モル比)の範囲内で合成することが好ましい。   The method for producing this polyaddition reaction is not particularly limited. From the viewpoint of excellent heat resistance and moisture resistance of the resulting cured product, hydroxy group-containing aromatic hydrocarbons / aliphatic cyclic skeleton (x) It is preferable to synthesize within a range of compounds having a ratio of 2.5 / 1 to 10/1 (molar ratio).

前記反応の具体的方法としては、例えば、溶融状態、或いはヒドロキシ基に対して不活性な有機溶媒を用いて溶液状態にしたヒドロキシ基含有芳香族炭化水素類に、重付加触媒を添加し、これに脂肪族環状骨格(x)を有する化合物を適下後、加熱攪拌し重付加反応を進行させ、その後に未反応フェノール類を蒸留回収し、反応物を得る方法が挙げられる。この反応における反応温度としては特に制限されないが、適度な反応速度である点から40〜150℃であることが好ましい。前記重付加触媒としては、例えば、塩酸、硫酸などの無機酸、パラトルエンスルホン酸等の有機酸、AlCl、BF等のルイス酸等が挙げられる。 As a specific method of the reaction, for example, a polyaddition catalyst is added to hydroxy group-containing aromatic hydrocarbons in a molten state or a solution state using an organic solvent inert to the hydroxy group, A method in which a compound having an aliphatic cyclic skeleton (x) is appropriately applied, followed by heating and stirring to allow the polyaddition reaction to proceed, and then unreacted phenols are recovered by distillation to obtain a reaction product. The reaction temperature in this reaction is not particularly limited, but is preferably 40 to 150 ° C. from the viewpoint of an appropriate reaction rate. Examples of the polyaddition catalyst include inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as p-toluenesulfonic acid, and Lewis acids such as AlCl 3 and BF 3 .

次いで、この様にして得られた重付加反応物とβ−メチルエピハロヒドリンとを反応させることによって、本発明で用いるβ−メチル基置換型エポキシ基を有するエポキシ樹脂(A)を得ることが出来る。   Next, an epoxy resin (A) having a β-methyl group-substituted epoxy group used in the present invention can be obtained by reacting the polyaddition reaction product thus obtained with β-methylepihalohydrin.

その具体的な手法としては、特に限定されるものではないが、例えば、前述で得られた重付加反応物とβ−メチルエピクロルヒドリン等のβ−メチルエピハロヒドリンとの溶解混合物に水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を添加し、または添加しながら20〜120℃で1〜10時間反応させる手法を挙げることができる。β−メチルエピハロヒドリン類の添加量としては、原料として用いる重付加反応物の水酸基1当量に対して、通常0.3〜20当量の範囲で用いられ、得られるエポキシ樹脂の所望の特性(エポキシ当量や粘度等)によってβ−メチルエピハロヒドリンの量を適宜調節すればよい。   The specific technique is not particularly limited. For example, sodium hydroxide, hydroxide may be added to a dissolved mixture of the polyaddition reaction product obtained above and β-methylepihalohydrin such as β-methylepichlorohydrin. A method of reacting at 20 to 120 ° C. for 1 to 10 hours while adding or adding an alkali metal hydroxide such as potassium can be mentioned. The amount of β-methylepihalohydrin added is usually in the range of 0.3 to 20 equivalents relative to 1 equivalent of the hydroxyl group of the polyaddition reaction product used as a raw material, and the desired properties of the resulting epoxy resin (epoxy equivalents) The amount of β-methylepihalohydrin may be appropriately adjusted depending on the viscosity and the like.

前記エポキシ樹脂を得る反応において、アルカリ金属水酸化物はその水溶液を使用してもよく、その場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添加すると共に減圧下、または常圧下連続的に水及びβ−メチルエピハロヒドリンを留出させ、更に分液し水は除去しβ−メチルエピハロヒドリンは反応系内に連続的に戻す方法でもよい。また、該重付加反応物とβ−メチルエピハロヒドリンとの溶解混合物にテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド等の4級アンモニウム塩を触媒として添加し50〜150℃で1〜5時間反応させて得られる該反応物のハロヒドリンエーテル化物にアルカリ金属水酸化物の固体または水溶液を加え、再び20〜120℃で1〜10時間反応させ脱ハロゲン化水素(閉環)させる方法でもよい。   In the reaction for obtaining the epoxy resin, an aqueous solution of the alkali metal hydroxide may be used. In that case, the aqueous solution of the alkali metal hydroxide is continuously added to the reaction system and the reaction is performed under reduced pressure or at normal temperature. A method may be used in which water and β-methylepihalohydrin are continuously distilled under pressure, liquid separation is performed, water is removed, and β-methylepihalohydrin is continuously returned to the reaction system. Further, a quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride or the like is added to the dissolved mixture of the polyaddition reaction product and β-methylepihalohydrin as a catalyst at 1 to 5 at 50 to 150 ° C. A method in which a solid or an aqueous solution of an alkali metal hydroxide is added to a halohydrin etherified product of the reaction product obtained by reacting for a period of time, followed by reacting again at 20 to 120 ° C. for 1 to 10 hours to dehydrohalogenate (ring closure) Good.

更に、反応を円滑に進行させるためにメタノール、エタノール、イソプロピルアルコール、ブタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類、1,4−ジオキサンなどのエーテル類、ジメチルスルホン、ジメチルスルホキシド等の非プロトン性極性溶媒などを添加して反応を行うことが好ましい。アルコール類、ケトン類、エーテル類を溶媒として使用する場合のその使用量としては、β−メチルエピハロヒドリンの量に対し通常5〜50重量%、好ましくは10〜30重量%である。また非プロトン性極性溶媒を用いる場合はβ−メチルエピハロヒドリンの量に対し通常5〜100重量%、好ましくは10〜60重量%である。   Furthermore, in order to make the reaction proceed smoothly, alcohols such as methanol, ethanol, isopropyl alcohol and butanol, ketones such as acetone and methyl ethyl ketone, ethers such as 1,4-dioxane, aprotic such as dimethyl sulfone and dimethyl sulfoxide It is preferable to carry out the reaction by adding a polar solvent or the like. When alcohols, ketones, and ethers are used as a solvent, the amount used is usually 5 to 50% by weight, preferably 10 to 30% by weight, based on the amount of β-methylepihalohydrin. Moreover, when using an aprotic polar solvent, it is 5 to 100 weight% normally with respect to the quantity of (beta) -methylepihalohydrin, Preferably it is 10 to 60 weight%.

これらのエポキシ化反応の反応物を水洗後、または水洗無しに加熱減圧下、110〜250℃、圧力10mmHg以下でβ−メチルエピハロヒドリンや他の添加溶媒などを除去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、β−メチルエピハロヒドリンを回収した後に得られる粗エポキシ樹脂を再びトルエン、メチルイソブチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えて更に反応させて閉環を確実なものにすることもできる。この場合、アルカリ金属水酸化物の使用量は粗エポキシ樹脂中に残存する加水分解性塩素1モルに対して、通常0.5〜10モル、好ましくは1.2〜5.0モルである。このときの反応温度は通常50〜120℃、反応時間は通常0.5〜3時間である。反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、粗エポキシ樹脂に対して0.1〜3.0重量%の範囲が好ましい。   After the reaction product of these epoxidation reactions is washed with water or without washing with water, β-methylepihalohydrin and other added solvents are removed at 110 to 250 ° C. under a pressure of 10 mmHg or less under reduced pressure. Furthermore, in order to obtain an epoxy resin with less hydrolyzable halogen, the crude epoxy resin obtained after recovering β-methylepihalohydrin is dissolved again in a solvent such as toluene, methyl isobutyl ketone, sodium hydroxide, potassium hydroxide, etc. An aqueous solution of an alkali metal hydroxide can be added and reacted further to ensure ring closure. In this case, the amount of alkali metal hydroxide used is usually 0.5 to 10 mol, preferably 1.2 to 5.0 mol, per 1 mol of hydrolyzable chlorine remaining in the crude epoxy resin. The reaction temperature at this time is usually 50 to 120 ° C., and the reaction time is usually 0.5 to 3 hours. For the purpose of improving the reaction rate, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1 to 3.0% by weight based on the crude epoxy resin.

反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂(A)が得られる。   After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and a solvent such as toluene and methyl isobutyl ketone is distilled off under reduced pressure by heating to obtain a high purity epoxy resin (A).

本発明のエポキシ樹脂組成物には、本発明の効果を損なわない範囲において、前記のエポキシ樹脂(A)以外にもその他のグリシジル基を有するエポキシ樹脂(C)を併用して使用することができる。併用しうるその他のエポキシ樹脂(C)としては、種々のエポキシ樹脂を用いることができるが、例示するならば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の2価のフェノール類から誘導されるエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール変性型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等の3価以上のフェノール類から誘導されるエポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂などが挙げられるがこれらに限定されるものではない。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。   The epoxy resin composition of the present invention can be used in combination with the epoxy resin (C) having other glycidyl groups in addition to the epoxy resin (A) as long as the effects of the present invention are not impaired. . As the other epoxy resin (C) that can be used in combination, various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type are exemplified. Epoxy resins derived from divalent phenols such as epoxy resins, resorcinol type epoxy resins, hydroquinone type epoxy resins, catechol type epoxy resins, dihydroxynaphthalene type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, phenol Novolac epoxy resin, cresol novolac epoxy resin, triphenylmethane epoxy resin, tetraphenylethane epoxy resin, dicyclopentadiene-phenol modified epoxy resin, pheno Ruaralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified Examples include, but are not limited to, epoxy resins derived from trivalent or higher phenols such as phenol resin type epoxy resins, biphenyl modified novolak type epoxy resins, tetrabromobisphenol A type epoxy resins, brominated phenol novolak type epoxy resins, etc. Is not to be done. Moreover, these epoxy resins may be used independently and may mix 2 or more types.

これらの中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール変性型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂を用いることが特に好ましい。これらのエポキシ樹脂(C)の使用割合としては、特に制限されるものではないが、全エポキシ樹脂成分中5〜50重量%なる範囲であることが好ましい。   Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, phenol novolac type epoxy resin , Cresol novolak type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol modified epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol Aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolak Epoxy resins, it is particularly preferable to use a biphenyl-modified novolak type epoxy resin. The ratio of the epoxy resin (C) used is not particularly limited, but is preferably in the range of 5 to 50% by weight in the total epoxy resin components.

本発明のエポキシ樹脂組成物に用いる硬化剤(B)としては、特に制限されるものではなく、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などの種々の硬化剤を全て用いることができるが、例示するならば、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂、ビスフェノールAノボラック樹脂、ビスフェノールFノボラック樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体などが挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。これらの硬化剤の中でも得られる硬化物の周波数1GHzにおける誘電率が3.0以下であるものを容易に得られる事から、フェノール系化合物(b)であることが好ましい。 The curing agent (B) used in the epoxy resin composition of the present invention is not particularly limited, and various curing agents such as amine compounds, acid anhydride compounds, amide compounds, phenol compounds and the like. However, for example, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from dimer of linolenic acid and ethylenediamine, phthalic anhydride , Trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol no Rack resin, aromatic hydrocarbon formaldehyde resin modified phenol resin, dicyclopentadiene phenol addition resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified phenol aralkyl resin, phenol trimethylol methane resin, tetraphenylol ethane resin , Naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin, aminotriazine-modified phenol resin, bisphenol A novolac resin, bisphenol F novolac resin and the like And modified products thereof, imidazole, BF 3 -amine complexes, guanidine derivatives and the like. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types. Among these curing agents, a phenolic compound (b) is preferable because a cured product obtained with a dielectric constant at a frequency of 1 GHz of 3.0 or less can be easily obtained.

前記フェノール系化合物(b)は、該化合物中の芳香族性水酸基が前述のβ−メチル基置換型エポキシ基と反応することによって架橋し硬化物が得られるものであり、得られる硬化物の耐熱性、耐湿性に優れる点から、該化合物(b)の水酸基当量が150〜350g/eqであることが好ましい。   The phenolic compound (b) is obtained by crosslinking the aromatic hydroxyl group in the compound with the aforementioned β-methyl group-substituted epoxy group to obtain a cured product. From the viewpoint of excellent properties and moisture resistance, the hydroxyl equivalent of the compound (b) is preferably 150 to 350 g / eq.

また、特に電気特性(低誘電率、低誘電正接)に優れるものが得られる点から、脂肪族環状骨格(y)を含有する化合物であることが好ましく、特に、該脂肪族環状骨格(y)がヒドロキシ基含有芳香族炭化水素類の連結基として樹脂骨格中に組み込まれた構造であることが好ましい。   In addition, a compound containing an aliphatic cyclic skeleton (y) is preferable from the viewpoint of obtaining an excellent electrical property (low dielectric constant, low dielectric loss tangent), and in particular, the aliphatic cyclic skeleton (y). Is preferably incorporated into the resin skeleton as a linking group for hydroxy group-containing aromatic hydrocarbons.

前記脂肪族環状骨格(y)及びヒドロキシ基含有芳香族炭化水素類としては、エポキシ樹脂(A)について述べたものをいずれも挙げることができ、特に該脂肪族環状骨格(y)がジシクロペンタジエン残基及び/又はトリシクロペンタジエン残基であることが好ましい。また、これらを反応させるその手法及び原料として用いる化合物についても、同様であり、前述で述べた重付加反応物が硬化剤に相当するものである。エポキシ樹脂(A)中に含まれる脂肪族環状骨格(x)と硬化剤(B)中の脂肪族環状骨格(y)とが、同一のものを組み合わせて本発明のエポキシ樹脂組成物としても、異なったものを組み合わせて用いても良い。   Examples of the aliphatic cyclic skeleton (y) and hydroxy group-containing aromatic hydrocarbons include any of those described for the epoxy resin (A), and in particular, the aliphatic cyclic skeleton (y) is dicyclopentadiene. It is preferably a residue and / or a tricyclopentadiene residue. The same applies to the method of reacting them and the compound used as a raw material, and the polyaddition reaction product described above corresponds to the curing agent. Even if the aliphatic cyclic skeleton (x) contained in the epoxy resin (A) and the aliphatic cyclic skeleton (y) in the curing agent (B) are combined together, the epoxy resin composition of the present invention can be used as Different types may be used in combination.

硬化剤(B)の使用量としては、前記エポキシ樹脂(A)を硬化させることが出来る量であれば、特に限定されるものではないが、エポキシ樹脂(A)のエポキシ当量と硬化剤(B)中の活性水素基との当量比(A)/(B)が0.6〜1.2であることが好ましく、特に前記比が0.8〜1.1の範囲であることが好ましい。   The amount of the curing agent (B) used is not particularly limited as long as the epoxy resin (A) can be cured, but the epoxy equivalent of the epoxy resin (A) and the curing agent (B It is preferable that the equivalent ratio (A) / (B) with the active hydrogen group in () is 0.6 to 1.2, and it is particularly preferable that the ratio is in the range of 0.8 to 1.1.

更に硬化剤(B)の種類に応じては、硬化促進剤を併用することも出来る。用いることが出来る硬化促進剤としては、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられ、これらは単独のみならず2種以上の併用も可能である。   Furthermore, a curing accelerator can be used in combination depending on the type of the curing agent (B). Examples of the curing accelerator that can be used include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. These may be used alone or in combination of two or more. Is possible.

本発明のエポキシ樹脂組成物は、その硬化物の周波数1GHzでの誘電率が3.0以下であることを必須とする。該誘電率が3.0を超える場合は、特に高周波領域で使用される半導体パッケージ用基板用の樹脂組成物としての要求性能を満たすものではない。   In the epoxy resin composition of the present invention, it is essential that the cured product has a dielectric constant of 3.0 or less at a frequency of 1 GHz. When the dielectric constant exceeds 3.0, the required performance as a resin composition for a substrate for a semiconductor package used particularly in a high frequency region is not satisfied.

一般にエポキシ樹脂組成物の硬化物を得る条件としては、用いるエポキシ樹脂や硬化剤、硬化促進剤、必要に応じて配合される後述する充填剤等の種類により、常温〜加熱硬化まで種々選択されるものである。硬化物の誘電率、誘電正接といった電気特性を測定するには、完全硬化させた硬化物を用いて、測定環境の温度・湿度を管理した状態である必要があり、従って、本発明における誘電率の測定においては、用いるエポキシ樹脂組成物の種類によらず、完全硬化させるために、成形硬化させた物を175℃の恒温室内に5時間静置して後硬化と絶乾を同時に行った後、23℃、50%RHの恒温恒湿器内で24時間放置後すぐに測定した値である。この時用いるエポキシ樹脂組成物としては、充填剤種等による影響を除外するために、エポキシ樹脂(A)、硬化剤(B)、必要に応じて使用される硬化促進剤のみ(いわゆるニートレジン系)で硬化させる。   In general, conditions for obtaining a cured product of the epoxy resin composition are variously selected from room temperature to heat curing depending on the type of epoxy resin, curing agent, curing accelerator, filler to be described later blended as necessary. Is. In order to measure the electrical properties such as dielectric constant and dielectric loss tangent of the cured product, it is necessary to use a completely cured product and to control the temperature and humidity of the measurement environment. In the measurement of the above, after completely curing and completely drying, the molded and cured product was allowed to stand in a thermostatic chamber at 175 ° C. for 5 hours in order to completely cure regardless of the type of epoxy resin composition used. , 23 ° C., 50% RH in a constant temperature and humidity chamber, measured immediately after standing for 24 hours. As an epoxy resin composition used at this time, only an epoxy resin (A), a curing agent (B), and a curing accelerator used as necessary (so-called a neat resin type) are used in order to exclude the influence of filler species and the like. ) To cure.

また本発明のエポキシ樹脂組成物を実際に応用する際には、必要に応じて、無機充填剤、難燃付与剤、顔料、シランカップリング剤、離型剤等の種々の配合剤を添加することができる。   Moreover, when actually applying the epoxy resin composition of the present invention, various compounding agents such as an inorganic filler, a flame retardant, a pigment, a silane coupling agent, and a release agent are added as necessary. be able to.

前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミニウム等が挙げられる。特に水酸化アルミは高熱伝導性に優れる。無機充填材の配合量を特に大きくする場合は溶融シリカを用いるのが一般的である。溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は適用用途や所望特性によって、望ましい範囲が異なるが、例えば半導体封止材用途に使用する場合は、線膨張係数や難燃性を鑑みれば高い方が好ましく、組成物全体量に対して65重量%以上が好ましく、特に好ましくは85重量%以上である。また導電ペーストや導電フィルムなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。また低誘電率の充填剤としてフッ素樹脂粉末、中空ガラスビーズ等を用いることができる。   Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. In particular, aluminum hydroxide is excellent in high thermal conductivity. In order to increase the blending amount of the inorganic filler, it is common to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The desired range varies depending on the application and desired properties, but for example, when used in semiconductor encapsulant applications, it is preferably higher in view of the coefficient of linear expansion and flame retardancy. It is preferably 65% by weight or more, particularly preferably 85% by weight or more. Moreover, when using for uses, such as an electrically conductive paste and an electrically conductive film, electroconductive fillers, such as silver powder and copper powder, can be used. Moreover, fluororesin powder, hollow glass beads, etc. can be used as a low dielectric constant filler.

前記難燃付与剤としては種々のものが全て使用できるが、例えば、ハロゲン化合物、燐原子含有化合物や窒素原子含有化合物や無機系難燃化合物などが挙げられる。それらの具体例を挙げるならばテトラブロモビスフェノールA型エポキシ樹脂などのハロゲン化合物、赤燐、燐酸エステル化合物などの燐原子含有化合物、メラミンなどの窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、硼酸カルシウムなどの無機系難燃化合物が例示できる。   Various flame retardants can be used as the flame retardant, and examples thereof include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds. Specific examples thereof include halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, boric acid Examples thereof include inorganic flame retardant compounds such as zinc and calcium borate.

本発明のエポキシ樹脂組成物の使用用途としては、特に制限されるものではなく、例えば、プリント基板用、電子部品の封止材用、レジストインキ、導電ペースト、樹脂注型材料、接着剤、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、得られる硬化物の誘電特性に優れる点から、プリント基板用樹脂組成物、電子部品の封止材用樹脂組成物、レジストインキ、導電ペーストに好適に用いることができ、耐湿性に優れる点から塗料、接着剤に好適に用いることができ、更に高機能性である点から複合材料に好適に用いることができる。   The use of the epoxy resin composition of the present invention is not particularly limited, and for example, for printed circuit boards, electronic component sealing materials, resist inks, conductive pastes, resin casting materials, adhesives, and insulation. Examples include coating materials such as paints. Among these, from the point that the cured product obtained has excellent dielectric properties, it is suitable for resin compositions for printed circuit boards, resin compositions for encapsulants for electronic components, resist inks, and conductive pastes. It can be used suitably, can be used suitably for a paint and an adhesive from the point which is excellent in moisture resistance, and can be used suitably for a composite material from the point which is further highly functional.

前記プリント基板用としては、特にプリプレグ用、銅張り積層板用、ビルドアッププリント基板の層間絶縁材料用に好適に用いることができる。   As the printed circuit board, it can be suitably used particularly for prepregs, copper-clad laminates, and interlayer insulation materials for build-up printed circuit boards.

本発明のエポキシ樹脂組成物をプリント基板用プリプレグ用樹脂組成物とするには、該樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ等のアルコール性溶媒、トルエン、キシレン等の芳香族炭化水素性溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド等の非アルコール性極性溶媒等沸点160℃以下の溶剤が挙げられ、適宜に2種または、それ以上の混合溶剤として使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の重量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60重量%となるように調整することが好ましい。   In order to make the epoxy resin composition of the present invention into a resin composition for a prepreg for a printed circuit board, it can be used without a solvent depending on the viscosity of the resin composition, but for prepreg by varnishing with an organic solvent. A resin composition is preferred. Examples of the organic solvent include alcoholic solvents such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, and ethyl cellosolve, aromatic hydrocarbon solvents such as toluene and xylene, non-alcohols such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and dimethylformamide. Examples thereof include solvents having a boiling point of 160 ° C. or lower, such as a polar solvent, and can be appropriately used as a mixed solvent of two or more. The obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 By heating at ˜170 ° C., a prepreg that is a cured product can be obtained. The weight ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is adjusted to 20 to 60% by weight.

本発明のエポキシ樹脂組成物から銅張り積層板用樹脂組成物を得るには、上記プリプレグ用樹脂組成物とする方法と同じであり、得られたプリプレグを、例えば特開平7−41543号公報に記載されているように積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   In order to obtain a resin composition for a copper-clad laminate from the epoxy resin composition of the present invention, it is the same as the method for preparing the resin composition for prepreg, and the obtained prepreg is disclosed in, for example, JP-A-7-41543. A copper-clad laminate can be obtained by laminating as described, stacking copper foils as appropriate, and thermocompression bonding at 170-250 ° C. for 10 minutes to 3 hours under a pressure of 1-10 MPa.

本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては特に限定されないが、例えば特公平4−6116号公報、特開平7−304931号公報、特開平8−64960号公報、特開平9−71762号公報、特開平9−298369号公報などに記載の各種方法を採用できる。より具体的には、ゴム、フィラーなどを適宜配合した当該樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   Although it does not specifically limit as a method of obtaining the interlayer insulation material for buildup boards from the epoxy resin composition of the present invention, for example, Japanese Patent Publication No. 4-6116, Unexamined-Japanese-Patent No. 7-304931, Unexamined-Japanese-Patent No. 8-64960, Various methods described in JP-A-9-71762, JP-A-9-298369 and the like can be employed. More specifically, the resin composition appropriately blended with rubber, filler, and the like is applied to a wiring board on which a circuit is formed using a spray coating method, a curtain coating method, or the like, and then cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up substrate can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

前記電子部品の封止材用としては、半導体チップの封止材用、アンダーフィル用、半導体の層間絶縁膜用に好適に用いることができる。   As the electronic component sealing material, it can be suitably used for a semiconductor chip sealing material, underfill, and semiconductor interlayer insulating film.

本発明のエポキシ樹脂組成物を半導体封止材料用に調整するためには、エポキシ樹脂(A)、硬化剤(B)、必要に応じて配合されるその他のエポキシ樹脂(C)、カップリング剤、離型剤などの添加剤や無機充填材などを予備混合した後、押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合する手法が挙げられる。溶融混合型(無溶媒)組成物の場合は、該組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより硬化物を得ることができ、半導体パッケージ成形はこれに該当する。   In order to adjust the epoxy resin composition of the present invention for a semiconductor sealing material, an epoxy resin (A), a curing agent (B), other epoxy resins (C) blended as necessary, a coupling agent A method of premixing additives such as mold release agents and inorganic fillers, and then sufficiently mixing until uniform using an extruder, kneader, roll, or the like. In the case of a melt mixed type (solvent-free) composition, the composition is cast or molded using a transfer molding machine, an injection molding machine, etc., and further heated at 50 to 200 ° C. for 2 to 10 hours. Thus, a cured product can be obtained, and semiconductor package molding corresponds to this.

またテープ状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を加熱して半硬化シートを作製し、封止剤テープとした後、この封止剤テープを半導体チップ上に置き、100〜150℃に加熱して軟化させ成形し、170〜250℃で完全に硬化させる方法を挙げることができる。   Moreover, when using as a tape-shaped sealing agent, after heating the resin composition obtained by the above-mentioned method and producing a semi-hardened sheet and using it as a sealing agent tape, this sealing agent tape is used as a semiconductor chip. Examples of the method include placing it on top, heating to 100 to 150 ° C, softening and molding, and completely curing at 170 to 250 ° C.

更にポッティング型液状封止剤として使用する場合には、前述の手法によって得られた樹脂組成物を半導体チップや電子部品上に塗布し、直接、硬化させればよい。   Furthermore, when using as a potting type liquid sealing agent, the resin composition obtained by the above-mentioned method may be applied on a semiconductor chip or an electronic component and directly cured.

本発明のエポキシ樹脂組成物をアンダーフィル樹脂として使用する方法についても特に限定されないが、特開平9−266221号公報や「エレクトロニクス分野のプラスチック」(工業調査会発行、1999年、27〜34頁)に記載されるような方法を採用できる。より具体的には、フリップチップ実装時に電極のついた半導体素子と半田のついたプリント配線基板との空隙に、本発明のエポキシ樹脂組成物を毛細管現象を利用してキャピラリーフロー法によって注入し硬化させる方法、予め基板ないし半導体素子上に本発明のエポキシ樹脂組成物を半硬化させてから、加熱して半導体素子と基板を密着させ、完全硬化させるコンプレッションフロー法等が挙げられる。この場合、本発明のエポキシ樹脂組成物は、有機溶剤を含有しない液状のエポキシ樹脂組成物の形態で使用するのが好ましい。特にキャピラリーフロー法を用いる場合には低粘度である必要があり、5000mPa・s以下の粘度であることが好ましい。当該樹脂組成物がこれを超える粘度であれば、室温〜100℃以下に加温して注入することもできる。   The method of using the epoxy resin composition of the present invention as an underfill resin is not particularly limited. However, Japanese Patent Application Laid-Open No. 9-266221 and “Plastics in the Electronics Field” (published by Industrial Research Council, 1999, pages 27 to 34). Can be used. More specifically, the epoxy resin composition of the present invention is injected into the gap between the semiconductor element with electrodes and the printed wiring board with solder during flip-chip mounting by a capillary flow method using a capillary phenomenon and cured. And a compression flow method in which the epoxy resin composition of the present invention is semi-cured on a substrate or a semiconductor element in advance, and then the semiconductor element and the substrate are brought into close contact with each other to be completely cured. In this case, the epoxy resin composition of the present invention is preferably used in the form of a liquid epoxy resin composition containing no organic solvent. In particular, when the capillary flow method is used, the viscosity needs to be low, and the viscosity is preferably 5000 mPa · s or less. If the said resin composition is a viscosity exceeding this, it can also inject | pour after heating to room temperature-100 degrees C or less.

本発明のエポキシ樹脂組成物を半導体の層間絶縁材料として使用する場合は、例えば特開平6−85091号公報の記載の方法が採用できる。層間絶縁膜に用いる場合は半導体に直接接することになるため、高温環境下において線膨張率の差によるクラックが生じないよう、絶縁材の線膨張率を半導体の線膨張率に近づけることが要求される。また、半導体の微細化、多層化、高密度化による信号遅延の問題に対応するため、絶縁材の低容量化技術が求められており、絶縁材を低誘電化することによってこの問題を解決することができる。当該樹脂組成物は、これらの要求を満たす特性を有するため好ましい。   When the epoxy resin composition of the present invention is used as a semiconductor interlayer insulating material, for example, the method described in JP-A-6-85091 can be employed. When used as an interlayer insulating film, it will be in direct contact with the semiconductor, so it is required that the linear expansion coefficient of the insulating material be close to the linear expansion coefficient of the semiconductor so that cracks due to the difference in linear expansion coefficient do not occur in a high temperature environment. The In addition, in order to deal with the problem of signal delay due to miniaturization, multilayering, and high density of semiconductors, there is a demand for technology for reducing the capacity of insulating materials, and this problem can be solved by reducing the dielectric of insulating materials. be able to. The resin composition is preferable because it has characteristics satisfying these requirements.

本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば特開平5−186567号公報に記載の方法に準じて、レジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When the epoxy resin composition of the present invention is used as a resist ink, for example, according to the method described in JP-A No. 5-186567, a resist ink composition is prepared and then printed on a printed circuit board by a screen printing method. The method of making it a resist ink hardened | cured material after apply | coating to is mentioned.

本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、特開平3−46707号公報に記載の微細導電性粒子を該樹脂組成物中に分散させ異方性導電膜用組成物とする方法、特開昭62−40183号公報、特開昭62−76215号公報、特開昭62−176139号公報などに開示されているような室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When using the epoxy resin composition of the present invention as a conductive paste, for example, fine conductive particles described in JP-A-3-46707 are dispersed in the resin composition, and the composition for anisotropic conductive film is used. And a paste resin composition for circuit connection which is liquid at room temperature as disclosed in JP-A-62-240183, JP-A-62-276215, JP-A-62-176139, etc. And an anisotropic conductive adhesive.

本発明のエポキシ樹脂組成物を塗料用樹脂組成物として使用する場合には、例えば、エポキシ樹脂(A)、必要に応じて併用されるその他のエポキシ樹脂(C)に顔料、着色剤、添加剤等を配合し、必要に応じて有機溶剤を加え、混合ミキサー、ボールミル等の装置を用いて十分に混練、均一に分散させた顔料ペーストを予め用意し、これに硬化剤(B)、硬化促進剤等を更に配合して均一にし、所望の粘度に有機溶剤等で調製する方法を挙げることができる。また、粉体塗料を得る方法としては、固形のエポキシ樹脂(A)、固形の硬化剤(B)、更に必要に応じて、その他のエポキシ樹脂(C)、硬化促進剤、添加剤、顔料等を粗粉砕、配合した後、ヘンシェルミキサー等の粉砕機を用いて充分に粉砕、混合し、これを加熱されたニーダーを用いて溶融混練し、冷却後粉砕、分級して得ることができる。   When the epoxy resin composition of the present invention is used as a resin composition for coatings, for example, the epoxy resin (A) and other epoxy resins (C) used in combination as necessary may include pigments, colorants, and additives. Etc., add an organic solvent if necessary, and prepare in advance a pigment paste that is sufficiently kneaded and uniformly dispersed using an apparatus such as a mixing mixer or a ball mill. The curing agent (B) and curing acceleration are prepared in advance. A method of further blending an agent or the like to make it uniform and preparing it with an organic solvent or the like to have a desired viscosity can be mentioned. Moreover, as a method of obtaining a powder coating material, solid epoxy resin (A), solid curing agent (B), and, if necessary, other epoxy resin (C), curing accelerator, additive, pigment, etc. After coarsely pulverizing and blending, the mixture can be sufficiently pulverized and mixed using a pulverizer such as a Henschel mixer, melted and kneaded using a heated kneader, pulverized and classified after cooling.

前記手法によって得られた塗料用に調製された樹脂組成物は、各種の塗装方法によって様々な基材に塗布することができ、特にその手法は制限されるものではなく、例えば液状の塗料用樹脂組成物では、グラビアコーター、ナイフコーター、ロールコーター、コンマコーター、スピンコーター、バーコーター、刷毛塗り、ディッピング塗布、スプレー塗布等のコーティング方法が挙げられ、粉体塗料では、静電塗装等が挙げられる。   The resin composition prepared for the paint obtained by the above technique can be applied to various substrates by various coating methods, and the technique is not particularly limited. For example, a liquid paint resin Examples of the composition include a gravure coater, knife coater, roll coater, comma coater, spin coater, bar coater, brush coating, dipping coating, spray coating and the like, and powder coating includes electrostatic coating and the like. .

また、前記塗料用に調製された樹脂組成物を塗装した後の硬化方法についても特に制限されるものではなく、常温硬化、加熱硬化の何れでも硬化塗膜を得ることができる。   Further, the curing method after coating the resin composition prepared for the paint is not particularly limited, and a cured coating film can be obtained by any of room temperature curing and heat curing.

本発明のエポキシ樹脂組成物を接着剤用樹脂組成物として使用する場合には、例えば、エポキシ樹脂(A)、硬化剤(B)、必要に応じて併用されるその他のエポキシ樹脂(C)、硬化促進剤、添加剤等を室温または加熱下で混合ミキサー等を用いて均一に混合することによって得ることができ、各種の基材に塗布した後、室温又は加熱下に放置することによって基材の接着を行うことができる。   When using the epoxy resin composition of the present invention as a resin composition for an adhesive, for example, an epoxy resin (A), a curing agent (B), other epoxy resins (C) used in combination as necessary, Curing accelerators, additives, etc. can be obtained by uniformly mixing with a mixing mixer or the like at room temperature or under heating, and after being applied to various base materials, the base material is allowed to stand at room temperature or under heating. Can be bonded.

本発明のエポキシ樹脂組成物から複合材料を得るには、本発明のエポキシ樹脂組成物を粘度によっては無溶媒系で使用することが可能であるが、無溶媒系での扱いが困難な場合は、有機溶剤を用いてワニス化し、該当ワニスを補強基材に含浸し、加熱してプリプレグを得た後、それを繊維の方向を少しずつ変えて、擬似的に等方性を持たせるように積層し、その後加熱することにより硬化成形する方法が挙げられる。前記有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、エチルセロソルブ等のアルコール性溶媒、トルエン、キシレン等の芳香族炭化水素性溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド等の非アルコール性極性溶媒等沸点160℃以下の溶剤が挙げられ、適宜に2種または、それ以上の混合溶剤として使用することができる。加熱温度としては、用いる溶剤の種類を考慮して決定され、好ましくは50〜150℃とされる。補強基材の種類は特に限定されず、例えば炭素繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。樹脂分と補強基材の割合も特に限定されないが、通常、プリプレグ中の樹脂分が20〜60重量%となるように調整するのが好ましい。   In order to obtain a composite material from the epoxy resin composition of the present invention, the epoxy resin composition of the present invention can be used in a solvent-free system depending on the viscosity, but it is difficult to handle in a solvent-free system. After varnishing with an organic solvent, impregnating the varnish into a reinforcing base material and heating to obtain a prepreg, the direction of the fiber is changed little by little to make it pseudo-isotropic The method of carrying out hardening shaping | molding by laminating | stacking and heating after that is mentioned. Examples of the organic solvent include alcoholic solvents such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, and ethyl cellosolve, aromatic hydrocarbon solvents such as toluene and xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, and the like. Non-alcoholic polar solvents and the like have a boiling point of 160 ° C. or lower, and can be used as a mixed solvent of two or more as appropriate. The heating temperature is determined in consideration of the type of solvent used, and is preferably 50 to 150 ° C. The type of the reinforcing substrate is not particularly limited, and examples thereof include carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth. The ratio of the resin component and the reinforcing substrate is not particularly limited, but it is usually preferable that the resin component in the prepreg is adjusted to 20 to 60% by weight.

上記のような用途の中でも、特に電気特性に優れる点から、フィルム形状又は銅箔に塗布加工された後、半導体パッケージ用サブストレート基板として用いることが特に好ましい。この時得られる基板は、単位面積当たり超極大化された数の入出力端子を配設し得ることが可能であり、200ピン以上の半導体パッケージとすることが可能であることはもとより、2000ピン以上の半導体パッケージとすることもできる。   Among the above-mentioned uses, it is particularly preferable to use it as a substrate substrate for a semiconductor package after being applied to a film shape or a copper foil because it is particularly excellent in electrical characteristics. The substrate obtained at this time can be provided with a super-maximized number of input / output terminals per unit area, and can be a semiconductor package of 200 pins or more, 2000 pins The above semiconductor package can also be obtained.

本発明の硬化物は、前述の本発明のエポキシ樹脂組成物を成形硬化させて得られるものであり、積層物、注型物、接着剤、塗膜、フィルム等として使用できる。その硬化方法としては特に制限されるものではなく、例えば、エポキシ樹脂(A)と硬化剤(B)、必要に応じて配合されるその他のエポキシ樹脂(C)、各種配合剤等を均一に混合した後、室温または80〜200℃で加熱硬化する方法を挙げることができる。また、前述の各種用途に応じて調製されたエポキシ樹脂組成物は、適応する用途に応じた硬化方法を適宜採用することが好ましい。   The cured product of the present invention is obtained by molding and curing the above-described epoxy resin composition of the present invention, and can be used as a laminate, a cast product, an adhesive, a coating film, a film and the like. The curing method is not particularly limited. For example, the epoxy resin (A) and the curing agent (B), other epoxy resins (C) blended as necessary, various blending agents, etc. are uniformly mixed. Then, a method of heat curing at room temperature or 80 to 200 ° C. can be mentioned. Moreover, it is preferable to employ | adopt suitably the hardening method according to the use to which the epoxy resin composition prepared according to the above-mentioned various uses.

次に本発明を合成例、実施例および比較例により具体的に説明する。尚、例中において「部」「%」は特に断りのない限り重量基準である。   Next, the present invention will be specifically described with reference to synthesis examples, examples and comparative examples. In the examples, “parts” and “%” are based on weight unless otherwise specified.

また、合成に使用する脂肪族環状骨格を有する化合物のうち、トリシクロペンタジエンは丸善石油化学株式会社製トリシクロペンタジエン(下記構造式(3)の構造を有するものを85%、下記構造式(4)の構造を有するものを15%含有する)を用い、ジシクロペンタジエンは市販の試薬(和光純薬工業株式会社製、特級)を用いた。   Among the compounds having an aliphatic cyclic skeleton used for synthesis, tricyclopentadiene is tricyclopentadiene manufactured by Maruzen Petrochemical Co., Ltd. (85% having the structure of the following structural formula (3), and the following structural formula (4 ), And a commercially available reagent (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used as dicyclopentadiene.

Figure 0004716082
Figure 0004716082

なお本発明のエポキシ樹脂組成物の硬化物物性評価方法を(1)〜(4)に示す。
(1)ガラス転移温度(Tg)の測定
ティー・エイ・インスツルメント株式会社製粘弾性スペクトロメータ「RSA II」を用いて、周波数1Hz、昇温速度3℃/分で測定したtanδのピーク値の温度をガラス転移温度とした。
(2)吸湿率
東京理化株式会社製恒温恒湿装置「KCL−2000A」を用いて、85℃/85%RHの条件下、硬化物試験片を300時間処理した前後の重量変化率(wt%)を吸湿率として測定した。(試験片のサイズ75×25×2mm)
(3)線膨張係数
セイコー電子工業株式会社製熱機械分析装置「TMA/SS6100」を用いて、昇温速度3℃/分により測定し、40〜60℃まで変化させた際の線膨張係数(α1:ガラス状領域での線膨張係数)を測定した。
(4)誘電特性の測定
JIS−C−6481に準拠した方法により、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後、23℃、湿度50%の室内に24時間保管した後の硬化物の100MHz、1GHzの周波数における誘電率と誘電正接を測定した。(試験片のサイズ75×25×2mm)
In addition, the hardened | cured material physical-property evaluation method of the epoxy resin composition of this invention is shown to (1)-(4).
(1) Measurement of glass transition temperature (Tg) The peak value of tan δ measured at a frequency of 1 Hz and a heating rate of 3 ° C./min using a viscoelastic spectrometer “RSA II” manufactured by TA Instruments Inc. Was defined as the glass transition temperature.
(2) Moisture absorption rate Using a constant temperature and humidity device “KCL-2000A” manufactured by Tokyo Rika Co., Ltd., weight change rate (wt%) before and after the cured specimen was treated for 300 hours under the condition of 85 ° C./85% RH. ) Was measured as the moisture absorption rate. (Specimen size 75 x 25 x 2 mm)
(3) Coefficient of linear expansion The coefficient of linear expansion when measured at a temperature elevation rate of 3 ° C./min using a thermomechanical analyzer “TMA / SS6100” manufactured by Seiko Denshi Kogyo Co., Ltd. and changed from 40 to 60 ° C. ( α1: Linear expansion coefficient in a glassy region) was measured.
(4) Measurement of dielectric properties Using an impedance material analyzer “HP4291B” manufactured by Agilent Technologies, using a method in accordance with JIS-C-6481, stored in an indoor room at 23 ° C. and 50% humidity for 24 hours. Then, the dielectric constant and dielectric loss tangent of the cured product at frequencies of 100 MHz and 1 GHz were measured. (Specimen size 75 x 25 x 2 mm)

合成例1 ジシクロペンタジエン−フェノール樹脂(I)の合成
攪拌機、温度計、コンデンサーが装着された2リットルの4つ口フラスコにフェノール338g(3.6モル)を、BF・フェノール錯体17gを添加し充分混合した。その後ジシクロペンタジエン158g(1.2モル)を、系内温度を110〜120℃に保ちながら4時間要して添加した。その後、系内温度を120℃に保ち、3時間加熱攪拌し、得られた反応生成物溶液にマグネシウム化合物「KW−1000」(商品名;協和化学工業株式会社製)52gを添加し、1時間攪拌して触媒を失活させた後、反応溶液を濾過した。得られた透明溶液から、未反応フェノールを蒸留回収しながら230℃に昇温し、減圧下で4時間ホールドし、固形樹脂343gを得た。このジシクロペンタジエン−フェノール樹脂(I)の水酸基当量は187g/eq、軟化点は125℃であった。
Synthesis Example 1 Synthesis of dicyclopentadiene-phenol resin (I) 338 g (3.6 mol) of phenol and 17 g of BF 3 · phenol complex were added to a 2 liter four-necked flask equipped with a stirrer, thermometer and condenser. And mixed well. Thereafter, 158 g (1.2 mol) of dicyclopentadiene was added over 4 hours while maintaining the system temperature at 110 to 120 ° C. Thereafter, the system temperature was kept at 120 ° C. and heated and stirred for 3 hours, and 52 g of magnesium compound “KW-1000” (trade name; manufactured by Kyowa Chemical Industry Co., Ltd.) was added to the resulting reaction product solution for 1 hour. After the catalyst was deactivated by stirring, the reaction solution was filtered. From the resulting transparent solution, the temperature was raised to 230 ° C. while distilling and recovering unreacted phenol, and held under reduced pressure for 4 hours to obtain 343 g of a solid resin. The hydroxyl equivalent of this dicyclopentadiene-phenol resin (I) was 187 g / eq, and the softening point was 125 ° C.

合成例2 ジシクロペンタジエン−フェノール樹脂(II)の合成
合成例1において、フェノールを338g(3.6モル)から508g(5.4モル)に変更した以外は、合成例1と同様にして固形樹脂325gを得た。このジシクロペンタジエン−フェノール樹脂(II)の水酸基当量は178g/eq、軟化点は112℃であった。
Synthesis Example 2 Synthesis of Dicyclopentadiene-Phenol Resin (II) In Synthesis Example 1, a solid was prepared in the same manner as in Synthesis Example 1 except that phenol was changed from 338 g (3.6 mol) to 508 g (5.4 mol). 325 g of resin was obtained. The hydroxyl equivalent of this dicyclopentadiene-phenol resin (II) was 178 g / eq, and the softening point was 112 ° C.

合成例3 トリシクロペンタジエン−フェノール樹脂の合成
合成例1において、フェノールを338g(3.6モル)から508g(5.4モル)に変更し、更にジシクロペンタジエン158g(1.2モル)をトリシクロペンタジエン238g(1.2モル)に変更した以外は合成例1と同様にして、固形樹脂404gを得た。このトリシクロペンタジエン−フェノール樹脂の水酸基当量は222g/eq、軟化点は129℃であった。
Synthesis Example 3 Synthesis of Tricyclopentadiene-Phenol Resin In Synthesis Example 1, phenol was changed from 338 g (3.6 mol) to 508 g (5.4 mol), and dicyclopentadiene 158 g (1.2 mol) was added to tri 404 g of a solid resin was obtained in the same manner as in Synthesis Example 1 except that the amount was changed to 238 g (1.2 mol) of cyclopentadiene. This tricyclopentadiene-phenol resin had a hydroxyl group equivalent of 222 g / eq and a softening point of 129 ° C.

合成例4 ジシクロペンタジエン−フェノール変性型エポキシ樹脂(A−I)の合成
攪拌機、温度計、ディーンスタークトラップ、コンデンサーが装着された2リットルの4つ口フラスコに、合成例1で得られたジシクロペンタジエン−フェノール樹脂(I)300g、β−メチルエピクロルヒドリン852g(8モル)及びジメチルスルホキシド(DMSO)250gを加え溶解した。それを55℃に加熱し、減圧下で49%水酸化ナトリウム(NaOH)水溶液164gを8時間要して滴下した。その際共沸して留出した液体をディーンスタークトラップで水とβ−メチルエピクロルヒドリンに分離し、β−メチルエピクロルヒドリンのみを反応系内に戻しながら反応を行った。滴下後さらに1時間その温度で攪拌した後、120℃まで加熱し、未反応のβ−メチルエピクロルヒドリンを蒸留回収した。次いで得られた粗樹脂溶液にメチルイソブチルケトン(MIBK)600g、水200gを加えて、無機塩及びDMSOを水洗にて除去した。さらに同量の水を用い、5回洗浄し、DMSOを除去した。この溶液に5%NaOH水溶液100gを添加し、85℃で3時間攪拌した。その後静置分液して、下層を除去し、さらに水洗を2回繰り返した。次いで共沸脱水、濾過を経て、MIBKを150℃で脱溶剤して目的のエポキシ樹脂(A−I)400gを得た。このエポキシ樹脂のエポキシ当量は316g/eq、軟化点101℃であった。
Synthesis Example 4 Synthesis of Dicyclopentadiene-Phenol Modified Epoxy Resin (A-I) The dicyclopentadiene-phenol-modified epoxy resin (AI) was obtained in Synthesis Example 1 in a 2 liter four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap, and condenser. 300 g of cyclopentadiene-phenol resin (I), 852 g (8 mol) of β-methylepichlorohydrin and 250 g of dimethyl sulfoxide (DMSO) were added and dissolved. It was heated to 55 ° C. and 164 g of 49% aqueous sodium hydroxide (NaOH) was added dropwise under reduced pressure over 8 hours. At that time, the liquid azeotropically distilled was separated into water and β-methylepichlorohydrin by a Dean Stark trap, and the reaction was carried out while returning only β-methylepichlorohydrin to the reaction system. After dropping, the mixture was further stirred for 1 hour at that temperature, and then heated to 120 ° C., and unreacted β-methylepichlorohydrin was recovered by distillation. Next, 600 g of methyl isobutyl ketone (MIBK) and 200 g of water were added to the obtained crude resin solution, and inorganic salts and DMSO were removed by washing with water. Further, using the same amount of water, washing was performed 5 times to remove DMSO. To this solution, 100 g of 5% NaOH aqueous solution was added and stirred at 85 ° C. for 3 hours. Thereafter, the mixture was allowed to stand for liquid separation, the lower layer was removed, and washing with water was repeated twice. Next, after passing through azeotropic dehydration and filtration, MIBK was removed at 150 ° C. to obtain 400 g of the desired epoxy resin (AI). The epoxy equivalent of this epoxy resin was 316 g / eq, and the softening point was 101 ° C.

合成例5 ジシクロペンタジエン−フェノール変性型エポキシ樹脂(A−II)の合成
合成例2で得られたジシクロペンタジエン−フェノール樹脂(II)300gを使用して、合成例4と同様にして目的のエポキシ樹脂(A−II)438gを得た。このエポキシ樹脂のエポキシ当量は295g/eq、軟化点は89℃であった。
Synthesis Example 5 Synthesis of Dicyclopentadiene-Phenol Modified Epoxy Resin (A-II) Using 300 g of dicyclopentadiene-phenol resin (II) obtained in Synthesis Example 2, the same procedure as in Synthesis Example 4 was performed. 438 g of epoxy resin (A-II) was obtained. The epoxy equivalent of this epoxy resin was 295 g / eq, and the softening point was 89 ° C.

合成例6 トリシクロペンタジエン−フェノール変性型エポキシ樹脂(A−III)の合成
合成例3で得られたトリシクロペンタジエン−フェノール樹脂300gを使用して、合成例4と同様にして目的のエポキシ樹脂(A−III)382gを得た。このエポキシ樹脂のエポキシ当量は352g/eq、軟化点は103℃であった。
Synthesis Example 6 Synthesis of Tricyclopentadiene-Phenol Modified Epoxy Resin (A-III) Using 300 g of tricyclopentadiene-phenol resin obtained in Synthesis Example 3, the target epoxy resin ( A-III) 382 g was obtained. The epoxy equivalent of this epoxy resin was 352 g / eq, and the softening point was 103 ° C.

合成例7 比較用エポキシ樹脂(A’−I)の合成
合成例1で得られたジシクロペンタジエン−フェノール樹脂(I)300gを使用して、β-メチルエピクロルヒドリン852g(8モル)をエピクロルヒドリン740g(8モル)に変更する以外は、合成例4と同様にして比較用エポキシ樹脂(A’−I)378gを得た(β−メチル基を有しないエポキシ基を有するジシクロペンタジエン−フェノール変性型エポキシ樹脂)。このエポキシ樹脂のエポキシ当量は280g/eq、軟化点91℃であった。
Synthesis Example 7 Synthesis of Comparative Epoxy Resin (A′-I) Using 300 g of the dicyclopentadiene-phenol resin (I) obtained in Synthesis Example 1, 852 g (8 mol) of β-methylepichlorohydrin was converted to 740 g of epichlorohydrin (8 mol). Except for changing to 8 mol), 378 g of a comparative epoxy resin (A′-I) was obtained in the same manner as in Synthesis Example 4 (dicyclopentadiene-phenol-modified epoxy having an epoxy group not having a β-methyl group) resin). The epoxy equivalent of this epoxy resin was 280 g / eq, and the softening point was 91 ° C.

合成例8 比較用エポキシ樹脂(A’−II)の合成
合成例3で得られたトリシクロペンタジエン−フェノール樹脂300gを使用して、β-メチルエピクロルヒドリン852g(8モル)をエピクロルヒドリン740g(8モル)に変更する以外は、合成例4と同様にして比較用エポキシ樹脂(A’−II)382gを得た(β−メチル基を有しないエポキシ基を有するトリシクロペンタジエン−フェノール変性型エポキシ樹脂)。このエポキシ樹脂のエポキシ当量は330g/eq、軟化点は99℃であった。
Synthesis Example 8 Synthesis of Comparative Epoxy Resin (A′-II) Using 300 g of the tricyclopentadiene-phenol resin obtained in Synthesis Example 3, 852 g (8 mol) of β-methylepichlorohydrin was converted to 740 g (8 mol) of epichlorohydrin. Except for changing to, 382 g of a comparative epoxy resin (A′-II) was obtained in the same manner as in Synthesis Example 4 (tricyclopentadiene-phenol-modified epoxy resin having an epoxy group not having a β-methyl group). The epoxy equivalent of this epoxy resin was 330 g / eq, and the softening point was 99 ° C.

合成例9 比較用エポキシ樹脂(A’−III)の合成
攪拌機、温度計、冷却器付きデカンターを付した4つ口フラスコにビスフェノールA228g(1モル)にβ−メチルエピクロルヒドリン1065g(10モル)を入れ溶解した。それに減圧下、80℃で48%NaOH水溶液147g(1.8モル)を3時間かけて攪拌しながら滴下した。その間、フラスコを加熱してβ−メチルエピクロルヒドリンと水を蒸留し、デカンターで冷却器で凝縮したβ−メチルエピクロルヒドリンと水とを分離し、β−メチルエピクロルヒドリンをフラスコ内に戻し続けた。さらに30分間攪拌を続けてその後、水180gを加え静置した。下層の食塩水を棄却し、β−メチルエピクロルヒドリンを150℃で蒸留回収した後、粗樹脂にMIBK400gを加え、さらに3%NaOH水溶液200gを加え80℃にて1時間攪拌した。そして下層の水層を棄却した。その後、さらにMIBK層を水200gで水洗し、水を棄却した後、脱水、濾過を経てMIBKを150℃で脱溶剤してエポキシ樹脂(A’−III)352gを得た。このエポキシ樹脂は常温で液状を有し、エポキシ当量は210g/eq、150℃での溶融粘度0.08dPa・sであった。
Synthesis Example 9 Synthesis of Comparative Epoxy Resin (A′-III) A 4-necked flask equipped with a stirrer, thermometer, and decanter with a condenser was charged with 228 g (1 mol) of bisphenol A and 1065 g (10 mol) of β-methylepichlorohydrin. Dissolved. Under reduced pressure, 147 g (1.8 mol) of 48% NaOH aqueous solution was added dropwise at 80 ° C. with stirring over 3 hours. Meanwhile, the flask was heated to distill β-methylepichlorohydrin and water, and the decanter condensed β-methylepichlorohydrin and water, and β-methylepichlorohydrin continued to be returned to the flask. Stirring was further continued for 30 minutes, and then 180 g of water was added and allowed to stand. The lower-layer saline was discarded, and β-methylepichlorohydrin was recovered by distillation at 150 ° C., then 400 g of MIBK was added to the crude resin, 200 g of 3% NaOH aqueous solution was further added, and the mixture was stirred at 80 ° C. for 1 hour. And the lower water layer was rejected. Thereafter, the MIBK layer was further washed with 200 g of water, the water was discarded, and MIBK was desolvated at 150 ° C. through dehydration and filtration to obtain 352 g of an epoxy resin (A′-III). This epoxy resin was liquid at room temperature, and the epoxy equivalent was 210 g / eq, and the melt viscosity at 150 ° C. was 0.08 dPa · s.

合成例10 比較用エポキシ樹脂(A’−IV)
合成例9において、ビスフェノールAの代わりに1,6−ジヒドロキシナフタレン160gを使用する以外は合成例9と同様にして、エポキシ樹脂(A’−IV)299gを得た。このエポキシ樹脂は常温で半固形を有し、エポキシ当量は176g/eq、150℃での溶融粘度0.12dPa・sであった。
Synthesis Example 10 Comparative epoxy resin (A'-IV)
In Synthesis Example 9, 299 g of an epoxy resin (A′-IV) was obtained in the same manner as in Synthesis Example 9 except that 160 g of 1,6-dihydroxynaphthalene was used instead of bisphenol A. This epoxy resin was semi-solid at room temperature, epoxy equivalent was 176 g / eq, and melt viscosity at 150 ° C. was 0.12 dPa · s.

実施例1〜6及び比較例1〜6
合成例1〜3で得られたフェノール樹脂、及びPHENOLITE TD−2131(フェノール樹脂、大日本インキ化学工業株式会社製、 水酸基当量104g/eq 軟化点80℃)を硬化剤として用い、合成例4〜10で得られたエポキシ樹脂、及びEPICLON N−665−EXP(クレゾールノボラック型エポキシ樹脂、大日本インキ化学工業株式会社製、エポキシ当量203g/eq、150℃での溶融粘度3.2dPa・s)を用い、硬化促進剤として2−エチル−4−メチルイミダゾールを用いて、表1〜2中の配合比に従って調製し、エポキシ樹脂組成物を得た。次いで150℃×20分間の条件でプレス成形し、その後175℃×5時間の条件で後硬化(アフターキュア)して、硬化物を得た。得られた硬化物を各評価に必要な試験片サイズに切り出し、ガラス転移温度(DMA)、吸湿率、線膨張係数(TMA)、誘電率、誘電正接を測定した。それらの結果を表1〜2中に記す。
Examples 1-6 and Comparative Examples 1-6
Using the phenol resin obtained in Synthesis Examples 1 to 3 and PHENOLITE TD-2131 (phenol resin, manufactured by Dainippon Ink & Chemicals, Ltd., hydroxyl group equivalent of 104 g / eq, softening point 80 ° C.) as a curing agent, Synthesis Examples 4 to 4 10 and the EPICLON N-665-EXP (cresol novolac type epoxy resin, manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent 203 g / eq, melt viscosity at 150 ° C. 3.2 dPa · s) It used and prepared according to the compounding ratio in Tables 1-2 using 2-ethyl-4-methylimidazole as a curing accelerator to obtain an epoxy resin composition. Subsequently, press molding was performed under conditions of 150 ° C. × 20 minutes, and then post-curing (after-curing) was performed under conditions of 175 ° C. × 5 hours to obtain a cured product. The obtained cured product was cut into a test piece size necessary for each evaluation, and a glass transition temperature (DMA), a moisture absorption rate, a linear expansion coefficient (TMA), a dielectric constant, and a dielectric loss tangent were measured. The results are shown in Tables 1-2.

Figure 0004716082
Figure 0004716082

Figure 0004716082
Figure 0004716082

Claims (14)

エポキシ当量が230〜400g/eq.のβ−メチル基置換型エポキシ基を有するエポキシ樹脂(A)と、硬化剤(B)として水酸基当量が150〜350g/eq.のフェノール系化合物(b)とを含有し、得られる硬化物の周波数1GHzでの誘電率が3.0以下であることを特徴とするエポキシ樹脂組成物。 Epoxy equivalent is 230-400 g / eq. Epoxy resin (A) having a β-methyl group-substituted epoxy group and a curing agent (B) having a hydroxyl group equivalent of 150 to 350 g / eq. And an epoxy resin composition characterized in that the dielectric constant of the obtained cured product at a frequency of 1 GHz is 3.0 or less. エポキシ樹脂(A)が脂肪族環状骨格(x)を含有する請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the epoxy resin (A) contains an aliphatic cyclic skeleton (x). 脂肪族環状骨格(x)がジシクロペンタジエン残基及び/又はトリシクロペンタジエン残基である請求項2記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 2, wherein the aliphatic cyclic skeleton (x) is a dicyclopentadiene residue and / or a tricyclopentadiene residue. 前記エポキシ樹脂(A)が、ジシクロペンタジエン及び/若しくはトリシクロペンタジエンとヒドロキシ基含有芳香族炭化水素を含有する化合物とを重付加反応させて得られた重付加反応物とβ−メチルエピハロヒドリンとを反応させることにより得られたβ−メチル基置換型エポキシ基を有するエポキシ樹脂(A)である請求項1記載のエポキシ樹脂組成物。 The epoxy resin (A) comprises a polyaddition reaction product obtained by polyaddition reaction of dicyclopentadiene and / or tricyclopentadiene with a compound containing a hydroxy group-containing aromatic hydrocarbon, and β-methylepihalohydrin. The epoxy resin composition according to claim 1, which is an epoxy resin (A) having a β-methyl group-substituted epoxy group obtained by reacting. 硬化剤(B)が脂肪族環状骨格(y)を含有する請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the curing agent (B) contains an aliphatic cyclic skeleton (y). 脂肪族環状骨格(y)がジシクロペンタジエン残基及び/又はトリシクロペンタジエン残基である請求項5記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 5, wherein the aliphatic cyclic skeleton (y) is a dicyclopentadiene residue and / or a tricyclopentadiene residue. 硬化物(B)が、フェノールノボラック樹脂(B1)、または、ジシクロペンタジエン及び/若しくはトリシクロペンタジエンとヒドロキシ基含有芳香族炭化水素を含有する化合物とを重付加反応させて得られた重付加反応物(B2)である請求項記載のエポキシ樹脂組成物。 A polyaddition reaction obtained by subjecting the cured product (B) to a phenol novolak resin (B1) or a polycyclopentadiene and / or a tricyclopentadiene and a compound containing a hydroxy group-containing aromatic hydrocarbon. things (B2) a is claim 1 epoxy resin composition. フィルム形状に加工された請求項1〜7の何れか1項記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, which has been processed into a film shape. 銅箔に塗布された請求項1〜7の何れか1項記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, which is applied to a copper foil. ビルドアップ層間絶縁材料用である請求項1〜7の何れか1項記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 7, which is used for a buildup interlayer insulating material. 請求項1〜10の何れか1項記載のエポキシ樹脂組成物を硬化させて得られることを特徴とする硬化物。 A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 10. 周波数1GHzでの誘電正接が0.01以下である請求項11記載の硬化物。 The cured product according to claim 11, wherein the dielectric loss tangent at a frequency of 1 GHz is 0.01 or less. 回路基板である請求項11記載の硬化物。 The cured product according to claim 11, which is a circuit board. 半導体パッケージ用サブストレート基板である請求項12記載の硬化物。 The cured product according to claim 12, which is a substrate substrate for a semiconductor package.
JP2004126686A 2004-04-22 2004-04-22 Epoxy resin composition and cured product thereof Expired - Lifetime JP4716082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126686A JP4716082B2 (en) 2004-04-22 2004-04-22 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126686A JP4716082B2 (en) 2004-04-22 2004-04-22 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2005307031A JP2005307031A (en) 2005-11-04
JP4716082B2 true JP4716082B2 (en) 2011-07-06

Family

ID=35436161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126686A Expired - Lifetime JP4716082B2 (en) 2004-04-22 2004-04-22 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4716082B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156493A (en) * 2006-12-25 2008-07-10 Sumitomo Bakelite Co Ltd Resin composition, prepreg and laminated board
JP5483696B2 (en) * 2010-01-07 2014-05-07 株式会社Adeka Curable resin composition
JP5532307B2 (en) * 2010-01-29 2014-06-25 Dic株式会社 Method for producing phosphorus atom-containing polyfunctional phenol, phosphorus atom-containing polyfunctional phenol, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor encapsulation A resin composition for a material and a resin composition for an interlayer insulating material for a build-up substrate.
JP5768454B2 (en) * 2011-04-14 2015-08-26 デクセリアルズ株式会社 Anisotropic conductive film
KR20140008871A (en) * 2012-07-12 2014-01-22 삼성전기주식회사 Epoxy resin composition for build-up insulating film, insulating film made therefrom, and multilayer printed circuit boards having the same
JP6007022B2 (en) * 2012-08-06 2016-10-12 デクセリアルズ株式会社 Circuit connection material
CN115677980A (en) * 2021-07-28 2023-02-03 华为技术有限公司 Epoxy resin, preparation method thereof and resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147725A (en) * 1984-08-16 1986-03-08 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
JPH08283379A (en) * 1995-04-17 1996-10-29 Dainippon Ink & Chem Inc Semiconductor sealing material
JPH09151303A (en) * 1995-09-25 1997-06-10 Nissan Chem Ind Ltd Epoxy resin composition
JPH10182789A (en) * 1996-12-24 1998-07-07 Dainippon Ink & Chem Inc Epoxy resin composition and semiconductor sealing material
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2003252958A (en) * 2002-02-28 2003-09-10 Dainippon Ink & Chem Inc Epoxy resin composition and its hardened product
WO2003087230A1 (en) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition and prepreg and laminated sheet using the same
JP2004026980A (en) * 2002-06-25 2004-01-29 Taiyo Ink Mfg Ltd Thermosetting resin composition and printed wiring board prepared by using the same
JP2004107385A (en) * 2002-09-13 2004-04-08 Nippon Steel Chem Co Ltd Indene-containing copolymer, method for producing the same and resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147725A (en) * 1984-08-16 1986-03-08 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
JPH08283379A (en) * 1995-04-17 1996-10-29 Dainippon Ink & Chem Inc Semiconductor sealing material
JPH09151303A (en) * 1995-09-25 1997-06-10 Nissan Chem Ind Ltd Epoxy resin composition
JPH10182789A (en) * 1996-12-24 1998-07-07 Dainippon Ink & Chem Inc Epoxy resin composition and semiconductor sealing material
JP2003082063A (en) * 2001-09-12 2003-03-19 Dainippon Ink & Chem Inc Epoxy resin composition for electronic material and electronic material having low permittivity
JP2003252958A (en) * 2002-02-28 2003-09-10 Dainippon Ink & Chem Inc Epoxy resin composition and its hardened product
WO2003087230A1 (en) * 2002-04-16 2003-10-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition and prepreg and laminated sheet using the same
JP2004026980A (en) * 2002-06-25 2004-01-29 Taiyo Ink Mfg Ltd Thermosetting resin composition and printed wiring board prepared by using the same
JP2004107385A (en) * 2002-09-13 2004-04-08 Nippon Steel Chem Co Ltd Indene-containing copolymer, method for producing the same and resin composition

Also Published As

Publication number Publication date
JP2005307031A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR102362604B1 (en) Epoxy resin composition for electronic material, cured product thereof and electronic member
KR101715207B1 (en) Epoxy resin composition, cured product, heat radiating material, and electronic member
JP5181769B2 (en) Epoxy resin composition and cured product thereof
JP5382761B2 (en) Epoxy resin, epoxy resin composition, prepreg and laminate using the same
WO2016052290A1 (en) Epoxy resin composition and cured product thereof
JP4716082B2 (en) Epoxy resin composition and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP4474891B2 (en) Epoxy resin composition, cured product thereof and epoxy resin
KR102168908B1 (en) Process for producing polyhydroxypolyether resin, polyhydroxypolyether resin, polyhydroxypolyether resin composition, and cured product thereof
JP4844796B2 (en) 1-pack type epoxy resin composition and cured product thereof
TW201902714A (en) Epoxy resin, production method, epoxy resin composition, and cured product thereof
KR20230052965A (en) Methods of using epoxy resin compositions, adhesive films, printed wiring boards, semiconductor chip packages, semiconductor devices, and adhesive films
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP2006257137A (en) Epoxy resin composition and cured product thereof
JP4474890B2 (en) Epoxy resin composition, cured product thereof and polyvalent hydroxy compound
JP2005307032A (en) One-component epoxy resin composition and its cured product
JP4665444B2 (en) Production method of epoxy resin
JP4567132B2 (en) Epoxy resin composition
JP4984385B2 (en) Epoxy resin composition and cured product thereof
JP2002187933A (en) Modified epoxy resin, epoxy resin composition and its cured material
JP4766295B2 (en) Epoxy resin composition and laminate using the same
JP4656374B2 (en) Epoxy resin composition and cured product thereof
JP4356005B2 (en) Curable resin composition and cured product using the same
JP4670269B2 (en) Epoxy resin composition and cured product thereof
JP4304592B2 (en) Curable resin composition and cured product thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4716082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250