JP4712420B2 - 表面グラフト材料、導電性材料およびその製造方法 - Google Patents

表面グラフト材料、導電性材料およびその製造方法 Download PDF

Info

Publication number
JP4712420B2
JP4712420B2 JP2005105209A JP2005105209A JP4712420B2 JP 4712420 B2 JP4712420 B2 JP 4712420B2 JP 2005105209 A JP2005105209 A JP 2005105209A JP 2005105209 A JP2005105209 A JP 2005105209A JP 4712420 B2 JP4712420 B2 JP 4712420B2
Authority
JP
Japan
Prior art keywords
metal
group
conductive
film
graft polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005105209A
Other languages
English (en)
Other versions
JP2006282878A (ja
Inventor
浩一 川村
弘司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005105209A priority Critical patent/JP4712420B2/ja
Priority to KR1020077022984A priority patent/KR20070117665A/ko
Priority to PCT/JP2006/307401 priority patent/WO2006104279A1/en
Priority to CNA2006800105064A priority patent/CN101151307A/zh
Priority to EP06731349A priority patent/EP1871826A4/en
Priority to US11/910,270 priority patent/US20090136719A1/en
Publication of JP2006282878A publication Critical patent/JP2006282878A/ja
Application granted granted Critical
Publication of JP4712420B2 publication Critical patent/JP4712420B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性材料の形成に有用な表面グラフト材料の製造方法、及び、それにより得られる表面グラフト材料、導電性材料に関し、詳細には、電子材料分野で使用される導電性膜、とくに金属配線板、プリント配線板に使用される銅張り積層板の形成に有用な表面グラフト材料の製造方法に関する。
従来の導電性パターン特にプリント配線板の分野で有用な金属パターン形成方法として「サブトラクティブ法」が知られている。サブトラクティブ法とは、基板上に形成された金属の層に、活性光線の照射により感光する感光層を設け、この感光層に像様露光し、現像してレジスト像を形成し、ついで、金属をエッチングして金属パターンを形成し、最後にレジストを剥離する方法である。この手法で使用される金属基板は、基板と金属層との密着性を持たせるために基板界面を凹凸処理してアンカー効果により密着性を発現させていた。その結果、出来上がる金属パターンの基板界面部が凹凸になってしまい、電気配線として使用する際、高周波特性が悪くなるという問題点があった。更に、金属基板を形成する際、基板を凹凸処理するため、クロム酸などの強酸で基板を処理するという煩雑な工程が必要であるいという問題点があった。
この問題を解決する為に、基板表面にラジカル重合性化合物をグラフトして表面改質を行うことで、基板の凹凸を最小限にとどめ、かつ、基板の処理工程を簡易にする方法が提案されている(例えば、特許文献1参照)が、この方法では、高価な装置(γ線発生装置、電子線発生装置)が必要であった。また、使用される基板は通常の市販のプラスチック基板を使用しているため、グラフトポリマーが、そこに導電性素材を強固に付着させる程、十分には生成されず、基板と導電性層との密着が実用上の強度に達していないという問題があった。
特開昭58−196238号明細書
上記従来の技術的問題点を考慮してなされた本発明の目的は、基板との密着性に優れ、基板との界面における凹凸が小さい導電性膜の形成に有用な表面グラフトポリマー材料、及び、その製造方法を提供することにある。また、本発明の別の目的は、この二つの特徴を有する金属基板、即ち、導電性材料とその製造方法とを提供することにある。
本発明により得られた導電性材料は、高周波特性に優れた微細なパターン形成に有益な銅張り積層基板として有用であり、また、この銅張り積層基板を用いてサブトラクティブ法にて回路を形成すると微細なプリント配線基板を作成することができる。
本発明者は鋭意検討の結果、特定の絶縁体層表面にグラフトポリマー層を設けることで、前記課題を解決しうることを見出し、本発明を完成した。
即ち、本発明の構成は以下に示すとおりである。
<1> 支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設ける工程、該絶縁体層表面に直接結合したグラフトポリマーを形成する工程、を順次有することを特徴とする表面グラフト材料の製造方法。
<2> <1>に記載の表面グラフトの製造方法により作製された表面グラフト材料。
<3> 支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設ける工程、該絶縁体層表面に直接結合したグラフトポリマーを形成する工程、該グラフトポリマー上に導電性層を設ける工程、を順次有することを特徴とする導電性材料の製造方法。
<4> <3>に記載の導電性材料の製造方法により作製された導電性材料。
<5> <3>に記載の導電性材料の製造方法により作製された導電性材料をエッチングすることにより得られた導電性パターン材料。
本発明によれば、基板との密着性に優れ、基板との界面における凹凸が小さい導電性膜の形成に有用な表面グラフトポリマー材料、及び、その製造方法を提供することができる。
また、本発明によれば、基板との密着性に優れ、基板との界面における凹凸が小さいという特徴を有する金属基板、即ち、導電性材料とその製造方法とを提供することにある。
本発明により得られた導電性材料は、高周波特性に優れた微細なパターン形成に有益な銅張り積層基板として有用であり、また、この銅張り積層基板を用いてサブトラクティブ法にて回路を形成すると微細なプリント配線基板を作製することができる。
本発明の表面グラフト材料の製造方法においては、まず、任意の支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設け、その後、該絶縁体層に含まれた重合開始剤を基点として表面グラフト重合を行い、絶縁樹脂層表面に直接結合したグラフトポリマーを形成することを特徴とする。
本発明においては、エポキシ樹脂、ポリイミド樹脂、液晶性樹脂、ポリアリーレン樹脂などの絶縁性樹脂に、重合開始剤を含有させて、開始剤含有絶縁体層を設けることを大きな特徴としており、これにより、任意の支持体表面に、所望の特性を有する絶縁性樹脂材料からなり、重合開始能を有する絶縁体層を形成することができる。その後、形成された絶縁体層の表面に直接結合したグラフトポリマーを形成することで、平滑で、任意の材料をそこに付着させることができる表面グラフト材料を製造することができる。この表面グラフト材料におけるグラフトポリマーに導電性素材を付着させ、平滑で均一な導電性膜を形成することができる。
本発明では絶縁性樹脂に重合開始剤を含有させることにより絶縁体層とグラフトとの密着がさらに強固なものとなり、強靱な密着が発現される。
その理由は明確ではないが、絶縁樹脂層に重合開始剤を加えることで表面グラフトの密度が増大し、より導電性素材層との相互作用が高まりその結果として密着が向上したと考えることができるものと考えられる。
また、この技術はポリイミドやエポキシ樹脂などのような電子材料分野で有用な一般的な絶縁樹脂に対しても適用できる幅広い技術であることを見出した。
本発明の効果、すなわち絶縁性基板と導電性素材との高い密着は、1.基板とグラフトポリマーとの強固でかつ高密度での結合、および、2.生成したグラフトポリマーと導電性素材とが強い相互作用での結合により発揮される。これらの効果を発現するには絶縁性層中に重合開始剤を添加するほかに、グラフトポリマーと導電性素材と互いに強い相互作用する化合物を選択することが重要となる。次に、発明の詳細を順に説明する。
以下、本発明の表面グラフト材料の製造方法を工程順に詳細に説明する。
〔支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設ける工程〕
本発明における絶縁体層を構成する絶縁樹脂としては、従来の多層積層板、ビルドアップ基板、もしくはフレキシブル基板として用いられてきた公知の絶縁性の樹脂を用いることができる。これらの樹脂としては、熱硬化性樹脂、熱可塑性樹脂、もしくはそれらの樹脂混合体などを使用することができる。本発明ではこれらの絶縁体樹脂に光重合性開始剤を含有したものを用いて絶縁体層を形成する。また、グラフト反応性もしくは絶縁体層の強度を高める目的で多官能のアクリレートモノマーが添加されても良い。またこれ以外の成分として絶縁体層の強度を高めるもしくは電気特性を改良するために無機、もしくは有機の粒子を添加しても良い。
以下、本発明に係る絶縁体層を構成する各成分について説明する。
熱硬化性樹脂の具体例としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、ポリオレフィン系樹脂、シソシアネート系樹脂等が挙げられる。
上記エポキシ樹脂としては、例えば、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等が挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。それにより、耐熱性等に優れるものとなる。
上記ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、ポリイソプレン、シクロオレフィン系樹脂、これらの樹脂の共重合体等が挙げられる。
さらにエポキシ樹脂について詳しく説明する。
本発明におけるエポキシ樹脂基板を構成するエポキシ樹脂は、(A)エポキシ基を1分子中に2個以上を有するエポキシ化合物と(B)エポキシ基と反応する官能基を1分子中に2個以上有する化合物との反応物からなる。(B)における官能基としてはカルボキシル基、水酸基、アミノ基、チオール基などの官能基から選ばれる。
(A)エポキシ基を1分子中に2個以上を有するエポキシ化合物(エポキシ樹脂と称されるものを含む)としては、エポキシ基を1分子中に2〜50個有するエポキシ化合物であることが好ましく、エポキシ基を1分子中に2〜20個有するエポキシ化合物であることがより好ましい。ここで、エポキシ基は、オキシラン環構造を有する構造であればよく、例えば、グリシジル基、オキシエチレン基、エポキシシクロヘキシル基等を示すことができる。このような多価エポキシ化合物は、例えば、新保正樹編「エポキシ樹脂ハンドブック」日刊工業新聞社刊(昭和62年)等に広く開示されており、これらを用いることが可能である。
具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、3官能型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA含核ポリオール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリオキザール型エポキシ樹脂、脂環型エポキシ樹脂、複素環型エポキシ樹脂などを挙げることができる。
(B)エポキシ基と反応する官能基を1分子中に2個以上有する化合物としては、テレフタル酸などの多官能カルボン酸化合物、フェノール樹脂などの多官能水酸基化合物、アミノ樹脂、1,3,5−トリアミノトリアジンなどの多官能アミノ化合物を挙げることができる。
熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。そのほかの熱可塑性樹脂としては、(1)1,2−ビス(ビニルフェニレン)エタン樹脂(1,2−Bis(vinylphenyl)ethane )もしくはこれとポリフェニレンエーテル樹脂との変性樹脂(天羽悟ら、Journal of Applied Polymer Science Vol.92, 1252−1258(2004)に記載)。(2)液晶性ポリマー、具体的にはクラレ製のベクスター など。(3)フッ素樹脂(PTFE)、などがある。
(熱可塑性樹脂と熱硬化性樹脂との混合)
熱可塑性樹脂と熱硬化性樹脂とは、それぞれ単独で用いてもよいし、2種以上併用してもよい。これはそれぞれの欠点を補いより優れた効果を発現する目的で行われる。例えば、ポリフェニレンエーテル(PPE)などの熱可塑性樹脂は熱に対しての耐性が低いため、熱硬化性樹脂などとのアロイ化が行われている。たとえばPPEとエポキシ、トリアリルイソシアネートとのアロイ化、あるいは重合性官能基を導入したPPE樹脂とそのほかの熱硬化性樹脂とのアロイ化として使用される。またシアネートエステルは熱硬化性の中ではもっとも誘電特性の優れる樹脂であるが、それ単独で使用されることは少なく、エポキシ樹脂、マレイミド樹脂、熱可塑性樹脂などの変性樹脂として使用される。これたの詳細に関しては電子技術 2002/9号 P35 に記載されている。また熱硬化性樹脂としてエポキシ樹脂および/またはフェノール樹脂を含み、熱可塑性樹脂としてフェノキシ樹脂および/またはポリエーテルスルフォン(PES)を含むものも誘電特性を改善するために使用される。
(重合性の二重結合を有する化合物)
また絶縁層の中には用途の目的に応じて必要な化合物を添加することができる。このような化合物としてはラジカル重合性の二重結合を有する化合物がある。ラジカル重合性の二重結合を有する化合物とはアクリレート、もしくはメタアクリレート化合物である。本発明に用いうるアクリレート化合物〔(メタ)アクリレート〕は、分子内にエチレン性不飽和基であるアクリロイル基を有するものであれば、特に制限はないが、硬化性、形成された中間層の硬度、強度向上の観点からは、多官能モノマーであることが好ましい。
本発明に好適に用いうる多官能モノマーとしては、多価アルコールとアクリル酸またはメタクリル酸とのエステルであることが好ましい。多価アルコールの例には、エチレングリコール、1,4−シクロヘキサノール、ペンタエリスリトール、トリメチロールプロパン、トリメチロールエタン、ジペンタエリスリトール、1,2,4−シクロヘキサノール、ポリウレタンポリオールおよびポリエステルポリオールが含まれる。なかでも、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールおよびポリウレタンポリオールが好ましい。中間層には、二種類以上の多官能モノマーを含んでいてもよい。多官能モノマーは分子内に少なくとも2個のエチレン性不飽和基を含むものを指すが、より好ましくは3個以上含むものである。具体的には、分子内に3〜6個のアクリル酸エステル基を有する多官能アクリレートモノマーが挙げられるが、さらに、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレートと称される分子内に数個のアクリル酸エステル基を有する、分子量が数百から数千のオリゴマーなども本発明の中間層の成分として好ましく使用することができる。
これら分子内に3個以上のアクリル基を有するアクリレートの具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等のポリオールポリアクリレート類、ポリイソシアネートとヒドロキシエチルアクリレート等の水酸基含有アクリレートの反応によって得られるウレタンアクリレート等を挙げることができる。そのほか、重合性の二重結合を有する化合物として熱硬化性樹脂、もしくは熱可塑性樹脂、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリオレフィン樹脂、フッ素樹脂等に、メタクリル酸やアクリル酸等を用い、樹脂の一部を(メタ)アクリル化反応させた樹脂を用いてもよい。具体的には、エポキシ樹脂の(メタ)アクリレート化合物を挙げることができる。
(絶縁樹脂に添加する重合開始剤の種類)
本発明で使用される重合開始剤は熱重合開始剤、光重合開始剤、いずれも使用することができる。熱重合開始剤としてはベンゾイルパーオキサイド、アゾイソブチロニトリルなどのような過酸化物開始剤、およびアゾ系開始剤などを使用することができる。また光重合開始剤としては低分子でも良く、高分子でも良く、一般に公知のものが使用される。
低分子の光重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのケトン、ベンゾイルベンゾエート、ベンゾイン類、α−アシロキシムエステル、テトラメチルチウラムモノサルファイド、トリクロロメチルトリアジンおよびチオキサントン等の公知のラジカル発生剤を使用できる。また通常、光酸発生剤として用いられるスルホニウム塩やヨードニウム塩なども光照射によりラジカル発生剤として作用するため、本発明ではこれらを用いてもよい。また、感度を高める目的で光ラジカル重合開始剤に加えて、増感剤を用いてもよい。増感剤の例には、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、およびチオキサントン誘導体等が含まれる。
高分子光ラジカル発生剤としては特開平9−77891号、特開平10−45927号に記載の活性カルボニル基を側鎖に有する高分子化合物を使用することができる。
絶縁樹脂中に含有させる重合開始剤の含有量は、使用する表面グラフト材料の用途に応じて選択されるが、一般的には、絶縁体層中に固形分で、0.1〜50質量%程度であることが好ましく、1.0〜30.0質量%程度であることがより好ましい。
(その他の添加剤)
本発明における絶縁体層には、樹脂の機械強度、耐熱性、耐候性、難燃性、耐水性、電気特性などの特性を強化するために、樹脂と他の成分とのコンポジット(複合素材)も使用することができる。複合化するのに使用される材料としては、紙、ガラス繊維、シリカ粒子、フェノール樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂、フッ素樹脂、ポリフェニレンオキサイド樹脂などを挙げることができる。これらの材料を添加する場合は、いずれも、樹脂に対して、1〜200質量%の範囲で添加されることが好ましく、より好ましくは10〜80質量%の範囲で添加される。この添加量が、1質量%未満である場合は、上記の特性を強化する効果がなく、また、200質量%を超えると場合には、樹脂特有の強度などの特性が低下し、更には、グラフト重合反応も進行しなくなる。
(形状:厚み、平面凹凸など)
本発明における絶縁体層は、任意の支持体上に形成することができる。ここで、支持体としては、特に制限はなく、絶縁体層を形成しうる硬質表面を有するものであれば、いずれでもかまわない。
形成される絶縁体層の厚みは、一般に、1μm〜10mmの範囲であり、10μm〜1000μmの範囲であることが好ましい。また、形成された絶縁体層は、JIS B 0601(1994年)、10点平均高さ法で測定した平均粗さ(Rz)が3μm以下であるものを用いることも好ましく、Rzが1μm以下であることがより好ましい。
形成された絶縁体層の表面平滑性が上記値の範囲内、即ち、実質的に凹凸がない状態であれば、回路が極めて微細な(例えば、ライン/スペースの値が25/25μm以下の回路パターン)プリント配線板を製造する際に、好適に用いられる。
〔絶縁体層表面に直接結合したグラフトポリマーを形成する工程〕
このようにして設けた絶縁体層の上に、その表面に直接結合したグラフトポリマーを形成するためには、絶縁体層表面にラジカル重合可能な不飽和二重結合を有する化合物を接触させ、全面を露光する方法をとればよい。ここで用いるラジカル重合可能な不飽和二重結合を有する化合物は、このグラフトパターンに付着させようとする物質と相互作用可能な官能基を有することが好ましく、例えば、以下に詳述する導電性パターン材料を形成するためには、ラジカル重合可能な不飽和二重結合を有する化合物として、導電性素材と相互作用可能な官能基を有する重合性化合物を用いることが好ましい。
ラジカル重合可能な不飽和二重結合を有し、かつ、導電性素材と相互作用可能な官能基を有する重合性化合物、接触させる手段としては、ラジカル重合可能な不飽和二重結合を有する化合物、例えば、ラジカル重合可能な不飽和二重結合と、導電性素材と相互作用可能な官能基を有する重合性化合物など、を含有する層(以下、適宜、グラフトポリマー前駆体層と称する)を、絶縁体層表面に形成すればよく、該グラフトポリマー前駆体層の形成は塗布法により行うことができる。
グラフトポリマー前駆体層には、前記重合性化合物の他にも、層を形成するためのその他の成分、すなわちバインダー、粘度調製剤、界面活性剤その他の皮膜形成剤を含んでいても良い。
本発明においては、絶縁体層への結合に必要な「ラジカル重合可能な不飽和二重結合」と、後述する導電性素材をグラフトポリマーに付着させるために必要な「導電性素材と相互作用可能な官能基」の双方を有する重合性化合物を用いることが好ましい。
ここでいうところの、ラジカル重合可能な不飽和二重結合とは、ビニル基、ビニルオキシ基、アリル基、アクリロイル基、メタクリロイル基、などが挙げられる。このうち、アクリロイル基、メタクリロイル基は反応性が高く、良好な結果が得られる。
導電性素材と相互作用可能な官能基とは、アンモニウム、ホスホニウムなどの正の荷電を有する官能基、若しくは、スルホン酸基、カルボキシル基、リン酸基、ホスホン酸基などの負の荷電を有するか負の荷電に解離しうる酸性基が挙げられるが、その他にも、例えば、水酸基、アミド基、スルホンアミド基、アルコキシ基、シアノ基などの非イオン性の極性基も用いることもできる。
本発明の必須の要件であるラジカル重合可能な不飽和二重結合を有し、かつ、導電性素材と相互作用可能な官能基を有する重合性化合物は低分子であっても、高分子であっても良い。高分子の時には平均分子量は1000から500000の範囲で選択される。このような高分子は通常のラジカル重合、アニオン重合などの付加重合や重縮合などの方法で得られる。
具体的に本発明において、ラジカル重合可能な不飽和二重結合を有し、かつ、導電性素材と相互作用可能な官能基を有する化合物としては金属イオン又は金属塩の付着・吸着のしやすさ、およびグラフト反応後の未反応物の除去しやすさの観点から、極性基である親水性基を有する、親水性ポリマー、親水性マクロマー、親水性モノマーなどが好ましい。
−親水性モノマー−
本発明において用いうる親水性モノマーの具体例としては、次のモノマーを挙げることができる。
例えば、(メタ)アクリル酸若しくはそのアルカリ金属塩及びアミン塩、イタコン酸若しくはそのアルカリ金属塩及びアミン塩、アリルアミン若しくはそのハロゲン化水素酸塩、3−ビニルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸若しくはそのアルカリ金属塩及びアミン塩、スチレンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、2−スルホエチレン(メタ)アクリレート、3−スルホプロピレン(メタ)アクリレート若しくはそのアルカリ金属塩及びアミン塩、2−アクリルアミド−2−メチルプロパンスルホン酸若しくはそのアルカリ金属塩及びアミン塩、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート若しくはそれらの塩、2−ジメチルアミノエチル(メタ)アクリレート若しくはそのハロゲン化水素酸塩、3−トリメチルアンモニウムプロピル(メタ)アクリレート、3−トリメチルアンモニウムプロピル(メタ)アクリルアミド、N,N,N−トリメチル−N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)アンモニウムクロライドなどを使用することができる。また、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N−モノメチロール(メタ)アクリルアミド、N−ジメチロール(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルアセトアミド、ポリオキシエチレングリコールモノ(メタ)アクリレートなども有用である。
−親水性マクロモノマー−
本発明において用い得るマクロモノマーの製造方法は、例えば、平成1年9月20日にアイピーシー出版局発行の「マクロモノマーの化学と工業」(編集者 山下雄也)の第2章「マクロモノマーの合成」に各種の製法が提案されている。
本発明で用い得る親水性マクロモノマーで特に有用なものとしては、アクリル酸、メタクリル酸などのカルホキシル基含有のモノマーから誘導されるマクロモノマー、2−アクリルアミド−2−メチルプロパンスルホン酸、ビニルステレンスルホン酸、及びその塩のモノマーから誘導されるスルホン酸系マクロモノマー、(メタ)アクリルアミド、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルカルボン酸アミドモノマーから誘導されるアミド系マクロモノマー、ヒドロキシエチルメタクリレー卜、ヒドロキシエチルアクリレート、グリセロールモノメタクリレートなどの水酸基含有モノマーから誘導されるマクロモノマー、メトキシエチルアクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールアクリレートなどのアルコキシ基若しくはエチレンオキシド基含有モノマーから誘導されるマクロモノマーである。また、ポリエチレングリコール鎖若しくはポリプロピレングリコール鎖を有するモノマーも本発明のマクロモノマーとして有用に使用することができる。
これらの親水性マクロモノマーのうち有用なものの分子量は、250〜10万の範囲で、特に好ましい範囲は400〜3万である。
−重合性不飽和基を有する親水性ポリマー−
重合性不飽和基を有する親水性ポリマーとは、分子内に、ビニル基、アリル基、(メタ)アクリル基などのエチレン付加重合性不飽和基が導入されたラジカル重合性基含有親水性ポリマーを指す。このラジカル重合性基含有親水性ポリマーは、重合性基を主鎖末端及び/又は側鎖に有することを要する。以下、重合性基を(主鎖末端及び/又は側鎖に)有する親水性ポリマーを、ラジカル重合性基含有親水性ポリマーと称する。
このようなラジカル重合性基含有親水性ポリマーは以下のようにして合成することができる。合成方法としては、(a)親水性モノマーとエチレン付加重合性不飽和基を有するモノマーとを共重合する方法、(b)親水性モノマーと二重結合前駆体を有するモノマーとを共重合させ、次に塩基などの処理により二重結合を導入する方法、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法、が挙げられる。これらの中でも、特に好ましいのは、合成適性の観点から、(c)親水性ポリマーの官能基とエチレン付加重合性不飽和基を有するモノマーとを反応させる方法である。
上記(a)や(b)の方法において、ラジカル重合性基含有親水性ポリマーの合成に用いられる親水性モノマーとしては、(メタ)アクリル酸若しくはそのアルカリ金属塩及びアミン塩、イタコン酸若しくはそのアルカリ金属塩及びアミン塩、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリルアミド、N−モノメチロール(メタ)アクリルアミド、N−ジメチロール(メタ)アクリルアミド、アリルアミン若しくはそのハロゲン化水素酸塩、3−ビニルプロピオン酸若しくはそのアルカリ金属塩及びアミン塩、ビニルスルホン酸若しくはそのアルカリ金属塩及びアミン塩、2−スルホエチル(メタ)アクリレート、ポリオキシエチレングリコールモノ(メタ)アクリレート、2−アクリルアミド−2−メチルプロパンスルホン酸、アシッドホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレートなどの、カルボキシル基、スルホン酸基、リン酸基、アミノ基若しくはそれらの塩、水酸基、アミド基及びエーテル基などの親水性基を有するモノマーが挙げられる。
また、(c)の方法で用いられる親水性ポリマーとしては、これらの親水性モノマーから選ばれる少なくとも一種を用いて得られる親水性ホモポリマー若しくはコポリマーが用いられる。
(a)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モノマーと共重合するエチレン付加重合性不飽和基を有するモノマーとしては、例えば、アリル基含有モノマーがあり、具体的には、アリル(メタ)アクリレート、2−アリルオキシエチルメタクリレートが挙げられる。また、(b)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性モノマーと共重合する二重結合前駆体を有するモノマーとしては、2−(3−クロロ−1−オキソプロポキシ)エチルメタクリレー卜が挙げられる。更に、(c)の方法でラジカル重合性基含有親水性ポリマーを合成する際、親水性ポリマー中のカルボキシル基、アミノ基若しくはそれらの塩と、水酸基及びエポキシ基などの官能基と、の反応を利用して不飽和基を導入することが好ましい。このために用いられる付加重合性不飽和基を有するモノマーとしては、(メタ)アクリル酸、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、2−イソシアナトエチル(メタ)アクリレートなど挙げられる。
ラジカル重合性基含有親水性ポリマーは構成成分としてラジカル重合可能な不飽和二重結合を有し、かつ、導電性素材と相互作用可能な官能基を有することが必須であるが、それ以外にも前駆体層の膜物性の改良、絶縁樹脂基板との密着向上のため、それ以外のモノマーとの共重合成分を含んで、3元共重合体、4元共重合体の形であってもよい。
それ以外のモノマーとの共重合成分としては
メチル(メタ)アクリレート、ブチル(メタ)アクリレートなどのアルキルアクリレート、2−メトキシエチル(メタ)アクリレート、ポリエチレングリコールアクリレートやポリプロピレンアクリレートなどのエチレングリコール系(メタ)アクリレート、などを挙げることができる。
〔グラフトポリマー前駆体層に含んでいてもよいその他の成分〕
(バインダー)
グラフトポリマー前駆体層には、所望によりバインダーを含むことができる。バインダーは、ラジカル重合性基含有親水性化合物と共に前駆体層を形成するのに使用される。重合性基含有親水性化合物が単独で層を形成しうる場合には、特に必要ではないが、粘度の低いモノマーを前駆体層の成分として使用するためには層形成性向上の観点から、含有することが好ましい。この目的のためのバインダーとしては重合性基含有親水性化合物と混合し、かつ皮膜を形成するものであれば特に限定しないが、分子量500以上、かつ水溶性のオリゴマー、ポリマーが好ましい。
これらの添加ポリマーとしてはポリアクリル酸、ポリメタクリル酸、ポリビニルアルコール、ポリブチラール、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、ポリアクリルアミド、カルボキシメチルセルロース、ヒドロキシエチルセルロース、などの(メタ)アクリレート系ポリマー、セスロース系ポリマー、などの合成高分子のほかに、ゼラチン、でんぷん、アラビアゴム、糖などの天然の親水性高分子をを使用することができる。
(可塑剤、界面活性剤、粘度調整剤)
前駆体層に柔軟性を与え、フィルム状態で折り曲げなどの際に前駆体層にクラックが生じないために使用される。可塑剤としては一般に使用される公知の材料が使用される。
(溶媒)
前記各成分を適切な溶媒に溶解し、塗布、乾燥することで、本発明に好適に要されるグラフトポリマー前駆体層を形成するここができる。
溶媒としては、水、および有機溶媒が使用される。有機溶媒は親水性の溶媒、疎水性の溶媒いずれも使用することができるが、とくに水に親和性の高い溶媒が有用である。具体的にはメタノール、エタノール、1−メトキシ−2−プロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフランなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒が好ましい。
グラフトポリマー前駆体層の厚みは0.5μmから10μmの範囲であることが好ましい。この範囲において、その後形成されるグラフトポリマー層の厚みが好適な範囲となり、その後の工程で、例えば、導電性素材を付着させる場合にも、導電性素材との間に優れた密着性が確保できる。
グラフトポリマー前駆体層形成後、全面露光工程で生じるグラフトポリマー層の厚みは0.1μm〜0.7μmの範囲であることが好ましく、従って、グラフトポリマー前駆体層の厚みを、10μmを超えるほどに厚くしても、グラフトポリマー形成に関与しない材料が多くなり、コストアップにつながるのみならず、露光光源が深部まで到達しがたくなり、不要なグラフトポリマー前駆体材料の除去が困難になるなどの多くの問題点をもたらす。
(絶縁層表面へのグラフトポリマーの形成)
上記のようにして絶縁層の上に形成したグラフト前駆体層を露光することにより、前駆体層からラジカルが発生させ、上のグラフト前駆体層と反応することにより絶縁層/前駆体層界面で強い化学結合が生じグラフトポリマーが形成される。
(エネルギーの付与)
本発明におけるグラフトポリマーの形成は、熱もしくは光などの輻射線の照射により行われる。熱としてヒーター、赤外線による加熱が使用される。また光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。またg線、i線、Deep−UV光、高密度エネルギービーム(レーザービーム)も使用される。
このようにして得られたグラフトポリマーには、導入する官能基により種々の材料を付着させることができるが、特に、導電性素材を付与して、導電膜を形成するために有用であり、得られた導電膜は平滑な絶縁体層との密着性に優れる。
〔絶縁体層表面に直接結合したグラフトポリマーの上に導電性素材を付与する工程〕
グラフトポリマーに導電性を付与する工程としては、(1)生成したグラフトポリマーに導電性微粒子を付着させる工程、(2)生成したグラフトポリマーに金属イオン又は金属塩を付与し、その後、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程、(3)生成したグラフトポリマーに無電解メッキ触媒又はその前駆体を付与し、無電解メッキを行う工程、及び、(4)導電性モノマーを付与し、その後、重合反応を生起させて導電性ポリマー層を形成する工程、から選択されるいずれかであることが好ましい。またこれら(1)−(4)の工程を組み合わせたものであって良く、さらに導電性を上げるために、電気メッキなどの方法を付け加えても良い。また導電材料の付与の後、更に、加熱工程を有していてもよい。
本発明において、生成したグラフトポリマーに導電性物質を付与して導電膜を形成する工程のうち、(2)生成したグラフトポリマーに金属イオン又は金属塩を付与し、その後、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程を実施する方法としては、具体的には、(2−1)極性基(イオン性基)を有する化合物からなるグラフトポリマーに金属イオンを吸着させる方法、(2−2)ポリビニルピロリドン、ポリビニルピリジン、ポリビニルイミダゾールなどのように金属塩に対し親和性の高い含窒素ポリマーからなるグラフトポリマーに、金属塩、又は、金属塩を含有する溶液を含浸させる方法がある。
また、(3)生成したグラフトポリマーに無電解メッキ触媒又はその前駆体を付与し、無電解メッキを行う工程においては、無電解メッキ触媒又はその前駆体と相互作用する官能基を有するグラフトポリマーを生成させ、該グラフトポリマーに無電解メッキ触媒又はその前駆体を付与した後、無電解メッキを行って金属薄膜を形成する方法をとる。この態様においても、無電解メッキ触媒又はその前駆体と相互作用する官能基を有するグラフトポリマーがガラス基板と直接結合しているため、形成された金属薄膜は、導電性と共に、高い強度と耐磨耗性を示すことになる。また、ここで得られた無電解メッキ膜を電極として、さらに電解メッキを行うことで、所望の厚みの導電膜を容易に形成することができる。
また、本発明においては、具体的には、(1)生成したグラフトポリマーに導電性微粒子を付着させる工程(「導電性微粒子付着工程」)、(2)生成したグラフトポリマーに金属イオン又は金属塩を付与し(「金属イオン又は金属塩付与工程」)、その後、金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程(「金属(微粒子)膜形成工程」)、(3)生成したグラフトポリマーに無電解メッキ触媒又はその前駆体を付与し(「無電解メッキ触媒等付与工程」)、無電解メッキを行う工程(「無電解メッキ工程」)、及び(4)導電性モノマーを付与し(「導電性モノマー付与工程」)、重合反応を生起させて導電性ポリマー層を形成する工程(「導電性ポリマー形成工程」)、のいずれかにより行われることが好ましい。
(1)導電性微粒子を付着する工程
この方法は、前記グラフトポリマーの極性基に直接導電性微粒子を付着させる工程であり、以下に例示する導電性微粒子を、静電気的、イオン的に極性基に付着(吸着)させればよい。
本発明に用い得る導電性微粒子としては、導電性を有するものであれば特に制限はなく、公知の導電性素材からなる微粒子を任意に選択して用いることができる。例えば、Au、Ag、Pt、Cu、Rh、Pd、Al、Crなどの金属微粒子、In23、SnO2、ZnO、CdO、TiO2、CdIn24、Cd2SnO2、Zn2SnO4、In23−ZnOなどの酸化物半導体微粒子、及びこれらに適合する不純物をドーパントさせた材料を用いた微粒子、MgInO、CaGaOなどのスピネル形化合物微粒子、TiN、ZrN、HfNなどの導電性窒化物微粒子、LaBなどの導電性ホウ化物微粒子、また、有機材料としては導電性高分子微粒子などが好適なものとして挙げられる。
グラフトポリマーがアニオン性の極性基を有する場合、ここに正の電荷を有する導電性粒子を吸着させることで導電膜が形成される。ここで用いられるカチオン性の導電性粒子としては、正電荷を有する金属(酸化物)微粒子などが挙げられる。また、カチオン性の極性基を有するグラフトポリマーには、負電荷を有する導電性粒子が吸着して導電膜が形成される。
導電性微粒子の粒径は0.1nmから1000nmの範囲であることが好ましく、1nmから100nmの範囲であることがさらに好ましい。粒径が0.1nmよりも小さくなると、微粒子同士の表面が連続的に接触してもたらされる導電性が低下する傾向がある。また、1000nmよりも大きくなると、極性変換された官能基と相互作用して結合する接触面積が小さくなるため親水性表面と粒子との密着が低下し、導電性領域の強度が劣化する傾向がある。
(2)金属イオン又は金属塩を付与し、その後、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程
本発明における「導電性物質付着工程」の(2)の態様においては、グラフトポリマーに金属イオン又は金属塩を付与する工程(金属イオン又は金属塩付与工程)、該金属イオン又は該金属塩中の金属イオンを還元して金属を析出させる工程(金属(微粒子)膜形成工程)が行われることにより、導電膜が形成される。即ち、(2)の態様においては、グラフトポリマーが有する親水性基などの金属イオンや、金属塩を付着させうる官能基が、その機能に応じて、金属イオンや金属塩を付着(吸着)し、次いで、吸着した金属イオン等が還元されることで、グラフトポリマーが形成された基材表面の全域にわたって金属単体が析出し、その析出態様によって、金属薄膜が形成されたり、金属微粒子が分散してなる金属微粒子付着層が形成されることになる。
(3)無電解メッキ触媒又はその前駆体を付与し、無電解メッキを行う方法
本発明における導電膜形成工程の(3)の態様においては、グラフトポリマーは、無電解メッキ触媒又はその前駆体と相互作用する相互作用性基を有し、そこに無電解メッキ触媒又はその前駆体を付与する工程(無電解メッキ触媒等付与工程)と、無電解メッキを行い金属薄膜を形成する工程(無電解メッキ工程)と、が順に行われることにより、導電性膜が形成される。即ち、(3)の態様においては、無電解メッキ触媒又はその前駆体と相互作用する官能基(即ち、極性基)を有するグラフトポリマーが、無電解メッキ触媒又はその前駆体と相互作用し、次いで行われる無電解メッキ処理により金属薄膜が形成されることになる。
これらの結果、金属(微粒子)膜が形成されることになり、金属薄膜(連続層)が形成される場合には、特に導電性の高い領域が形成される。ここで、微粒子を吸着した後、導電性を改良する目的で加熱工程を実施することができる。
上記(2)の態様における、「金属イオン又は金属塩付与工程」及び「金属(微粒子)膜形成工程」について、詳細に説明する。
<金属イオン又は金属塩付与工程>
〔金属イオン及び金属塩〕
金属イオン及び金属塩について説明する。
本発明において、金属塩としては、グラフトポリマー生成領域に付与するために適切な溶媒に溶解して、金属イオンと塩基(陰イオン)に解離されるものであれば特に制限はなく、M(NO3)n、MCln、M2/n(SO4)、M3/n(PO4)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Ag、Cu、Al、Ni、Co、Fe、Pdが挙げられ、導電膜としてはAgが、磁性膜としてはCoが好ましく用いられる。
〔金属イオン及び金属塩の付与方法〕
金属イオン又は金属塩をグラフトポリマー生成領域(本発明においては、絶縁体層全面)に付与する際、グラフトポリマーがイオン性基を有し、そのイオン性基に金属イオンを吸着させる方法を用いる場合には、上記の金属塩を適切な溶媒で溶解し、解離した金属イオンを含むその溶液を、グラフトポリマーが存在する基板表面に塗布するか、或いは、その溶液中にグラフトポリマーを有する基板を浸漬すればよい。金属イオンを含有する溶液を接触させることで、前記イオン性基には、金属イオンがイオン的に吸着することができる。これら吸着を充分に行なわせるという観点からは、接触させる溶液の金属イオン濃度、或いは金属塩濃度は1〜50質量%の範囲であることが好ましく、10〜30質量%の範囲であることが更に好ましい。また、接触時間としては、10秒から24時間程度であることが好ましく、1分から180分程度であることが更に好ましい。
<金属(微粒子)膜形成工程>
〔還元剤〕
本発明において、グラフトポリマーに吸着又は含浸して存在する金属塩、或いは、金属イオンを還元し、金属(微粒子)膜を成膜するために用いられる還元剤としては、用いた金属塩化合物を還元し、金属を析出させる物性を有するものであれば特に制限はなく、例えば、次亜リン酸塩、テトラヒドロホウ素酸塩、ヒドラジンなどが挙げられる。
これらの還元剤は、用いる金属塩、金属イオンとの関係で適宜選択することができるが、例えば、金属イオン、金属塩を供給する金属塩水溶液として、硝酸銀水溶液などを用いた場合にはテトラヒドロホウ素酸ナトリウムが、二塩化パラジウム水溶液を用いた場合には、ヒドラジンが、好適なものとして挙げられる。
上記還元剤の添加方法としては、例えば、グラフトポリマーが存在する基板表面に金属イオンや金属塩を付与させた後、水洗して余分な金属塩、金属イオンを除去し、該基板をイオン交換水などの水中に浸漬し、そこに還元剤を添加する方法、該基板表面上に所定の濃度の還元剤水溶液を直接塗布或いは滴下する方法等が挙げられる。また、還元剤の添加量としては、金属イオンに対して、等量以上の過剰量用いるのが好ましく、10倍当量以上であることが更に好ましい。
還元剤の添加による均一で高強度の金属(微粒子)膜の存在は、表面の金属光沢により目視でも確認することができるが、透過型電子顕微鏡、或いは、AFM(原子間力顕微鏡)を用いて表面を観察することで、その構造を確認することができる。また、金属(微粒子)膜の膜厚は、常法、例えば、切断面を電子顕微鏡で観察するなどの方法により、容易に行なうことができる。
〔グラフトポリマーが有する官能基の極性と金属イオン又は金属塩との関係〕
グラフトポリマーが負の電荷を有する官能基をもつものであれば、ここに正の電荷を有する金属イオンを吸着させ、その吸着した金属イオンを還元させることで金属単体(金属薄膜や金属微粒子)が析出する領域が形成される。またグラフトポリマーが先に詳述したように親水性の官能基として、カルボキシル基、スルホン酸基、若しくはホスホン酸基などの如きアニオン性を有する場合は、選択的に負の電荷を有するようになり、ここに正の電荷を有する金属イオンを吸着させ、その吸着した金属イオンを還元させることで金属(微粒子)膜領域(例えば、配線など)が形成される。
一方、グラフトポリマー鎖が特開平10−296895号公報に記載のアンモニウム基などの如きカチオン性基を有する場合は、選択的に正の電荷を有するようになり、ここに金属塩を含有する溶液、又は金属塩が溶解した溶液を含浸させ、その含浸させた溶液の中の金属イオン又は金属塩中の金属イオンを還元させることで金属(微粒子)膜領域(配線)が形成される。
これらの金属イオンは、親水性表面の親水性基に付与(吸着)し得る最大量、結合されることが耐久性の点で好ましい。
金属イオンを親水性基に付与する方法としては、金属イオン又は金属塩を溶解又は分散させた液を支持体表面に塗布する方法、及び、これらの溶液又は分散液中に支持体表面を浸漬する方法などが挙げられる。塗布、浸漬のいずれの場合にも、過剰量の金属イオンを供給し、親水性基との間に充分なイオン結合による導入がなされるために、溶液又は分散液と支持体表面との接触時間は、10秒から24時間程度であることが好ましく、1分から180分程度であることが更に好ましい。
前記金属イオンは1種のみならず、必要に応じて複数種を併用することができる。また、所望の導電性を得るため、予め複数の材料を混合して用いることもできる。
本発明で形成される導電膜は、SEM、AFMによる表面観察、断面観察より、表面グラフト膜中にぎっしりと金属微粒子が分散していることが確認される。また、作製される金属微粒子の大きさとしては、粒径1μm〜1nm程度である。
上記手法で作製される導電膜が、金属微粒子が密に吸着し、外見上金属薄膜を形成しているような場合には、そのまま用いてもよいが、効率のよい導電性の確保という観点からは、形成された導電膜をさらに加熱処理することが好ましい。
加熱処理工程における加熱温度としては、100℃以上が好ましく、更には150℃以上が好ましく、特に好ましくは200℃程度である。加熱温度は、処理効率や支持体基板の寸法安定性などを考慮すれば400℃以下であることが好ましい。また、加熱時間に関しては、10分以上が好ましく、更には30分〜60分間程度が好ましい。加熱処理による作用機構は明確ではないが、一部の近接する金属微粒子同士が互いに融着することで導電性が向上するものと考えている。
次に、本発明の導電性物質付与工程の(3)の態様における「無電解メッキ触媒等付与工程」及び「無電解メッキ工程」について、説明する。
<無電解メッキ触媒等付与工程>
本工程においては、上記表面グラフト工程で生成したグラフトポリマーに、無電解メッキ触媒又はその前駆体を付与する。
〔無電解メッキ触媒〕
本工程において用いられる無電解メッキ触媒とは、主に0価金属であり、Pd、Ag、Cu、Ni、Al、Fe、Coなどが挙げられる。本発明においては、特に、Pd、Agがその取り扱い性の良さ、触媒能の高さから好ましい。0価金属を相互作用性領域に固定する手法としては、例えば、相互作用性領域中の上の相互作用性基と相互作用するように荷電を調節した金属コロイドを、相互作用性領域に適用する手法が用いられる。一般に、金属コロイドは、荷電を持った界面活性剤又は荷電を持った保護剤が存在する溶液中において、金属イオンを還元することにより作製することができる。金属コロイドの荷電は、ここで使用される界面活性剤又は保護剤により調節することができ、このように荷電を調節した金属コロイドを、グラフトポリマーが有する相互作用性基(極性基)と相互作用させることで、グラフトポリマーに金属コロイド(無電解メッキ触媒)を付着させることができる。
〔無電解メッキ触媒前駆体〕
本工程において用いられる無電解メッキ触媒前駆体とは、化学反応により無電解メッキ触媒となりうるものであれば、特に制限なく使用することができる。主には上記無電解メッキ触媒で用いた0価金属の金属イオンが用いられる。無電解メッキ触媒前駆体である金属イオンは、還元反応により無電解メッキ触媒である0価金属になる。無電解メッキ触媒前駆体である金属イオンは、前記(b)工程において基板へ付与した後、無電解メッキ浴への浸漬前に、別途還元反応により0価金属に変化させて無電解メッキ触媒としてもよいし、無電解メッキ触媒前駆体のまま無電解メッキ浴に浸漬し、無電解メッキ浴中の還元剤により金属(無電解メッキ触媒)に変化させてもよい。
実際には、無電解メッキ前駆体である金属イオンは、金属塩の状態でグラフトポリマーに付与する。使用される金属塩としては、適切な溶媒に溶解して金属イオンと塩基(陰イオン)とに解離されるものであれば特に制限はなく、M(NO3n、MCln、M2/n(SO4)、M3/n(PO4)(Mは、n価の金属原子を表す)などが挙げられる。金属イオンとしては、上記の金属塩が解離したものを好適に用いることができる。具体例としては、例えば、Agイオン、Cuイオン、Alイオン、Niイオン、Coイオン、Feイオン、Pdイオンが挙げられ、Agイオン、Pdイオンが触媒能の点で好ましい。
無電解メッキ触媒である金属コロイド、或いは、無電解メッキ前駆体である金属塩をグラフトポリマーに付与する方法としては、金属コロイドを適当な分散媒に分散、或いは、金属塩を適切な溶媒で溶解し、解離した金属イオンを含む溶液を調製し、その溶液をグラフトポリマーが存在する絶縁体層を備えた基板表面に塗布するか、或いは、その溶液中にグラフトポリマーを有するガラス基板を浸漬すればよい。金属イオンを含有する溶液を接触させることで、グラフトポリマーが有する相互作用性基に、イオン−イオン相互作用、又は、双極子−イオン相互作用を利用して金属イオンを付着させること、或いは、相互作用性領域に金属イオンを含浸させることができる。このような付着又は含浸を充分に行なわせるという観点からは、接触させる溶液中の金属イオン濃度、或いは金属塩濃度は0.01〜50質量%の範囲であることが好ましく、0.1〜30質量%の範囲であることが更に好ましい。また、接触時間としては、1分〜24時間程度であることが好ましく、5分〜1時間程度であることがより好ましい。
<無電解メッキ工程>
本工程では、無電解メッキ触媒等付与工程より、無電解メッキ触媒等が付与されたガラス基板に対して、無電解メッキを行うことで、導電性膜(金属膜)が形成される。即ち、本工程における無電解メッキを行うことで、前記工程により得られたグラフトポリマーに高密度の導電性膜(金属膜)が形成される。形成された導電性膜(金属膜)は、優れた導電性、密着性を有する。
〔無電解メッキ〕
無電解メッキとは、メッキとして析出させたい金属イオンを溶かした溶液を用いて、化学反応によって金属を析出させる操作のことをいう。
本工程における無電解メッキは、例えば、前記無電解メッキ触媒等付与工程で得られた、無電解メッキ触媒が付与された基板を、水洗して余分な無電解メッキ触媒(金属)を除去した後、無電解メッキ浴に浸漬して行なう。使用される無電解メッキ浴としては一般的に知られている無電解メッキ浴を使用することができる。
また、無電解メッキ触媒前駆体が付与された基板を、無電解メッキ触媒前駆体がグラフトポリマーに付着又は含浸した状態で無電解メッキ浴に浸漬する場合には、基板を水洗して余分な前駆体(金属塩など)を除去した後、無電解メッキ浴中へ浸漬される。この場合には、無電解メッキ浴中において、前駆体の還元とこれに引き続き無電解メッキが行われる。ここ使用される無電解メッキ浴としても、上記同様、一般的に知られている無電解メッキ浴を使用することができる。
一般的な無電解メッキ浴の組成としては、1.メッキ用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)が主に含まれている。このメッキ浴には、これらに加えて、メッキ浴の安定剤など公知の添加物が含まれていてもよい。
無電解メッキ浴に用いられる金属の種類としては、銅、すず、鉛、ニッケル、金、パラジウム、ロジウムが知られており、中でも、導電性の観点からは、銅、金が特に好ましい。
また、上記金属に合わせて最適な還元剤、添加物がある。例えば、銅の無電解メッキの浴は、銅塩としてCu(SO42、還元剤としてHCOH、添加剤として銅イオンの安定剤であるEDTAやロッシェル塩などのキレート剤が含まれている。また、CoNiPの無電解メッキに使用されるメッキ浴には、その金属塩として硫酸コバルト、硫酸ニッケル、還元剤として次亜リン酸ナトリウム、錯化剤としてマロン酸ナトリウム、りんご酸ナトリウム、こはく酸ナトリウムが含まれている。また、パラジウムの無電解メッキ浴は、金属イオンとして(Pd(NH34)Cl2、還元剤としてNH3、H2NNH2、安定化剤としてEDTAが含まれている。これらのメッキ浴には、上記成分以外の成分が入っていてもよい。
このようにして形成される導電性膜(金属膜)の膜厚は、メッキ浴の金属塩又は金属イオン濃度、メッキ浴への浸漬時間、或いは、メッキ浴の温度などにより制御することができるが、導電性の観点からは、0.5μm以上であることが好ましく、3μm以上であることがより好ましい。また、メッキ浴への浸漬時間としては、1分〜3時間程度であることが好ましく、1分〜1時間程度であることがより好ましい。
以上のようにして得られる導電性膜(金属膜)は、SEMによる断面観察により、表面グラフト膜中に無電解メッキ触媒やメッキ金属の微粒子がぎっしりと分散しており、更にその上に比較的大きな粒子が析出していることが確認された。界面はグラフトポリマーと微粒子とのハイブリッド状態であるため、基板(有機成分)と無機物(無電解メッキ触媒又はメッキ金属)との界面の凹凸差が100nm以下であっても密着性が良好であった。
<電気メッキ工程>
本発明における「導電膜形成方法」の(3)の態様においては、上記無電解メッキ工程を行った後、電気メッキを行う工程(電気メッキ工程)を有してもよい。
本工程では、前記無電解メッキ工程における無電解メッキの後、この工程により形成された金属膜(導電性膜)を電極とし、さらに電気メッキを行うことができる。これにより基板との密着性に優れた金属膜をベースとして、そこに新たに任意の厚みをもつ金属膜を容易に形成することができる。この工程を付加することにより、金属膜を目的に応じた厚みに形成することができ、本態様により得られた導電性材料を種々の応用に適用するのに好適である。
本態様における電気メッキの方法としては、従来公知の方法を用いることができる。なお、本工程の電気メッキに用いられる金属としては、銅、クロム、鉛、ニッケル、金、銀、すず、亜鉛などが挙げられ、導電性の観点から、銅、金、銀が好ましく、銅がより好ましい。
電気メッキにより得られる金属膜の膜厚については、用途に応じて異なるものであり、メッキ浴中に含まれる金属濃度、浸漬時間、或いは、電流密度などを調整することでコントロールすることができる。なお、一般的な電気配線などに用いる場合の膜厚は、導電性の観点から、0.3μm以上であることが好ましく、3μm以上であることがより好ましい。
また、本発明における電気メッキ工程は、上述したように、金属膜を目的に応じた厚みに形成するため以外にも、例えば、電気メッキすることで、IC等の実装に応用しうるようにするなどの目的のために、行うこともできる。この目的で行われるメッキは、銅等で形成される導電性膜や金属パターン表面に対して、ニッケル、パラジウム、金、銀、すず、ハンダ、ロジウム、白金、及びそれらの化合物からなる群から選ばれる材料を用いて行うことができる。
次に、本発明に係る導電性物質付与工程の(4)の態様における「導電性モノマー付与工程」及び「導電性ポリマー層形成工程」について説明する。
導電性素材付着工程における(4)の態様は、以下に説明する導電性モノマーを、上記グラフトポリマーが有する相互作用性基、特に好ましくはイオン性基に対し、イオン的に吸着させた後、そのまま重合反応を生起させて導電性ポリマー層を形成する方法である。この方法により、導電性ポリマーからなる導電層が形成される。
ここで、導電性ポリマーからなる導電層は、グラフトポリマーの相互作用性基とイオン的に吸着した導電性モノマーを重合させてなるため、基板との密着性や耐久性に優れると共に、モノマーの供給速度などの重合反応条件を調整することで、膜厚や導電性の制御を行うことができるという利点を有する。
このような導電性ポリマー層を形成する方法には特に制限はないが、均一な薄膜を形成し得るという観点からは、以下に述べるような方法を用いることがで好ましい。
まず、グラフトポリマーが生成された基板を、過硫酸カリウムや、硫酸鉄(III)などの重合触媒や重合開始能を有する化合物を含有する溶液に浸漬し、この液を撹拌しながら導電性ポリマーを形成し得るモノマー、例えば、3,4−エチレンジオキシチオフェンなどを徐々に滴下する。このようにすると、該重合触媒や重合開始能を付与されたグラフトポリマー中の相互作用性基(イオン性基)と導電性ポリマーを形成し得るモノマーとが相互作用により強固に吸着すると共に、モノマー同士の重合反応が進行し、基板上のグラフトポリマー上に導電性ポリマーの極めて薄い膜が形成される。これにより、均一で、かつ、薄い導電性ポリマー層が得られる。
この方法に適用し得る導電性ポリマーとしては、10-6s・cm-1以上、好ましくは、10-1s・cm-1以上の導電性を有する高分子化合物であれば、いずれのものも使用することができるが、具体的には、例えば、置換及び非置換の導電性ポリアニリン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリチオフェン、ポリフラン、ポリピロール、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリアセチレン、ポリピリジルビニレン、ポリアジン等が挙げられる。これらは1種のみを用いてもよく、また、目的に応じて2種以上を組み合わせて用いてもよい。また、所望の導電性を達成できる範囲であれば、導電性を有しない他のポリマーとの混合物として用いることもできるし、これらのモノマーと導電性を有しない他のモノマーとのコポリマーなども用いることができる。
本発明においては、導電性モノマー自体がグラフトポリマーの相互作用性基と静電気的に、或いは、極性的に相互作用を形成することで強固に吸着するため、それらが重合して形成された導電性ポリマー層は、グラフトポリマーとの間に強固な相互作用を形成しているため、薄膜であっても、擦りや引っ掻きに対しても充分な強度を有するものとなる。
更に、導電性ポリマーとグラフトポリマーの相互作用性基とが、陽イオンと陰イオンの関係で吸着するような素材を選択することで、相互作用性基が導電性ポリマーのカウンターアニオンとして吸着することになり、一種のドープ剤として機能するため、導電性ポリマー層(導電性発現層)の導電性を一層向上させることができるという効果を得ることもできる。具体的には、例えば、相互作用性基を有する重合性化合物としてスチレンスルホン酸を、導電性ポリマーの素材としてチオフェンを、それぞれ選択すると、両者の相互作用により、グラフトポリマーと導電性ポリマー層との界面にはカウンターアニオンとしてスルホン酸基(スルホ基)を有するポリチオフェンが存在し、これが導電性ポリマーのドープ剤として機能することになる。
グラフトポリマー表面に形成された導電性ポリマー層の膜厚には特に制限はないが、0.01μm〜10μmの範囲であることが好ましく、0.1μm〜5μmの範囲であることがより好ましい。導電性ポリマー層の膜厚がこの範囲内であれば、充分な導電性と透明性とを達成することができる。0.01μm以下であると導電性が不充分となる懸念があるため好ましくない。
本発明においては、導電性材料の製造方法により作製された導電性材料をエッチングすることにより、導電性パターン材料を形成することができる。
〔金属膜をエッチングし、金属パターンを形成する工程〕
本発明により得られた導電性材料表面の金属膜をエッチングして、金属パターンを形成する方法際のエッチング法としては、「サブトラクティブ法」及び「セミアディティブ法」が用いられる。
「サブトラクティブ法」
サブトラクティブ法とは、上記手法で作成した金属膜上に、(1)レジスト層を塗布→(2)パターン露光、現像により残すべき導体のレジストパターン形成→(3)エッチングすることで不要な金属膜を除去する→(4)レジスト層を剥離させ、金属パターンを形成する方法を指す。本態様に使用される金属膜の膜厚としては5μm以上であることが好ましく、5〜30μmの範囲であることがより好ましい。
(1)レジスト層塗布工程
レジストについて
使用する感光性レジストとしては、光硬化型のネガレジスト、または、露光により溶解する光溶解型のポジレジストが使用できる。感光性レジストとしては、1.感光性ドライフィルムレジスト(DFR)、2.液状レジスト、3.ED(電着)レジストを使用することができる。これらはそれぞれ特徴があり、1.感光性ドライフィルムレジスト(DFR)は乾式で用いることができるので取り扱いが簡便、2.液状レジストはレジストとして薄い膜厚とすることができるので解像度の良いパターンを作ることができる。3.ED(電着)レジストはレジストとして薄い膜厚とすることができるので解像度の良いパターンを作ることができること、塗布面の凹凸への追従性が良く、密着性が優れている。使用するレジストは、これらの特徴を加味して適宜選択すればよい。
塗布方法
1.感光性ドライフィルム
感光性ドライフィルムは、一般的にポリエステルフィルムとポリエチレンフィルムにはさまれたサンドイッチ構造をしており、ラミネータでポリエチレンフィルムを剥がしながら熱ロールで圧着する。
2.液状レジスト
塗布方法はスプレーコート、ロールコート、カーテンコート、ディップコートがある。両面同時に塗布するには、このうちロールコート、ディップコートが両面同時にコートが可能である、好ましい。
3.ED(電着)レジスト
EDレジストは感光性レジストを微細な粒子にして水に懸濁させコロイドとしたものであり、粒子が電荷を帯びているので、導体層に電圧を与えると電気泳動により、導体層上にレジストが析出し、導体上でコロイドは相互に結合し膜状になる、塗布することができる。
(2)パターン露光工程
「露光」
レジスト膜を金属膜上部に設けてなる基材をマスクフィルムまたは乾板と密着させて、使用しているレジストの感光領域の光で露光する。フィルムを用いる場合には真空の焼き枠で密着させ露光をする。露光源に関しては、パターン幅が100μm程度では点光源を用いることができる。パターン幅を100μm以下のものを形成する場合は平行光源を用いることが好ましい。
「現像」
光硬化型のネガレジストならば未露光部を、または、露光により溶解する光溶解型のポジレジストならば露光部を溶かすものならば何を使用しても良いが、主には有機溶剤、アルカリ性水溶液が使用され、近年は環境負荷低減からアルカリ性水溶液が使用されている。
(3)エッチング工程
「エッチング」
エッチングはレジストのない露出した金属層を化学的に溶解することで、導体パターンを形成するための工程である。エッチング工程は主に水平コンベア装置で、エッチング液を上下よりスプレーして行う。エッチング液としては、酸化性の水溶液で金属層を酸化、溶解する。エッチング液として用いられるものは塩化第二鉄液、塩化第二銅液、アルカリエッチャントがある。レジストがアルカリにより剥離してしまう可能性があることから、主には、塩化第二鉄液、塩化第二銅液が使用される。
本発明の方法では、基板界面が凹凸化されていないため基板界面付近の導電性成分の除去性が良いことに加え、金属膜を基材上に導入しているグラフトポリマーが、高分子鎖の末端で基材と結合しており、非常に運動性の高い構造を有しているため、このエッチング工程において、エッチング液がグラフトポリマー層中に容易に拡散でき、基材と金属層との界面部における金属成分の除去性に優れるため、鮮鋭度に優れたパターン形成が可能となる。
(4)レジスト剥離工程
「剥離工程」
エッチングして金属(導電性)パターンが完成した後、不要となったエッチングレジストは不要になるので、これを剥離する工程が必要である。剥離は、剥離液をスプレーして行うことができる。剥離液はレジストの種類により異なるが、一般的にはレジストを膨潤させる溶剤、または、溶液をスプレーにより拭きつけ、レジストを膨潤させて剥離する。
「セミアディティブ法」
セミアディティブ法とは、グラフトポリマー上に形成した金属膜上に、(1)レジスト層を塗布→(2)パターン露光、現像により除去すべき導体のレジストパターン形成→(3)メッキによりレジストの非パターン部に金属膜を形成する→(4)DFRを剥離させ→(5)エッチングすることで不要な金属膜を除去する、金属パターン形成方法のことである。これらの工程は「サブトラクティブ法」と同様な手法を用いることができる。メッキ手法としては前記で説明した、無電解メッキ、電気メッキが使用することができる。また、使用される金属膜の膜厚としては、エッチング工程を短時間で済ませるため、1〜3μmほどが好ましい。また、形成された金属パターンに対して、さらに、電解メッキ、無電解メッキを行ってもよい。
このような、エッチング方法により、本発明で得られた導電性材料を用いた導電性パターン材料を得ることもできる。本発明により得られた導電性材料は、平滑な基板上に密着性の高い金属膜が形成されているため、エッチングにより、平滑な基板に密着性の高い微細な金属パターンを形成するため、各種電気的回路の形成に有用である。
上述したように、本発明の表面グラフト材料の製造方法により得られた表面グラフト材料に導電性素材を付与することで、優れた特性を有する導電膜材料を得ることができる。即ち、プリント配線板分野で基板として使用されるエポキシ樹脂、ポリイミド樹脂、液晶性樹脂、ポリアリーレン樹脂などの耐熱性、低誘電率性を有する絶縁樹脂材料層の表面を粗面化することなく、高い密着強度を発現する金属膜材料、例えば、銅張り積層板などを用に得ることができる。
本発明の製造方法により得られた銅張り積層板などの導線性材料を用いて、例えば、公知のエッチング処理などにより、従来の技術では困難であった20ミクロン以下の微細で、且つ密着強度の高い銅配線の形成が可能となる。
本発明の製造方法により得られた導電性材料は、エポキシ樹脂、ポリイミド樹脂、液晶性樹脂、ポリアリーレン樹脂などの耐熱、低誘電率ポリマーの表面を粗面化しなくとも高い密着強度を発現する銅張り基板を提供しうるため、プリント配線板分野、およびフレキシブル配線分野における基板として有用である。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1〜5)
1.開始剤含有絶縁基板の作製
(具体例1:開始剤を含有したエポキシ絶縁体層の形成)
(A)成分としてビスフェノールA型エポキシ樹脂(エポキシ当量185、油化シェルエポキシ(株)製エピコート828)20質量部(以下、配合量は全て質量部で表す)、クレゾールノボラック型エポキシ樹脂(エポキシ当量215、大日本インキ化学工業(株)製エピクロンN−673)45部、(B)成分としてフェノールノボラック樹脂(フェノール性水酸基当量105、大日本インキ化学工業(株)製フェノライト)30部をエチルジグリコールアセテート20部、ソルベントナフサ20部に攪拌しながら加熱溶解させ室温まで冷却した後、そこへ(C)成分として828とビスフェノールSからなるフェノキシ樹脂のシクロヘキサノンワニス(油化シェルエポキシ(株)製YL6747H30、不揮発分30質量%、重量平均分子量47000)30部と(D)成分として2−フェニル−4,5−ビス(ヒドロキシメチル)イミダゾール0.8部、さらに微粉砕シリカ2部、シリコン系消泡剤0.5部を添加しエポキシ樹脂ワニスを作製した。
さらにこの混合物の中に下記の方法で合成した重合開始ポリマーPを10部添加し、攪拌し、溶解させて開始剤入りのエポキシ樹脂ワニスを作製した。このエポキシ樹脂ワニスをドクターブレードを使用し、SUS基板上に塗布し100℃10分加熱乾燥の後、200℃5分間加熱乾燥することで200ミクロン厚みの硬化したエポキシ基板を得た。Rzは0.8μmであった。
(重合開始ポリマーPの合成)
300mlの三口フラスコに、プロピレングリコールモノメチルエーテル(MFG)30gを加え75度に加熱した。そこに、[2−(Acryloyloxy)ethyl](4−benzoylbenzyl)dimethyl ammonium bromide8.1gと、2−Hydroxyethylmethaacrylate9.9gと、isopropylmethaacrylate13.5gと、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)0.43gと、MFG30gと、の溶液を2.5時間かけて滴下した。その後、反応温度を80度に上げ、更に2時間反応させ、重合開始基を有するポリマーPを得た。
(具体例2:開始剤を含有したエポキシ絶縁体層)
液状ビスフェノールA型エポキシ樹脂(エポキシ当量176、ジャパンエポキシレジン(株)製、エピコート825)5g、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工(株)製、フェノライトLA−7052、不揮発分62%、不揮発分のフェノール性水酸基当量120)2g、フェノキシ樹脂MEKワニス(東都化成(株)製、YP−50EK35、不揮発分35%)10.7g、重合開始剤として1−(4−(2−hydroxyethoxy)phenyl)−2−hydroxy−2−methylpropan−1−oneを2.3g、MEK5.3g、2−エチル−4−メチルイミダゾール0.053gを混合し、攪拌して完全に溶解させてワニス状のエポキシ樹脂組成物を作製した。上記エポキシ樹脂組成物を厚さ128μmのポリイミドフィルム(東レ・デュポン(株)製、カプトン500H)上に乾燥後の厚みが10μmとなるようにコーティングバーを用いて塗布し、170℃で、30分乾燥させ、開始剤を含有したエポキシ絶縁基板を得た。膜厚は90μ、Rzは0.5μであった。
(具体例3:開始剤と重合性二重結合化合物を含有したエポキシ絶縁体層)
酸価73の無水フタル酸変成ノボラック型エポキシアクリレート(日本化薬株式会社製、PCR−1050(商品名)を使用)70部(重量部、以下同じ)、アクリロニトリルブタジエンゴム(日本合成ゴム株式会社製、PNR−1H(商品名)を使用)20部、アルキルフェノール樹脂(日立化成工業株式会社製、ヒタノール2400(商品名)を使用)3部、ラジカル型光重合開始剤(チバガイギー社製、イルガキュア651(商品名)を使用)7部、水酸化アルミニウム(昭和電工株式会社製、ハイジライトH−42M(商品名)を使用)10部及びメチルエチルケトン40部を混合して絶縁層形成用材料を調製した。この塗布液をロッドバーを使用しガラス基板上に塗布し、110度で10分間乾燥した。膜厚は50μ、Rzは0.5μであった。
(具体例4:開始剤を含有したフェノキシエーテル絶縁体層)
トルエン183gにポリフェニレンエーテル樹脂(PKN4752、日本ジーイープラスチックス株式会社製商品名)50g、2,2−ビス(4−シアナトフェニル)プロパン(ArocyB−10、旭チバ株式会社製商品名)100g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(HCA−HQ、三光化学株式会社製商品名)28.1g、ナフテン酸マンガン(Mn含有量=6重量%、日本化学産業株式会社製)の17%トルエン希釈溶液0.1g、2,2−ビス(4−グリシジルフェニル)プロパン(DER331L、ダウケミカル日本株式会社製商品名)88.3gを、さらに重合開始剤として1−(4−(2−hydroxyethoxy)phenyl)−2−hydroxy−2−methylpropan−1−oneを3.3g加え、80℃で加熱溶解して塗布液を調整した。この塗布液をロッドバーを使用しガラス基板上に塗布し、110度で10分間乾燥した。膜厚は50μ、Rzは0.4μであった。
(具体例5:開始剤を含有したポリエーテルスルホン絶縁体層)
ジエチレングリコールジメチルエーテルに溶解したクレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物、70重量部、ポリエーテルスルホン、30重量部、イミダゾール系硬化剤(四国化成製、商品名2E4MZ−CN)4重量部、カプロランクトントリス(アクロイルオキシ)イソシアヌレート(東亞合成製、アロニックスM325)10重量部、ベンゾフェノン(東京化成製) 5重量部、ミヒラーズケトン(東京化成製)0.5重量部、エポキシ樹脂粒子の平均粒径0.5μのものを20重量部。この混合物をN−メチルピロリドンを適量添加しながら攪拌し、ガラス板の上にロールコーターを用いて塗布し、140℃で10分間乾燥した。膜厚は70μ、Rzは0.4μであった。
2.絶縁層の上にグラフトポリマー前駆体層が塗布された積層体フィルムの作製
上記の方法で作成した具体例絶縁層基板1〜5の表面に、それぞれ表面処理や前処理を行うことなく、重合性化合物としてのアクリル基と相互作用性基としてのカルボキシル基とを有するポリマー(側鎖に重合性基を持つ親水性ポリマー:P−1、後述する合成例により得る)を含む下記組成の液状組成物1をロッドバー#6で塗布し、100℃で1分間乾燥することによりグラフトポリマー前駆体層を設け、絶縁体層の上にグラフトポリマー前駆体層が塗布により形成された積層体フィルム1〜5を得た。これらの積層体フィルムの膜厚はいずれも1.0〜1.5μmの範囲であった。
(重合性化合物含有の液状組成物1)
・側鎖に重合性基を持つ親水性ポリマー(P−1) 3.1g
・水 24.6g
・1−メトキシ−2−プロパノール 12.3g
(合成例:二重結合を有するポリマーP−1の合成)
ポリアクリル酸(平均分子量 25000、和光純薬工業)60gとハイドロキノン(和光純薬工業)1.38g(0.0125mol)を、冷却管を設置した1lの三口フラスコに入れ、N,N−ジメチルアセトアミド(DMAc、和光純薬工業)700gを加えて室温で撹拌し、均一な溶液とした。その溶液を撹拌しながら、2−メタクリロイルオキシエチルイソシアネート(カレンズMOI、昭和電工)64.6g(0.416mol)を滴下した。続いて、DMAc30gに懸濁させたジラウリン酸ジ−n−ブチルすず(東京化成工業)0.79g(1.25×10-3mol)を滴下した。撹拌しながら65度のウォーターバスで加熱した。5時間後に加熱を止め、室温まで自然冷却した。この反応液の酸価は7.105mmol/g、固形分は11.83%だった。
反応液300gをビーカーにとり、氷バスで5度まで冷やした。その反応液を撹拌しながら、4規定の水酸化ナトリウム水溶液41.2mlを約1時間で滴下した。滴下中の反応溶液の温度は5〜11度だった。滴下後に反応液を室温で10分撹拌し、吸引濾過で固形分を取り除き褐色の溶液を得た。その溶液を酢酸エチル3リットルで再沈し、析出した固体を濾取した。その固体をアセトン3リットルで終夜リスラリーした。固体を濾別後、10時間真空乾燥して薄い褐色の粉末P−1を得た。このポリマー1gを水2gとアセトニトリル1gの混合溶媒に溶かしたときのPHは5.56で粘度は5.74cpsであった。(粘度は、東機産業社製、RE80型粘度系で28℃で測定、ローター30XR14使用)。またGPCによる分子量は30000であった。
3.露光(グラフトポリマーの形成)
次にこの絶縁層の上にグラフト前駆体層が塗布された積層体フィルム1〜5を以下に示すいずれかの方法にてパターン露光し、その後、洗浄処理を行い、絶縁体層の上にパターン状にグラフトポリマーが形成されたグラフトパターン材料1〜5を得た。
露光は、露光機:紫外線照射装置(UVX−02516S1LP01、ウシオ電機社製)を用い、室温で1分間露光した。露光後、純水で充分洗浄した。
4.導電性付与
前記のようにして得られた本発明の表面グラフト材料1〜5に、それぞれ、以下に記載する2つの方法のうち、下記表1に記載した方法により導電性物質を付与し、実施例1〜実施例5の導電性材料を得た。
導電性付与方法A:無電解めっき、電解めっき工程の実施
表面グラフト材料1〜3を、硝酸銀(和光純薬製)0.1質量%の水溶液に1時間浸漬した後、蒸留水で洗浄した。その後、下記組成の無電解メッキ浴に10分間浸漬した後、下記組成の電気メッキ浴にて20分間電気メッキし、実施例1〜3の銅張り積層板〔導電性材料〕を作製した。
<無電解メッキ浴成分>
・硫酸銅 0.3g
・酒石酸NaK 1.7g
・水酸化ナトリウム 0.7g
・ホルムアルデヒド 0.2g
・水 48g
<電気メッキ浴の組成>
・硫酸銅 38g
・硫酸 95g
・塩酸 1mL
・カッパーグリームPCM(メルテックス(株)製) 3mL
・水 500g
導電性付与方法B:導電性粒子の付着、無電解めっき処理工程の実施
形成されたグラフトパターン材料4〜5を、下記手法で作製した正電荷を有するAg粒子が分散した液に1時間浸漬した後、蒸留水で洗浄した。その後、導電性方法Aと同一のめっき方法を実施して、実施例4、5の銅張り積層板〔導電性材料〕を作製した。
<正電荷を有するAg粒子の合成手法>
過塩素酸銀のエタノール溶液(5mM)50mlにビス(1,1−トリメチルアンモニウムデカノイルアミノエチル)ジスルフィド3gを加え、激しく攪拌しながら水素化ホウ素ナトリウム溶液(0.4M)30mlをゆっくり滴下してイオンを還元し、4級アンモニウムで被覆された銀粒子の分散液を得た。
導電性材料の評価
(表面凹凸)
得られた導電性材料の表面凹凸を、ナノピクス(ナノピクス1000、セイコーインスツルメンツ社製、DFMカンチレバー使用)にて測定した。結果を下記表1に示す。
(金属膜厚の測定)
DMFカンチレバーを使用して金属膜厚を測定した。結果を下記表1に示す。
(密着強度評価)
金属膜を形成した導電性材料表面に銅板(厚さ:50μm)をエポキシ系接着剤(アラルダイト、チバガイギー製)で接着し、140℃で4時間乾燥した後、JIS C6481に基づき90度剥離実験を行った。剥離装置は島津製作所製 引っ張り試験機AGS−Jを使用した。結果を下記表1に示す。
Figure 0004712420
表1に明らかなように、本発明の製造方法により得られた導電性材料は、表面の凹凸が小さく、平滑な絶縁体層表面に、厚みが十分で、且つ、基材との密着性に優れた金属膜が形成されていることがわかった。
5.パターンの形成
前記実施例1〜5で得られた導電性材料(銅基板)を用いて、微細配線を作製した。
上記導電性材料〔実施例1〜5〕の表面に、感光性ドライフィルム(富士写真フイルム製)をラミネートし、所望の導体回路パターンが描画されたマスクフィルム(金属パターン部分が開口部、金属パターン非形成部がマスク部)を通して紫外線露光させ、画像を焼き付け、現像を行った。次に、塩化第二銅エッチング液を用いてレジストが除去された部分の金属膜(銅薄膜)を除去した。その後ドライフィルムを剥離することにより、銅微細パターンを得た。パターンの形状を測定した。
形成された導電性パターンを以下のように評価した。
(パターン形成性)
光学顕微鏡(ニコン製、OPTI PHOTO−2)を用いて細線幅を測定した。結果を下記表2に示す。
(密着強度評価)
金属パターン(幅:5mm)の表面に銅板(厚さ:50μm)をエポキシ系接着剤(アラルダイト、チバガイギー製)で接着し、140℃で4時間乾燥した後、JIS C6481に基づき90度剥離実験を行った。剥離装置は島津製作所製 引っ張り試験機AGS−Jを使用した。結果を下記表2に示す。
Figure 0004712420
表2に明らかなように、本発明の導電性材料を用いて導電パターンを形成したところ、基板表面の凹凸が小さく、平滑な絶縁体層表面に、基材との密着性の高い、微細な配線を形成しうることがわかった。

Claims (5)

  1. 支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設ける工程、該絶縁体層表面に直接結合したグラフトポリマーを形成する工程、を順次有することを特徴とする表面グラフト材料の製造方法。
  2. 請求項1に記載の表面グラフトの製造方法により作製された表面グラフト材料。
  3. 支持体上に、絶縁樹脂中に重合開始剤を含有してなる絶縁体層を設ける工程、該絶縁体層表面に直接結合したグラフトポリマーを形成する工程、該グラフトポリマー上に導電性層を設ける工程、を順次有することを特徴とする導電性材料の製造方法。
  4. 請求項3に記載の導電性材料の製造方法により作製された導電性材料。
  5. 請求項3に記載の導電性材料の製造方法により作製された導電性材料をエッチングすることにより得られた導電性パターン材料。
JP2005105209A 2005-03-31 2005-03-31 表面グラフト材料、導電性材料およびその製造方法 Expired - Fee Related JP4712420B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005105209A JP4712420B2 (ja) 2005-03-31 2005-03-31 表面グラフト材料、導電性材料およびその製造方法
KR1020077022984A KR20070117665A (ko) 2005-03-31 2006-03-31 표면 그래프트 재료와 그 제조방법, 도전성 재료와 그제조방법, 및 도전성 패턴 재료
PCT/JP2006/307401 WO2006104279A1 (en) 2005-03-31 2006-03-31 Surface graft material and its manufacturing method, electrically conductive material and its manufacturing method, and electrically conductive pattern material
CNA2006800105064A CN101151307A (zh) 2005-03-31 2006-03-31 表面接枝材料及其生产方法,导电材料及其生产方法,和导电图形材料
EP06731349A EP1871826A4 (en) 2005-03-31 2006-03-31 SURFACE GRAFT MATERIAL AND MANUFACTURING METHOD THEREOF, ELECTRICALLY CONDUCTIVE MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND MATERIAL WITH ELECTRICALLY CONDUCTIVE PATTERN
US11/910,270 US20090136719A1 (en) 2005-03-31 2006-03-31 Surface graft material and its manufacturing method, electrically conductive material and its manufacturing method, and electrically conductive pattern material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105209A JP4712420B2 (ja) 2005-03-31 2005-03-31 表面グラフト材料、導電性材料およびその製造方法

Publications (2)

Publication Number Publication Date
JP2006282878A JP2006282878A (ja) 2006-10-19
JP4712420B2 true JP4712420B2 (ja) 2011-06-29

Family

ID=37405123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105209A Expired - Fee Related JP4712420B2 (ja) 2005-03-31 2005-03-31 表面グラフト材料、導電性材料およびその製造方法

Country Status (2)

Country Link
JP (1) JP4712420B2 (ja)
CN (1) CN101151307A (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103622A (ja) * 2006-10-20 2008-05-01 Fujifilm Corp プリント配線板作製用積層体及びそれを用いたプリント配線板の作製方法
WO2008050631A1 (fr) * 2006-10-23 2008-05-02 Fujifilm Corporation Procédé de production d'un substrat revêtu d'un film métallique, substrat revêtu d'un film métallique, procédé de production d'un matériau à motif métallique, et matériau à motif métallique
JP4903528B2 (ja) * 2006-10-23 2012-03-28 富士フイルム株式会社 金属膜付基板の作製方法、金属膜付基板、金属パターン材料の作製方法、金属パターン材料
JP2008108791A (ja) * 2006-10-23 2008-05-08 Fujifilm Corp 多層プリント配線基板及び多層プリント配線基板の作製方法
JP2008274390A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 金属膜付基板の作製方法、金属膜付基板、金属パターン材料の作製方法、金属パターン材料
JP4902344B2 (ja) * 2006-12-27 2012-03-21 富士フイルム株式会社 金属パターン材料の製造方法
JP2008200957A (ja) * 2007-02-19 2008-09-04 Fujifilm Corp 積層体、プリント配線板製造用積層体、プリント配線板の製造方法、及びプリント配線板
JP4837703B2 (ja) * 2007-05-10 2011-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板の配線形成方法
JP2009161857A (ja) * 2007-12-14 2009-07-23 Fujifilm Corp めっき用感光性樹脂組成物、及び、それを用いた金属層付き基板の製造方法
JP5258489B2 (ja) * 2008-09-30 2013-08-07 富士フイルム株式会社 金属膜形成方法
FR2944982B1 (fr) * 2009-04-30 2011-10-14 Commissariat Energie Atomique Procede de preparation d'un substrat metallise,ledit substrat et ses utilisations
US9758688B2 (en) * 2012-09-21 2017-09-12 Sumitomo Chemical Company, Limited Composition for forming conductive film
JP5995662B2 (ja) * 2012-11-07 2016-09-21 アキレス株式会社 パターン化されためっき物
CN103021571A (zh) * 2012-12-18 2013-04-03 安徽金大仪器有限公司 一种含有邻苯二甲酸二异壬酯的导电浆料的制备方法
CN103021570A (zh) * 2012-12-18 2013-04-03 安徽金大仪器有限公司 一种含有松香树脂的导电浆料的制备方法
GB201303284D0 (en) * 2013-02-25 2013-04-10 Sec Dep For Business Innovation And Skills The Conductive fabric
US9846362B2 (en) 2013-03-29 2017-12-19 Toray Industries, Inc. Conductive paste and method of producing conductive pattern
CN109631957A (zh) * 2019-01-14 2019-04-16 南方科技大学 一种可拉伸超灵敏电子皮肤及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267857A (ja) * 2003-03-06 2004-09-30 Fuji Photo Film Co Ltd 微粒子吸着パターン形成方法、及び微粒子吸着パターン材料
JP2004285325A (ja) * 2002-12-17 2004-10-14 Fuji Photo Film Co Ltd パターン形成方法及び物質付着パターン材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285325A (ja) * 2002-12-17 2004-10-14 Fuji Photo Film Co Ltd パターン形成方法及び物質付着パターン材料
JP2004267857A (ja) * 2003-03-06 2004-09-30 Fuji Photo Film Co Ltd 微粒子吸着パターン形成方法、及び微粒子吸着パターン材料

Also Published As

Publication number Publication date
CN101151307A (zh) 2008-03-26
JP2006282878A (ja) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4712420B2 (ja) 表面グラフト材料、導電性材料およびその製造方法
JP4850487B2 (ja) プリント配線板用積層体、それを用いたプリント配線板、プリント配線基板の作製方法、電気部品、電子部品、および、電気機器
JP4606924B2 (ja) グラフトパターン材料、導電性パターン材料およびその製造方法
JP2008103622A (ja) プリント配線板作製用積層体及びそれを用いたプリント配線板の作製方法
JP5079396B2 (ja) 導電性物質吸着性樹脂フイルム、導電性物質吸着性樹脂フイルムの製造方法、それを用いた金属層付き樹脂フイルム、及び、金属層付き樹脂フイルムの製造方法
JP5101026B2 (ja) 導電膜形成方法、導電性パターン形成方法、及び多層配線板の製造方法
US8261438B2 (en) Method for forming metal pattern, metal pattern and printed wiring board
JP2010185128A (ja) めっき用感光性樹脂組成物、積層体、それを用いた表面金属膜材料の作製方法、表面金属膜材料、金属パターン材料の作製方法、金属パターン材料、及び配線基板
WO2008050631A1 (fr) Procédé de production d'un substrat revêtu d'un film métallique, substrat revêtu d'un film métallique, procédé de production d'un matériau à motif métallique, et matériau à motif métallique
JP4790380B2 (ja) プリント配線板用積層体、及び、それを用いたプリント配線板の作製方法
US20090136719A1 (en) Surface graft material and its manufacturing method, electrically conductive material and its manufacturing method, and electrically conductive pattern material
JP2008277717A (ja) 金属層付き樹脂フイルム、その製造方法及びそれを用いたフレキシブルプリント基板の製造方法
US20080093111A1 (en) Multilayer wiring board and method of manufacturing the same
JP4903528B2 (ja) 金属膜付基板の作製方法、金属膜付基板、金属パターン材料の作製方法、金属パターン材料
JP2008211060A (ja) 金属膜付基板の製造方法
JP4741352B2 (ja) プリント配線板用積層体、及び、それを用いたプリント配線板の作製方法
JP2006057059A (ja) 表面導電性材料の製造方法
WO2011118797A1 (ja) 被めっき層形成用組成物、表面金属膜材料およびその製造方法、並びに、金属パターン材料およびその製造方法
JP4505284B2 (ja) 多層配線板の製造方法
JP2008258211A (ja) 多層配線基板の製造方法及び多層配線基板
JP2007134396A (ja) プリント配線板用積層体、それを用いた多層金属配線パターン形成方法及び金属薄膜
JP2007031577A (ja) グラフトポリマーパターン材料、プラスチック材料、およびそれらの製造方法
JP2008274390A (ja) 金属膜付基板の作製方法、金属膜付基板、金属パターン材料の作製方法、金属パターン材料
JP2007126577A (ja) 表面導電性材料の製造方法
JP2008108797A (ja) 回路基板の製造方法及びそれにより得られた回路基板

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

LAPS Cancellation because of no payment of annual fees