JP4363048B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4363048B2
JP4363048B2 JP2003021928A JP2003021928A JP4363048B2 JP 4363048 B2 JP4363048 B2 JP 4363048B2 JP 2003021928 A JP2003021928 A JP 2003021928A JP 2003021928 A JP2003021928 A JP 2003021928A JP 4363048 B2 JP4363048 B2 JP 4363048B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
modified
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003021928A
Other languages
Japanese (ja)
Other versions
JP2004231790A (en
Inventor
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2003021928A priority Critical patent/JP4363048B2/en
Publication of JP2004231790A publication Critical patent/JP2004231790A/en
Application granted granted Critical
Publication of JP4363048B2 publication Critical patent/JP4363048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐熱性、耐湿性、誘電特性をバランス良く兼備でき、半導体封止材料やプリント配線基板などの電子部品材料用途に好適に用いることができるエポキシ樹脂組成物及びその硬化物に関する。
【0002】
【従来の技術】
従来、エポキシ樹脂と硬化剤とを含有する熱硬化性樹脂組成物は、半導体封止材料やプリント配線基板などの電子部品材料において、絶縁材料として広く使用されている。該用途向けのエポキシ樹脂としては、例えばビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等が挙げられ、特にエポキシ当量が250〜2,000g/eqであるオリゴマータイプのビスフェノール型エポキシ樹脂は接着性に優れ、耐熱性が良好なノボラック型エポキシ樹脂と混合して用いられている(例えば、非特許文献1参照。)。
【0003】
ところが、近年、電子材料分野では、デバイスの小型化・軽量化、高密度化、高速演算速度化などを目的として、高性能な絶縁材料が強く要求されており、例えば、高密度実装を実現できるビルドアップ方式の回路基板分野では、優れた耐熱性、耐湿性、誘電特性をもつ絶縁フィルムやワニス、或いは接着剤付き銅箔などの材料への要求が高まっており、前述の従来のエポキシ樹脂では上記のような特性を満足できるものはなく、該特性のバランスに優れるエポキシ樹脂が切望されている。
【0004】
【非特許文献1】
新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社、初版1刷、昭和62年12月25日、p.61−73
【0005】
【発明が解決しようとする課題】
上記のような実情に鑑み、本発明の課題は、優れた耐熱性、耐湿性、誘電特性をバランス良く兼備し、半導体封止材料やプリント配線基板などの電子部品材料用途に好適に用いることができるエポキシ樹脂組成物及びその硬化物を提供する事にある。
【0006】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意検討を重ねた結果、2官能型エポキシ樹脂(a1)を、下記一般式(1)
【化1】

Figure 0004363048
(式中、R 、R は各々独立に水素原子、アルキル基、フェニル基、ナフチル基、ビフェニル基又は環を形成しても良い有機基であり、それらは更に置換基を有していても良い。Rは各々独立に炭素数1〜4のアルキル基、シクロヘキシル基又はフェニル基であり、nは0〜3の整数である。)
で表される構造を有する、ジベンゾピラン骨格を含有する2価ヒドロキシ化合物(a2)で変性して得られる変性エポキシ樹脂(A)と硬化剤(B)を含むエポキシ樹脂組成物は、耐熱性、耐湿性、誘電特性をバランス良く兼備する硬化物を与えることを見いだし、本発明を完成した。
【0007】
即ち本発明は、2官能型エポキシ樹脂(a1)を、下記一般式(1)
【化1】
Figure 0004363048
(式中、R 、R は各々独立に水素原子、アルキル基、フェニル基、ナフチル基、ビフェニル基又は環を形成しても良い有機基であり、それらは更に置換基を有していても良い。Rは各々独立に炭素数1〜4のアルキル基、シクロヘキシル基又はフェニル基であり、nは0〜3の整数である。)
で表される構造を有する、ジベンゾピラン骨格を含有する2価ヒドロキシ化合物(a2)で変性して得られる変性エポキシ樹脂(A)と硬化剤(B)とを含むエポキシ樹脂組成物及びその硬化物を提供するものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に用いる変性エポキシ樹脂(A)は、1分子中に2個のエポキシ基を含有する2官能型エポキシ樹脂(a1)を前記2価ヒドロキシ化合物(a2)で変性して得られるものであり、その構造としては特に制限されるものではないが、例えば下記一般式(2)
【化2】
Figure 0004363048
(式中、R、Rは各々独立に水素原子、アルキル基、フェニル基、ナフチル基、ビフェニル基又は環を形成しても良い有機基であり、それらは更に置換基を有していても良い。Rは各々独立に炭素数1〜4のアルキル基、シクロヘキシル基又はフェニル基であり、nは0〜3の整数であり、Yは芳香環を含む2価の有機基であり、mは0〜10の整数である。)
で表される化学構造を主成分とするオリゴマー型エポキシ樹脂が挙げられる。
【0009】
前記変性エポキシ樹脂(A)の構造としては、原料として用いる2官能型エポキシ樹脂(a1)と2価ヒドロキシ化合物(a2)の種類、比率によって適宜選択されるものであり、所望とする特性によってそれらの条件を調整することが可能であるが、得られる硬化物の耐熱性、耐湿性、誘電特性のバランスに優れる点から、多官能型エポキシ樹脂(a1)中のエポキシ基と2価ヒドロキシ化合物(a2)中のヒドロキシ基の当量比(a1)/(a2)が0.95/0.05〜0.60/0.40の割合で付加反応させて得られるものが好ましく、またそのエポキシ当量としては、250〜2,000g/eqの範囲であることが好ましい。
【0010】
前記2官能型エポキシ樹脂(a1)としては、エポキシ樹脂組成物の成形時の流動性と硬化物の耐熱性等のバランスに優れる点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂等が挙げられ、更に変性に用いる2価ヒドロキシ化合物(a2)の含有量を高くする事が可能である点から、−CH CH(OH)CH −基を有さない構造のエポキシ化合物を70重量%以上含有する、モノマー性が高い2官能型エポキシ樹脂であることが特に好ましい。
【0012】
前記ジベンゾピラン骨格を含有する2価ヒドロキシ化合物(a2)としては、下記一般式(1)
【化3】
Figure 0004363048
(式中、R、Rは各々独立に水素原子、アルキル基、フェニル基、ナフチル基、ビフェニル基又は環を形成しても良い有機基であり、それらは更に置換基を有していても良い。Rは各々独立に炭素数1〜4のアルキル基、シクロヘキシル基又はフェニル基であり、nは0〜3の整数である。)
で表される構造を有する2価ヒドロキシ化合物であれば特に限定されるものではなく、例えば下記構造式(a2−1)〜(a2−33)で表される化合物が挙げられる。
【0013】
【化4】
Figure 0004363048
【0014】
【化5】
Figure 0004363048
【0015】
【化6】
Figure 0004363048
【0016】
これらの中でも耐熱性、耐湿性、誘電特性のバランスがより優れる点から、芳香環にメチル基を置換基として有しているものが好ましく、特にメチル基をそれそれの芳香環に3個有するものが好ましく、例えば前記構造式(a2−24)〜(a2−33)で表されるヘキサメチル基置換体群が最も好ましい。また、前記一般式(1)で表される構造を有する化合物の合成が容易である点からは、前記一般式(1)中のRが水素原子、Rが水素原子またはフェニル基であることが好ましく、例えば前記構造式(a2−24)、(a2−27)が挙げられる。
【0017】
前記2価ヒドロキシ化合物(a2)の製造方法としては特に制限されるものではないが、例えば、ジヒドロキシ芳香族化合物とカルボニル化合物とを脱水縮合し、さらにその縮合体中の6員環形成可能な位置にあるヒドロキシ基2個をさらに脱水させて、ジベンゾピラン骨格を形成することによって得ることができる。
【0018】
本発明で用いる変性エポキシ樹脂(A)の製造方法としては特に限定されるものではないが、例えば前記2官能型エポキシ樹脂(a1)と前記2価ヒドロキシ化合物(a2)とを以下に詳述する方法で付加反応させて得ることができる。
【0019】
この反応は、エポキシ樹脂と多価フェノール化合物とを付加反応させて、分子鎖伸長させたエポキシ樹脂を得る一般的反応と同一であり、多価フェノール化合物として、ジベンゾピラン骨格を含有する2価ヒドロキシ化合物(a2)を用いればよい。
【0020】
すなわち、該2官能型エポキシ樹脂(a1)のエポキシ基が該2価ヒドロキシ化合物(a2)のヒドロキシ基に対して過剰になるような範囲内で目標とする分子量(エポキシ当量)を設定し、その設定値で理論仕込み比率を算出し、その割合で両原料を反応器に仕込む。次いでエポキシ基とヒドロキシ基の付加反応に好適な触媒を適量添加して、適当な温度条件下で撹拌して付加反応を進める。目標とする設定分子量(エポキシ当量)に到達した時点を反応終点として反応生成物を取り出すことにより、本発明で用いる変性エポキシ樹脂(A)を得ることができる。
【0021】
この反応においては、必要に応じて有機溶媒を用いても良く、前記有機溶媒としては、原料或いは反応生成物が均一に溶解するものであれば特に限定されないが、例えば、トルエン、キシレン、メシチレン等の芳香族系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、イソプロピルアルコール、ノルマルブタノール等のアルコール系溶媒を挙げることができる。前記有機溶媒の使用量としては、原料と触媒の種類、反応温度、所望とする反応時間等によって適宜選択されるものであるが、多官能型エポキシ樹脂(a1)と2価ヒドロキシ化合物(a2)の合計100重量部に対して、5〜500重量部であることが好ましい。
【0022】
前記触媒としては、エポキシ基とヒドロキシ基とを反応させることができるものであれば特に限定されるものではないが、例えば、苛性ソーダ、苛性カリウム等のアルカリ金属水酸化物、トリエチルアミン、ベンジルジメチルアミン等のアミン系化合物、トリメチルアミン塩酸塩、トリエチルベンジルアミン塩酸塩等の4級アンモニウム塩、トリフェニルホスフィン等のホスホニウム化合物等を挙げることができる。その使用量としては、原料と触媒の種類、反応温度、所望とする反応時間等によって適宜選択されるものであるが、多官能型エポキシ樹脂(a1)と2価ヒドロキシ化合物(a2)の合計100重量部に対して0.001〜0.1重量部の範囲であることが好ましい。また反応温度としても、原料と触媒の種類、所望とする反応時間等によって異なるが50〜200℃の範囲であることが好ましい。反応時間としては、前記反応諸条件によって異なるが、設定分子量(エポキシ当量)に到達する時点までを要し、生成した変性エポキシ樹脂の品質安定性を考慮して1〜15時間の範囲であることが好ましい。
【0023】
また微量不純物を嫌う精密な用途に適用する場合には、添加した触媒を水洗や濾過等の操作によって除去してから使用することが好ましい。
【0024】
本発明のエポキシ樹脂組成物は、前記変性エポキシ樹脂(A)と後述する硬化剤(B)とを含むものであるが、本発明の特性を損なわない範囲において更に他のエポキシ樹脂を併用してもよい。併用し得るエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等を挙げることができる。
【0025】
これらの中でも、難燃性を付与する場合にはテトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂の併用が好ましく、耐熱性の一層の向上を目的とする場合にはノボラック型エポキシ樹脂が好ましく、耐湿性の一層の向上を目的とする場合にはジシクロペンタジエン変性フェノール型エポキシ樹脂を併用することが好ましい。
【0026】
これらの併用し得るエポキシ樹脂の配合量としては、特に制限されるものではないが、本発明の特性を損なわない点から、本発明で用いる変性エポキシ樹脂(A)100重量部に対して20重量部以下であることが好ましい。
【0027】
本発明のエポキシ樹脂組成物に用いられる硬化剤(B)としては、種々のエポキシ樹脂用硬化剤が使用でき、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物等が挙げられる。具体的には、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF3−アミン錯体、グアニジン誘導体等が挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。
【0028】
これらの中でも、特に接着性が優れる点では、ジシアンジアミド、アミン系硬化剤、アミノトリアジン変性フェノール樹脂等が好ましく、耐熱性が優れる点では、フェノールノボラック樹脂、ナフトールノボラック樹脂、フェノールトリメチロールメタン樹脂、イミダゾール類等が好ましく、耐湿性が優れる点では、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂等が好ましく、難燃性が優れる点では、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂、アミノトリアジン変性フェノール樹脂等が好ましく、所望の特性を考慮して適宜選択することができる。
【0029】
前記硬化剤(B)の使用量としては、硬化反応が速やかに進行し、得られる硬化物の機械的物性等が良好となる点から、変性エポキシ樹脂(A)のエポキシ基1当量に対して、硬化剤(B)中の活性水素基が0.7〜1.5当量になる範囲であることが好ましい。
【0030】
また、必要に応じて本発明のエポキシ樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5,4,0]−ウンデセン(DBU)が好ましい。
【0031】
本発明のエポキシ樹脂組成物は、変性エポキシ樹脂(A)自体が優れた難燃性を発現するため、ハロゲン化合物等の難燃付与剤の使用は不要であり、この場合、ハロゲン化合物を含有しない難燃性組成物となる。
【0032】
しかしながら、用途によってハロゲン化合物やその他の難燃付与剤を併用できるときは、難燃効果の更なる向上の為に、必要に応じて難燃付与剤を使用してもよい。前記難燃付与剤としては、ハロゲン化合物、リン原子含有化合物、窒素原子含有化合物、無機系難燃化合物等が挙げられる。具体的には、テトラブロモビスフェノールA型エポキシ樹脂等のハロゲン化合物、赤リン、リン酸エステル化合物等のリン原子含有化合物、メラミン等の窒素原子含有化合物、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、ホウ酸カルシウム等の無機系難燃化合物が挙げられる。
【0033】
本発明のエポキシ樹脂組成物は必要に応じて、無機充填剤、顔料、シランカップリング剤、離型剤等の種々の配合剤を添加することができる。
【0034】
前記無機充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化ケイ素、水酸化アルミ等が挙げられる。該充填材の配合量を特に大きくする場合は溶融シリカを用いるのが好ましく、溶融シリカとしては破砕状、球状のいずれでも使用可能であるが、配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが特に好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調製し、平均粒径が5〜30μmにすることが好ましい。その充填率は難燃性が良好となる点から、エポキシ樹脂組成物の全体量に対して65〜92重量%が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填材を用いることもできる。
【0035】
本発明のエポキシ樹脂組成物の使用用途としては、半導体封止材料、積層板や電子回路基板等に用いられる樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、半導体封止材料、電子回路基板用樹脂組成物に好適に用いることができる。
【0036】
前記半導体封止材材料は、本発明のエポキシ樹脂組成物及び前述の無機充填材、必要に応じその他の成分を押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して製造することができる。ここで用いる充填材は、シリカが好ましい。また、無機充填材の使用量は通常、充填率30〜95重量%となる範囲であり、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、好ましくは70〜95重量%、それらの効果を顕著なものとするには80〜95重量%であることが特に好ましい。
【0037】
前記電子回路基板用樹脂組成物は、本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させることにより製造することができる。この際の溶剤の使用量は、前記電子回路基板用樹脂組成物中、通常10〜70重量%であり、好ましくは15〜65重量%、特に好ましくは35〜65重量%なる範囲である。なお、前記電子回路基板は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
【0038】
また、本発明のエポキシ樹脂組成物を接着剤や塗料等のコーティング材料として使用する場合は、該組成物を溶融してコーティングしても良いし、該組成物を前記溶剤に溶解したものを通常の方法でコーティングした後、溶剤を乾燥除去させ硬化させても良い。この際、必要に応じて、前記硬化触媒を使用してもよい。また、前記の無機フィラー等を混合しても良い。
【0039】
本発明の硬化物は、前記エポキシ樹脂組成物を成形熱硬化させて得ることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。例えば、半導体封止材料の成形硬化物を得る方法としては、該組成物を注型、或いはトランスファ−成形機、射出成形機などを用いて成形し、さらに80〜200℃で2〜10時間に加熱して硬化する方法が挙げられる。また、電子回路基板用樹脂組成物の成形硬化物を得る方法としては、電子回路基板用樹脂組成物をガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て積層した後、それを熱プレス成形する方法が挙げられる。
【0040】
【実施例】
次に本発明を実施例、比較例により具体的に説明する。尚、実施例中「%」は特に断りのない限り、重量基準である。
【0041】
合成例1
撹拌装置と加熱装置が付いた1リットル四つ口フラスコに、トリメチルハイドロキノン304g(2.0モル)をトルエン1000gとエチレングリコールモノエチルエーテル400gの混合溶媒に溶解した。その溶液にパラトルエンスルホン酸10gを加え、41%ホルマリン88g(1.2モル)を発熱に注意しながら滴下して、水分を留去しながら100〜120℃で15時間撹拌した。次いで、冷却して析出結晶を濾別し、中性になるまで繰り返し水で洗浄した後に、乾燥して構造式(a2−24)で表される2価ヒドロキシ化合物(A)264gを得た。この化合物の水酸基当量は149g/eq.(アセチル化法)であり、GPCによる純度は99%であった。
【0042】
次いで、撹拌装置と加熱装置が付いた1リットル四つ口フラスコに、ビスフェノールA型液状エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON 850S;エポキシ当量190g/eq.)190g(エポキシ基1.0当量)と上記で得られた構造式(a2−24)で表される2価ヒドロキシ化合物37.3g(水酸基0.25当量)とエチレングリコールモノエチルエーテル100gを加えて、加温して均一に溶解した後、トリフェニルフォスフィン0.07gを加えて、125℃で8時間撹拌した。反応中、エポキシ当量分析で反応追跡をおこない、エポキシ当量が設定値に到達したことを確認した後に、反応溶媒を蒸留によって除去し、下記構造式(i)
【化7】
Figure 0004363048
で表される変性エポキシ樹脂(A−i)を得た。このエポキシ樹脂のエポキシ当量は308g/eq.(設定値303g/eq.)であり、式中のnは約0.4であった。
【0043】
合成例2
合成例1において、ホルマリンをベンズアルデヒド127g(1.2モル)に変更した以外は合成例1と同様にして、構造式(a2−27)で表される2価フェノール化合物318gを得た。この化合物の水酸基当量は187g/eq.(アセチル化法)であり、GPCによる純度は99%であった。
【0044】
次いで、合成例1において構造式(a2−24)で表される2価ヒドロキシ化合物を構造式(a2−27)で表される2価ヒドロキシ化合物46.8gに変更した以外は、合成例1と同様にして下記構造式(ii)
【化8】
Figure 0004363048
で表される変性エポキシ樹脂(A−ii)を得た。このエポキシ樹脂のエポキシ当量は322g/eq.(設定値316g/eq.)であり、式中のnは約0.4であった。
【0045】
合成例3
合成例2において構造式(a2−27)で表される2価ヒドロキシ化合物の量を56.1g(水酸基0.30当量)に変更した以外は、合成例2と同様にして、前記構造式(ii)で表される変性エポキシ樹脂(A−iii)を得た。このエポキシ樹脂のエポキシ当量は355g/eq.(設定値351g/eq.)であり、式中のnは約0.5であった。
【0046】
合成例4
合成例3において、BPA型液状エポキシ樹脂の代わりに、1,6−ジヒドロキシナフタレン型エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON HP−4032D;エポキシ当量141g/eq.)141g(エポキシ基1.0当量)に変更した以外は、合成例3と同様にして、下記構造式(iv)
【化9】
Figure 0004363048
で表される変性エポキシ樹脂(a−iv)を得た。このエポキシ樹脂のエポキシ当量は283g/eq.(設定値281g/eq.)であり、式中のnは約0.4であった。
【0047】
実施例1〜4と比較例1〜3
上記合成例で得られた変性エポキシ樹脂(a−i)〜(a−iv)、及び比較用のエポキシ樹脂としてBPA型固形エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON 1055;エポキシ当量480g/eq.)、クレゾールノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製 EPICLON N−665;エポキシ当量206g/eq.)を用い、硬化剤(B)としてフェノールノボラック樹脂(大日本インキ化学工業株式会社製 フェノライト TD−2131;水酸基当量104g/eq.、軟化点80℃)を、さらに硬化促進剤としてトリフェニルフォスフィンを表1の配合表に従い混合して、それを100℃で5分間溶融混合することによって、エポキシ樹脂組成物を得た。これを180℃で10分間プレス成形し、その後180℃で更に5時間加熱して成形硬化物を得た後、所定サイズの試験片を切り出し、ガラス転移温度、吸湿率、接着性を測定した。
【0048】
なお、ガラス転移温度は粘弾性測定装置(レオメトリック社製 固体粘弾性測定装置RSAII、二重カレンチレバー法;周波数1Hz、昇温速度3℃/min)を用いて測定した。吸湿率は85℃/85%RHの条件で300時間処理した後の重量増加率を求め、接着性は銅箔とのピール強度(25℃)で評価し、誘電率は誘電特性測定装置(ジャパン・イー・エム社製 DPMS1002)を用いて25℃、1MHzの条件において測定した。それらの試験結果を表1にまとめた。
【0049】
【表1】
Figure 0004363048
【0050】
【発明の効果】
本発明によれば、優れた耐熱性、耐湿性、誘電特性をバランス良く兼備し、半導体封止材料やプリント配線基板などの電子部品材料用途に好適に用いられるエポキシ樹脂組成物及びその硬化物を提供する事ができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin composition that can combine excellent heat resistance, moisture resistance, and dielectric properties in a well-balanced manner and can be suitably used for electronic component materials such as semiconductor sealing materials and printed wiring boards, and a cured product thereof. .
[0002]
[Prior art]
Conventionally, thermosetting resin compositions containing an epoxy resin and a curing agent have been widely used as insulating materials in electronic component materials such as semiconductor sealing materials and printed wiring boards. Examples of the epoxy resin for use include a bisphenol type epoxy resin, a novolac type epoxy resin, and the like. Particularly, an oligomer type bisphenol type epoxy resin having an epoxy equivalent of 250 to 2,000 g / eq is excellent in adhesiveness, It is used by mixing with a novolac type epoxy resin having good heat resistance (see, for example, Non-Patent Document 1).
[0003]
However, in recent years, in the field of electronic materials, there has been a strong demand for high-performance insulating materials for the purpose of reducing the size and weight of devices, increasing the density, and increasing the calculation speed. For example, high-density mounting can be realized. In the field of build-up circuit boards, there is an increasing demand for materials such as insulating films and varnishes with excellent heat resistance, moisture resistance, and dielectric properties, or copper foil with adhesives. None of the above-mentioned properties can be satisfied, and an epoxy resin excellent in balance of the properties is desired.
[0004]
[Non-Patent Document 1]
Edited by Masaki Shinbo, “Epoxy resin handbook”, Nikkan Kogyo Shimbun, first edition, 1st edition, December 25, 1987, p. 61-73
[0005]
[Problems to be solved by the invention]
In view of the circumstances as described above, the object of the present invention is to have excellent heat resistance, moisture resistance, and dielectric properties in a well-balanced manner, and to be suitably used for electronic component material applications such as semiconductor sealing materials and printed wiring boards. It is providing the epoxy resin composition which can be performed, and its hardened | cured material.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the bifunctional epoxy resin (a1) is represented by the following general formula (1)
[Chemical 1]
Figure 0004363048
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a phenyl group, a naphthyl group, a biphenyl group, or an organic group that may form a ring, and they further have a substituent. R is each independently an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group or a phenyl group, and n is an integer of 0 to 3.)
An epoxy resin composition comprising a modified epoxy resin (A) obtained by modification with a divalent hydroxy compound (a2) containing a dibenzopyran skeleton and a curing agent (B) having a structure represented by It was found that a cured product having a good balance between moisture resistance and dielectric properties was obtained, and the present invention was completed.
[0007]
That is, the present invention relates to a bifunctional epoxy resin (a1) represented by the following general formula (1)
[Chemical 1]
Figure 0004363048
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a phenyl group, a naphthyl group, a biphenyl group, or an organic group that may form a ring, and they further have a substituent. R is each independently an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group or a phenyl group, and n is an integer of 0 to 3.)
An epoxy resin composition containing a modified epoxy resin (A) obtained by modification with a divalent hydroxy compound (a2) containing a dibenzopyran skeleton and a curing agent (B), and a cured product thereof. Is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Modified epoxy resin (A) used in the present invention are those obtained by modification with bifunctional epoxy resin (a1) the divalent hydroxy compound containing two epoxy groups (a2) in a molecule The structure is not particularly limited. For example, the following general formula (2)
[Chemical formula 2]
Figure 0004363048
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a phenyl group, a naphthyl group, a biphenyl group, or an organic group that may form a ring, and they further have a substituent. R is independently an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group or a phenyl group, n is an integer of 0 to 3, Y is a divalent organic group containing an aromatic ring, m Is an integer from 0 to 10.)
The oligomer type epoxy resin which has as a main component the chemical structure represented by these is mentioned.
[0009]
The structure of the modified epoxy resin (A) is appropriately selected depending on the types and ratios of the bifunctional epoxy resin (a1) and the divalent hydroxy compound (a2) used as raw materials. The epoxy group in the polyfunctional epoxy resin (a1) and the divalent hydroxy compound (from the point of excellent balance of heat resistance, moisture resistance, and dielectric properties of the cured product obtained can be adjusted. What is obtained by addition reaction of the hydroxy group equivalent ratio (a1) / (a2) in the ratio of 0.95 / 0.05 to 0.60 / 0.40 in a2) is preferable, Is preferably in the range of 250 to 2,000 g / eq.
[0010]
As the bifunctional epoxy resin (a1) , bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type are preferable because of excellent balance between fluidity at the time of molding the epoxy resin composition and heat resistance of the cured product. Examples include epoxy resins, tetramethylbiphenyl type epoxy resins, bisphenol S type epoxy resins, bisphenol AD type epoxy resins, tetrabromobisphenol A type epoxy resins, dihydroxynaphthalene type epoxy resins, and the like, and divalent hydroxy compounds (a2) used for modification ), A high-monomer bifunctional epoxy containing 70 wt% or more of an epoxy compound having a structure not having a —CH 2 CH (OH) CH 2 — group. A resin is particularly preferable.
[0012]
As the divalent hydroxy compound (a2) containing the dibenzopyran skeleton, the following general formula (1)
[Chemical 3]
Figure 0004363048
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a phenyl group, a naphthyl group, a biphenyl group, or an organic group that may form a ring, and they further have a substituent. R is each independently an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group or a phenyl group, and n is an integer of 0 to 3.)
If it is a bivalent hydroxy compound which has the structure represented by this, it will not specifically limit, For example, the compound represented by the following structural formula (a2-1)-(a2-33) is mentioned.
[0013]
[Formula 4]
Figure 0004363048
[0014]
[Chemical formula 5]
Figure 0004363048
[0015]
[Chemical 6]
Figure 0004363048
[0016]
Among these, those having a methyl group as a substituent on the aromatic ring are preferred from the viewpoint of better balance between heat resistance, moisture resistance, and dielectric properties, especially those having three methyl groups in each aromatic ring. For example, a hexamethyl group-substituted group represented by the structural formulas (a2-24) to (a2-33) is most preferable. Further, from the viewpoint of easy synthesis of the compound having the structure represented by the general formula (1), R 1 in the general formula (1) is a hydrogen atom, and R 2 is a hydrogen atom or a phenyl group. Preferably, for example, the structural formulas (a2-24) and (a2-27) are mentioned.
[0017]
The production method of the divalent hydroxy compound (a2) is not particularly limited. For example, a position where a dihydroxy aromatic compound and a carbonyl compound are subjected to dehydration condensation and a 6-membered ring can be formed in the condensate. The two hydroxy groups in can be further dehydrated to form a dibenzopyran skeleton.
[0018]
Although it does not specifically limit as a manufacturing method of the modified | denatured epoxy resin (A) used by this invention, For example, the said bifunctional epoxy resin (a1) and the said bivalent hydroxy compound (a2) are explained in full detail below. It can be obtained by addition reaction.
[0019]
This reaction is the same as a general reaction in which an epoxy resin and a polyhydric phenol compound are subjected to an addition reaction to obtain an epoxy resin having an extended molecular chain. As the polyhydric phenol compound, a divalent hydroxy compound containing a dibenzopyran skeleton is used. The compound (a2) may be used.
[0020]
That is, the target molecular weight (epoxy equivalent) is set within a range in which the epoxy group of the bifunctional epoxy resin (a1) is excessive with respect to the hydroxy group of the divalent hydroxy compound (a2), The theoretical charge ratio is calculated with the set value, and both raw materials are charged into the reactor at that ratio. Next, an appropriate amount of a catalyst suitable for the addition reaction of an epoxy group and a hydroxy group is added, and the addition reaction is advanced by stirring under an appropriate temperature condition. The modified epoxy resin (A) used in the present invention can be obtained by taking out the reaction product at the time when the target set molecular weight (epoxy equivalent) is reached.
[0021]
In this reaction, an organic solvent may be used as necessary, and the organic solvent is not particularly limited as long as the raw material or the reaction product is uniformly dissolved. For example, toluene, xylene, mesitylene, etc. And aromatic solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, and alcohol solvents such as isopropyl alcohol and normal butanol. The amount of the organic solvent used is appropriately selected depending on the types of raw materials and catalyst, reaction temperature, desired reaction time, and the like. The polyfunctional epoxy resin (a1) and the divalent hydroxy compound (a2) It is preferable that it is 5-500 weight part with respect to a total of 100 weight part.
[0022]
The catalyst is not particularly limited as long as it can react an epoxy group and a hydroxy group. For example, alkali metal hydroxides such as caustic soda and caustic potassium, triethylamine, benzyldimethylamine, etc. And the like, quaternary ammonium salts such as trimethylamine hydrochloride and triethylbenzylamine hydrochloride, and phosphonium compounds such as triphenylphosphine. The amount to be used is appropriately selected depending on the types of raw materials and catalyst, reaction temperature, desired reaction time, etc. The total amount of the polyfunctional epoxy resin (a1) and the divalent hydroxy compound (a2) is 100. The range is preferably 0.001 to 0.1 parts by weight with respect to parts by weight. The reaction temperature is preferably in the range of 50 to 200 ° C., although it varies depending on the types of raw materials and catalyst, desired reaction time, and the like. The reaction time varies depending on the various reaction conditions, but requires a time until reaching the set molecular weight (epoxy equivalent), and is in the range of 1 to 15 hours in consideration of the quality stability of the generated modified epoxy resin. Is preferred.
[0023]
Moreover, when applying to the precision use which dislikes a trace amount impurity, it is preferable to use, after removing the added catalyst by operation, such as washing with water and filtration.
[0024]
The epoxy resin composition of the present invention contains the modified epoxy resin (A) and the curing agent (B) described later, but other epoxy resins may be used in combination as long as the characteristics of the present invention are not impaired. . Epoxy resins that can be used in combination include bisphenol A type epoxy resins, bisphenol F type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, and triphenylmethane type epoxy resins. , Tetraphenylethane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensation novolac type epoxy resin, naphthol-cresol co-condensation Novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy resin, biphenyl modified novolak type epoxy resin Fat, tetrabromobisphenol A type epoxy resins and brominated phenol novolak type epoxy resin or the like.
[0025]
Among these, in the case of imparting flame retardancy, it is preferable to use a brominated epoxy resin such as tetrabromobisphenol A type epoxy resin, brominated phenol novolak type epoxy resin or the like for the purpose of further improving heat resistance. A novolac-type epoxy resin is preferred for the purpose, and in order to further improve moisture resistance, it is preferred to use a dicyclopentadiene-modified phenol-type epoxy resin in combination.
[0026]
The compounding amount of these epoxy resins that can be used in combination is not particularly limited, but is 20 weights with respect to 100 parts by weight of the modified epoxy resin (A) used in the present invention, from the point of not impairing the characteristics of the present invention. Part or less.
[0027]
As the curing agent (B) used in the epoxy resin composition of the present invention, various curing agents for epoxy resins can be used, such as amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Can be mentioned. Specifically, polyamide resin synthesized from diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyrone anhydride Mellitic acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified Phenol resin, dicyclopentadiene modified phenol resin, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified Starting with aralkyl resins, phenol trimethylol methane resins, tetraphenylol ethane resins, naphthol novolac resins, naphthol-phenol co-condensed novolac resins, naphthol-cresol co-condensed novolac resins, biphenyl-modified phenol resins, aminotriazine-modified phenol resins, etc. And polyphenol compounds, modified products thereof, imidazoles, BF 3 -amine complexes, guanidine derivatives and the like. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types.
[0028]
Among these, dicyandiamide, amine-based curing agent, aminotriazine-modified phenol resin and the like are preferable in terms of excellent adhesion, and phenol novolac resin, naphthol novolac resin, phenol trimethylol methane resin, imidazole in terms of excellent heat resistance. In terms of excellent moisture resistance, dicyclopentadiene-modified phenol resin, phenol aralkyl resin, biphenyl-modified phenol aralkyl resin, etc. are preferable. In terms of excellent flame retardancy, phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl are preferred. A resin, a biphenyl-modified phenol aralkyl resin, an aminotriazine-modified phenol resin, and the like are preferable, and can be appropriately selected in consideration of desired characteristics.
[0029]
As the usage-amount of the said hardening | curing agent (B), hardening reaction advances rapidly and the mechanical property of the hardened | cured material obtained, etc. become favorable with respect to 1 equivalent of epoxy groups of a modified epoxy resin (A). The active hydrogen group in the curing agent (B) is preferably in the range of 0.7 to 1.5 equivalents.
[0030]
Moreover, a hardening accelerator can also be suitably used together with the epoxy resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines. -[5,4,0] -undecene (DBU) is preferred.
[0031]
In the epoxy resin composition of the present invention, since the modified epoxy resin (A) itself exhibits excellent flame retardancy, it is not necessary to use a flame retardant imparting agent such as a halogen compound, and in this case, no halogen compound is contained. It becomes a flame retardant composition.
[0032]
However, when a halogen compound or other flame retardant imparting agent can be used in combination depending on the use, a flame retardant imparting agent may be used as necessary for further improving the flame retardant effect. Examples of the flame retardant imparting agent include halogen compounds, phosphorus atom-containing compounds, nitrogen atom-containing compounds, and inorganic flame retardant compounds. Specifically, halogen compounds such as tetrabromobisphenol A type epoxy resin, phosphorus atom-containing compounds such as red phosphorus and phosphate ester compounds, nitrogen atom-containing compounds such as melamine, aluminum hydroxide, magnesium hydroxide, zinc borate And inorganic flame retardant compounds such as calcium borate.
[0033]
The epoxy resin composition of the present invention may contain various compounding agents such as an inorganic filler, a pigment, a silane coupling agent, and a release agent as necessary.
[0034]
Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When the blending amount of the filler is particularly large, it is preferable to use fused silica. As the fused silica, either crushed or spherical can be used, but the blending amount is increased and the melt viscosity of the molding material is increased. In order to suppress, it is particularly preferable to use mainly spherical ones. In order to further increase the blending amount of the spherical silica, it is preferable that the particle size distribution of the spherical silica is appropriately adjusted so that the average particle size is 5 to 30 μm. The filling rate is particularly preferably 65 to 92% by weight based on the total amount of the epoxy resin composition from the viewpoint of good flame retardancy. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can also be used.
[0035]
Applications of the epoxy resin composition of the present invention include semiconductor sealing materials, resin compositions used for laminates and electronic circuit boards, resin casting materials, adhesives, interlayer insulation materials for build-up substrates, insulation paints Among them, among these, it can be suitably used for semiconductor encapsulating materials and resin compositions for electronic circuit boards.
[0036]
The semiconductor encapsulant material is sufficiently mixed until the epoxy resin composition of the present invention and the above-mentioned inorganic filler, and other components as necessary, become uniform using an extruder, kneader, roll, etc. Can be manufactured. The filler used here is preferably silica. The amount of the inorganic filler used is usually in a range of 30 to 95% by weight, and is preferable for improving flame retardancy, moisture resistance and solder crack resistance, and reducing the linear expansion coefficient. Is preferably 70 to 95% by weight, and particularly preferably 80 to 95% by weight to make these effects remarkable.
[0037]
The resin composition for an electronic circuit board can be produced by dissolving the epoxy resin composition of the present invention in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone. The amount of the solvent used in this case is usually 10 to 70% by weight, preferably 15 to 65% by weight, and particularly preferably 35 to 65% by weight in the resin composition for electronic circuit boards. Specific examples of the electronic circuit board include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
[0038]
When the epoxy resin composition of the present invention is used as a coating material such as an adhesive or paint, the composition may be melted and coated, or a solution obtained by dissolving the composition in the solvent is usually used. After coating by this method, the solvent may be removed by drying and cured. At this time, the curing catalyst may be used as necessary. Moreover, you may mix the said inorganic filler etc.
[0039]
The cured product of the present invention can be obtained by molding and curing the epoxy resin composition. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films. For example, as a method for obtaining a molded cured product of a semiconductor sealing material, the composition is molded using a casting, a transfer molding machine, an injection molding machine or the like, and further at 80 to 200 ° C. for 2 to 10 hours. The method of hardening by heating is mentioned. As a method for obtaining a molded cured product of a resin composition for an electronic circuit board, a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. is impregnated with the resin composition for electronic circuit board. The method of heat-drying after heat-drying and obtaining a prepreg and laminating | stacking is mentioned.
[0040]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples. In the examples, “%” is based on weight unless otherwise specified.
[0041]
Synthesis example 1
In a 1-liter four-necked flask equipped with a stirrer and a heating device, 304 g (2.0 mol) of trimethylhydroquinone was dissolved in a mixed solvent of 1000 g of toluene and 400 g of ethylene glycol monoethyl ether. 10 g of paratoluenesulfonic acid was added to the solution, and 88 g (1.2 mol) of 41% formalin was added dropwise while paying attention to heat generation, followed by stirring at 100 to 120 ° C. for 15 hours while distilling off water. Next, the mixture was cooled and the precipitated crystals were separated by filtration, washed repeatedly with water until neutral, and then dried to obtain 264 g of a divalent hydroxy compound (A) represented by the structural formula (a2-24). The hydroxyl group equivalent of this compound was 149 g / eq. (Acetylation method), and the purity by GPC was 99%.
[0042]
Next, bisphenol A type liquid epoxy resin (Epiclon 850S manufactured by Dainippon Ink & Chemicals, Inc .; epoxy equivalent 190 g / eq.) 190 g (epoxy group 1.0 Equivalent) and 37.3 g (hydroxy group 0.25 equivalent) of the divalent hydroxy compound represented by the structural formula (a2-24) obtained above and 100 g of ethylene glycol monoethyl ether, and uniformly heated. After dissolution, 0.07 g of triphenylphosphine was added and stirred at 125 ° C. for 8 hours. During the reaction, the reaction was monitored by epoxy equivalent analysis, and after confirming that the epoxy equivalent reached the set value, the reaction solvent was removed by distillation, and the following structural formula (i)
[Chemical 7]
Figure 0004363048
The modified epoxy resin (Ai) represented by these was obtained. The epoxy equivalent of this epoxy resin was 308 g / eq. (Setting value 303 g / eq.), And n in the formula was about 0.4.
[0043]
Synthesis example 2
In Synthesis Example 1, 318 g of a dihydric phenol compound represented by Structural Formula (a2-27) was obtained in the same manner as in Synthesis Example 1 except that formalin was changed to 127 g (1.2 mol) of benzaldehyde. The hydroxyl group equivalent of this compound was 187 g / eq. (Acetylation method), and the purity by GPC was 99%.
[0044]
Subsequently, in Synthesis Example 1, except that the divalent hydroxy compound represented by Structural Formula (a2-24) was changed to 46.8 g of the divalent hydroxy compound represented by Structural Formula (a2-27), Similarly, the following structural formula (ii)
[Chemical 8]
Figure 0004363048
The modified epoxy resin (A-ii) represented by these was obtained. The epoxy equivalent of this epoxy resin was 322 g / eq. (Setting value 316 g / eq.), And n in the formula was about 0.4.
[0045]
Synthesis example 3
In the same manner as in Synthesis Example 2 except that the amount of the divalent hydroxy compound represented by Structural Formula (a2-27) in Synthesis Example 2 was changed to 56.1 g (hydroxyl group 0.30 equivalent), A modified epoxy resin (A-iii) represented by ii) was obtained. The epoxy equivalent of this epoxy resin was 355 g / eq. (Setting value 351 g / eq.), And n in the formula was about 0.5.
[0046]
Synthesis example 4
In Synthesis Example 3, 141 g of 1,6-dihydroxynaphthalene type epoxy resin (EPICLON HP-4032D manufactured by Dainippon Ink & Chemicals, Inc .; epoxy equivalent 141 g / eq.) Instead of BPA type liquid epoxy resin (epoxy group 1. The following structural formula (iv)
[Chemical 9]
Figure 0004363048
The modified epoxy resin (a-iv) represented by these was obtained. The epoxy equivalent of this epoxy resin was 283 g / eq. (Set value 281 g / eq.), And n in the formula was about 0.4.
[0047]
Examples 1-4 and Comparative Examples 1-3
Modified epoxy resins (ai) to (a-iv) obtained in the above synthesis examples, and BPA type solid epoxy resin (EPICLON 1055 manufactured by Dainippon Ink & Chemicals, Inc .; epoxy equivalent 480 g /) as a comparative epoxy resin eq.), a cresol novolac type epoxy resin (EPICLON N-665 manufactured by Dainippon Ink & Chemicals, Inc .; epoxy equivalent 206 g / eq.), and a phenol novolac resin (Dainippon Ink & Chemicals, Inc.) Phenolite TD-2131 (hydroxyl equivalent: 104 g / eq., Softening point: 80 ° C.) and triphenylphosphine as a curing accelerator were mixed according to the recipe in Table 1 and melt mixed at 100 ° C. for 5 minutes. Thus, an epoxy resin composition was obtained. This was press-molded at 180 ° C. for 10 minutes, and then heated at 180 ° C. for 5 hours to obtain a molded cured product, and then a test piece of a predetermined size was cut out, and the glass transition temperature, moisture absorption rate, and adhesiveness were measured.
[0048]
In addition, the glass transition temperature was measured using the viscoelasticity measuring apparatus (The solid viscoelasticity measuring apparatus RSAII by a rheometric company, the double currant lever method; frequency 1Hz, temperature increase rate 3 degree-C / min). The moisture absorption rate is obtained by calculating the weight increase rate after 300 hours of treatment at 85 ° C./85% RH, the adhesiveness is evaluated by peel strength with copper foil (25 ° C.), and the dielectric constant is measured by a dielectric property measuring device (Japan) -It measured on 25 degreeC and 1MHz conditions using DPMS1002) made from EM. The test results are summarized in Table 1.
[0049]
[Table 1]
Figure 0004363048
[0050]
【The invention's effect】
According to the present invention, there is provided an epoxy resin composition having excellent heat resistance, moisture resistance, and dielectric properties in a well-balanced manner and suitable for use in electronic component materials such as a semiconductor sealing material and a printed wiring board, and a cured product thereof. Can be provided.

Claims (6)

2官能型エポキシ樹脂(a1)を
下記一般式(1)
Figure 0004363048
(式中、R 、R は各々独立に水素原子、アルキル基、フェニル基、ナフチル基、ビフェニル基又は環を形成しても良い有機基であり、それらは更に置換基を有していても良い。Rは各々独立に炭素数1〜4のアルキル基、シクロヘキシル基又はフェニル基であり、nは0〜3の整数である。)
で表される構造を有する、ジベンゾピラン骨格を含有する2価ヒドロキシ化合物(a2)で変性して得られる変性エポキシ樹脂(A)と硬化剤(B)とを含むことを特徴とするエポキシ樹脂組成物。
A bifunctional epoxy resin (a1) ,
The following general formula (1)
Figure 0004363048
(In the formula, R 1 and R 2 are each independently a hydrogen atom, an alkyl group, a phenyl group, a naphthyl group, a biphenyl group, or an organic group that may form a ring, and they further have a substituent. R is each independently an alkyl group having 1 to 4 carbon atoms, a cyclohexyl group or a phenyl group, and n is an integer of 0 to 3.)
An epoxy resin composition comprising a modified epoxy resin (A) obtained by modification with a divalent hydroxy compound (a2) containing a dibenzopyran skeleton and a curing agent (B) having a structure represented by object.
変性エポキシ樹脂(A)が、2官能型エポキシ樹脂(a1)中のエポキシ基と2価ヒドロキシ化合物(a2)中のヒドロキシ基の当量比(a1)/(a2)が0.95/0.05〜0.60/0.40の割合で付加反応させて得られるものである請求項1記載のエポキシ樹脂組成物。The modified epoxy resin (A) has an equivalent ratio (a1) / (a2) of the epoxy group in the bifunctional epoxy resin (a1) to the hydroxy group in the divalent hydroxy compound (a2) of 0.95 / 0.05. The epoxy resin composition according to claim 1, which is obtained by addition reaction at a ratio of ˜0.60 / 0.40. 変性エポキシ樹脂(A)のエポキシ当量が200〜2,000g/eqである請求項2記載のエポキシ樹脂組成物。  The epoxy resin composition according to claim 2, wherein the epoxy equivalent of the modified epoxy resin (A) is 200 to 2,000 g / eq. 前記一般式(1)中のRが水素原子であり、R2が水素原子又はフェニル基である請求項記載のエポキシ樹脂組成物。Wherein R 1 in the general formula (1) is a hydrogen atom, an epoxy resin composition according to claim 1, wherein R2 is a hydrogen atom or a phenyl group. 前記一般式(1)のRがメチル基であり、nが3である請求項記載のエポキシ樹脂組成物。R is a methyl group, according to claim 1 epoxy resin composition according n is 3 in the general formula (1). 請求項1〜の何れか一項記載のエポキシ樹脂組成物を硬化させて得られることを特徴とする硬化物。A cured product obtained by curing the epoxy resin composition according to any one of claims 1 to 5 .
JP2003021928A 2003-01-30 2003-01-30 Epoxy resin composition and cured product thereof Expired - Lifetime JP4363048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021928A JP4363048B2 (en) 2003-01-30 2003-01-30 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021928A JP4363048B2 (en) 2003-01-30 2003-01-30 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2004231790A JP2004231790A (en) 2004-08-19
JP4363048B2 true JP4363048B2 (en) 2009-11-11

Family

ID=32951136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021928A Expired - Lifetime JP4363048B2 (en) 2003-01-30 2003-01-30 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4363048B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548155B2 (en) * 2005-03-08 2010-09-22 Dic株式会社 Alkali development type photosensitive resin composition and printed wiring board.
KR101349622B1 (en) * 2011-08-26 2014-01-10 롬엔드하스전자재료코리아유한회사 Photopolymerizable unsaturated resin, photosensitive resin composition comprising the same, and light shielding spacer and liquid crystal display device formed therefrom
WO2013065759A1 (en) * 2011-11-02 2013-05-10 日立化成株式会社 Epoxy resin composition, partially-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, circuit board, production method for partially-cured epoxy resin composition, and production method for cured epoxy resin composition
WO2015076229A1 (en) * 2013-11-19 2015-05-28 日本化薬株式会社 Phenol resin, epoxy resin, epoxy resin composition, and cured product of same
JP7192485B2 (en) * 2018-12-25 2022-12-20 Dic株式会社 Xanthene type resin, curable resin composition and cured product thereof

Also Published As

Publication number Publication date
JP2004231790A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP5262389B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4247658B2 (en) Novel epoxy resin, epoxy resin composition and cured product thereof
WO2006101008A1 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
WO2018180451A1 (en) Epoxy resin, production method, and epoxy resin composition and cured object obtained therefrom
WO2007099670A1 (en) Process for producing phenolic resin and process for producing epoxy resin
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP5135702B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
KR20100021998A (en) Liquid epoxy resin, epoxy resin composition, and cured product
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
WO2015137294A1 (en) Phenolic resin, phenolic resin mixture, epoxy resin, epoxy resin composition, and cured products thereof
JP2009051937A (en) Epoxy resin composition, cured product thereof, and new epoxy resin
JP5127164B2 (en) Modified epoxy resin, epoxy resin composition, and cured product thereof
KR20160055125A (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP4655490B2 (en) Epoxy resin composition and cured product thereof
JP2009203427A (en) Epoxy resin composition, semiconductor sealing material and semiconductor device
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JP4474891B2 (en) Epoxy resin composition, cured product thereof and epoxy resin
JP5127160B2 (en) Epoxy resin, curable resin composition, and cured product thereof
WO2018225411A1 (en) Epoxy resin, production method, epoxy resin composition, and cured product thereof
WO2014208132A1 (en) Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
KR20010023189A (en) Polyhydric phenol compounds, epoxy resins, epoxy resin compositions and cured products thereof
JP4844796B2 (en) 1-pack type epoxy resin composition and cured product thereof
JP2006257137A (en) Epoxy resin composition and cured product thereof
JP2015203086A (en) Epoxy resin, epoxy resin composition and cured product

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4363048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term