JP4696249B2 - 形状測定方法及び装置 - Google Patents

形状測定方法及び装置 Download PDF

Info

Publication number
JP4696249B2
JP4696249B2 JP2007032367A JP2007032367A JP4696249B2 JP 4696249 B2 JP4696249 B2 JP 4696249B2 JP 2007032367 A JP2007032367 A JP 2007032367A JP 2007032367 A JP2007032367 A JP 2007032367A JP 4696249 B2 JP4696249 B2 JP 4696249B2
Authority
JP
Japan
Prior art keywords
light beam
reflected
mirror
measurement object
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007032367A
Other languages
English (en)
Other versions
JP2008196970A (ja
Inventor
修己 佐々木
亮 篠▲ざき▼
Original Assignee
国立大学法人 新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学 filed Critical 国立大学法人 新潟大学
Priority to JP2007032367A priority Critical patent/JP4696249B2/ja
Publication of JP2008196970A publication Critical patent/JP2008196970A/ja
Application granted granted Critical
Publication of JP4696249B2 publication Critical patent/JP4696249B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、被測定面の形状を計測する形状測定方法及び装置に関する。
近年の精密加工技術の発展に伴い、加工部品の表面形状に関する品質管理が重要となっている。そして、製造される加工部品のインプロセス全教表面形状検査が可能ならば、工場からの不良品出荷の抑制に大いに効果がある。現在、形状検査のために、触針式形状測定装置やレーザ干渉計などが用いられているが、これらの装置は測定対象の高い設定位置精度が要求され、また機械的な振動に弱く特別な測定室が必要なため、インプロセス全数表面形状検査装置に適用できない。
測定対象表面を1点ずつ走査して測定する従来の表面形状測定装置は、数cmにわたる走査速度が数十秒と遅いため測定時問が長くなり、そのため機械的な振動の影響を受易い欠点があった。また、走査光学系が高価でもあり、インプロセス全数表面形状検査装置としては不十分であった。これらの不十分な点を解決する表面形状測定装置が、特許文献1に開示されている。
この表面形状測定装置は、光源から放射される光束を走査光学系を介して被測定面に入射させ、この被測定面により反射された前記光束を位置センサで確知して傾斜分布を測定し、得られた傾斜分布を演算装置で積分することにより被測定面の形状を求める形状測定装置であって、光源から放射される光束を光束変向手段により実時間で変向し、この光束変向手段により変向した光束が、一若しくは複数の平面ミラーで反射して前記被測定面と対向状態に設けた凹面ミラーを介して前記被測定面に入射すると共に、光束変向手段により変向角度を変化させることで前記被測定面上を走査し得るように前記走査光学系を構成し、前記光束変向手段と位置センサとは夫々前記平面ミラー若しくは被測定面を介して互いに凹面ミラーの共役点に設けたものである。
特許文献1の第一実施例において、光束変向手段と位置センサは、凹面ミラーの共役距離に配置しているが、この「共役距離に配置する」の意味は、光路S−R−M=L1および光路M−Q−S=L2とおくと、(1/L1)+(1/L2)=2/Rが成り立つようにすることである。平面ミラーおよび被測定面の位置については、光束変向手段からの距離が等しくなっているため、L1=L2=Rとすることができ、(1/L1)+(1/L2)=2/Rが成り立つ。この状態は特別の場合であり、明細書中の段落「0043」では凹面ミラーは無収差になると表現している。この無収差のときは、被測定面からの反射光の方向が被測定面の形状に比例するため、明細書中の段落「0051」に述べられているように、光スポット位置変位△より、被測定面の形状が得られる。
他方、特許文献1の第二実施例においても、光束変向手段と位置センサは、(1/L1)+(1/L2)=2/Rが成り立つように配置されている。しかし、L1がL2と等しくないため、被測定面の形状に比例する光スポット位置変位(S2の位置に対応する)は光束変向手段の面上に現れる。このため、レンズを用い、光束変向手段の面を位置センサの面に結像している。つまり、第二実施例は、位置センサを凹面ミラーの共役点(光束変向手段の面上のS2)に配置できないときの構成(光束変向手段があるから)である。なお、位置センサは、レンズの一方の共役距離に配置され、凹面ミラーの一方の共役距離がレンズの他方の共役点になっている(上記のレンズによる結像関係にある)。
特開2004−279132号公報
この表面形状測定装置では、測定対象の表面形状を10ナノメータ以下の誤差で測定しようとするとき、測定対象面の前後方向に対して測定対象面を1ミクロン以下の誤差で設定する必要がある。しかし、実際の測定では通常100ミクロン程度の位置設定誤差が存在するため、表面形状の測定結果には数ミクロンのオーダーの誤差が生じる。この測定誤差として生じる表面形状は、レーザビームの1次元走査方向に対して2次の関数となっている。このため、測定対象面が2次関数の表面形状成分を含む場合は、特許文献1に開示されている表面形状測定装置では表面形状を正確に測定できないという大きな問題点がある。
そこで本発明は上記問題点に鑑み、測定対象の位置設定精度に対する厳しい条件がなく、2次関数の表面形状成分を含む表面形状も正確に測定できる形状測定方法及び装置を提供することを目的とする。
本発明における請求項1の形状測定方法及び請求項4の形状測定装置では、走査光学系により光源から放射される光束を測定対象の表面上で走査させ、当該測定対象で反射された反射光束の伝搬方向を光伝搬方向検出系で検出し、当該検出結果に基づいて演算を行うことにより前記測定対象の表面形状を求める形状測定方法(又は当該検出結果に基づいて演算装置で演算を行うことにより前記測定対象の表面形状を求める形状測定装置)であって、前記走査光学系を、前記光源から放射される光束を所望の方向へ変向させる光束変向手段と、該光束変向手段で変向された光束を反射する平面ミラーと、該平面ミラーと対向して設けられ、前記平面ミラーで反射された光束を反射して前記測定対象に入射させる凹球面ミラーとから構成すると共に、前記光束が前記光束変向手段から前記平面ミラーを介して前記凹球面ミラーに至るまでの光路長が前記凹球面ミラーの曲率半径に等しくなるよう前記平面ミラー及び前記凹球面ミラーを配設し、前記光伝搬方向検出系を、前記測定対象で反射された反射光束が入射するレンズと、該レンズから該レンズの焦点距離だけ離れた位置に配置された光位置検出器とから構成している。
このようにすると、測定対象表面の傾斜によって測定対象面からの反射光束の伝搬方向が異なることから表面形状の測定を行うことができるため、正確に角度振れを検出することができる光学系となっており、測定対象の位置設定精度に対する厳しい条件はなくなり、2次関数の表面形状成分を含む表面形状も正確に測定できる。
本発明における請求項2の形状測定方法及び請求項5の形状測定装置では、前記測定対象で反射された反射光束を前記光束変向手段で反射するように構成し、当該光束変向手段で反射された反射光束を前記レンズへ向けて反射する第2の平面ミラーを配設している。
このようにすると、光伝搬方向検出系を走査光学系から離れた位置に配置できるため、当該形状測定に使用する装置(形状測定装置)が構成しやすくなる。
本発明における請求項3の形状測定方法及び請求項6の形状測定装置では、前記光伝搬方向検出系の検出結果である前記光位置検出器の検出位置△(△=2θf、θは前記測定対象の表面の傾斜角、fは前記焦点距離)に基づいて前記傾斜角θを逐次算出することにより、前記検出位置△の走査方向位置xに対する位置分布△(x)を測定し、次式を演算することにより、
Figure 0004696249
前記測定対象の表面形状r(x)を求める。
このようにすると、光位置検出器の検出位置から測定対象の表面形状を容易に算出することができる。
本発明の請求項1,4によると、測定対象の位置設定精度に対する厳しい条件がなく、2次関数の表面形状成分を含む表面形状も正確に測定できる形状測定方法及び装置を提供することができる。
本発明の請求項2,5によると、装置構成が容易となる。
本発明の請求項3,6によると、測定対象の表面形状を容易に算出することができる。
以下、添付図面を参照しながら、本発明における形状測定方法及び装置の好ましい実施例を説明する。
まず、本発明の要点について説明する。
測定対象表面の傾斜に比例した光束であるレーザビームの角度振れを検出し、表面傾斜を積分することより1次元表面形状を測定する測定原理がある。この測定原理を適用した1次元表面形状測定装置として、レーザビームを測定対象表面上で高速に1次元走査し、かつ同時に測定対象表面の傾斜によるレーザビームの角度振れを検出する光学系で構成される表面形状測定装置を発明した。本発明の走査光学系では、回転するスキャナミラー、平面ミラー、凹球面ミラーを用いることによって構成されている。従って、非常に安価な高速走査光学系となっている。
同様な走査光学系を用いた表面形状測定装置が特許文献1に開示されているが、この測定装置では、測定対象面からの反射レーザビームが到達する位量が測定対象表面の傾斜によって異なることから表面形状の測定を行っている。このため、上述のように、測定対象の位置設定精度が厳しく、レーザビームの1次元走査方向に対して2次の関数となる表面形状の成分を測定できないという大きな問題点を有している。
本発明では、これらの問題点を解決するように、平面ミラーと凹球面ミラーの位置関係を設定し、かつ角度振れを受けた反射レーザビームをレンズにより光検出器上に導くことによって、測定対象表面の傾斜によって測定対象面からの反射レーザビームの伝搬方向が異なることから表面形状の測定を行っている。このため、正確に角度振れを検出することができる光学系となっており、測定対象の位置設定精度に対する厳しい条件はなくなり、2次関数の表面形状成分を含む表面形状も正確に測定できる。
以上の特性から本発明による表面形状測定装置では、測定対象の位置設定に対し高い精度が要求されないため、測定対象の設定が容易である。また、数cmにわたる1次元表面形状の測定時問がミリ秒オーダーと非常に短時間であり除震装置を必要としないため、機械的振動が多い悪環境の中でのインプロセス全数表面形状検査に有効な測定装置となっている。
次に、本発明で用いる表面形状測定の原理を図1で説明する。
レーザ光源10から放射されたレーザビームが、測定対象30の表面S上の点Pに入射している。点Pで反射したレーザビームは、もし測定対象面Sが平坦ならば、レンズ41を通り光ビーム位置検出器42上の点Oに入射する。ただし、POはレンズ41の光軸であり、光ビーム位置検出器42の検出面は光軸に垂直である。また、レンズ41と光ビーム位置検出器42との距離はレンズ41の焦点距離fに等しい。測定対象30の表面S上の点Pにおける接線とx軸とのなす角である傾斜角がθならば、点Pからの反射レーザビームは直線POと2θの角をなす。従って、このときの光ビーム位置検出器42の面上の光束入射点としてのレーザビームスポットの位置△は、θが非常に小さいならば、レンズ41の作用により△=2θfとなる。光ビーム位置検出器42の出力は光ビームの位置△に比例した値であり、傾斜角θを測定することができる。測定対象30の表面上のビームスポットをx軸方向に走査し、光ビームの位置分布△(x)を測定すれば、
Figure 0004696249
数式2で測定対象30の1次元表面形状r(x)を測定できる。
図2乃至図4を用い、上記の原理に基づく本発明の実施例について説明する。
10はレーザ光源であり、例えば気体レーザ,半導体レーザなどを用いればよい。11は、測定対象30の表面上のビームスポット径の大きさを調整するためのレンズである。20は、レーザ光源10より放射されたレーザビームを反射(変向)することにより測定対象30の面上でビームスポットを走査させるための光束変向手段としてのスキャナミラーであり、例えばモータの回転軸に取り付けられた平面ミラー,ハーフミラー,ポリゴンミラー,ガルバノスキャナなどが用いられる。また、このスキャナミラー20は、測定対象30の表面からの反射レーザビームを反射して平面ミラー40に入射させるためにも利用される。21は、スキャナミラー20で反射したレーザビームを反射して凹球面ミラー22に入射させる平面ミラーである。22は、平面ミラー21で反射したレーザビームを反射して測定対象30に入射させる凹球面ミラーである。40は、スキャナミラー20で反射した反射レーザビームを反射してレンズ41に入射させる平面ミラーである。41は、測定対象30からの反射レーザビームの伝搬方向を検出するためのレンズである。42は、光ビーム位置検出器であり、例えばCCD素子,PSD,フォトダイオードアレイなどを用いればよい。51は、光ビーム位置検出器42で得られた位置検出信号に対し、上記説明した測定対象30の1次元表面形状r(x)を求めるための演算を行う演算装置としてのパーソナルコンピュータ(以下、パソコンという)である。
まず図2において、レーザ光源10からの細いレーザビームを、レンズ11を通過させて、スキャナミラー20の回転中心A点に入射させる。レンズ11の位置によって測定対象30の表面上のビームスポット径の大きさを調整する。スキャナミラー20が同図のような回転位置にあるときは、点Aからの反射レーザビームは、平面ミラー21のQ点に入射し、凹球面ミラー22のC点に到る。凹球面ミラー22の光軸はz軸方向であり、スキャナミラー20の回転中心A点はこの光軸上にある。経路AQとz軸のなす角度はφである。このような配置で、長さAQCが凹球面ミラー22の曲率半径に等しい時、凹球面ミラー22のC点からの反射レーザビームは同じ経路CQを戻り、測定対象30のP点に到達する。P点で測定対象面がx軸となす角度である傾斜角θがθ=0のときは、P点からの反射レーザビームは経路AQと平行に進み、スキャナミラー20のR点に達し、平面ミラー40のT点で反射される。経路RTはレーザ光源10からのレーザビームと平行である。平面ミラー40で反射されたレーザビームはレンズ41に入射される。レンズ41の光軸はz軸に平行である。レンズ41からレンズ41の焦点距離fだけ離れた位置に光ビーム位置検出器42が配置されており、レンズ41を通過したレーザビームは光ビーム位置検出器42上のO点すなわち光軸と交わる点Oに到達する。この場合は光ビームの位置△は△=0であり、測定対象表面の傾斜角θはθ=0と検出される。
スキャナミラー20が回転すると角度φが変化し、測定対象30の表面上のビームスポットはx軸方向に走査される。同図のように測定対象30の面がx軸に平行な平坦面の場合には、測定対象30の面からの反射レーザビームは常に光軸上のX点を通過し、凹球面ミラーの光軸とのなす角度はφである。この反射レーザビームがスキャナミラー20で反射されると、レーザビームはレンズ41の光軸と平行となり、光ビーム位置検出器42上のO点に達する。なお、レーザビームと光軸との距離hはh=2dφである。
次に図3に示すように、測定対象30の面の傾斜角がθの場合は、測定対象30の面からの反射レーザビームは、平坦面の場合に比べて角度2θだけ余分に角度触れを起こし、レンズ41に入射する時には、レーザビームとレンズ41の光軸となす角は2θとなり、光ビーム位置検出器42上の点に到達する位置は点Oから△=2θfだけ離れた位置となる。
スキャナミラー20の回転により測定対象30の面上のビームスポットはx軸方向に走査され、この走査による光ビーム位置検出器42の出力はパソコン51に取り込まれる。取り込まれた検出データから光ビームの位置△、測定対象表面の傾斜角θが求められ、表面形状r(x)が計算される。
図2,3はx−z平面上に描かれた図であり、伝搬するレーザビームが平面ミラー40、凹球面ミラー22、あるいは平面ミラー21で遮断されるように描かれているが、実際の装置では、図4に示すように、これらのレーザビームの遮断が生じないような配置となっている。凹球面ミラー22はy軸方向には細い形をした矩形であり、ビーム経路AQが遮断されないようになっている。平面ミラー21と凹球面ミラー22はx軸に平行ではあるが、x軸方向を回転軸として傾いている。そのため、ビーム経路QCおよびCPはx−z面と平行ではなく、平面ミラー21もy軸方向には細い形をした矩形とすることによって、ビーム経路CPは平面ミラー21によって遮断されないようになっている。
ここで、上記特許文献1に開示される形状測定装置と本発明に係る形状測定装置との差異点について説明する。
特許文献1の明細書中において段落「0059」に述べられているように、第一実施例の平面ミラーの位置は障害があり実用的でない。このため、本発明の実施例でも、特許文献1の第二実施例と同様の構成となっており、平面ミラーおよび被測定面の位置については、光束変向手段からの距離が異なっている。しかし、特許文献1では、光路S1−R−Mは光路M−Q−S2より必ず短くなるため、光路S1−R−Mおよび光路M−Q−S2の長さは凹面ミラーの共役距離となるように平面ミラーおよび被測定面の位置が決められている。そして、凹面ミラーの一方の共役距離にある光束変向手段の面上での光の動きを検出するために、位置センサは、レンズの一方の共役距離に配置され、凹面ミラーの一方の共役距離がレンズの他方の共役点になっている。
このような特許文献1の配置では(第二実施例の場合)、以下の2つの欠点が生じている。(a)測定対象の表面形状を10ナノメータ以下の誤差で測定しようとするとき、測定対象面の前後方向に対して測定対象面を1ミクロン以下の誤差で設定する必要がある。(b)レーザビームの1次元走査方向に対して2次の関数となっている表面形状成分を測定できない。
これらの欠点を取り除くため、本発明の実施例では以下の配置とした。光路S1−R−Mは凹面ミラーの曲率半径に等しくする。すなわち、図2で光路A−Q−Cは凹球面ミラーの曲率半径に等しい。
このような本発明の実施例における配置で、測定対象表面の傾斜θによって測定対象面からの反射レーザビームの伝搬方向が変化し、光学系の光軸に対して2θだけ傾く(図3参照)。このとき、測定対象表面の位置には制限がない。これに対して特許文献1では、光路M−Q−S2の長さは凹面ミラーの共役距離であると言う制限があり、測定対象表面の位置を正確に設定する必要がある。
本発明の実施例では、反射レーザビームの伝搬方向(光学系の光軸に対して傾いている角度2θ)を検出するためにレンズ41を用い、レンズ41の焦点面に光ビーム位置検出器42を配置する。2θfの光ビームの位置を検出する。すなわち、レンズ41は結像するためのレンズ(結像レンズ)ではない。
これに対して特許文献1では、レンズは、光束変向手段の面上での光の動きを検出するために、光束変向手段の面上の光の像が位置センサの面上に形成されるように配置されている。すなわち、ここでのレンズは結像レンズである。
以上の配置によって、前記(a)の欠点を排除し測定対象面の位置設定精度は数mm程度で良い。また、前記(b)の欠点を排除し、2次の関数となっている表面形状成分も測定できる。
ところで、出願人は、図2乃至図4に示した本実施例における形状測定装置を用いて、その作用効果を検証するための形状測定実験を行った。
当該形状測定実験にあたり、具体的な条件としては以下のようにした。レーザ光源10は出力5mWのHe−Neレーザ光源を用いた。凹球面ミラー22の形状は80mm×15mmの矩形であり、曲率半径はR=400mmであった。測定対象30の表面上のビームスポットの半値幅は30μmであった。測定対象30と平面ミラー21の距離はd=7mmであった。レンズ41の焦点距離は200mmであった。光ビーム位置検出器42は2次元位置検出センサであり、位置検出分解能は1.5μmであった。したがって、測定対象30の面の傾斜角検出分解能は3.5×10−6radであった。スキャナミラー20は速度制御可能なサーボモータに取り付けられ、モータの回転角速度は250rpmであった。試料面Sとスキャナミラーの距離は約200mmなので、測定対象30の面上のビームスポットの走査速度は約5mm/msであった。測定対象30はポリゴンミラーであり、測定面の幅は5mmであった。幅は5mmにわたるビームスポットの走査時間すなわち測定時間は1msであるため、1msの逆数である1kHz以下の機械的な振動によって測定誤差は生じないことから、測定には除震台を用いなかった。
ポリゴンミラーの表面形状を測定した結果を図5に示す。ポリゴンミラーの表面をz軸に沿って3mmの範囲で移動させて測定を行った場合にも、同様な測定結果が得られた。太線はレーザビーム高速走査法による本装置での測定結果で、細線はレーザ干渉計Wyko NT3300(ビーコインスツルメンツ社製)による測定結果である。両者の差は、二乗平均平方根で0.98nmであった。レーザビーム高速走査法による表面形状測定の安定性を調べるために、20回の繰り返し測定を行った。その結果、各測定結果のばらつきは、二乗平均平方根で0.31nmであった。
当該形状測定実験の結果から、本実施例の構成に基づく特有の効果が次のように結論づけられる。測定対象面を前後に移動させた場合でも表面形状の測定結果は変化しないことから、測定対象面の位置設定精度は数mm程度で良い。測定対象面上のビームスポットの走査速度は約5mm/msと高速であるため、測定時間はミリ秒オーダーと非常に短時間となり、測定において除震装置を必要としない。以上の特性を有するため、機械的振動が多く存在するインプロセス計測において本形状測定装置はその有用性を発揮する。
以上のように本実施例の形状測定方法及び装置では、走査光学系によりレーザ光源10から放射される光束を測定対象30の表面上で走査させ、当該測定対象30で反射された反射光束の伝搬方向を光伝搬方向検出系で検出し、当該検出結果に基づいて演算を行うことにより測定対象30の表面形状を求める形状測定方法(又は当該検出結果に基づいて演算装置としてのパソコン51で演算を行うことにより測定対象30の表面形状を求める形状測定装置)であって、前記走査光学系を、レーザ光源10から放射される光束を所望の方向へ変向させる光束変向手段としてのスキャナミラー20と、該スキャナミラー20で変向された光束を反射する平面ミラー21と、該平面ミラー21と対向して設けられ、前記平面ミラー21で反射された光束を反射して測定対象30に入射させる凹球面ミラー22とから構成すると共に、前記光束がスキャナミラー20から平面ミラー21を介して凹球面ミラー22に至るまでの光路長A−Q−Cが凹球面ミラー22の曲率半径に等しくなるよう平面ミラー21及び凹球面ミラー22を配設し、前記光伝搬方向検出系を、測定対象30で反射された反射光束が入射するレンズ41と、該レンズ41から該レンズ41の焦点距離fだけ離れた位置に配置された光ビーム位置検出器42とから構成している。
このようにすると、測定対象表面の傾斜によって測定対象面からの反射光束の伝搬方向が異なることから表面形状の測定を行うことができるため、正確に角度振れを検出することができる光学系となっており、測定対象30の位置設定精度に対する厳しい条件はなくなり、2次関数の表面形状成分を含む表面形状も正確に測定できる。従って、測定対象30の位置設定精度に対する厳しい条件がなく、2次関数の表面形状成分を含む表面形状も正確に測定できる形状測定方法及び装置を提供することができる。
また本実施例の形状測定方法及び装置では、測定対象30で反射された反射光束をスキャナミラー20で反射するように構成し、当該スキャナミラー20で反射された反射光束をレンズ41へ向けて反射する第2の平面ミラー40を配設している。
このようにすると、光伝搬方向検出系を走査光学系から離れた位置に配置できるため、当該形状測定に使用する装置(形状測定装置)が構成しやすくなる。
さらに本実施例の形状測定方法及び装置では、前記光伝搬方向検出系の検出結果である光ビーム位置検出器42の検出位置△(△=2θf、θは前記測定対象の表面の傾斜角、fは前記焦点距離)に基づいて前記傾斜角θを逐次算出することにより、前記検出位置△の走査方向位置xに対する位置分布△(x)を測定し、次式を演算することにより、
Figure 0004696249
前記測定対象の表面形状r(x)を求める。
このようにすると、光ビーム位置検出器42の検出位置から測定対象30の表面形状を容易に算出することができる。
なお、本発明は、上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更可能である。
本発明における形状測定方法及び装置の測定原理を示す説明図である。 同上、測定対象表面の傾斜がない場合の形状測定装置内におけるレーザビームの伝搬経路を示す説明図である。 同上、測定対象表面の傾斜角がある場合の形状測定装置内におけるレーザビームの伝搬経路を示す説明図である。 同上、形状測定装置の概略構成を示す斜視図である。 同上、形状測定装置による測定実験結果を示す特性図である。
符号の説明
10 レーザ光源
20 スキャナミラー(光束変向手段)
21 平面ミラー
22 凹球面ミラー
30 測定対象
40 平面ミラー(第二の平面ミラー)
41 レンズ
42 光ビーム位置検出器
51 パソコン(演算装置)

Claims (6)

  1. 走査光学系により光源から放射される光束を測定対象の表面上で走査させ、当該測定対象で反射された反射光束の伝搬方向を光伝搬方向検出系で検出し、当該検出結果に基づいて演算を行うことにより前記測定対象の表面形状を求める形状測定方法であって、
    前記走査光学系を、前記光源から放射される光束を所望の方向へ変向させる光束変向手段と、該光束変向手段で変向された光束を反射する平面ミラーと、該平面ミラーと対向して設けられ、前記平面ミラーで反射された光束を反射して前記測定対象に入射させる凹球面ミラーとから構成すると共に、前記光束が前記光束変向手段から前記平面ミラーを介して前記凹球面ミラーに至るまでの光路長が前記凹球面ミラーの曲率半径に等しくなるよう前記平面ミラー及び前記凹球面ミラーを配設し、
    前記光伝搬方向検出系を、前記測定対象で反射された反射光束が入射するレンズと、該レンズから該レンズの焦点距離だけ離れた位置に配置された光位置検出器とから構成したことを特徴とする形状測定方法。
  2. 前記測定対象で反射された反射光束を前記光束変向手段で反射するように構成し、当該光束変向手段で反射された反射光束を前記レンズへ向けて反射する第2の平面ミラーを配設したことを特徴とする請求項1記載の形状測定方法。
  3. 前記光伝搬方向検出系の検出結果である前記光位置検出器の検出位置△(△=2θf、θは前記測定対象の表面の傾斜角、fは前記焦点距離)に基づいて前記傾斜角θを逐次算出することにより、前記検出位置△の走査方向位置xに対する位置分布△(x)を測定し、次式を演算することにより、
    Figure 0004696249

    前記測定対象の表面形状r(x)を求めることを特徴とする請求項1又は請求項2記載の形状測定方法。
  4. 走査光学系により光源から放射される光束を測定対象の表面上で走査させ、当該測定対象で反射された反射光束の伝搬方向を光伝搬方向検出系で検出し、当該検出結果に基づいて演算装置で演算を行うことにより前記測定対象の表面形状を求める形状測定装置であって、
    前記走査光学系を、前記光源から放射される光束を所望の方向へ変向させる光束変向手段と、該光束変向手段で変向された光束を反射する平面ミラーと、該平面ミラーと対向して設けられ、前記平面ミラーで反射された光束を反射して前記測定対象に入射させる凹球面ミラーとから構成すると共に、前記光束が前記光束変向手段から前記平面ミラーを介して前記凹球面ミラーに至るまでの光路長が前記凹球面ミラーの曲率半径に等しくなるよう前記平面ミラー及び前記凹球面ミラーを配設し、
    前記光伝搬方向検出系を、前記測定対象で反射された反射光束が入射するレンズと、該レンズから該レンズの焦点距離だけ離れた位置に配置された光位置検出器とから構成したことを特徴とする形状測定装置。
  5. 前記測定対象で反射された反射光束を前記光束変向手段で反射するように構成し、当該光束変向手段で反射された反射光束を前記レンズへ向けて反射する第2の平面ミラーを配設したことを特徴とする請求項4記載の形状測定装置。
  6. 前記演算装置は、前記光伝搬方向検出系の検出結果である前記光位置検出器の検出位置△(△=2θf、θは前記測定対象の表面の傾斜角、fは前記焦点距離)に基づいて前記傾斜角θを逐次算出することにより、前記検出位置△の走査方向位置xに対する位置分布△(x)を測定し、次式を演算することにより、
    Figure 0004696249

    前記測定対象の表面形状r(x)を求めるものであることを特徴とする請求項4又は請求項5記載の形状測定装置。
JP2007032367A 2007-02-13 2007-02-13 形状測定方法及び装置 Active JP4696249B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032367A JP4696249B2 (ja) 2007-02-13 2007-02-13 形状測定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032367A JP4696249B2 (ja) 2007-02-13 2007-02-13 形状測定方法及び装置

Publications (2)

Publication Number Publication Date
JP2008196970A JP2008196970A (ja) 2008-08-28
JP4696249B2 true JP4696249B2 (ja) 2011-06-08

Family

ID=39756061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032367A Active JP4696249B2 (ja) 2007-02-13 2007-02-13 形状測定方法及び装置

Country Status (1)

Country Link
JP (1) JP4696249B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11153499B2 (en) 2017-07-19 2021-10-19 Perkinelmer Health Sciences, Inc. Rapid, high dynamic range image acquisition with a charge-coupled device (CCD) camera
US11141064B2 (en) * 2017-07-19 2021-10-12 Perkinelmer Health Sciences, Inc. Systems and methods for rapid wide field illumination scanning for in vivo small animal fluorescence tomographic imaging
WO2021215026A1 (ja) * 2020-04-23 2021-10-28 株式会社コアシステム 形状測定装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279132A (ja) * 2003-03-13 2004-10-07 Core System:Kk 形状測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154314A (ja) * 1983-02-24 1984-09-03 Dainippon Screen Mfg Co Ltd 距離および傾斜角測定装置
JPS62233709A (ja) * 1986-04-04 1987-10-14 Hitachi Ltd 面傾き角測定方式
JPS6432105A (en) * 1987-07-28 1989-02-02 Pioneer Electronic Corp Angle deviation measuring instrument for flat plate member
JPH08240408A (ja) * 1995-03-02 1996-09-17 Omron Corp 変位センサ
JPH08261734A (ja) * 1995-03-24 1996-10-11 Ricoh Co Ltd 形状測定装置
JP3023955B2 (ja) * 1998-11-24 2000-03-21 富士通株式会社 3次元形状測定用光学システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279132A (ja) * 2003-03-13 2004-10-07 Core System:Kk 形状測定装置

Also Published As

Publication number Publication date
JP2008196970A (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
CN109219496B (zh) 激光加工时工艺监控的具有光学距离测量装置和棱镜偏转单元的装置及具有其的激光加工头
US10048064B2 (en) Optical three dimensional scanners and methods of use thereof
EP1750085A2 (en) Laser tracking interferometer
KR20140048824A (ko) 교정 장치, 교정 방법 및 계측 장치
EP3187822B1 (en) Surface shape measuring device
JP4696249B2 (ja) 形状測定方法及び装置
JP2000304529A (ja) プローブ装置及び形状測定装置
Saito et al. A single lens micro-angle sensor
US20040263840A1 (en) Calibration of reconfigurable inspection machine
JP2012002548A (ja) 光波干渉測定装置
JPH10267624A (ja) 三次元形状測定装置
US11815346B2 (en) Device for the chromatic confocal measurement of a local height and/or orientation of a surface of a sample and corresponding methods for measuring a height or a roughness of a sample
JP2006132955A (ja) ポリゴンミラーモータのミラー偏心および面出入りを測定する装置
JP6980304B2 (ja) 非接触内面形状測定装置
JP3810749B2 (ja) 形状測定装置
WO2021215026A1 (ja) 形状測定装置
JP3235782B2 (ja) 位置検出方法及び半導体基板と露光マスク
US7178393B2 (en) Measuring apparatus and method for thin board
US8045250B1 (en) Optical scanning using rotating parallel plate
JP4946689B2 (ja) 形状測定装置
JPH109842A (ja) レーザビームを利用した直線計の精度向上方法。
Sasaki et al. One-dimensional surface profile measurement by detection of reflecting direction of a scanned laser beam
US7773201B1 (en) Alignment of optical system components using an ADM beam through a null assembly
JP2005043203A (ja) 回転軸の回転精度測定装置
KR100860992B1 (ko) 스캐너 구동특성 평가시스템의 각도 캘리브레이션 장치 및방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110131