JP4707366B2 - Granular adsorbent with indicator function - Google Patents

Granular adsorbent with indicator function Download PDF

Info

Publication number
JP4707366B2
JP4707366B2 JP2004312910A JP2004312910A JP4707366B2 JP 4707366 B2 JP4707366 B2 JP 4707366B2 JP 2004312910 A JP2004312910 A JP 2004312910A JP 2004312910 A JP2004312910 A JP 2004312910A JP 4707366 B2 JP4707366 B2 JP 4707366B2
Authority
JP
Japan
Prior art keywords
granular
adsorbent
trivalent iron
sulfate
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312910A
Other languages
Japanese (ja)
Other versions
JP2006122786A (en
Inventor
達朗 村上
博文 渡辺
誠治 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2004312910A priority Critical patent/JP4707366B2/en
Publication of JP2006122786A publication Critical patent/JP2006122786A/en
Application granted granted Critical
Publication of JP4707366B2 publication Critical patent/JP4707366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、アンモニア、アミン等の塩基性ガスの吸着性に優れ、且つインジケータ機能を有する粒状吸着剤に関する。   The present invention relates to a particulate adsorbent that is excellent in adsorbability of basic gases such as ammonia and amines and has an indicator function.

アンモニアやアミン等の塩基性ガスは悪臭の原因であり、このような塩基性ガスは下水処理場、し尿処理場、ゴミ焼却炉などから多く発生している。それらの悪臭成分を除去するための吸着剤として、活性炭やシリカゲルなどが知られているが、これらは、その吸着性が未だ十分でなく、その向上が求められている。   Basic gases such as ammonia and amines cause bad odors, and such basic gases are often generated from sewage treatment plants, human waste treatment plants, garbage incinerators, and the like. As adsorbents for removing these malodorous components, activated carbon, silica gel and the like are known, but these have not yet sufficiently adsorbed and are required to be improved.

塩基性ガスに対する吸着性が改善されたものとしては、シリカゲルや活性白土等の多孔質鉱物にリン酸とヒドラジンの複塩を担持させた脱臭剤が提案されている(特許文献1参照)。
特許第3135790号(特許請求の範囲、表1)
As a substance with improved adsorbability to basic gas, a deodorizer in which a double mineral salt of phosphoric acid and hydrazine is supported on a porous mineral such as silica gel or activated clay has been proposed (see Patent Document 1).
Japanese Patent No. 3135790 (Claims, Table 1)

上記特許文献1に開示されている脱臭剤は、アミンやアルデヒドに対する吸着性に優れているというものであるが、反面、インジケータ機能を有しておらず、その寿命を把握することができないという問題がある。仮に、その寿命を把握しようとするならば、この吸着剤を通した後のガスのアミン濃度等をモニタリングしなければならない。   The deodorizer disclosed in Patent Document 1 is excellent in adsorptivity to amines and aldehydes, but on the other hand, it does not have an indicator function and cannot be used to grasp its life. There is. If the lifetime is to be grasped, the amine concentration of the gas after passing through the adsorbent must be monitored.

従って、本発明の目的は、アンモニアやアミンに対して優れた吸着性を示すとともに、インジケータ機能を有し、アンモニアやアミン吸着量が飽和に達した場合には変色し、飽和状態に達したことを目視で容易に判断することが可能な吸着剤を提供することにある。   Therefore, the object of the present invention is to show excellent adsorptivity to ammonia and amines, have an indicator function, change color when ammonia or amine adsorption amount reaches saturation, and reach saturation state. It is an object of the present invention to provide an adsorbent that can be easily determined visually.

本発明によれば、シリカと活性白土とを25:75乃至75:25の重量比で含有する混合物の粒状成形担体からなり、該粒状成形担体は、0.8乃至2.0ml/gの全細孔容積を有しており、且つ該粒状成形担体には、3価の鉄及び硫酸根が担持されていることを特徴とする粒状吸着剤が提供される。   According to the present invention, it consists of a granular shaped carrier of a mixture containing silica and activated clay in a weight ratio of 25:75 to 75:25, the granular shaped carrier comprising 0.8 to 2.0 ml / g total A granular adsorbent characterized by having a pore volume and carrying trivalent iron and sulfate radicals on the granular shaped carrier is provided.

本発明の粒状吸着剤においては、
(1)前記3価の鉄は、前記粒状成形担体100重量部当り、Fe換算で5重量部以上の量で担持されていること、
(2)前記3価の鉄及び硫酸根が下記式(1)、
m=SO/Fe・・・(1)
式中、mは、酸化第二鉄(Fe)に対する硫酸根(SO)のモル比
である、
で表される、mの値が2.0を越えること、
(3)前記3価の鉄及び硫酸根がポリ硫酸第二鉄であること、
(4)レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有し、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有していること、
が好ましい。
In the granular adsorbent of the present invention,
(1) The trivalent iron is supported in an amount of 5 parts by weight or more in terms of Fe 2 O 3 per 100 parts by weight of the granular shaped support.
(2) The trivalent iron and sulfate radical are represented by the following formula (1),
m = SO 3 / Fe 2 O 3 (1)
Where m is the molar ratio of sulfate radical (SO 3 ) to ferric oxide (Fe 2 O 3 ),
The value of m represented by
(3) The trivalent iron and sulfate radical is polyferric sulfate,
(4) The silica has a volume average particle diameter (D 50 ) of 10 to 100 μm, and the activated clay has a volume average particle diameter (D 50 ) of 2 to 10 μm, as measured by a laser diffraction method. Doing things,
Is preferred.

本発明の粒状吸着剤においては、キャリアである粒状成形担体に、3価の鉄及び硫酸根を担持させているため、アンモニアやアミンに対する吸着性が高められていると同時に、アンモニアやアミンが吸着されていると変色し、インジケータ機能を示すという特性を有している。   In the granular adsorbent of the present invention, trivalent iron and sulfate radicals are supported on a granular molded carrier as a carrier, so that the adsorptivity to ammonia and amine is improved, and at the same time, ammonia and amine are adsorbed. It has the characteristic that it is discolored and shows an indicator function.

即ち、粒状吸着剤には、硫酸根が含まれているため、この酸根がアンモニアやアミンと反応し、これを捕捉することができる。また、アンモニアやアミンが吸着されると同時に、フリーの3価の鉄イオン(Fe3+)が生成し、この結果、この吸着剤は、後述する実施例に示されているように、乳白色からかなり濃い茶色に変色する。例えば、細長い円柱管に本発明の粒状吸着剤を充填しておき、一方の側から他方の側にアンモニア含有ガスを通すと、ガス供給側から順次茶色に変色して行くことになる。従って、吸着剤の全体が茶色に変色した時点で、吸着性が飽和に達したことを認識することができ、この粒状吸着剤を交換すればよい。 That is, since the particulate adsorbent contains a sulfate group, the acid group can react with ammonia and amine and capture it. At the same time as ammonia and amine are adsorbed, free trivalent iron ions (Fe 3+ ) are produced. As a result, the adsorbent is considerably milky white as shown in Examples described later. It turns dark brown. For example, when an elongated cylindrical tube is filled with the granular adsorbent of the present invention and an ammonia-containing gas is passed from one side to the other side, the color gradually changes to brown from the gas supply side. Therefore, when the whole adsorbent turns brown, it can be recognized that the adsorptivity has reached saturation, and this granular adsorbent may be replaced.

また、本発明においては、使用済み製品は、シリカや活性白土に硫酸アンモニウムなどアンモニウム塩が混ざっている無機物であるため、これを肥料などに再利用できるという利点もある。   Further, in the present invention, the used product is an inorganic substance in which ammonium salt such as ammonium sulfate is mixed with silica or activated clay, and therefore, there is an advantage that it can be reused as fertilizer.

また、本発明においては、上記3価の鉄及び硫酸根を担持させる粒状成形担体として、シリカと活性白土とを一定の重量比(25:75乃至75:25)で含有する混合物を使用することも重要である。即ち、3価の鉄及び硫酸根を粒状成形担体に担持させるためには、通常、3価の鉄の硫酸塩の水溶液もしくは3価の鉄を含有する硫酸水溶液を粒状成形担体にスプレー噴霧すること等により行われるため、酸によるシリカの粒子崩壊を生じるおそれがある。本発明では、細孔容積が大きく、アンモニア等に対する吸着能が高いシリカを用いるだけでなく、活性白土を併用することにより、酸による粒子崩壊が抑制され、前述した3価の鉄及び硫酸根の担持を容易に行うことができ、アンモニア等に対する吸着能を著しく高められるのである。   In the present invention, a mixture containing silica and activated clay in a constant weight ratio (25:75 to 75:25) is used as the granular molded carrier for supporting the trivalent iron and sulfate radical. It is also important. That is, in order to carry trivalent iron and sulfate radicals on a granular shaped support, the granular shaped support is usually sprayed with an aqueous solution of trivalent iron sulfate or a sulfuric acid solution containing trivalent iron. Therefore, there is a risk of causing silica particle collapse by acid. In the present invention, not only silica having a large pore volume and high adsorption ability to ammonia and the like, but also using activated clay, particle disintegration due to acid is suppressed, and the trivalent iron and sulfate radicals described above are suppressed. The loading can be easily performed, and the adsorption ability to ammonia or the like can be remarkably enhanced.

例えば、粒状成形担体中のシリカは、吸着性を示す成分として機能するが、活性白土は、シリカ粒子を結合するバインダーとして存在しており、このような活性白土の使用により、粒子強度(圧壊強度)が高められ、例えば水分の吸着あるいは水滴との接触等による粒子の崩壊を有効に回避することができる。また、活性白土は、スメクタイト族粘土鉱物の酸処理物であるため、耐酸性に優れている。従って、このような活性白土がバインダーとして存在していることにより、粒状成形担体に対して3価の鉄及び硫酸根を担持させることができるのである。   For example, silica in a granular shaped carrier functions as an adsorbing component, but activated clay exists as a binder that binds silica particles. By using such activated clay, particle strength (crush strength) ), And particle collapse due to, for example, moisture adsorption or contact with water droplets can be effectively avoided. Active clay is an acid-treated product of smectite group clay minerals, and therefore has excellent acid resistance. Therefore, when such activated clay is present as a binder, trivalent iron and sulfate radicals can be supported on the granular shaped support.

本発明の粒状吸着剤において、3価の鉄及び硫酸根を担持させる粒状成形担体は、シリカと活性白土とを、25:75乃至75:25、特に35:65乃至65:35の重量比で含有する混合物である。例えば、活性白土の使用量が上記範囲よりも多いと、シリカの吸着能が損なわれてしまい、アンモニアやアミンに対する吸着性が低下してしまう。また、活性白土の使用量が上記範囲よりも少ないと、粒子強度が低下し、例えば水分の吸着等により粒子の崩壊が容易に生じ、さらに、十分な量の3価の鉄及び硫酸根を担持させることが困難となり、この場合においても、アンモニアやアミンに対する吸着性が低下し、さらにはインジケータ機能も低下してしまうこととなる。なお、シリカ及び活性白土の重量は、それぞれ110℃で3時間乾燥した時の重量のことである。   In the granular adsorbent of the present invention, the granular shaped carrier for supporting trivalent iron and sulfate radical is silica and activated clay in a weight ratio of 25:75 to 75:25, particularly 35:65 to 65:35. It is a mixture containing. For example, if the amount of activated clay used is greater than the above range, the silica adsorption ability is impaired, and the adsorbability for ammonia and amines is lowered. In addition, when the amount of activated clay used is less than the above range, the particle strength decreases, for example, particle collapse easily occurs due to moisture adsorption or the like, and further supports a sufficient amount of trivalent iron and sulfate radicals. Even in this case, the adsorptivity to ammonia or amine is lowered, and the indicator function is also lowered. The weight of silica and activated clay is the weight when dried at 110 ° C. for 3 hours.

粒状成形担体に使用するシリカは、BET法(窒素吸着)で測定して1.0ml/g以上、特に1.2乃至2.0ml/gのN吸着細孔容積を有しているものを使用するのがよい。このような細孔容積の大きなシリカを使用することにより、後述する大きな細孔容積を有する粒状成形担体を得ることができ、優れた吸着性を確保することができる。このようなシリカとしては、例えばゲルタイプシリカ、沈降タイプシリカ或いはそれらの混合物が挙げられる。また、上記のような大きな細孔容積を有していることに関連して、このシリカのBET比表面積は、150乃至500m/gの範囲にあるのがよく、さらに、その嵩密度が0.2乃至0.6g/mlの範囲にあるのがよい。 Silica used for the granular shaped carrier is one having an N 2 adsorption pore volume of 1.0 ml / g or more, particularly 1.2 to 2.0 ml / g, as measured by the BET method (nitrogen adsorption). It is good to use. By using such a silica having a large pore volume, a granular molded carrier having a large pore volume, which will be described later, can be obtained, and excellent adsorbability can be ensured. Examples of such silica include gel type silica, precipitated type silica, and mixtures thereof. Further, in relation to having a large pore volume as described above, the BET specific surface area of this silica is preferably in the range of 150 to 500 m 2 / g, and the bulk density is 0. It should be in the range of 2 to 0.6 g / ml.

このような細孔容積を有するシリカは、一例として、以下のようにして製造することができる。希硫酸にケイ酸ソーダ溶液を加え、pH1.5〜3.0程度で保持、ゲル化させ、そのゲルを十分洗浄後水熱処理、又はアンモニア処理を行うことにより製造することが出来る。水熱処理をより強く(温度を高く、時間を長く)行うか、アンモニア処理をより強く(pHをより高く、長時間処理)行えば、細孔容積はより大きくなる。この処理後、乾燥、粉砕して本発明品の原料とすることが出来る。   As an example, silica having such a pore volume can be produced as follows. It can be manufactured by adding a sodium silicate solution to dilute sulfuric acid, maintaining and gelling at a pH of about 1.5 to 3.0, and sufficiently washing the gel followed by hydrothermal treatment or ammonia treatment. If the hydrothermal treatment is performed more strongly (temperature is increased and the time is increased) or the ammonia treatment is performed more strongly (the pH is increased and the treatment is performed for a longer time), the pore volume becomes larger. After this treatment, it can be dried and pulverized to be a raw material for the product of the present invention.

また、上記のシリカと併用する活性白土は、スメクタイト族粘土鉱物の酸処理物である。酸処理するスメクタイト族粘土鉱物は、SiOの四面体層状構造を有するケイ酸塩鉱物であり、例えばモンモリロナイト(酸性白土やベントナイトなど)、バイデライト、ノントロナイトなどのジオクタヘドラル型スメクタイト;サポナイト、ヘクトライト、ソーコナイト、フライポンタイトなどのトリオクタヘドラル型スメクタイト;スチブンサイト等を例示することができ、本発明においては、特に酸性白土が好適である。即ち、酸性白土は、主な交換性陽イオンとして、HやMg2+を含み、その組成は産地等によって異なっているが、一般に非晶質シリカの含有量が多い(例えばモル基準で一般に、SiO/Al=7〜8)。このような酸性白土(110℃乾燥品)の代表的な組成は、次の通りである。 Moreover, the activated clay used together with the silica is an acid-treated product of smectite group clay mineral. The smectite group clay mineral to be acid-treated is a silicate mineral having a tetrahedral layered structure of SiO 4 , for example, montmorillonite (acidic clay, bentonite, etc.), dioctahedral smectite such as beidellite, nontronite; saponite, hectorite Examples include trioctahedral smectites such as sauconite and frypontite; stevensite and the like, and acid clay is particularly preferred in the present invention. That is, acidic clay contains H + and Mg 2+ as main exchangeable cations, and the composition varies depending on the production area, etc., but generally the content of amorphous silica is large (eg, generally on a molar basis, SiO 2 / Al 2 O 3 = 7~8). The typical composition of such acid clay (dried at 110 ° C.) is as follows.

SiO 61.0 〜 74.0 重量%
Al 12.0 〜 23.0 重量%
Fe 2.0 〜 3.5 重量%
MgO 3.0 〜 7.0 重量%
CaO 1.0 〜 4.0 重量%
O 0.3 〜 2.0 重量%
NaO 0.3 〜 2.0 重量%
灼熱減量 5.0 〜 10.0 重量%
SiO 2 61.0 ~ 74.0% by weight
Al 2 O 3 12.0 to 23.0 wt%
Fe 2 O 3 2.0 ~ 3.5 wt%
MgO 3.0 to 7.0 wt%
CaO 1.0-4.0 wt%
K 2 O 0.3 ~ 2.0% by weight
Na 2 O 0.3 ~ 2.0% by weight
Burning loss 5.0 to 10.0 wt%

本発明においては、このような酸性白土を希硫酸等の酸で処理して比表面積や細孔容積を高めた活性白土を好適に使用することができる。   In the present invention, an activated clay obtained by treating such an acidic clay with an acid such as dilute sulfuric acid to increase the specific surface area and pore volume can be suitably used.

一般に、本発明で用いる活性白土は、前述したシリカの吸着性を損なうことなく、シリカ粒子同士の結合性を高めるという点で、200乃至400m/gのBET比表面積を有し、0.3乃至0.6ml/gの細孔容積を有していることが好適である。 In general, the activated clay used in the present invention has a BET specific surface area of 200 to 400 m 2 / g in terms of enhancing the bonding property between silica particles without impairing the above-described silica adsorption, and 0.3 It preferably has a pore volume of 0.6 to 0.6 ml / g.

本発明において、3価の鉄及び硫酸根を担持する粒状成形担体は、上述したシリカと活性白土とを前述した重量比で混合し、所定の粒子形状に成形することにより得られるが、粒状成形担体中に各成分が均一に分散し、特にシリカ粒子の間に活性白土の粒子が存在するような分散構造を形成するために、レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有していることが好ましく、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有していることが好ましい。このような粒度調整は、水簸、風簸等の分級操作や、乾式或いは湿式粉砕により行うことができる。粉砕には、ボールミル、チューブミル等の微粉砕機を用いるのがよい。また、一般には、原料シリカ或いは原料活性白土を、固形分濃度が5乃至25重量%程度の水性スラリーとして湿式粉砕により粒度調整を行うことが好適である。 In the present invention, the granular molded carrier supporting trivalent iron and sulfate radical is obtained by mixing the above-mentioned silica and activated clay in the above-mentioned weight ratio and molding into a predetermined particle shape. In order to form a dispersion structure in which each component is uniformly dispersed in the carrier, and in particular, active clay particles are present between the silica particles, the silica has a particle size of 10 to 100 μm as measured by a laser diffraction method. it is preferable to have a volume average particle diameter (D 50), wherein the activated clay preferably has 2 to 10μm volume average particle diameter of (D 50). Such particle size adjustment can be performed by classification operation such as water tank or wind tank, or dry or wet pulverization. For pulverization, a fine pulverizer such as a ball mill or a tube mill is preferably used. In general, it is preferable to adjust the particle size by wet-grinding raw silica or raw activated clay as an aqueous slurry having a solid content concentration of about 5 to 25% by weight.

上述したシリカ及び活性白土の混合及び成形は、一次軸または二軸の押出機を用いて行うことが、細孔破壊等を抑制する上で最も好適であり、成形された粒子形状は、球状、立方体状、円柱状、角柱状、顆粒状、タブレット状、ハニカム状、不定形状等の任意の形状であってよく、その用途に応じて適宜決定される。また、必要に応じて有機バインダーを併用しても良い。   The mixing and molding of the silica and the activated clay described above is most preferably performed using a primary or biaxial extruder in order to suppress pore breakage and the like, and the molded particle shape is spherical, The shape may be any shape such as a cubic shape, a columnar shape, a prismatic shape, a granular shape, a tablet shape, a honeycomb shape, and an indefinite shape, and is appropriately determined according to the application. Moreover, you may use an organic binder together as needed.

上記のようにして得られた粒状成形担体は、前述したN吸着細孔容積のシリカを使用していることに関連して、0.8乃至2.0ml/g、特に1.0乃至2.0ml/gの全細孔容積を有しており、これにより、以下に述べる3価の鉄及び硫酸根を担持させたときに、アンモニアやアミンに対して極めて高い吸着性を確保し、且つインジケータ機能を持たせることができる。 The granular shaped carrier obtained as described above is 0.8 to 2.0 ml / g, particularly 1.0 to 2 in relation to the use of the silica having the N 2 adsorption pore volume described above. Having a total pore volume of 0.0 ml / g, thereby ensuring extremely high adsorptivity to ammonia and amines when trivalent iron and sulfate radicals described below are supported, and An indicator function can be provided.

尚、この粒状成形担体の全細孔容積は、後述する実施例に示されているように、例えば粒状成形担体を一旦乾燥させて、その重量(W)を測定し、次いで、乾燥された粒状成形担体に一定条件で水分を吸着させ、その重量(W)を測定し、下記式(2)により算出される。
全細孔容積(ml/g)=(W−W)/W・・・(2)
Incidentally, the total pore volume of this granular molded carrier was measured by, for example, once drying the granular molded carrier, measuring its weight (W 1 ), and then drying as shown in the examples described later. Moisture is adsorbed on the granular shaped carrier under a certain condition, its weight (W 2 ) is measured, and calculated by the following formula (2).
Total pore volume (ml / g) = (W 2 −W 1 ) / W 1 (2)

本発明の粒状吸着剤は、上記の粒状成形担体に3価の鉄及び硫酸根を担持させることにより得られる。
このような3価の鉄及び硫酸根としては、3価の鉄の硫酸塩が使用でき、特にポリ硫酸第二鉄が好ましい。また、3価の鉄塩、例えば3価の鉄の硫酸塩、硝酸塩、燐酸塩もしくは塩化物と、硫酸根として硫酸または硫酸アルミニウムを併用しても良い。即ち、この硫酸根によって、アンモニアやアミンに対して高い吸着性が得られるだけでなく、3価の鉄の存在により、インジケータ機能が発現する。即ち、アンモニア等の吸着により、3価の鉄イオン(Fe3+)が生成し、乳白色からかなり濃い茶色に変色する。この結果、このような変色によって、アンモニア等の吸着成分が飽和したことを認識することができる。また、このような3価の鉄及び硫酸根が担持されている本発明の粒状吸着剤は、アンモニアやアミン等の塩基性成分に選択的に作用し、硫化水素などの酸性ガスに対しては吸着性も変色も生じないという利点がある。即ち、塩基性成分と酸性ガスとの混合ガスを吸着処理に供した場合、酸性ガスによって変色が生じないため、アンモニア等の吸着性能が残存しているか否かを、上記の変色によって正確に認識することができる。また、アンモニア等の吸着により生成するのは、中性の硫酸アンモニウム等のアンモニウム塩であるため、使用済み製品を肥料などに再利用できるという利点もある。
The granular adsorbent of the present invention can be obtained by supporting trivalent iron and sulfate radicals on the above granular shaped carrier.
As such trivalent iron and sulfate radical, trivalent iron sulfate can be used, and polyferric sulfate is particularly preferable. Further, a trivalent iron salt, for example, a trivalent iron sulfate, nitrate, phosphate or chloride may be used in combination with sulfuric acid or aluminum sulfate as a sulfate radical. That is, the sulfate radical not only provides high adsorptivity to ammonia and amines, but also exhibits an indicator function due to the presence of trivalent iron. That is, trivalent iron ions (Fe 3+ ) are generated by adsorption of ammonia or the like, and the color changes from milky white to a considerably dark brown color. As a result, it can be recognized that the adsorbing component such as ammonia is saturated by such discoloration. In addition, the particulate adsorbent of the present invention in which such trivalent iron and sulfate radicals are supported selectively acts on basic components such as ammonia and amines, and against acidic gases such as hydrogen sulfide. There is an advantage that neither adsorption nor discoloration occurs. That is, when a mixed gas of a basic component and an acid gas is subjected to an adsorption treatment, no discoloration is caused by the acid gas. Therefore, whether or not adsorption performance of ammonia or the like remains is accurately recognized by the above discoloration. can do. Moreover, since it is ammonium salt, such as neutral ammonium sulfate, produced | generated by adsorption | suction of ammonia etc., there also exists an advantage that a used product can be reused for a fertilizer etc.

本発明の粒状吸着剤としては、粒状成形担体に3価の鉄及び硫酸根を担持することが重要である。例えば、3価の鉄及び硝酸根の組合せで担持させた場合、乾燥工程や加熱環境下での使用において硝酸根が分解して吸着剤が茶褐色に変色するだけでなく、アンモニアやアミンに対する吸着性も低下して使用できない(後述の比較例1参照)。また、粒状成形担体に2価の鉄及び硫酸根を担持させた場合では、アンモニア等の吸着反応によって灰色から濃い灰色に変色するが、視認性に劣り使用できない(比較例3及び4)。さらに3価の鉄及び燐酸根の組合せで担持させた場合、アンモニア等の吸着による変色の視認性に劣るだけでなく、水滴との接触により成形体が崩壊して使用できない(比較例7)。   In the granular adsorbent of the present invention, it is important to support trivalent iron and sulfate radicals on a granular shaped carrier. For example, when it is supported by a combination of trivalent iron and nitrate radical, the nitrate radical decomposes and the adsorbent turns brown in the drying process or in a heated environment, but also adsorbs ammonia and amines. And cannot be used (see Comparative Example 1 described later). In addition, when divalent iron and sulfate radicals are supported on a granular molded carrier, the color changes from gray to dark gray due to an adsorption reaction such as ammonia, but the visibility is inferior (Comparative Examples 3 and 4). Further, when supported by a combination of trivalent iron and phosphate radicals, not only is the visibility of discoloration due to adsorption of ammonia or the like inferior, but the molded body collapses due to contact with water droplets and cannot be used (Comparative Example 7).

本発明において、上述した3価の鉄は、特に十分なインジケータ機能(濃い茶色に変色)の点で、前記粒状成形担体100重量部当り、Fe換算で5重量部以上、好ましくは5重量部乃至30重量部の量で担持されていることが好ましい。 In the present invention, the above-described trivalent iron is 5 parts by weight or more, preferably 5 parts by weight in terms of Fe 2 O 3 per 100 parts by weight of the granular shaped support, particularly in terms of sufficient indicator function (discoloration to dark brown). It is preferably supported in an amount of 30 to 30 parts by weight.

また、上記の3価の鉄及び硫酸根は下記式(1)、
m=SO/Fe・・・(1)
式中、mは、酸化第二鉄(Fe)に対する硫酸根(SO)のモル比
である、
で表される、mの値が2.0を越えて、好ましくは2.0を越えて40以下、さらに好ましくは20以下であることが、アンモニアやアミンに対する吸着性能だけでなく、インジケータ機能の点からも好ましい。
Moreover, said trivalent iron and sulfate radical are the following formula (1),
m = SO 3 / Fe 2 O 3 (1)
Where m is the molar ratio of sulfate radical (SO 3 ) to ferric oxide (Fe 2 O 3 ),
The value of m represented by the formula (1) exceeds 2.0, preferably exceeds 2.0 and is 40 or less, more preferably 20 or less. It is preferable also from a point.

上記のような3価の鉄及び硫酸根の担持は、例えば3価の鉄の硫酸塩の水溶液もしくは3価の鉄を含有する硫酸水溶液をスプレー等により、粒状成形担体に噴霧することにより、容易に行うことができる。また、本発明の粒状吸着剤は、上記3価の鉄及び硫酸根を担持させるために、該3価の鉄を含有する廃酸等を使用することができるため、例えば上述したアンモニア等に対する吸着性やインジケータ機能が損なわれない限り、適当量の他の金属塩、例えば硫酸アルミニウムや硫酸マグネシウムを含有していてもよい。   For example, trivalent iron and sulfate radicals can be easily supported by spraying an aqueous solution of trivalent iron sulfate or an aqueous sulfuric acid solution containing trivalent iron onto a granular shaped carrier by spraying or the like. Can be done. In addition, since the particulate adsorbent of the present invention can use the waste acid containing the trivalent iron in order to support the trivalent iron and sulfate radical, for example, the adsorption to ammonia mentioned above, for example. An appropriate amount of other metal salts such as aluminum sulfate and magnesium sulfate may be contained as long as the properties and indicator function are not impaired.

本発明を次の例で説明するが、本発明は以下の例に限定されるものではない。尚、各試験方法は下記の方法に従って行った。   The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples. Each test method was performed according to the following method.

(1)全細孔容積
試料(粒状成形担体)約5gを110℃で3時間乾燥後、デシケーター中で放冷して乾燥試料重量(W)を精秤する。この乾燥試料をイオン交換水100ml中に投入し、200mmHgの真空下で1時間脱気する。ついで試料を取出し、表面を濾紙でふき取り、重量(W)を精秤し、以下の式(2)で全細孔容積を求めた。
全細孔容積(ml/g)=(W−W)/W・・・(2)
(1) Total pore volume After drying about 5 g of a sample (granular shaped carrier) at 110 ° C. for 3 hours, the sample is allowed to cool in a desiccator and the dry sample weight (W 1 ) is precisely weighed. This dried sample is put into 100 ml of ion-exchanged water and deaerated for 1 hour under a vacuum of 200 mmHg. Next, the sample was taken out, the surface was wiped off with filter paper, the weight (W 2 ) was precisely weighed, and the total pore volume was determined by the following equation (2).
Total pore volume (ml / g) = (W 2 −W 1 ) / W 1 (2)

(2)体積平均粒径(D50
MASTERSIZER S(MALVERN社製)で測定した。
(2) Volume average particle diameter (D 50 )
It measured with MASTERSIZER S (made by MALVERN).

(3)BET比表面積、N吸着細孔容積
ASAP2010(マイクロメリティックス社製)を使用し、窒素吸着等温線を測定した。比表面積はBET法により、細孔容積はBJH法脱離側で細孔径17Å〜3000Åのトータル細孔容積を積算して求めた。
(3) BET specific surface area, N 2 adsorption pore volume ASAP2010 (manufactured by Micromeritics) was used, and a nitrogen adsorption isotherm was measured. The specific surface area was determined by the BET method, and the pore volume was determined by integrating the total pore volume having a pore diameter of 17 to 3000 mm on the BJH method desorption side.

(4)嵩密度
JIS K−6220−1(2001)の7.7項に準拠して測定した。
(4) Bulk density The bulk density was measured in accordance with 7.7 of JIS K-6220-1 (2001).

(5)静的アンモニア吸着試験
1.8L密閉容器に吸着剤試料0.10gを入れ、初期アンモニア濃度が1.0%となる量のアンモニアガスを注入した後、ガス検知管(ガステック社製3HM)を用いて残存するガス濃度を測定した。残存濃度の平衡到達時点における初期濃度との差からアンモニア吸着量を求めた。また同時にアンモニア吸着による吸着剤試料の色相変化を目視で観察し、以下のように評価した。
○ 明瞭に判別できる
△ 不明瞭で判別が難しい
× 全く判別できない
(5) Static ammonia adsorption test 0.10 g of an adsorbent sample is put into a 1.8 L airtight container, and after injecting ammonia gas in such an amount that the initial ammonia concentration becomes 1.0%, a gas detector tube (manufactured by Gastec Corporation) The residual gas concentration was measured using 3HM). The amount of adsorbed ammonia was determined from the difference from the initial concentration when the residual concentration reached equilibrium. At the same time, the hue change of the adsorbent sample due to ammonia adsorption was visually observed and evaluated as follows.
○ Clearly discernable △ Unclear and difficult to discriminate × Cannot discriminate at all

(6)静的硫化水素吸着試験
1.8L密閉容器に吸着剤試料0.10gを入れ、初期硫化水素濃度が500ppmとなる量の硫化水素ガスを注入した後、ガス検知管(ガステック社製4HM)を用いて残存するガス濃度を測定した。残存濃度の平衡到達時点における初期濃度との差から硫化水素吸着量を求めた。また同時に硫化水素吸着による吸着剤試料の色相変化の有無を観察した。
(6) Static hydrogen sulfide adsorption test 0.10 g of the adsorbent sample was put into a 1.8 L sealed container, and hydrogen sulfide gas was injected in an amount such that the initial hydrogen sulfide concentration was 500 ppm. The residual gas concentration was measured using 4HM). The amount of hydrogen sulfide adsorbed was determined from the difference from the initial concentration when the residual concentration reached equilibrium. At the same time, the presence or absence of hue change of the adsorbent sample due to hydrogen sulfide adsorption was observed.

(7)動的アンモニア吸着試験
100Lテドラーバッグに2.4%アンモニアガスを調製し、定量ポンプを用いてアンモニアガスをガラスカラムに充填した試料中に通過させ、カラム出口のアンモニア濃度が1ppmになった時点を破過とし、単位時間当りのアンモニアガス流量×時間からアンモニア吸着量を求めた。尚、出口アンモニア濃度は臭気センサー(新コスモス電気社製XP−329N)で測定した。さらに、吸着剤の充填高さに対するアンモニア吸着による変色部分の割合(変色率(%))と、静的アンモニア吸着量に対する動的吸着量の割合(動的/静的吸着量比(%))を比較した。
その他の条件は、空間速度623hr−1、試料量10ml、吸着試験雰囲気温度25℃、サンプル粒度20〜32メッシュとした。
(7) Dynamic ammonia adsorption test 2.4% ammonia gas was prepared in a 100 L tedlar bag, and ammonia gas was passed through a sample packed in a glass column using a metering pump, and the ammonia concentration at the column outlet became 1 ppm. The time point was determined as breakthrough, and the ammonia adsorption amount was determined from the ammonia gas flow rate per unit time × time. The outlet ammonia concentration was measured with an odor sensor (XP-329N manufactured by Shin Cosmos Electric Co., Ltd.). In addition, the ratio of discoloration due to ammonia adsorption to the adsorbent filling height (discoloration rate (%)) and the ratio of dynamic adsorption to static ammonia adsorption (dynamic / static adsorption ratio (%)) Compared.
Other conditions were a space velocity of 623 hr −1 , a sample amount of 10 ml, an adsorption test atmosphere temperature of 25 ° C., and a sample particle size of 20 to 32 mesh.

(シリカ粉末の調製)
Bタイプシリカ(水澤化学工業製)をアトマイザー(不二パウダル社製U15)で粉砕してシリカ粉末を得た。この粉末の体積平均粒径(D50)は42.3μm、比表面積は302m/g、N吸着細孔容積は1.40ml/g、嵩密度は0.37g/mlであった。
(Preparation of silica powder)
B-type silica (manufactured by Mizusawa Chemical Co., Ltd.) was pulverized with an atomizer (U15 manufactured by Fuji Powder Co., Ltd.) to obtain silica powder. This powder had a volume average particle diameter (D 50 ) of 42.3 μm, a specific surface area of 302 m 2 / g, an N 2 adsorption pore volume of 1.40 ml / g, and a bulk density of 0.37 g / ml.

(微粉活性白土の調製)
活性白土(水澤化学工業製ガレオンアースV)を原料として風力分級機(安川商事YACA132MP)を使用して分級し、微粉活性白土を得た。この粉末の体積平均粒径(D50)は4.9μm、比表面積は310m/g、N吸着細孔容積は0.44ml/gであった。
(Preparation of fine powder activated clay)
The activated white clay (Galeon Earth V 2 manufactured by Mizusawa Chemical Industry Co., Ltd.) was used as a raw material and classified using a wind classifier (Yaskawa Shoji YCA132MP) to obtain a fine powder activated white clay. This powder had a volume average particle size (D 50 ) of 4.9 μm, a specific surface area of 310 m 2 / g, and an N 2 adsorption pore volume of 0.44 ml / g.

(粒状成形担体の調製)
シリカ粉末5kg(乾物基準)、微粉活性白土5kg(乾物基準)をニーダー(不二パウダル社製KDHJ―60)で15分間混合した後、水11kgを加えて30分間混練熟成した。次に、この混練物をダイス径1.5mmの成形板を装着したペレッター(不二パウダル社製EXD−60)で押出成形し、2時間風乾後、キルン乾燥機で乾燥して粒状成形担体(S−1とする)を得た。この成形担体の全細孔容積は1.12ml/gであった。
(Preparation of granular shaped carrier)
After mixing 5 kg of silica powder (based on dry matter) and 5 kg of finely divided activated clay (based on dry matter) with a kneader (KDHJ-60 manufactured by Fuji Powder Co., Ltd.) for 15 minutes, 11 kg of water was added and the mixture was kneaded and aged for 30 minutes. Next, the kneaded product was extruded by a pelleter (EXD-60 manufactured by Fuji Powder Co., Ltd.) equipped with a molding plate having a die diameter of 1.5 mm, air-dried for 2 hours, and then dried by a kiln dryer to form a granular shaped carrier ( S-1). The total pore volume of this shaped carrier was 1.12 ml / g.

(実施例1)
ポリ硫酸第二鉄溶液(日鉄鉱業社製ポリテツ)40mlを原料溶液とした。粒状成形担体(S−1)40gを糖衣機に入れ、回転下で原料溶液40mlをスプレーし、100℃で3時間乾燥して粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
Example 1
40 ml of polyferric sulfate solution (polytetsu manufactured by Nippon Steel Mining Co., Ltd.) was used as a raw material solution. 40 g of the granular shaped carrier (S-1) was put in a sugar coating machine, sprayed with 40 ml of the raw material solution under rotation, and dried at 100 ° C. for 3 hours to obtain a granular adsorbent. The performance evaluation results of this adsorbent are shown in Table 1.

(実施例2)
100mlビーカーにポリ硫酸第二鉄溶液(日鉄鉱業社製ポリテツ)20mlと硫酸アルミニウム溶液(Al 7.7%、SO 18%)26.2g(20ml)を加えて攪拌混合して40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に、動的アンモニア吸着試験結果を表2に示す。表2より、変色率と動的/静的吸着量比はほぼ一致した。
(Example 2)
To a 100 ml beaker, add 20 ml of a polyferric sulfate solution (polytetsu manufactured by Nippon Steel & Mining Co., Ltd.) and 26.2 g (20 ml) of an aluminum sulfate solution (Al 2 O 3 7.7%, SO 3 18%), and mix by stirring. 40 ml of raw material solution was obtained. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1, and the dynamic ammonia adsorption test results are shown in Table 2. From Table 2, the color change rate and the dynamic / static adsorption amount ratio almost coincided.

(実施例3)
100mlビーカーにポリ硫酸第二鉄溶液(日鉄鉱業社製ポリテツ)20mlと硫酸(和光試薬特級)11.0gを加えて攪拌混合し、イオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Example 3)
In a 100 ml beaker, 20 ml of a polyferric sulfate solution (polytetsu manufactured by Nittetsu Mining Co., Ltd.) and 11.0 g of sulfuric acid (special grade of Wako Reagent) were added and mixed by stirring. . Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(実施例4)
100mlビーカーに硫酸第二鉄n水和物(和光試薬特級)14.6gと適量のイオン交換水を加え、攪拌下で硫酸(和光試薬特級)2.53gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
Example 4
Add 14.6 g of ferric sulfate n-hydrate (Wako Reagent Special Grade) and an appropriate amount of ion-exchanged water to a 100 ml beaker, and add 2.53 g of sulfuric acid (Wako Reagent Special Grade) dropwise with stirring to completely dissolve it. The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(実施例5)
100mlビーカーに硝酸第二鉄九水和物(和光試薬特級)20.4gと適量のイオン交換水を加え、攪拌下で硫酸(和光試薬特級)10.2gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Example 5)
In a 100 ml beaker, add 20.4 g of ferric nitrate nonahydrate (special grade of Wako Reagent) and an appropriate amount of ion-exchanged water, and under stirring, add 10.2 g of sulfuric acid (special grade of Wako Reagent) dropwise to completely dissolve it. The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(実施例6)
100mlビーカーに塩化第二鉄六水和物(和光試薬特級)13.7gと適量のイオン交換水を加え、攪拌下で硫酸(和光試薬特級)10.2gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Example 6)
Add 13.7 g of ferric chloride hexahydrate (Wako Reagent Special Grade) and an appropriate amount of ion-exchanged water to a 100 ml beaker, and add 10.2 g of sulfuric acid (Wako Reagent Special Grade) dropwise with stirring to completely dissolve it. The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(実施例7)
含鉄硫酸アルミニウム溶液(Fe 1.0%、Al 5.0%、SO 21%)53.2g(40ml)のみを原料溶液として、以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Example 7)
Only 53.2 g (40 ml) of an iron-containing aluminum sulfate solution (Fe 2 O 3 1.0%, Al 2 O 3 5.0%, SO 3 21%) was used as a raw material solution, and thereafter in the same manner as in Example 1. An adsorbent was obtained. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例1)
100mlビーカーに硝酸第二鉄九水和物(和光試薬特級)20.4gと適量のイオン交換水を加え、攪拌下で硝酸(和光試薬特級)5.10gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 1)
Add 20.4 g of ferric nitrate nonahydrate (Wako Reagent Special Grade) and an appropriate amount of ion-exchanged water to a 100 ml beaker, and drop nitric acid (Wako Reagent Special Grade) 5.10 g under stirring to completely dissolve it. The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例2)
100mlビーカーに塩化第二鉄六水和物(和光試薬特級)13.7gと適量のイオン交換水を加えて完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 2)
In a 100 ml beaker, 13.7 g of ferric chloride hexahydrate (Wako Reagent Special Grade) and an appropriate amount of ion exchange water were added and completely dissolved, and further diluted with ion exchange water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例3)
100mlビーカーに硫酸第一鉄七水和物(和光試薬特級)13.9gと適量のイオン交換水を加え、攪拌下で硫酸(和光試薬特級)5.09gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 3)
Add 13.9 g of ferrous sulfate heptahydrate (Wako Reagent Special Grade) and an appropriate amount of ion-exchanged water to a 100 ml beaker and add 5.09 g of sulfuric acid (Wako Reagent Special Grade) dropwise with stirring to completely dissolve it. The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例4)
100mlビーカーに塩化第一鉄四水和物(和光試薬特級)9.94gと適量のイオン交換水を加え、攪拌下で硫酸(和光試薬特級)10.2gを滴下して完全溶解させ、さらにイオン交換水でメスアップして40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 4)
To a 100 ml beaker, add 9.94 g of ferrous chloride tetrahydrate (Wako Reagent Special Grade) and an appropriate amount of ion-exchanged water, and dropwise add sulfuric acid (Wako Reagent Special Grade) 10.2 g to completely dissolve, The volume was raised with exchanged water to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例5)
40%硫酸52.0g(40ml)のみを原料溶液として、以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 5)
A granular adsorbent was obtained in the same manner as in Example 1 except that only 52.0 g (40 ml) of 40% sulfuric acid was used as a raw material solution. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例6)
粒状吸着剤として塩基性ガス用活性炭(太平化学産業社製ブロコールGY)を用いた。この吸着剤の性能評価結果を表1に示す。
(Comparative Example 6)
As the particulate adsorbent, activated carbon for basic gas (Brocoll GY manufactured by Taihei Chemical Industry Co., Ltd.) was used. The performance evaluation results of this adsorbent are shown in Table 1.

(比較例7)
100mlビーカーにリン酸第二鉄n水和物(和光試薬)16.6gと62%リン酸52.7gを加え、攪拌下で加熱溶解させて40mlの原料溶液を得た。以下、実施例1と同様にして粒状吸着剤を得た。この吸着剤のアンモニア吸着による色相変化は乳白色から黄色であり視認性に劣った。また水滴との接触によって成形体が崩壊し、使用に耐えられるものではなかった。
(Comparative Example 7)
To a 100 ml beaker, 16.6 g of ferric phosphate n-hydrate (Wako Reagent) and 52.7 g of 62% phosphoric acid were added and dissolved under heating to obtain 40 ml of a raw material solution. Thereafter, a granular adsorbent was obtained in the same manner as in Example 1. The hue change due to adsorption of ammonia by this adsorbent was milky white to yellow and was inferior in visibility. Further, the molded body collapsed due to contact with water droplets, and it was not able to withstand use.

Figure 0004707366
Figure 0004707366

Figure 0004707366
Figure 0004707366

Claims (5)

シリカと活性白土とを25:75乃至75:25の重量比で含有する混合物の粒状成形担体からなり、該粒状成形担体は、0.8乃至2.0ml/gの全細孔容積を有しており、且つ該粒状成形担体には、3価の鉄及び硫酸根が担持されていることを特徴とする粒状吸着剤。   Comprising a granular shaped support of a mixture containing silica and activated clay in a weight ratio of 25:75 to 75:25, said granular shaped support having a total pore volume of 0.8 to 2.0 ml / g A granular adsorbent characterized in that trivalent iron and sulfate radicals are supported on the granular shaped carrier. 前記3価の鉄は、前記粒状成形担体100重量部当り、Fe換算で5重量部以上の量で担持されている請求項1に記載の粒状吸着剤。 The granular adsorbent according to claim 1, wherein the trivalent iron is supported in an amount of 5 parts by weight or more in terms of Fe 2 O 3 per 100 parts by weight of the granular shaped support. 前記3価の鉄及び硫酸根が下記式(1)、
m=SO/Fe・・・(1)
式中、mは、酸化第二鉄(Fe)に対する硫酸根(SO)のモル比
である、
で表される、mの値が2.0を越えることを特徴とする請求項1または2に記載の粒状吸着剤。
The trivalent iron and sulfate radical is represented by the following formula (1),
m = SO 3 / Fe 2 O 3 (1)
Where m is the molar ratio of sulfate radical (SO 3 ) to ferric oxide (Fe 2 O 3 ),
The granular adsorbent according to claim 1 or 2, wherein the value of m exceeds 2.0.
前記3価の鉄及び硫酸根がポリ硫酸第二鉄である請求項1乃至3に記載の粒状吸着剤。   The particulate adsorbent according to any one of claims 1 to 3, wherein the trivalent iron and sulfate radical are polyferric sulfate. レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有し、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有している請求項1乃至4に記載の粒状吸着剤。 The silica has a volume average particle diameter (D 50 ) of 10 to 100 μm and the activated clay has a volume average particle diameter (D 50 ) of 2 to 10 μm, as measured by a laser diffraction method. The granular adsorbent according to claim 1.
JP2004312910A 2004-10-27 2004-10-27 Granular adsorbent with indicator function Expired - Fee Related JP4707366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312910A JP4707366B2 (en) 2004-10-27 2004-10-27 Granular adsorbent with indicator function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312910A JP4707366B2 (en) 2004-10-27 2004-10-27 Granular adsorbent with indicator function

Publications (2)

Publication Number Publication Date
JP2006122786A JP2006122786A (en) 2006-05-18
JP4707366B2 true JP4707366B2 (en) 2011-06-22

Family

ID=36718023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312910A Expired - Fee Related JP4707366B2 (en) 2004-10-27 2004-10-27 Granular adsorbent with indicator function

Country Status (1)

Country Link
JP (1) JP4707366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914262B2 (en) * 2012-08-27 2016-05-11 トヨタ紡織株式会社 Volatile organic compound content estimation method, volatilization amount estimation method, and system related thereto
JP6583022B2 (en) * 2016-02-01 2019-10-02 日本製鉄株式会社 Browning method for slag civil engineering materials and construction method for simple pavement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020018A1 (en) * 1994-12-27 1996-07-04 Minato Company Ltd. Deodorizing composition and deodorizing resin composition both containing iron (ii) compound
JP2002113359A (en) * 2000-10-05 2002-04-16 Mizusawa Ind Chem Ltd Granular smectite and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040889B2 (en) * 1977-02-04 1985-09-13 武田薬品工業株式会社 Basic gas remover
JPS6087852A (en) * 1983-10-20 1985-05-17 Masuzo Murakami Adsorbent and its manufacture
JP3324856B2 (en) * 1993-12-28 2002-09-17 ゼオン化成株式会社 Deodorizer and deodorant composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020018A1 (en) * 1994-12-27 1996-07-04 Minato Company Ltd. Deodorizing composition and deodorizing resin composition both containing iron (ii) compound
JP2002113359A (en) * 2000-10-05 2002-04-16 Mizusawa Ind Chem Ltd Granular smectite and its manufacturing method

Also Published As

Publication number Publication date
JP2006122786A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
Kara et al. Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal
Ptaszkowska-Koniarz et al. Removal of rhodamine B from water by modified carbon xerogels
Emmanuelawati et al. Low-cost and large-scale synthesis of functional porous materials for phosphate removal with high performance
Yeom et al. Adsorption of ammonia using mesoporous alumina prepared by a templating method
CA2926826A1 (en) Activated carbon sorbent composition with reduced auto-ignition properties
MX2012000590A (en) Solid inorganic composition, method for preparing same, and use thereof for reducing dioxins and heavy metals in flue gases.
Padilla-Ortega et al. Adsorption of heavy metal ions from aqueous solution onto sepiolite
Kakaei et al. Preparation of a sepiolite/Cu-BDC nanocomposite and its application as an adsorbent in respirator cartridges for H 2 S removal
Kaur et al. Insight into the structural, optical, adsorptive, and photocatalytic properties of MgFe2O4-bentonite nanocomposites
Seilkhanova et al. Bentonite polymer composite for water purification
KR20180119600A (en) Particulate alkaline earth carbonate-containing material and / or particulate alkaline earth phosphate-containing material for NOx absorption
US20080006012A1 (en) Air filtration media comprising metal-doped silicon-base gel materials with oxidizing agents
JPH05161841A (en) Air purifying agent and production thereof
JP6858055B2 (en) Lead adsorbent
Siéwé et al. Activation of clay surface sites of Bambouto's Andosol (Cameroon) with phosphate ions: Application for copper fixation in aqueous solution
JP4707366B2 (en) Granular adsorbent with indicator function
JP3977151B2 (en) Deodorants
JP4175726B2 (en) Pet toilet sand
Fatoki et al. Preparation and characterization of activated carbon–nFe3O4, activated carbon–nSiO2 and activated carbon–nZnO hybrid materials
Marinović et al. Adsorption of strontium on different sodium enriched bentonites
JP2004242848A (en) Humidity conditioning deodorant and its manufacturing method
JP2645483B2 (en) Deodorant
Lima et al. Niobium pentoxide/silica nanocomposites with hierarchical pore structure as methylene blue and doxycycline adsorbent
US20080156192A1 (en) Air filtration media comprising metal-doped silicon-based gel materials with nitric acid and/or potassium persulfate
JPH11189481A (en) Porous functional material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees