JP4707313B2 - Non-aqueous solvent type secondary battery - Google Patents

Non-aqueous solvent type secondary battery Download PDF

Info

Publication number
JP4707313B2
JP4707313B2 JP2003326733A JP2003326733A JP4707313B2 JP 4707313 B2 JP4707313 B2 JP 4707313B2 JP 2003326733 A JP2003326733 A JP 2003326733A JP 2003326733 A JP2003326733 A JP 2003326733A JP 4707313 B2 JP4707313 B2 JP 4707313B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte
aqueous solvent
mass
succinimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003326733A
Other languages
Japanese (ja)
Other versions
JP2005093293A (en
Inventor
健太郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003326733A priority Critical patent/JP4707313B2/en
Publication of JP2005093293A publication Critical patent/JP2005093293A/en
Application granted granted Critical
Publication of JP4707313B2 publication Critical patent/JP4707313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水溶媒系二次電池に関し、更に詳しくは、初回放電容量が大きく、高負荷放電効率及び高温充電保存特性に優れた非水溶媒系二次電池に関する。   The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having a large initial discharge capacity and excellent high-load discharge efficiency and high-temperature charge storage characteristics.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水溶媒系二次電池が注目され、このリチウム非水溶媒系二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous solvent secondary batteries, which have a higher energy density than other batteries, are attracting attention. The proportion of lithium non-aqueous solvent secondary batteries accounts for a significant increase in the secondary battery market. Is shown.

このリチウム非水溶媒系二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極用活物質合剤を被膜状に塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極用活物質合剤を被膜状に塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角型電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極リード及び正極リードを接続して所定形状の外装内に収納した構成を有している。   This lithium non-aqueous solvent type secondary battery includes a negative electrode in which a negative electrode active material mixture is applied in a film form on both sides of a negative electrode core (current collector) made of an elongated sheet-like copper foil and the like, and an elongated sheet-like battery A separator made of a microporous polypropylene film or the like is placed between both sides of a positive electrode core made of aluminum foil or the like and coated with a positive electrode active material mixture in the form of a film, and the negative electrode and the positive electrode are insulated from each other by the separator. In the case of a rectangular battery, the wound electrode body is further crushed to form a flat shape, and a negative electrode lead and a positive electrode lead are respectively attached to predetermined portions of the negative electrode and the positive electrode. It has the structure which connected and accommodated in the exterior of a predetermined shape.

このような非水溶媒系二次電池に使用される非水溶媒には、電解質を電離させるために誘電率が高い必要があること、及び、広い温度範囲でイオン伝導度が高い必要があるということから、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジエチルカーボネート(DEC)等のカーボネート類、γ−ブチロラクトン等のラクトン類、その他、エーテル類、ケトン類、エステル類などの有機溶媒が使用されており、特にECと粘度の低い非環状炭酸エステル、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)等の混合溶媒が広く使用されているが、蒸気圧が低いために高温放置すると電池が膨れやすいという問題点を有していた。   The non-aqueous solvent used in such a non-aqueous solvent type secondary battery needs to have a high dielectric constant in order to ionize the electrolyte, and needs to have high ionic conductivity in a wide temperature range. Therefore, carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), diethyl carbonate (DEC), lactones such as γ-butyrolactone, etc., ethers, ketones, esters, etc. Organic solvents such as dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) are widely used. However, due to the low vapor pressure, the battery tends to swell when left at high temperatures. It had.

一方、PCないしはBCを含有する非水溶媒は、蒸気圧が高く、また酸化電位も高くなるために分解し難くなるのでガスの発生量が少なく、電池が膨れ難いという優れた効果を奏すると共に、凝固点が低いために低温特性も優れているという特徴を有している。   On the other hand, a non-aqueous solvent containing PC or BC has a high vapor pressure and high oxidation potential, so that it is difficult to decompose, so that the amount of gas generated is small, and the battery is difficult to swell. Since it has a low freezing point, it has a feature of excellent low temperature characteristics.

また、負極材料として黒鉛、非晶質炭素などの炭素質材料を用いた負極は、コストが安価であり、サイクル寿命に優れていることから広く用いられているが、PCやBCを含む非水溶媒系電解液を用いた場合、充電時のPCないしはBCの還元分解により電池の容量低下が発生する。特に、黒鉛化が進んだ高容量の炭素質物(天然黒鉛、人造黒鉛)では、PCないしはBCがより激しく分解してしまい、充電が良好に進行しないという問題点が存在していた。   Negative electrodes using carbonaceous materials such as graphite and amorphous carbon as negative electrode materials are widely used because of their low cost and excellent cycle life, but non-water containing PC and BC. When a solvent-based electrolyte is used, the battery capacity is reduced due to reductive decomposition of PC or BC during charging. In particular, in high-capacity carbonaceous materials (natural graphite, artificial graphite) that have been graphitized, there has been a problem that PC or BC decomposes more violently and charging does not proceed well.

そこで、従来から、有機溶媒の還元分解を抑制するために、様々な化合物を非水溶媒系電解液に添加して、負極活物質が有機溶媒と直接反応しないように、不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface. 以下、「SEI表面被膜」という。)を制御する技術が重要となっている。例えば、下記特許文献1には、非水溶媒系二次電池の電解液中にビニレンカーボネート及びその誘導体から選択される少なくとも1種を添加し、これらの添加物により、最初の充電による負極へのリチウムの挿入前に負極活物質層上にSEI表面被膜を形成させ、リチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能させるようになしたものが開示されている。   Therefore, conventionally, in order to suppress the reductive decomposition of the organic solvent, various compounds are added to the non-aqueous solvent electrolyte so that the negative electrode active material does not directly react with the organic solvent. Technology for controlling the negative electrode surface coating (SEI: Solid Electrolyte Interface. Hereinafter referred to as “SEI surface coating”) is important. For example, in Patent Document 1 below, at least one selected from vinylene carbonate and derivatives thereof is added to the electrolyte solution of a non-aqueous solvent secondary battery, and these additives add the negative electrode to the negative electrode by the first charge. It is disclosed that an SEI surface coating is formed on the negative electrode active material layer before insertion of lithium so as to function as a barrier that prevents insertion of solvent molecules around lithium ions.

また、同様の目的で、下記特許文献2には非水溶媒系電解液中に添加剤としてビニルエチレンカーボネート化合物を添加したものが、同じく下記特許文献3にはビニレンカーボネート化合物及びビニルエチレンカーボネート化合物を添加したものが、同じく下記特許文献4にはビニルエチレンカーボネートを含み、更にビニレンカーボネート、環状スルホン酸又は環状硫酸エステル、環状酸無水物からなる少なくとも1種を添加したものが、同じく下記特許文献5には環状酸無水物を添加したものが、同じく下記特許文献6には環状酸無水物及びビニルエチレンカーボネート化合物を添加したものが、それぞれ開示されている。   In addition, for the same purpose, the following Patent Document 2 includes a non-aqueous solvent electrolyte in which a vinyl ethylene carbonate compound is added as an additive, and the following Patent Document 3 includes a vinylene carbonate compound and a vinyl ethylene carbonate compound. In addition, the following Patent Document 4 contains vinyl ethylene carbonate, and further added at least one kind of vinylene carbonate, cyclic sulfonic acid or cyclic sulfate, and cyclic acid anhydride is also described in Patent Document 5 below. Is added with a cyclic acid anhydride, and the following Patent Document 6 discloses the addition of a cyclic acid anhydride and a vinyl ethylene carbonate compound.

このうち、環状酸無水物は、充電時における溶媒の還元分解の抑制には優れているが、単独添加ではSEI被膜の抵抗が高くなり、充放電特性が大きく低下するという欠点が存在していた。また、環状酸無水物を多量に添加すると、電解液のイオン伝導度が低下するほか、SEI被膜の抵抗がより大きくなり、充放電特性が低下すると共に、充電保存中のガス発生が顕著となり、電池の膨れが大きいという問題点も存在していた。   Among these, cyclic acid anhydrides are excellent in suppressing reductive decomposition of the solvent during charging, but there is a drawback in that the addition of a single acid increases the resistance of the SEI film and the charge / discharge characteristics are greatly reduced. . In addition, when a large amount of cyclic acid anhydride is added, the ionic conductivity of the electrolytic solution is lowered, the resistance of the SEI film is further increased, the charge / discharge characteristics are lowered, and gas generation during charge storage becomes remarkable, There was also a problem that the swelling of the battery was large.

加えて、環状酸無水物を使用した非水系二次電池は、長期間高温保存すると、SEI被膜に多量の重合物が堆積されるとともに、多量のガスが発生し、著しい容量低下を引き起こす。特に、黒鉛化が進んだ高容量の炭素質物を負極に用いた電池において、PCやBCを含有する電解質の場合、高温での特性低下は顕著に現れる。   In addition, when a non-aqueous secondary battery using a cyclic acid anhydride is stored at a high temperature for a long period of time, a large amount of polymer is deposited on the SEI film and a large amount of gas is generated, causing a significant capacity reduction. In particular, in a battery using a high-capacity carbonaceous material with advanced graphitization as a negative electrode, in the case of an electrolyte containing PC or BC, the characteristic deterioration at a high temperature appears remarkably.

一方、非水溶媒系二次電池の電解液中にジオキソランとスクシンイミド化合物を添加することにより非水溶媒系二次電池の保存特性を向上させるようになしたものが下記特許文献7に開示されている。このスクシンイミド化合物は、環状酸無水物と同様に、負極で還元されて被膜を生成するが、溶媒の分解抑制能は環状酸無水物と比較して大きく劣る。   On the other hand, Patent Document 7 below discloses that the storage characteristics of a nonaqueous solvent secondary battery are improved by adding dioxolane and a succinimide compound to the electrolyte of the nonaqueous solvent secondary battery. Yes. Although this succinimide compound is reduced at the negative electrode to form a film, like the cyclic acid anhydride, the ability to suppress the decomposition of the solvent is greatly inferior to that of the cyclic acid anhydride.

特開平08−045545号公報(特許請求の範囲、段落[0009]〜[0012]、[0023]〜[0036])JP 08-045545 A (claims, paragraphs [0009] to [0012], [0023] to [0036]) 特開2001−006729号公報(特許請求の範囲、段落[0006]〜[0014])JP 2001-006729 A (claims, paragraphs [0006] to [0014]) 特開2002−324580号公報(特許請求の範囲、段落[0008]〜[0009])JP 2002-324580 A (claims, paragraphs [0008] to [0009]) 特開2003−151623号公報(特許請求の範囲、段落[0008]〜[0009]、[0022]〜[0031])JP 2003-151623 A (claims, paragraphs [0008] to [0009], [0022] to [0031]) 特開2000−268859号公報(特許請求の範囲、段落[0007]〜[0008])JP 2000-268859 A (claims, paragraphs [0007] to [0008]) 特開2002−352852号公報(特許請求の範囲、段落[0010]〜[0013])JP 2002-352852 A (claims, paragraphs [0010] to [0013]) 特開平11−045724号公報(特許請求の範囲、段落[0006]〜[0007])JP 11-045724 A (claims, paragraphs [0006] to [0007])

本発明者は、上述のSEI表面被膜の生成機構につき種々検討を重ねた結果、非水溶媒系電解液中に環状酸無水物だけでなく、N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種を同時に添加すると、非水溶媒の分解を良好に防止することができ、しかもSEI表面被膜のインピーダンスを低下させ、初回放電容量を大きくでき、しかも、高負荷放電効率及び高温充電保存特性を向上させることができることを見出した。   As a result of various studies on the above-mentioned formation mechanism of the SEI surface coating, the present inventor has found that not only cyclic acid anhydrides but also N-alkyl succinimide compounds, N-alkenyl succinimide compounds, N -When at least one selected from arylsuccinimide compounds is added simultaneously, the decomposition of the non-aqueous solvent can be satisfactorily prevented, the impedance of the SEI surface coating can be lowered, the initial discharge capacity can be increased, and the high It has been found that load discharge efficiency and high temperature charge storage characteristics can be improved.

このような結果が得られる理由は、現在のところ定かではなく、今後の研究を待つ必要があるが、おそらくは上述のようなスクシンイミド化合物の添加により負極界面における環状酸無水物の継続的な還元分解反応が抑制されているために、本発明の効果が現れたものと推察される。   The reason why such a result is obtained is not clear at present, and it is necessary to wait for further research. Probably, the continuous reductive decomposition of cyclic acid anhydride at the negative electrode interface by the addition of the succinimide compound as described above. Since the reaction is suppressed, it is presumed that the effect of the present invention has appeared.

したがって、本願発明の目的は、SEI表面被膜のインピーダンスを低下させ、初回放電容量が大きく、高負荷放電効率及び高温充電保存特性が向上した非水溶媒系二次電池を提供することにある。   Accordingly, an object of the present invention is to provide a non-aqueous solvent secondary battery in which the impedance of the SEI surface coating is reduced, the initial discharge capacity is large, the high load discharge efficiency and the high temperature charge storage characteristics are improved.

本発明の上記目的は以下の構成により達成し得る。すなわち、本願の請求項1に係る非水溶媒系二次電池の発明は、リチウムを可逆的に吸蔵・放出可能な正極活物質を含む正極と、リチウムを可逆的に吸蔵・放出可能な負極活物質を含む負極と、非水溶媒系電解液とを備えた非水溶媒系二次電池において、前記非水溶媒系電解液中に、
(1)環状酸無水物、及び
(2)N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種(以下、「スクシンイミド化合物」という。)、
を含有し、
前記環状酸無水物の含有量は、全電解質質量の0.01〜10質量%の範囲であり、
前記スクシンイミド化合物の含有量は、全電解質質量の0.01〜10質量%の範囲であり、
前記非水溶媒系電解液中の前記N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種と前記環状酸無水物との質量比は、1:2〜2:1の範囲である
ことを特徴とする。
The above object of the present invention can be achieved by the following configurations. That is, the invention of the nonaqueous solvent secondary battery according to claim 1 of the present application includes a positive electrode including a positive electrode active material capable of reversibly occluding and releasing lithium, and a negative electrode active capable of reversibly occluding and releasing lithium. In a non-aqueous solvent secondary battery comprising a negative electrode containing a substance and a non-aqueous solvent electrolyte, in the non-aqueous solvent electrolyte,
(1) cyclic acid anhydride, and (2) at least one selected from N-alkyl succinimide compounds, N-alkenyl succinimide compounds, and N-aryl succinimide compounds (hereinafter referred to as “succinimide compounds”),
Containing
The content of the cyclic acid anhydride is in the range of 0.01 to 10% by mass of the total electrolyte mass,
The content of the succinimide compound, Ri range der of 0.01 to 10% by weight of the total electrolyte weight,
The mass ratio of the cyclic acid anhydride to at least one selected from the N-alkyl succinimide compound, N-alkenyl succinimide compound and N-aryl succinimide compound in the non-aqueous solvent electrolyte is 1: 2 It is characterized by being in the range of 2: 1 .

本願発明は、前記非水溶媒系電解液中の前記スクシンイミド化合物と前記環状酸無水物との質量比は、1:2〜2:1の範囲であることを特徴とする。
これは、前記スクシンイミド化合物の前記環状酸無水物に対する含有割合が少ないと、SEI被膜の抵抗が高くなり、充放電特性が大きく低下するので好ましくなく、また、前記スクシンイミド化合物の前記環状酸無水物に対する含有割合が多すぎても、非水溶媒の分解抑制効果が低下するからである。
また、非水溶媒系電解液を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などが挙げられる。これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。
The present invention is characterized in that a mass ratio of the succinimide compound and the cyclic acid anhydride in the non-aqueous solvent electrolyte is in a range of 1: 2 to 2: 1.
This is not preferable if the content ratio of the succinimide compound to the cyclic acid anhydride is small, because the resistance of the SEI film is increased and charge / discharge characteristics are greatly deteriorated, and the succinimide compound is not preferable for the cyclic acid anhydride. This is because even if the content ratio is too large, the effect of suppressing the decomposition of the non-aqueous solvent decreases.
As the non-aqueous solvent constituting the non-aqueous solvent electrolyte (organic solvent), carbonates, lactones, ethers, and esters. Two or more of these solvents can be used in combination. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、ジエチルカーボネートなどを挙げることができ、充放電効率を高める点からはECと鎖状カーボネートが好適に用いられる。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone, and γ-valerolactone. , Γ-dimethoxyethane, tetrahydrofuran, 1,4-dioxane, diethyl carbonate and the like, and EC and chain carbonate are preferably used from the viewpoint of improving the charge / discharge efficiency.

非水溶媒系電解液を構成する電解質には、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、六フッ化砒酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CFSO)などのリチウム塩が挙げられる。中でもLiPF、LiBFを用いるのが好ましく、前記非水溶媒に対する溶解量は、0.5〜2.0モル/lとするのが好ましい。 Examples of the electrolyte constituting the non-aqueous solvent electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium hexafluoroarsenate (LiAsF 6 ). And lithium salts such as lithium trifluoromethylsulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ). Of these, LiPF 6 and LiBF 4 are preferably used, and the amount dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / l.

正極活物質には、LiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわちLiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、Li0.5MnO、LiMnO、LiCoMnNi(x+y+z=1)などが一種単独もしくは複数種を混合して用いられる。 As the positive electrode active material, a lithium transition metal composite oxide represented by Li x MO 2 (where M is at least one of Co, Ni, and Mn), that is, LiCoO 2 , LiNiO 2 , LiNi y Co 1− y O 2 (y = 0.01 to 0.99), Li 0.5 MnO 2 , LiMnO 2 , LiCo x Mn y Ni z O 2 (x + y + z = 1) or the like is used singly or in combination. It is done.

負極活物質には、リチウムを吸蔵・放出することが可能な炭素質物、珪素質物、金属酸化物からなる群から選択される少なくとも1種以上が用いられる。黒鉛化の進んだ炭素質物は高容量であるほか、本発明の効果がより大きく現れるために特に好ましい。   As the negative electrode active material, at least one selected from the group consisting of a carbonaceous material capable of inserting and extracting lithium, a siliconaceous material, and a metal oxide is used. A carbonaceous material that has been graphitized is particularly preferable because it has a high capacity and the effects of the present invention become more significant.

また、本願の請求項2に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記環状酸無水物が下記化学式で表されることを特徴とする。

Figure 0004707313
(ただし、n=0〜4の整数であり、R〜Rは、同じであっても異なっていても良く、Hもしくはアルキル基、アルケニル基又はアリール基からなる炭素数1〜12の有機基を示す。また、R〜Rは互いに結合して環を形成していてもよい。) The invention according to claim 2 of the present application is characterized in that, in the nonaqueous solvent secondary battery according to claim 1, the cyclic acid anhydride is represented by the following chemical formula.
Figure 0004707313
(However, n is an integer of 0 to 4, and R 1 to R 4 may be the same or different, and is an organic group having 1 to 12 carbon atoms composed of H, an alkyl group, an alkenyl group, or an aryl group. And R 1 to R 4 may be bonded to each other to form a ring.)

また、本願の請求項3に係る発明は、前記請求項2に記載の非水溶媒系二次電池の発明において、前記環状酸無水物が、無水マレイン酸、無水フタル酸、無水コハク酸、無水メチルコハク酸、無水2,2−ジメチルコハク酸、無水グルタル酸、無水1,2−シクロヘキサンジカルボン酸、無水cis−1,2,3,6−テトラヒドロフタル酸、無水cis−5−ノルボルネン−endo−2,3−ジカルボン酸、無水フェニルコハク酸、無水2−フェニルグルタル酸、無水ノネニルコハク酸から選択された少なくとも1種であることを特徴とする。   The invention according to claim 3 of the present application is the invention of the non-aqueous solvent secondary battery according to claim 2, wherein the cyclic acid anhydride is maleic anhydride, phthalic anhydride, succinic anhydride, anhydrous Methyl succinic acid, 2,2-dimethyl succinic anhydride, glutaric anhydride, 1,2-cyclohexanedicarboxylic anhydride, cis-1,2,3,6-tetrahydrophthalic anhydride, cis-5-norbornene-endo-2 , 3-dicarboxylic acid, phenyl succinic anhydride, 2-phenyl glutaric anhydride, and nonenyl succinic anhydride.

また、本願の請求項4に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記非水溶媒系電解液中の環状酸無水物の含有量は0.0質量%以上質量%以下であることを特徴とする。
In the invention, in the non-aqueous solvent secondary battery according to claim 1, content 0.0 5 mass of cyclic acid anhydrides of the nonaqueous solvent system electrolytic solution according to claim 4 of the present application you wherein the percent 5 mass% or less.

係る前記環状酸無水物の含有量は、0.01質量%未満であると前記環状酸無水物添加の効果が実質的に認められず、また、10質量%を超えても、その分だけ電解質の溶解量が減って電解質濃度が低下し、非水溶媒系電解液の電気伝導度が減少するために好ましくない。より好ましくは、前記環状酸無水物の含有量は、全電解質質量の0.05〜5質量%である。   When the content of the cyclic acid anhydride is less than 0.01% by mass, the effect of adding the cyclic acid anhydride is not substantially recognized. This is not preferable because the electrolyte concentration is reduced by reducing the amount of the solution and the electrical conductivity of the non-aqueous solvent electrolyte is reduced. More preferably, the content of the cyclic acid anhydride is 0.05 to 5% by mass of the total electrolyte mass.

また、本願の請求項に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記スクシンイミド化合物におけるアルキル基、アルケニル基又はアリール基に含まれる炭素数は1以上12以下であることを特徴とする。
The invention according to claim 5 of the present application is the non-aqueous solvent secondary battery according to claim 1, wherein the alkyl group, alkenyl group or aryl group in the succinimide compound has 1 to 12 carbon atoms. It is characterized by being.

また、本願の請求項に係る発明は、前記請求項に記載の非水溶媒系二次電池において、前記N−アルキルスクシンイミド化合物がN−メチルスクシンイミド、N−エチルスクシンイミド、N−イソプロピルスクシンイミド、N−シクロヘキシルスクシンイミド、N−イソブチルスクシンイミド、N−tert−アミルスクシンイミドから選択された少なくとも1種であり、前記アルケニルスクシンイミド化合物がN−ビニルスクシンイミド、N−アリルスクシンイミドから選択された少なくとも1種であり、また、前記アリールスクシンイミド化合物がN−フェニルスクシンイミドであることを特徴とする。
The invention according to claim 6 of the present application is the nonaqueous solvent secondary battery according to claim 5 , wherein the N-alkylsuccinimide compound is N-methylsuccinimide, N-ethylsuccinimide, N-isopropylsuccinimide, At least one selected from N-cyclohexyl succinimide, N-isobutyl succinimide, N-tert-amyl succinimide, and the alkenyl succinimide compound is at least one selected from N-vinyl succinimide and N-allyl succinimide, The aryl succinimide compound is N-phenyl succinimide.

また、本願の請求項に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記スクシンイミド化合物の含有量は、全電解質質量の0.0質量%の範囲であることを特徴とする。
The invention according to claim 7 of the present application, in the non-aqueous solvent secondary battery according to claim 1, the content of the succinimide compound is in the range of 0.0 5 to 5 wt% based on the entire mass of the electrolyte it characterized in that it is.

前記スクシンイミド化合物の含有量が全電解質質量の0.01%未満であると添加の効果が表れず、また、10質量%を超えて添加してもその効果が飽和するだけでなく、その分だけ電解液溶媒の含有量が減るので、イオン伝導度が減るため好ましくない。より好ましくは、前記スクシンイミド化合物の含有量は、全電解質質量の0.05〜5質量%である。   If the content of the succinimide compound is less than 0.01% of the total electrolyte mass, the effect of addition does not appear, and the addition of more than 10% by mass not only saturates the effect, but only by that amount. Since the content of the electrolyte solvent decreases, the ionic conductivity decreases, which is not preferable. More preferably, content of the said succinimide compound is 0.05-5 mass% of the total electrolyte mass.

また、本願の請求項に係る発明は、前記請求項1に係る非水溶媒系二次電池において、前記負極活物質はX線回折における格子面(002面)のd値が0.340nm以下である炭素質物であり、前記非水溶媒はPCあるいはBCを含むことを特徴とする。炭素質物質は結晶化が進むとX線回折における格子面(002面)のd値が小さくなり、結晶化が進んだ天然黒鉛や人造黒鉛等は前記d値が0.340nm以下となるが、本発明は負極がこのような高度に結晶化が進んだ炭素質物質を含む場合においても適用可能であり、この場合においては高容量の非水溶媒系二次電池が得られる。
The invention according to claim 8 of the present application is the nonaqueous solvent secondary battery according to claim 1, wherein the negative electrode active material has a d-value of 0.340 nm or less on the lattice plane (002 plane) in X-ray diffraction. And the non-aqueous solvent contains PC or BC. As the crystallization of the carbonaceous material proceeds, the d value of the lattice plane (002 plane) in X-ray diffraction becomes smaller, and natural graphite and artificial graphite that have been crystallized have the d value of 0.340 nm or less. The present invention can also be applied to the case where the negative electrode contains such a highly crystallized carbonaceous material. In this case, a high-capacity nonaqueous solvent secondary battery can be obtained.

また、本願の請求項に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、前記非水溶媒系電解液は、ゲル化されていることを特徴とする。ゲル化されている場合は、環状酸無水物の酸化分解によって発生したガスが正負極板間に滞留しやすく、有効極板面積の低下による容量低下が著しいことから、本発明の効果が大きく表れる。
The invention according to claim 9 of the present application is characterized in that, in the non-aqueous solvent secondary battery according to claim 1, the non-aqueous solvent electrolyte is gelled. When gelled, the gas generated by the oxidative decomposition of the cyclic acid anhydride tends to stay between the positive and negative electrode plates, and the capacity reduction due to the reduction of the effective electrode plate area is significant, so the effect of the present invention is greatly exhibited. .

更に、前記非水溶媒系電解液がゲル化されている場合は、負極活物質表面にポリマー成分が付着しているため、通常負極界面に生じるSEI被膜の抵抗が大きくなり、液状電解質を使用した非水溶媒系二次電池よりも著しく特性低下が引き起こされるが、このゲル化による抵抗増大作用は、非水溶媒系電解液中に前記環状酸無水物とスクシンイミド化合物を添加したことによるSEI被膜の抵抗低下作用と相殺されるため、良好な特性を有するゲル化された非水溶媒系二次電池が得られるようになる。   Furthermore, when the non-aqueous solvent electrolyte is gelled, the polymer component adheres to the surface of the negative electrode active material, so the resistance of the SEI film that usually occurs at the negative electrode interface increases, and a liquid electrolyte is used. Although the characteristic deterioration is caused more significantly than that of the non-aqueous solvent type secondary battery, the increase in resistance due to the gelation is caused by the addition of the cyclic acid anhydride and the succinimide compound to the non-aqueous solvent type electrolyte. Since this cancels out the resistance lowering action, a gelled non-aqueous solvent secondary battery having good characteristics can be obtained.

ゲル状電解質において、電解液を保持する高分子としては、アルキレンオキシド系高分子や、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体のようなフッ素系高分子等の高分子が挙げられる。このような高分子材料を用いてゲル状電解質を形成する方法は、前記電解液をポリエチレンオキシド、ポリプロピレンオキシド、ポリアルキレンオキシドのイソシアネート架橋体等の重合体などに浸漬することにより得ることができる。   In the gel electrolyte, examples of the polymer holding the electrolytic solution include polymers such as an alkylene oxide polymer and a fluorine polymer such as a polyvinylidene fluoride-hexafluoropropylene copolymer. A method of forming a gel electrolyte using such a polymer material can be obtained by immersing the electrolytic solution in a polymer such as polyethylene oxide, polypropylene oxide, or a cross-linked isocyanate of polyalkylene oxide.

また、重合性ゲル化剤を含有する電解液に紫外線硬化や熱硬化などの重合処理を施す方法や、常温でゲル状電解質を形成する高分子を電解液中に高温溶解したものを冷却する方法も好ましく用いられる。重合性ゲル化剤含有電解液を用いる場合、重合性ゲル化剤としては、例えば、アクリロイル基、メタクリロイル基、ビニル基、アリル基等の不飽和二重結合を有するものや、エポキシ、オキセタン、ホルマール等のカチオン重合性の環状エーテル基を有するものが挙げられる。   In addition, a method of subjecting an electrolytic solution containing a polymerizable gelling agent to a polymerization treatment such as ultraviolet curing or thermosetting, or a method of cooling a solution obtained by dissolving a polymer that forms a gel electrolyte at room temperature at a high temperature. Are also preferably used. When the polymerizable gelling agent-containing electrolyte is used, examples of the polymerizable gelling agent include those having an unsaturated double bond such as acryloyl group, methacryloyl group, vinyl group, allyl group, epoxy, oxetane, formal. And those having a cationically polymerizable cyclic ether group.

具体的にはアクリル酸、アクリル酸メチル、アクリル酸エチル、エトキシエチルアクリレート、メトキシエチルアクリレート、エトキシエトキシエチルアクリレート、ポリエチレングリコールモノアクリレート、エトキシエチルメタクリレート、エトキシエチルメタクリレート、ポリエチレングリコールモノメタクリレート、N,N−ジエチルアミノエチルアクリレート、グリシジルアクリレート、アリルアクリレート、アクリロニトリル、ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ポリアルキレングリコールジメタクリレート、ポリアルキレングリコールジメタクリレート、トリメチロールプロパンアルコキシレートトリアクリレート、ペンタエリスリトールアルコキシレートテトラアクリレート、ペンタエリスリトールアルコキシレートテトラアクリレートなどの不飽和二重結合を有するモノマー、メチルメタクリレートと(3−エチル−3−オキセタニル)メチルアクリレートの共重合ポリマー(分子量約40万)、テトラエチレングリコールビスオキセタンなどの環状エーテル基含有化合物などが挙げられる。   Specifically, acrylic acid, methyl acrylate, ethyl acrylate, ethoxyethyl acrylate, methoxyethyl acrylate, ethoxyethoxyethyl acrylate, polyethylene glycol monoacrylate, ethoxyethyl methacrylate, ethoxyethyl methacrylate, polyethylene glycol monomethacrylate, N, N- Diethylaminoethyl acrylate, glycidyl acrylate, allyl acrylate, acrylonitrile, diethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polypropylene glycol dimethacrylate, polyalkylene glycol dimethacrylate Monomers having an unsaturated double bond, such as methyl methacrylate, (3-ethyl-3), polyalkylene glycol dimethacrylate, trimethylolpropane alkoxylate triacrylate, pentaerythritol alkoxylate tetraacrylate, pentaerythritol alkoxylate tetraacrylate -Oxetanyl) methyl acrylate copolymer (molecular weight of about 400,000), cyclic ether group-containing compounds such as tetraethylene glycol bisoxetane, and the like.

不飽和結合を有するモノマーは熱、紫外線、電子線などによって重合させることができるが、反応を効果的に進行させるため、電解液に重合開始剤を入れておくこともできる。重合開始剤としては、ベンゾイルパーオキサイド、t−ブチルパーオキシクメン、ラウロイルパーオキサイド、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシイソプロピルモノカーボネートなどの有機過酸化物を使用できる。また、環状エーテル基含有化合物は、電解液中のLiや微量のHによって、熱あるいは充放電により重合が開始される。 A monomer having an unsaturated bond can be polymerized by heat, ultraviolet light, electron beam, or the like, but a polymerization initiator may be added to the electrolytic solution in order to effectively advance the reaction. Examples of the polymerization initiator include organic compounds such as benzoyl peroxide, t-butyl peroxycumene, lauroyl peroxide, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, and t-hexyl peroxyisopropyl monocarbonate. Peroxides can be used. In addition, the cyclic ether group-containing compound is polymerized by heat or charge / discharge due to Li + or a small amount of H + in the electrolytic solution.

一方、常温でゲル状電解質を形成する高分子を電解液中に高温溶解したものを冷却する方法は、このような高分子としては、電解液に対してゲルを形成し電池材料として安定なものであればどのようなものであってもよい。例えば、ポリビニルピリジン、ポリ−N−ビニルピロリドンなどの環を有するポリマー;ポリアクリル酸メチル、ポリアクリル酸エチルなどのアクリル誘導体ポリマー;ポリフッ化ビニル、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリアクリロニトリル、ポリビニリデンシアニドなどのCN基含有ポリマー;ポリ酢酸ビニル、ポリビニルアルコールなどのポリビニルアルコール系ポリマー;ポリ塩化ビニル、ポリ塩化ビニリデンなどのハロゲン含有ポリマーなどが挙げられる。また、上記の高分子などとの混合物、変成体、誘導体、ランダム共重合体、グラフト共重合体、ブロック共重合体などであっても使用できる。これらの高分子の質量平均分子量は通常10,000〜5,000,000の範囲である。分子量が低いとゲルを形成しにくくなる。分子量が高いと粘度が高くなりすぎて取り扱いが困難となる。   On the other hand, a method of cooling a polymer that forms a gel electrolyte at room temperature at a high temperature is dissolved in an electrolyte solution. As such a polymer, a gel is formed with respect to the electrolyte solution and is stable as a battery material. Anything may be used. For example, polymers having a ring such as polyvinyl pyridine and poly-N-vinyl pyrrolidone; acrylic derivative polymers such as polymethyl acrylate and polyethyl acrylate; fluororesins such as polyvinyl fluoride and polyvinylidene fluoride; polyacrylonitrile, poly CN group-containing polymers such as vinylidene cyanide; polyvinyl alcohol polymers such as polyvinyl acetate and polyvinyl alcohol; halogen-containing polymers such as polyvinyl chloride and polyvinylidene chloride. Moreover, it can be used even if it is a mixture with said polymer | macromolecule, a modified body, a derivative, a random copolymer, a graft copolymer, a block copolymer, etc. The mass average molecular weight of these polymers is usually in the range of 10,000 to 5,000,000. When the molecular weight is low, it is difficult to form a gel. If the molecular weight is high, the viscosity becomes too high and handling becomes difficult.

また、本願の請求項10に係る発明は、前記請求項に記載の非水溶媒系二次電池において、前記ゲル化されている非水溶媒系電解液における電解液の含有量は、ゲル化されている非水溶媒系電解液の総量に対して50質量%以上99.5質量%以下であることを特徴とし、同じく請求項11に係る発明は、前記請求項10に記載の非水溶媒系二次電池において、記ゲル化されている非水溶媒系電解液における電解液の含有量は、ゲル化されている非水溶媒系電解液の総量に対して75質量%以上99.5質量%以下であることを特徴とする。
The invention according to claim 10 of the present application is the nonaqueous solvent secondary battery according to claim 9 , wherein the content of the electrolyte in the gelled nonaqueous solvent electrolyte is gelled. 50 mass% or more and 99.5 mass% or less with respect to the total amount of the nonaqueous solvent type electrolyte solution currently used, The invention which concerns on Claim 11 is the nonaqueous solvent of the said Claim 10 similarly In the secondary battery, the content of the electrolyte in the gelled non-aqueous solvent electrolyte is 75% by mass or more and 99.5% by mass with respect to the total amount of the gelled non-aqueous solvent electrolyte. % Or less.

ゲル化されている非水溶媒系電解液における電解液の含有量が50質量%未満と少なすぎるとイオン伝導度が低下して高負荷放電効率が悪化する。より好ましくはゲル状電解質の総量に対して75質量%以上である。さらに、電解液の含有量が、99.5質量%を超えると、電解液の保持が困難となり、液漏れや漏液が生じやすくなると共に、ゲル化されている非水溶媒系電解液の機械的強度が得られない。   If the content of the electrolytic solution in the gelled non-aqueous solvent electrolytic solution is too small, such as less than 50% by mass, the ionic conductivity is lowered and the high-load discharge efficiency is deteriorated. More preferably, it is 75 mass% or more with respect to the total amount of the gel electrolyte. Furthermore, when the content of the electrolytic solution exceeds 99.5% by mass, it becomes difficult to hold the electrolytic solution, and liquid leakage or leakage is likely to occur, and the gelled nonaqueous solvent electrolytic solution machine Strength cannot be obtained.

また、本願の請求項12に係る発明は、前記請求項1に記載の非水溶媒系二次電池において、更にラミネート外装体を有していることを特徴とする。このような構成の非水溶媒系二次電池によれば、外装の質量を小さくでき、しかも厚さも薄くできるために、小型軽量の非水溶媒系二次電池を得ることができる。また、ラミネート外装体を用いる場合は、膨れの影響が顕著に現れるため、本発明の効果が大きく表れる。
The invention according to claim 12 of the present application is characterized in that the nonaqueous solvent secondary battery according to claim 1 further includes a laminate outer package. According to the non-aqueous solvent secondary battery having such a configuration, the mass of the outer casing can be reduced and the thickness can be reduced, so that a small and lightweight non-aqueous solvent secondary battery can be obtained. In addition, when the laminate outer package is used, the effect of the present invention is greatly exhibited because the influence of swelling appears remarkably.

本発明は、非水溶媒系二次電池において、前記非水溶媒系電解液中に、
(1)環状酸無水物、及び
(2)スクシンイミド化合物、
を含有させたため、SEI被膜のインピーダンスが非常に低くなると共に、以下に詳細に述べるように、初回放電容量が大きくなり、高負荷放電効率が向上し、かつ長期間の高温充電保存後においても容量低下の小さい非水溶媒系二次電池が得られる。
In the non-aqueous solvent secondary battery, the present invention, in the non-aqueous solvent electrolyte,
(1) a cyclic acid anhydride, and (2) a succinimide compound,
As a result, the impedance of the SEI film becomes very low, and as will be described in detail below, the initial discharge capacity is increased, the high-load discharge efficiency is improved, and the capacity is maintained even after long-term high-temperature storage. A non-aqueous solvent secondary battery with a small decrease is obtained.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明するが、まず最初に実施例及び比較例に共通する非水溶媒系二次電池の具体的製造方法について説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. First, a specific method for producing a nonaqueous solvent secondary battery common to the examples and comparative examples will be described. Will be described.

<正極板の作製>
LiCoOからなる正極活物質をアセチレンブラック、グラファイト等の炭素系導電剤(例えば5質量%)と、ポリビニリデンフルオライド(PVdF)よりなる結着剤(例えば3質量%)等を、N−メチルピロリドンからなる有機溶剤に溶解したものを混合して、活物質スラリーあるいは活物質ペーストとする。これらの活物質スラリーあるいは活物質ペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により正極芯体(例えば、厚みが15μmのアルミニウム箔あるいはアルミニウムメッシュ)の両面に均一に塗付して、活物質層を塗布した正極板を形成する。この後、活物質層を塗布した正極板を乾燥機中に通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥正極板をロールプレス機により圧延して、厚みが0.15mmの正極板とする。
<Preparation of positive electrode plate>
A positive electrode active material made of LiCoO 2 is a carbon-based conductive agent (for example, 5% by mass) such as acetylene black and graphite, and a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF) is N-methyl. A material dissolved in an organic solvent composed of pyrrolidone is mixed to obtain an active material slurry or an active material paste. These active material slurries or active material pastes use a die coater, doctor blade, etc. in the case of slurry, and in the case of paste, a positive electrode core (for example, an aluminum foil or aluminum mesh having a thickness of 15 μm) by a roller coating method or the like. A positive electrode plate coated with an active material layer is formed by uniformly applying to both sides. Thereafter, the positive electrode plate coated with the active material layer is passed through a drier to remove the organic solvent necessary for the preparation of the slurry or paste and dry it. After drying, this dry positive electrode plate is rolled by a roll press to obtain a positive electrode plate having a thickness of 0.15 mm.

<負極板の作製>
天然黒鉛(d(002)値=0.335nm)よりなる負極活物質、ポリビニリデンフルオライド(PVdF)よりなる結着剤(例えば3質量%)等と、N−メチルピロリドンからなる有機溶剤に溶解したものを混合して、スラリーあるいはペーストとする。これらのスラリーあるいはペーストを、スラリーの場合はダイコーター、ドクターブレード等を用いて、ペーストの場合はローラコーティング法等により負極芯体(例えば、厚みが10μmの銅箔)の両面の全面にわたって均一に塗布して、活物質層を塗布した負極板を形成する。この後、活物質層を塗布した負極板を乾燥機中に通過させて、スラリーあるいはペースト作製時に必要であった有機溶剤を除去して乾燥させる。乾燥後、この乾燥負極板をロールプレス機により圧延して、厚みが0.14mmの負極板とする。
<Preparation of negative electrode plate>
Dissolved in a negative electrode active material made of natural graphite (d (002) value = 0.335 nm), a binder (for example, 3% by mass) made of polyvinylidene fluoride (PVdF), etc., and an organic solvent made of N-methylpyrrolidone These are mixed to form a slurry or paste. These slurries or pastes are uniformly applied over the entire surface of the negative electrode core (for example, a copper foil having a thickness of 10 μm) by using a die coater, a doctor blade or the like in the case of a slurry, or by a roller coating method in the case of a paste. The negative electrode plate which apply | coated and applied the active material layer is formed. Thereafter, the negative electrode plate coated with the active material layer is passed through a drier to remove the organic solvent that was necessary when the slurry or paste was prepared, and then dried. After drying, the dried negative electrode plate is rolled by a roll press to obtain a negative electrode plate having a thickness of 0.14 mm.

<電極体の作製>
上述のようにして作製した正極板と負極板を、有機溶媒との反応性が低く、かつ安価なポリオレフイン系樹脂からなる微多孔膜(例えば、厚みが0.020mm)を間にし、かつ、各極板の幅方向の中心線を−致させて重ね合わせる。この後、巻き取り機により捲回する。この後、最外周をテープ止めして渦巻状電極体とする。上述のようにして作製した電極体をアルミラミネートにより構成された外装体にそれぞれ挿入する。ついで、電極体より延出した正極集電タブ、負極集電タブを外装体と共に溶着する。
<Production of electrode body>
The positive electrode plate and the negative electrode plate produced as described above are each provided with a microporous film (for example, a thickness of 0.020 mm) made of a polyolefin resin that is low in reactivity with an organic solvent and inexpensive, and each The center line in the width direction of the electrode plate is made to coincide and overlap. Then, it is wound by a winder. Thereafter, the outermost periphery is taped to form a spiral electrode body. The electrode bodies produced as described above are inserted into the exterior bodies made of aluminum laminate. Subsequently, the positive electrode current collection tab and the negative electrode current collection tab extended from the electrode body are welded with an exterior body.

<電解質の作製>
EC/PC/DEC(20/10/70)の質量比で混合した溶媒に、1.0MとなるようにLiPFを溶解させて電解液を作製する。添加化合物の種類と量は、表中に記載したとおりであり、全て電解液質量に対する質量比である。
<Preparation of electrolyte>
LiPF 6 is dissolved in a solvent mixed at a mass ratio of EC / PC / DEC (20/10/70) so as to be 1.0 M to prepare an electrolytic solution. The types and amounts of the additive compounds are as described in the table, and all are mass ratios relative to the electrolyte solution mass.

ゲル状電解質の作製においては、上記電解液に、モノマーとしてテトラエチレングリコールジメタクリレート8質量%を加え、重合開始剤としてt−ブチルパーオキシピバレート0.3質量%を加えてプレゲルを作製する。添加化合物の種類と量は、表中に記載したとおりであり、全て電解質質量(電解液+モノマー+重合開始剤)に対する質量比である。   In the preparation of the gel electrolyte, a pregel is prepared by adding 8% by mass of tetraethylene glycol dimethacrylate as a monomer and 0.3% by mass of t-butyl peroxypivalate as a polymerization initiator to the above electrolyte. The types and amounts of the additive compounds are as described in the table, and all are mass ratios with respect to the electrolyte mass (electrolytic solution + monomer + polymerization initiator).

<電池の作製>
次いで、各種非水溶媒系電解液を外装体の開口部より必要量注液した後シールして、実施例及び比較例の全てについて設計容量が500mAhのリチウムイオン非水溶媒系二次電池を作製した。ゲル状電解質電池の作製は、プレゲルを必要量注液した後、開口部をシールして、70℃で3時間加熱して重合させ、リチウムポリマー非水溶媒系二次電池を作製した。
<Production of battery>
Next, various non-aqueous solvent electrolytes were injected through the openings of the outer package, and then sealed to produce lithium ion non-aqueous solvent secondary batteries with a design capacity of 500 mAh for all of the examples and comparative examples. did. The gel electrolyte battery was prepared by pouring the required amount of pregel, sealing the opening, and polymerizing by heating at 70 ° C. for 3 hours to prepare a lithium polymer non-aqueous solvent secondary battery.

(実施例1〜14、比較例1〜7)
まず、液状非水溶媒系電解質を使用し、
(1)実施例1〜8の非水溶媒系二次電池として、スクシンイミド化合物としてN−メチルスクシンイミドを使用し、環状酸無水物の種類を変えて8種類の非水溶媒系二次電池を作製し、同じく、
(2)実施例9〜12の非水溶媒系二次電池として、環状酸無水物として無水コハク酸を使用し、スクシンイミド化合物の種類を変えて4種類の非水溶媒系二次電池を作製した。
(Examples 1-14, Comparative Examples 1-7)
First, using a liquid non-aqueous solvent electrolyte,
(1) As nonaqueous solvent type secondary batteries of Examples 1 to 8, N-methylsuccinimide was used as a succinimide compound, and eight kinds of nonaqueous solvent type secondary batteries were produced by changing the type of cyclic acid anhydride. And
(2) As the non-aqueous solvent type secondary batteries of Examples 9 to 12, succinic anhydride was used as the cyclic acid anhydride, and four kinds of non-aqueous solvent type secondary batteries were produced by changing the type of the succinimide compound. .

また、ゲル状非水溶媒系電解質を使用し、
(3)実施例13及び14の非水溶媒系二次電池として、環状酸無水物として無水コハク酸を使用し、スクシンイミド化合物の種類を変えて2種類の非水溶媒系二次電池を作製した。
Also, using a gel-like non-aqueous solvent electrolyte,
(3) As the nonaqueous solvent secondary batteries of Examples 13 and 14, succinic anhydride was used as the cyclic acid anhydride, and two types of nonaqueous solvent secondary batteries were produced by changing the type of succinimide compound. .

同様に、液状非水溶媒系電解質を使用し、
(4)比較例1〜3として、スクシンイミド化合物は添加せず、環状酸無水物の種類を変えて3種類の非水溶媒系二次電池を作製し、
(5)比較例4及び5として、環状酸無水物は添加せず、スクシンイミド化合物の種類を変えて2種類の非水溶媒系二次電池を作製し、
(6)比較例6として、スクシンイミド化合物及び環状酸無水物共に添加せずに非水溶媒系二次電池を作製し、更に、
ゲル状非水溶媒系電解質を使用し、
(7)比較例7として、スクシンイミド化合物は添加せず、環状酸無水物として無水コハク酸を添加した非水溶媒系二次電池を作製した。
Similarly, using a liquid non-aqueous solvent electrolyte,
(4) As Comparative Examples 1 to 3, no succinimide compound was added, and the types of cyclic acid anhydrides were changed to produce three types of nonaqueous solvent type secondary batteries.
(5) As Comparative Examples 4 and 5, cyclic acid anhydrides were not added, and the types of succinimide compounds were changed to produce two types of nonaqueous solvent type secondary batteries.
(6) As Comparative Example 6, a non-aqueous solvent secondary battery was prepared without adding both the succinimide compound and the cyclic acid anhydride,
Using a gel-like non-aqueous solvent electrolyte,
(7) As Comparative Example 7, a non-aqueous solvent secondary battery was prepared in which succinimide compound was not added and succinic anhydride was added as a cyclic acid anhydride.

なお、上記実施例1〜14及び比較例1〜7の全てについて、環状酸無水物を添加する場合は全非水溶媒系電解質質量に対して1.5質量%となるように添加し、スクシンイミド化合物を添加する場合は全非水溶媒系電解質質量に対して1.0質量%となるように添加した。   In addition, about all of said Examples 1-14 and Comparative Examples 1-7, when adding a cyclic acid anhydride, it adds so that it may become 1.5 mass% with respect to the total nonaqueous solvent type electrolyte mass, and succinimide When adding a compound, it added so that it might become 1.0 mass% with respect to the total nonaqueous solvent type electrolyte mass.

<充放電条件>
上述のようにして作製した実施例1〜14及び比較例1〜7の各非水溶媒系二次電池のそれぞれについて、以下に示した充放電条件下で各種充放電試験を行った。
<Charging / discharging conditions>
For each of the nonaqueous solvent secondary batteries of Examples 1 to 14 and Comparative Examples 1 to 7 produced as described above, various charge / discharge tests were performed under the following charge / discharge conditions.

<初回放電容量の測定>
まず最初に、各電池について、25℃において、1It(1C)=500mAの定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で3時間充電した。その後、1Itの定電流で電池電圧が2.75Vに達するまで放電を行い、この時の放電容量を初回放電容量として求めた。結果を表1に示す。
<Measurement of initial discharge capacity>
First, each battery was charged at 25 ° C. with a constant current of 1 It (1C) = 500 mA, and after the battery voltage reached 4.2 V, it was charged with a constant voltage of 4.2 V for 3 hours. Thereafter, discharging was performed at a constant current of 1 It until the battery voltage reached 2.75 V, and the discharge capacity at this time was determined as the initial discharge capacity. The results are shown in Table 1.

<高負荷放電効率の測定>
初回放電容量を測定した各電池について、25℃において、1It=500mAの定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で3時間充電した。その後、0.2It=100mAの定電流で電池電圧が2.75Vになるまで放電を行い、このときの放電容量を0.2It放電容量として求めた。別途同様に充電した電池について3It=1500mAの定電流で電池電圧が2.75Vとなるまで放電させてこの時の放電容量を3It放電容量として求め、以下の計算式により高負荷放電効率を求めた。結果を表1にまとめて示す。
高負荷放電効率(%)=(3It放電容量/0.2It放電容量)×100
<Measurement of high load discharge efficiency>
Each battery whose initial discharge capacity was measured was charged with a constant current of 1 It = 500 mA at 25 ° C., and after the battery voltage reached 4.2 V, it was charged with a constant voltage of 4.2 V for 3 hours. Thereafter, discharging was performed at a constant current of 0.2 It = 100 mA until the battery voltage reached 2.75 V, and the discharge capacity at this time was determined as the 0.2 It discharge capacity. A separately charged battery was discharged at a constant current of 3 It = 1500 mA until the battery voltage reached 2.75 V, the discharge capacity at this time was determined as the 3 It discharge capacity, and the high load discharge efficiency was determined by the following formula: . The results are summarized in Table 1.
High load discharge efficiency (%) = (3 It discharge capacity / 0.2 It discharge capacity) × 100

<高温充電保存特性の測定>
初回放電容量を測定した各電池について、25℃において、1It=500mAの定電流で充電し、電池電圧が4.2Vに達した後は4.2Vの定電圧で3時間充電した。その後、1It=500mAで電池電圧が2.75Vとなるまで放電を行い、このときの放電容量を保存前放電容量として求めた。別途同様に充電した電池について80℃の高温条件下に5日間放置し、25℃において1Itの定電流で電池電圧が2.75Vとなるまで放電を行い、このときの放電容量を保存後放電容量として求め、以下の計算式により容量維持率を求めた。結果をまとめて表1に示す。
容量維持率(%)=(保存後放電容量/保存前放電容量)×100
<Measurement of high-temperature storage characteristics>
Each battery whose initial discharge capacity was measured was charged with a constant current of 1 It = 500 mA at 25 ° C., and after the battery voltage reached 4.2 V, it was charged with a constant voltage of 4.2 V for 3 hours. Thereafter, discharging was performed at 1 It = 500 mA until the battery voltage reached 2.75 V, and the discharge capacity at this time was determined as the discharge capacity before storage. Separately charged batteries were left under high temperature conditions of 80 ° C. for 5 days and discharged at 25 ° C. at a constant current of 1 It until the battery voltage reached 2.75 V. The discharge capacity at this time was stored and then discharged. As a result, the capacity retention rate was calculated by the following calculation formula. The results are summarized in Table 1.
Capacity retention rate (%) = (discharge capacity after storage / discharge capacity before storage) × 100

Figure 0004707313
Figure 0004707313

表1の結果から、液状非水溶媒系電解質を使用した場合、環状酸無水物及びスクシンイミド化合物の両者共に含まない比較例6の非水溶媒系二次電池を基準とすると以下のことが分かる。
(a)スクシンイミド化合物のみを含み、環状酸無水物を含まない比較例4及び5の非水溶媒系二次電池では、初回放電容量は比較例6のものよりもわずかによい結果が得られているが、高負荷放電効率及び高温充電保存特性は比較例6のものと同程度となっている。
(b)環状酸無水物のみを含み、スクシンイミド化合物を含まない比較例1〜3の非水溶媒系二次電池では、初回放電容量は比較例6のものよりも増大しているが、高負荷放電効率及び高温充電保存特性は大幅に悪化している。
(c)環状酸無水物及びスクシンイミド化合物の両者を含む実施例1〜12の非水溶媒系二次電池では、初回放電容量は比較例6のものよりも大で比較例1〜3のものと同程度であるが、高負荷放電効率及び高温充電保存特性は比較例6のものとほぼ同程度の結果が得られている。
From the results of Table 1, the following can be seen from the nonaqueous solvent secondary battery of Comparative Example 6 that does not contain both the cyclic acid anhydride and the succinimide compound when the liquid nonaqueous solvent electrolyte is used.
(A) In the nonaqueous solvent type secondary batteries of Comparative Examples 4 and 5 containing only the succinimide compound and no cyclic acid anhydride, the initial discharge capacity was slightly better than that of Comparative Example 6. However, the high-load discharge efficiency and high-temperature charge storage characteristics are comparable to those of Comparative Example 6.
(B) In the nonaqueous solvent type secondary batteries of Comparative Examples 1 to 3 containing only the cyclic acid anhydride and not containing the succinimide compound, the initial discharge capacity was higher than that of Comparative Example 6, but the load was high. Discharge efficiency and high temperature charge storage characteristics are greatly deteriorated.
(C) In the nonaqueous solvent type secondary batteries of Examples 1 to 12 including both the cyclic acid anhydride and the succinimide compound, the initial discharge capacity is larger than that of Comparative Example 6 and that of Comparative Examples 1 to 3. Although the degree is the same, the high load discharge efficiency and the high temperature charge storage characteristics are almost the same as those of Comparative Example 6.

一方、ゲル状非水溶媒系電解質を使用した場合は、
(d)環状酸無水物のみを含み、スクシンイミド化合物を含まない比較例7の非水溶媒系二次電池では、初回放電容量は比較例6のものよりも増大しているが、高負荷放電効率及び高温充電保存特性は比較例6のものよりも大幅に悪化している。
(e)環状酸無水物及びスクシンイミド化合物の両者を含む実施例13及び14の非水溶媒系二次電池では、初回放電容量は比較例6のものよりも大で比較例7のものと同程度であり、高負荷放電効率は比較例6のものよりも劣るが比較例7のものよりは大幅に優れており、更に高温充電保存特性は、比較例6のものと同程度であって、比較例7のものと比すると大幅によい結果が得られている。
On the other hand, when using a gel-like nonaqueous solvent electrolyte,
(D) In the non-aqueous solvent secondary battery of Comparative Example 7 containing only the cyclic acid anhydride and no succinimide compound, the initial discharge capacity was higher than that of Comparative Example 6, but the high-load discharge efficiency was high. The high-temperature charge storage characteristics are much worse than those of Comparative Example 6.
(E) In the non-aqueous solvent type secondary batteries of Examples 13 and 14 containing both the cyclic acid anhydride and the succinimide compound, the initial discharge capacity was larger than that of Comparative Example 6 and comparable to that of Comparative Example 7. The high-load discharge efficiency is inferior to that of Comparative Example 6, but is significantly better than that of Comparative Example 7, and the high-temperature charge storage characteristics are comparable to those of Comparative Example 6, Significantly better results are obtained compared to Example 7.

以上の(a)〜(e)の結果をまとめると、液状非水溶媒系電解質及びゲル状非水溶媒系電解質のいずれの場合であっても、
(a’)環状酸無水物のみを添加すると初回放電容量の改善につながるが、高負荷放電効率及び高温充電保存特性は悪化し、
(b’)環状酸無水物及びスクシンイミド化合物の両者を添加すると、初回放電容量、高負荷放電効率及び高温充電保存特性共に良好な結果が得られる、
ことがわかる。
Summarizing the results of (a) to (e) above, in any case of a liquid non-aqueous solvent electrolyte and a gel non-aqueous solvent electrolyte,
(A ′) When only cyclic acid anhydride is added, the initial discharge capacity is improved, but the high load discharge efficiency and high temperature charge storage characteristics are deteriorated,
(B ′) When both a cyclic acid anhydride and a succinimide compound are added, good results are obtained in both initial discharge capacity, high load discharge efficiency and high temperature charge storage characteristics.
I understand that.

(実施例15〜17、参考例1〜3
実施例15〜16、参考例1〜2では、前記実施例3の非水電解液二次電池と同様に、環状酸無水物として無水コハク酸を全非水溶媒系電解質質量に対して1.5質量%となるように添加し、スクシンイミド化合物としてN−メチルスクシンイミドの添加量を全非水溶媒系電解質質量に対して0.1〜3.0質量%まで変化させた4種類の非水溶媒系二次電池を作製した。この実施例15〜16、参考例1〜2の電池について前記実施例1〜14と同様にして初回放電容量、高負荷放電効率及び高温充電保存特性を測定した。結果を実施例3の結果と共にまとめて表2に示した。
(Examples 15 to 17, Reference Examples 1 to 3 )
In Examples 15 to 16 and Reference Examples 1 and 2 , as in the case of the nonaqueous electrolyte secondary battery of Example 3, succinic anhydride was used as a cyclic acid anhydride with respect to the total nonaqueous solvent based electrolyte mass. 4 types of non-aqueous solvents which were added so as to be 5% by mass, and the addition amount of N-methylsuccinimide as a succinimide compound was changed to 0.1-3.0% by mass with respect to the total mass of the non-aqueous solvent electrolyte. A secondary battery was prepared. The batteries of Examples 15 to 16 and Reference Examples 1 to 2 were measured for initial discharge capacity, high load discharge efficiency, and high temperature charge storage characteristics in the same manner as in Examples 1 to 14. The results are shown in Table 2 together with the results of Example 3.

また、実施例17及び参考例3の非水溶媒系二次電池では、前記実施例9の非水電解液二次電池と同様に、環状酸無水物として無水コハク酸を全非水溶媒系電解質質量に対して1.5質量%となるように添加し、スクシンイミド化合物としてN−エチルスクシンイミドの添加量を全非水溶媒系電解質質量に対して0.5及び2.0質量%添加して2種類の非水溶媒系二次電池を作製した。この実施例17及び参考例3の電池について前記実施例1〜14と同様にして初回放電容量、高負荷放電効率及び高温充電保存特性を測定した。結果を実施例9の結果と共にまとめて表2に示した。
In the nonaqueous solvent secondary battery of Example 17 and Reference Example 3, as in the nonaqueous electrolyte secondary battery of Example 9, succinic anhydride was used as the cyclic acid anhydride for the entire nonaqueous solvent electrolyte. The amount of N-ethylsuccinimide added as a succinimide compound is 0.5% by mass and 2.0% by mass with respect to the total mass of the nonaqueous solvent electrolyte. Various types of nonaqueous solvent secondary batteries were produced. The batteries of Example 17 and Reference Example 3 were measured for initial discharge capacity, high load discharge efficiency, and high temperature charge storage characteristics in the same manner as in Examples 1-14. The results are shown in Table 2 together with the results of Example 9.

Figure 0004707313
Figure 0004707313

表2に示した結果から、スクシンイミド化合物が0.1質量%と少ない参考例1の非水溶媒系二次電池では、実施例15〜17、参考例2〜3、実施例3及び9のものと比すると、高負荷放電効率及び高温充電保存特性がわずかに低下しているが、それでも環状酸無水物のみを含有している比較例1〜3のものと比すると良好な結果が得られている。スクシンイミド化合物含有量が0.5%以上の実施例15〜17、参考例2〜3の非水溶媒系二次電池では、初回放電容量、高負荷放電効率及び高温充電保存特性共に実施例3ないしは実施例9と同等の良好な結果が得られている。 From the results shown in Table 2, in the nonaqueous solvent type secondary battery of Reference Example 1 having a low succinimide compound of 0.1% by mass, those of Examples 15 to 17, Reference Examples 2 to 3 , and Examples 3 and 9 were used. The high load discharge efficiency and the high-temperature charge storage characteristics are slightly reduced as compared with those of Comparative Examples 1 to 3 that still contain only cyclic acid anhydrides. Yes. In the nonaqueous solvent type secondary batteries of Examples 15 to 17 and Reference Examples 2 to 3 having a succinimide compound content of 0.5% or more, Examples 3 to Good results equivalent to those of Example 9 are obtained.

このような環状酸無水物が添加されている非水溶媒系電解質に対してスクシンイミド化合物を添加したことによる高負荷放電効率及び高温充電保存特性の改善効果は、全非水溶媒系電解質質量に対して0.01質量%程度から見られ、0.05質量%以上で非常に良好となり、約0.5質量%以上でその効果が飽和する傾向が見られる。したがって、前記スクシンイミド化合物の含有量は、全電解質質量の0.01質量%以上が好ましく、より好ましくは0.05質量%以上である。前記スクシンイミド化合物の含有量は、10質量%程度まで添加しても所定の効果を奏するが、5質量%を超えて添加すると非水溶媒系電解質のイオン伝導率が減少しだすので、上限は5質量%とすることが好ましい。   The effect of improving the high-load discharge efficiency and high-temperature charge storage characteristics due to the addition of the succinimide compound to the non-aqueous solvent electrolyte to which such cyclic acid anhydride is added is based on the total mass of the non-aqueous solvent electrolyte. From about 0.01% by mass, it becomes very good at 0.05% by mass or more, and the effect tends to be saturated at about 0.5% by mass or more. Therefore, the content of the succinimide compound is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the total electrolyte mass. Even if the content of the succinimide compound is added up to about 10% by mass, a predetermined effect can be obtained. However, if the content exceeds 5% by mass, the ionic conductivity of the nonaqueous solvent electrolyte starts to decrease, so the upper limit is 5% by mass. % Is preferable.

なお、上述の実施例1〜17、参考例1〜3においては、各環状酸無水物及び各スクシンイミド化合物を1種類ずつ添加した例を示したが、それぞれを複数添加しても同様の効果が生じることは当業者にとり自明であろう。
In Examples 1 to 17 and Reference Examples 1 to 3 described above, examples in which each cyclic acid anhydride and each succinimide compound were added one by one were shown. It will be apparent to those skilled in the art that this occurs.

Claims (12)

リチウムを可逆的に吸蔵・放出可能な正極活物質を含む正極と、リチウムを可逆的に吸蔵・放出可能な負極活物質を含む負極と、非水溶媒系電解液とを備えた非水溶媒系二次電池において、前記非水溶媒系電解液中に、
(1)環状酸無水物、及び
(2)N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種、
を含有し、
前記環状酸無水物の含有量は、全電解質質量の0.01〜10質量%の範囲であり、
前記N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種の含有量は、全電解質質量の0.01〜10質量%の範囲であり、
前記非水溶媒系電解液中の前記N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種と前記環状酸無水物との質量比は、1:2〜2:1の範囲である
ことを特徴とする非水溶媒系二次電池。
A non-aqueous solvent system comprising a positive electrode including a positive electrode active material capable of reversibly occluding and releasing lithium, a negative electrode including a negative electrode active material capable of reversibly occluding and releasing lithium, and a non-aqueous solvent electrolyte In the secondary battery, in the non-aqueous solvent electrolyte,
(1) cyclic acid anhydride, and (2) at least one selected from N-alkyl succinimide compounds, N-alkenyl succinimide compounds, and N-aryl succinimide compounds,
Containing
The content of the cyclic acid anhydride is in the range of 0.01 to 10% by mass of the total electrolyte mass,
The N- alkyl succinimides compound, N- alkenyl succinimide compound, N- aryl disk at least one content Shin selected from imide compounds, Ri range der of 0.01 to 10% by weight of the total electrolyte weight,
The mass ratio of the cyclic acid anhydride to at least one selected from the N-alkyl succinimide compound, N-alkenyl succinimide compound and N-aryl succinimide compound in the non-aqueous solvent electrolyte is 1: 2 A non-aqueous solvent type secondary battery characterized by being in a range of 2: 1 .
前記環状酸無水物は、下記化学式で表されることを特徴とする請求項1に記載の非水溶媒系二次電池。
Figure 0004707313


(ただし、n=0〜4の整数であり、R〜Rは、同じであっても異なっていても良く、Hもしくはアルキル基、アルケニル基又はアリール基からなる炭素数1〜12の有機基を示す。また、R〜Rは互いに結合して環を形成していてもよい。)
The non-aqueous solvent secondary battery according to claim 1, wherein the cyclic acid anhydride is represented by the following chemical formula.
Figure 0004707313


(However, n is an integer of 0 to 4, and R 1 to R 4 may be the same or different, and is an organic group having 1 to 12 carbon atoms composed of H, an alkyl group, an alkenyl group, or an aryl group. And R 1 to R 4 may be bonded to each other to form a ring.)
前記環状酸無水物は、無水マレイン酸、無水フタル酸、無水コハク酸、無水メチルコハク酸、無水2,2−ジメチルコハク酸、無水グルタル酸、無水1,2−シクロヘキサンジカルボン酸、無水cis−1,2,3,6−テトラヒドロフタル酸、無水cis−5−ノルボルネン−endo−2,3−ジカルボン酸、無水フェニルコハク酸、無水2−フェニルグルタル酸、無水ノネニルコハク酸から選択された少なくとも1種であることを特徴とする請求項2に記載の非水溶媒系二次電池。   The cyclic acid anhydride is maleic anhydride, phthalic anhydride, succinic anhydride, methyl succinic anhydride, 2,2-dimethyl succinic anhydride, glutaric anhydride, 1,2-cyclohexanedicarboxylic anhydride, cis-1, At least one selected from 2,3,6-tetrahydrophthalic acid, cis-5-norbornene-endo-2,3-dicarboxylic acid, phenyl succinic anhydride, 2-phenyl glutaric anhydride, and nonenyl succinic anhydride The nonaqueous solvent secondary battery according to claim 2. 前記環状酸無水物の含有量は、全電解質質量の0.05〜5質量%の範囲であることを特徴とする請求項1に記載の非水溶媒系二次電池。   2. The non-aqueous solvent secondary battery according to claim 1, wherein the content of the cyclic acid anhydride is in the range of 0.05 to 5 mass% of the total electrolyte mass. 前記N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物又はN−アリールスクシンイミド化合物におけるアルキル基、アルケニル基又はアリール基に含まれる炭素数は1以上12以下であることを特徴とする請求項1に記載の非水溶媒系二次電池。   2. The carbon number contained in the alkyl group, alkenyl group or aryl group in the N-alkyl succinimide compound, N-alkenyl succinimide compound or N-aryl succinimide compound is 1 or more and 12 or less. Nonaqueous solvent type secondary battery. 前記N−アルキルスクシンイミド化合物がN−メチルスクシンイミド、N−エチルスクシンイミド、N−イソプロピルスクシンイミド、N−シクロヘキシルスクシンイミド、N−イソブチルスクシンイミド、N−tert−アミルスクシンイミドから選択された少なくとも1種であり、前記アルケニルスクシンイミド化合物がN−ビニルスクシンイミド、N−アリルスクシンイミドから選択された少なくとも1種であり、また、前記アリールスクシンイミド化合物がN−フェニルスクシンイミドであることを特徴とする請求項に記載の非水溶媒系二次電池。 The N-alkylsuccinimide compound is at least one selected from N-methylsuccinimide, N-ethylsuccinimide, N-isopropylsuccinimide, N-cyclohexylsuccinimide, N-isobutylsuccinimide, N-tert-amylsuccinimide, and the alkenyl The non-aqueous solvent system according to claim 5 , wherein the succinimide compound is at least one selected from N-vinyl succinimide and N-allyl succinimide, and the aryl succinimide compound is N-phenyl succinimide. Secondary battery. 前記N−アルキルスクシンイミド化合物、N−アルケニルスクシンイミド化合物、N−アリールスクシンイミド化合物から選択された少なくとも1種の含有量は、全電解質質量の0.05〜5質量%の範囲であることを特徴とする請求項1に記載の非水溶媒系二次電池。   The content of at least one selected from the N-alkyl succinimide compound, the N-alkenyl succinimide compound, and the N-aryl succinimide compound is in the range of 0.05 to 5% by mass of the total electrolyte mass. The nonaqueous solvent type secondary battery according to claim 1. 前記負極活物質はX線回折における格子面(002面)のd値が0.340nm以下である炭素質物であり、前記非水溶媒はプロピレンカーボネートあるいはブチレンカーボネートを含むことを特徴とする請求項1に記載の非水溶媒系二次電池。   The negative electrode active material is a carbonaceous material having a lattice plane (002 plane) d value of 0.340 nm or less in X-ray diffraction, and the non-aqueous solvent contains propylene carbonate or butylene carbonate. A nonaqueous solvent secondary battery according to 1. 前記非水溶媒系電解液は、ゲル化されていることを特徴とする請求項1に記載の非水溶媒系二次電池。   The nonaqueous solvent secondary battery according to claim 1, wherein the nonaqueous solvent electrolyte is gelled. 前記ゲル化されている非水溶媒系電解液における電解液の含有量は、ゲル化されている非水溶媒系電解液の総量に対して50質量%以上99.5質量%以下であることを特徴とする請求項に記載の非水溶媒系二次電池。 The content of the electrolytic solution in the gelled non-aqueous solvent electrolyte is 50% by mass or more and 99.5% by mass or less based on the total amount of the gelled non-aqueous solvent electrolyte. The non-aqueous solvent secondary battery according to claim 9 , wherein 前記ゲル化されている非水溶媒系電解液における電解液の含有量は、ゲル化されている非水溶媒系電解液の総量に対して75質量%以上99.5質量%以下であることを特徴とする請求項10に記載の非水溶媒系二次電池。 The content of the electrolytic solution in the gelled nonaqueous solvent-based electrolyte solution is 75% by mass or more and 99.5% by mass or less based on the total amount of the gelated nonaqueous solvent electrolyte solution. The nonaqueous solvent secondary battery according to claim 10 , wherein 更に、ラミネート外装体を有していることを特徴とする請求項1に記載の非水溶媒系二次電池。   The nonaqueous solvent secondary battery according to claim 1, further comprising a laminate outer package.
JP2003326733A 2003-09-18 2003-09-18 Non-aqueous solvent type secondary battery Expired - Lifetime JP4707313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326733A JP4707313B2 (en) 2003-09-18 2003-09-18 Non-aqueous solvent type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326733A JP4707313B2 (en) 2003-09-18 2003-09-18 Non-aqueous solvent type secondary battery

Publications (2)

Publication Number Publication Date
JP2005093293A JP2005093293A (en) 2005-04-07
JP4707313B2 true JP4707313B2 (en) 2011-06-22

Family

ID=34456830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326733A Expired - Lifetime JP4707313B2 (en) 2003-09-18 2003-09-18 Non-aqueous solvent type secondary battery

Country Status (1)

Country Link
JP (1) JP4707313B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
CA2625271A1 (en) * 2008-03-11 2009-09-11 Hydro-Quebec Method for preparing an electrochemical cell having a gel electrolyte
CN102044675A (en) * 2009-10-23 2011-05-04 深圳市比克电池有限公司 Lithium battery anode slurry additive, slurry, battery and preparation method
JP5552077B2 (en) * 2011-02-25 2014-07-16 三井化学株式会社 Nonaqueous electrolyte containing phosphorus derivative and lithium secondary battery
JP5720325B2 (en) * 2011-03-11 2015-05-20 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
IN2014CN02844A (en) 2011-10-17 2015-07-03 Ube Industries
CN113871692A (en) * 2020-06-30 2021-12-31 东营市海科新源化工有限责任公司 Lithium ion battery
CN112467212B (en) * 2020-10-30 2022-04-12 合肥国轩高科动力能源有限公司 Lithium ion battery electrolyte for silicon-carbon cathode and lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216848A (en) * 2001-01-23 2002-08-02 Sony Corp Gelled electrolyte, and gelled electrolyte cell using the same
JP2002324580A (en) * 2001-02-23 2002-11-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2003007333A (en) * 2001-06-26 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
JP2003086248A (en) * 2001-09-14 2003-03-20 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery and electrolytic solution
JP2003092137A (en) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery using same
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2004071458A (en) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolytic liquid secondary battery
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216848A (en) * 2001-01-23 2002-08-02 Sony Corp Gelled electrolyte, and gelled electrolyte cell using the same
JP2002324580A (en) * 2001-02-23 2002-11-08 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2003007333A (en) * 2001-06-26 2003-01-10 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using the same
JP2003092137A (en) * 2001-07-10 2003-03-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte and secondary battery using same
JP2003086248A (en) * 2001-09-14 2003-03-20 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution secondary battery and electrolytic solution
JP2003338317A (en) * 2002-05-17 2003-11-28 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2004071458A (en) * 2002-08-08 2004-03-04 Mitsubishi Chemicals Corp Non-aqueous electrolytic liquid secondary battery
JP2004281073A (en) * 2003-03-12 2004-10-07 Mitsubishi Chemicals Corp Nonaqueous electrolyte and battery therewith

Also Published As

Publication number Publication date
JP2005093293A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4748930B2 (en) Non-aqueous solvent type secondary battery
US8916297B2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
JP4992921B2 (en) Non-aqueous electrolyte secondary battery
JP2004103573A (en) Electrolyte for lithium cell and lithium cell containing it
JP5163065B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte composition
JP4014816B2 (en) Lithium polymer secondary battery
KR20080101702A (en) Secondary battery and manufacturing method of the same
JP2008112722A (en) Lithium polymer battery
JP4596763B2 (en) Non-aqueous solvent type secondary battery
KR20090084713A (en) Non-aqueous electrolytic solution battery and non-aqueous electrolytic solution composition
JP4707313B2 (en) Non-aqueous solvent type secondary battery
JP2005108515A (en) Nonaqueous electrolyte battery
JP4707312B2 (en) Non-aqueous solvent type secondary battery
JP2012248544A (en) Lithium polymer battery
JP4601273B2 (en) Non-aqueous solvent type secondary battery
KR20080029897A (en) Polymer electrolyte secondary battery
JP2005135755A (en) Method of manufacturing carbon material for negative electrode of nonaqueous secondary battery and nonaqueous secondary battery using same
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2001006740A (en) Lithium secondary battery provided with polymer electrolyte, and manufacture thereof
CN114142039A (en) Binder and lithium ion battery comprising same
KR100529106B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2009134943A (en) Nonaqueous electrolyte battery
KR100467689B1 (en) Organic electrolyte solution and lithium battery adopting the same
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R151 Written notification of patent or utility model registration

Ref document number: 4707313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

EXPY Cancellation because of completion of term