JPH08208212A - Production of activated carbon - Google Patents

Production of activated carbon

Info

Publication number
JPH08208212A
JPH08208212A JP7041274A JP4127495A JPH08208212A JP H08208212 A JPH08208212 A JP H08208212A JP 7041274 A JP7041274 A JP 7041274A JP 4127495 A JP4127495 A JP 4127495A JP H08208212 A JPH08208212 A JP H08208212A
Authority
JP
Japan
Prior art keywords
activated carbon
ion exchange
exchange resin
alkali metal
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7041274A
Other languages
Japanese (ja)
Other versions
JP3629743B2 (en
Inventor
Yusaku Sakata
祐作 阪田
Hiroshi Nishino
博 西野
Kazumasa Harino
和正 張野
Soichi Saeki
聡一 佐伯
Nobuhiro Matsushita
聿宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP04127495A priority Critical patent/JP3629743B2/en
Publication of JPH08208212A publication Critical patent/JPH08208212A/en
Application granted granted Critical
Publication of JP3629743B2 publication Critical patent/JP3629743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain activated carbon improved in adsorptivity by carbonizing an ion exchange resin through its heat treatment in an inert gas followed by activating the carbonized resin in the presence of an alkali metal compound. CONSTITUTION: An unused or used ion exchange resin selected from cation exchange resins, anion exchange resins and hybrid-type ion exchange resins, etc., is first dried and then carbonized in an inert gas such as N2 gas while raising temperature to about 450-1000 (esp. about 600-900 deg.C) at a rate of about 5-10 deg.C/min. Subsequently, the carbonized resin is cooled, washed with water and dried. Next, the carbonized resin is mixed with an alkali metal compound such as KOH at the mass ratio of the latter to former of 2-10, and the mixture is held in an inert gas such as N2 gas for 10-180min or so while raising temperature to about 400-800 deg.C at a rate of about 1-10 deg.C/min to accomplish activation; the resultant carbonized material is cooled, washed with water and dried, thus obtaining the objective activated carbon >=1000m<2> /g in specific surface area with fine pores of uniform size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性炭の製造方法に関
する。さらに詳しくは、本発明は、イオン交換樹脂を原
料とする、細孔径が揃い、高い比表面積を有し、吸着能
にすぐれた活性炭の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing activated carbon. More specifically, the present invention relates to a method for producing activated carbon using an ion exchange resin as a raw material, which has uniform pore diameters, a high specific surface area, and excellent adsorption ability.

【0002】[0002]

【従来の技術】活性炭は黒色の無定形炭素で、構造的に
は炭素微結晶が不規則に配列し、それらの交差連結間に
生ずる細孔や、賦活過程で生じた組織炭素の欠陥によっ
て発達した細孔などを有する多孔質炭素体である。活性
炭は非極性吸着剤として取り扱われ、非極性物質を選択
的によく吸着する性質があるほか、炭素表面の官能基に
よる化学吸着能などの機能も有する。活性炭は通常70
0〜1500m2/gの比表面積を有するが、一般に比
表面積が大きいほど吸着能の点からは有利であるとされ
ている。活性炭の原料は、用途及び製法の両面から適切
な炭素質材料が選ばれるが、木材、木材屑、果実殻、石
炭、石油残渣、合成樹脂炭化物などが多く用いられてい
る。これらの他に、近年、イオン交換樹脂を活性炭の原
料とすることが試みられている。例えば、特開昭49−
53594号公報には、巨大網状重合体を炭化し、ある
いは炭化及び賦活することにより、ブタンガスなどに対
して吸着能を有する炭素質吸着体を製造する方法が提案
されている。しかし、この吸着体のブタンガスの吸着量
は十分に大きいとは言いがたい。また、特開平6−92
615号公報には、使用ずみイオン交換体を不活性な雰
囲気中で炭化し、次いで酸化性ガス雰囲気中で賦活して
活性炭に変換する方法が提案されている。しかし、この
方法により得られる活性炭の比表面積は、約1,000
2/gである。イオン交換樹脂は、現在、数多くの製
品が水処理をはじめとして医薬品、食品、原子力、電子
工業などの産業分野にまで広く用いられ、その用途は拡
大しつつある。一般にイオン交換樹脂は、使用を繰り返
すとともに徐々に性能が低下し、更新する必要が生じる
ので、使用ずみのイオン交換樹脂の量も増大し、一般プ
ラスチックごみとして埋立処分されているが、イオン交
換樹脂の表面摩擦係数が小さいために埋立後の土地強度
が弱くなること、また処分のための埋立地の不足などが
問題となりはじめている。このような状況のもとに、地
球環境保全の観点からも、使用ずみのイオン交換樹脂を
再利用し、有効活用の途を開くことが期待されている。
2. Description of the Related Art Activated carbon is black amorphous carbon, which is structurally irregularly arranged with microcrystallites of carbon and develops due to pores formed between the cross-links between them and defects in tissue carbon generated during the activation process. It is a porous carbon body having fine pores. Activated carbon is treated as a non-polar adsorbent, has a property of selectively adsorbing a non-polar substance well, and has a function such as a chemical adsorption ability by a functional group on the carbon surface. Activated carbon is usually 70
Although it has a specific surface area of 0 to 1500 m 2 / g, it is generally said that the larger the specific surface area, the more advantageous it is from the viewpoint of adsorption ability. As the raw material of the activated carbon, an appropriate carbonaceous material is selected from both aspects of use and production method, but wood, wood chips, fruit shells, coal, petroleum residues, synthetic resin carbides, etc. are often used. In addition to these, in recent years, attempts have been made to use an ion exchange resin as a raw material for activated carbon. For example, JP-A-49-
Japanese Patent Laid-Open No. 53594 proposes a method for producing a carbonaceous adsorbent having an adsorbing ability for butane gas by carbonizing, or carbonizing and activating a giant reticulated polymer. However, it is hard to say that the amount of butane gas adsorbed by this adsorbent is sufficiently large. In addition, JP-A-6-92
Japanese Patent No. 615 proposes a method in which used ion exchangers are carbonized in an inert atmosphere, and then activated in an oxidizing gas atmosphere to be converted into activated carbon. However, the specific surface area of activated carbon obtained by this method is about 1,000.
m 2 / g. A large number of products of ion exchange resins are currently widely used in industrial fields such as pharmaceuticals, foods, nuclear power, and electronics industries, including water treatment, and their applications are expanding. In general, the performance of ion exchange resin gradually deteriorates with repeated use and it becomes necessary to renew it, so the amount of used ion exchange resin also increases and it is landfilled as general plastic waste. Since the surface friction coefficient of the land is small, the land strength after landfill becomes weak, and the shortage of landfill sites for disposal is becoming a problem. Under such circumstances, it is expected that the used ion-exchange resin will be reused and a way of effective utilization will be opened from the viewpoint of global environment conservation.

【0003】[0003]

【発明が解決しようとする課題】本発明は、未使用又は
使用ずみのイオン交換樹脂を原料とし、簡単な炭化及び
賦活工程によって得られる、均一細孔径を備えた比表面
積が大きく、吸着能にすぐれた活性炭の製造方法を提供
することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention uses an unused or unused ion exchange resin as a raw material, and has a large specific surface area with a uniform pore size, which is obtained by a simple carbonization and activation step, and has a high adsorption capacity. The purpose of the invention is to provide an excellent method for producing activated carbon.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、イオン交換樹脂
を加熱により炭化したのち、アルカリ金属化合物の存在
下に賦活処理を行えば、比表面積の大きい活性炭が得ら
れることを見いだし、この知見に基づいて本発明を完成
するに至った。すなわち、本発明は、(1)イオン交換
樹脂を不活性ガス中で加熱処理して炭化したのち、アル
カリ金属化合物の存在下に賦活処理することを特徴とす
る活性炭の製造方法、を提供するものである。さらに、
本発明の好ましい態様として、(2)イオン交換樹脂が
未使用のものである第(1)項記載の活性炭の製造方法、
(3)イオン交換樹脂が使用ずみのものである第(1)項
記載の活性炭の製造方法、(4)炭化のための加熱処理
を、450〜1000℃において行う第(1)〜(3)項記
載の活性炭の製造方法、(5)アルカリ金属化合物が、
水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム又
は炭酸カリウムである第(1)〜(4)項記載の活性炭の製
造方法、(6)イオン交換樹脂の炭化物に対するアルカ
リ金属化合物の質量比が2〜10である第(1)〜(5)項
記載の活性炭の製造方法、及び、(7)賦活処理を、毎
分1〜10℃の昇温速度で加熱して400〜800℃の
間の一定温度まで昇温し、この一定温度で10〜180
分保持することにより行う第(1)〜(6)項記載の活性炭
の製造方法、を挙げることができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that after carbonizing an ion exchange resin by heating, activation treatment is carried out in the presence of an alkali metal compound. Then, it was found that activated carbon having a large specific surface area can be obtained, and the present invention has been completed based on this finding. That is, the present invention provides (1) a method for producing activated carbon, which comprises heat-treating an ion exchange resin in an inert gas to carbonize it, and then performing activation treatment in the presence of an alkali metal compound. Is. further,
As a preferred embodiment of the present invention, (2) the method for producing activated carbon according to (1), wherein the ion exchange resin is unused.
(3) The method for producing activated carbon according to item (1), wherein the ion exchange resin is a used one, and (4) the heat treatment for carbonization is performed at 450 to 1000 ° C. (1) to (3) The method for producing activated carbon according to item (5), wherein the alkali metal compound is
The method for producing activated carbon according to the above (1) to (4), which is sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, (6) the mass ratio of the alkali metal compound to the carbide of the ion exchange resin is 2 to 10. The method for producing activated carbon according to (1) to (5), and (7) the activation treatment, are heated at a heating rate of 1 to 10 ° C. per minute to obtain a constant temperature of 400 to 800 ° C. 10 to 180 at this constant temperature
The method for producing activated carbon according to the above items (1) to (6), which is carried out by holding the same amount, can be mentioned.

【0005】本発明に用いるイオン交換樹脂は、基本的
には三次元網目骨格をもつ高分子母体に、イオン交換基
が結合した構造を有するものである。橋かけ高分子母体
は、通常スチレンとジビニルベンゼンの架橋共重合体よ
りなる粒状の粒子である。イオン交換樹脂は、イオン交
換基の種類により、スルホン酸基を有する強酸性陽イオ
ン交換樹脂、カルボン酸基又はホスホン酸基を有する弱
酸性陽イオン交換樹脂、第四級アンモニウム塩を有する
強塩基性陰イオン交換樹脂、第一級又は第三級アミンを
有する弱塩基性陰イオン交換樹脂に大別され、このほか
特殊な樹脂として、酸及び塩基両方のイオン交換基を有
するいわゆるハイブリッド型イオン交換樹脂があるが、
本発明においては、これらのすべてのイオン交換樹脂を
原料として使用することができる。イオン交換樹脂は物
理的性状からは、懸濁重合で形成される均質な橋かけ球
状粒子であるゲル型、懸濁重合時に有機溶媒を添加して
得られる細孔の発達した多孔質を母体とするマイクロポ
ーラス型などに分けられるが、本発明には、物理的性状
に制限なく、あらゆるイオン交換樹脂を原料として使用
することができる。本発明においては、未使用のイオン
交換樹脂も、使用ずみのイオン交換樹脂も同様に原料と
して使用することができる。使用ずみのイオン交換樹脂
としては、例えば、純水製造装置、軟水製造装置、糖液
製造プロセス、その他、分離、濃縮、精製などに使用さ
れたものでこれらの廃棄処分となる廃イオン交換樹脂を
原料として使用することができる。また、本発明におい
ては、原料として使用するイオン交換樹脂は単一の種類
であっても、2種以上の混合物であってもよく、例え
ば、異種樹脂を混合して充填した混床式カラムや、異種
樹脂を上下に分けて充填した複層床式カラムから排出さ
れる陽イオン交換樹脂と陰イオン交換樹脂の混合物を同
時に処理して活性炭を得ることができる。
The ion exchange resin used in the present invention basically has a structure in which an ion exchange group is bonded to a polymer matrix having a three-dimensional network skeleton. The crosslinked polymer matrix is usually granular particles composed of a cross-linked copolymer of styrene and divinylbenzene. Depending on the type of ion exchange group, the ion exchange resin may be a strong acid cation exchange resin having a sulfonic acid group, a weak acid cation exchange resin having a carboxylic acid group or a phosphonic acid group, and a strong basicity having a quaternary ammonium salt. Anion exchange resins and weakly basic anion exchange resins having primary or tertiary amines are roughly classified, and as a special resin, so-called hybrid type ion exchange resins having both acid and base ion exchange groups. But there is
In the present invention, all of these ion exchange resins can be used as raw materials. The ion-exchange resin is a gel type, which is a homogeneous cross-linked spherical particle formed by suspension polymerization, based on the physical properties, and a matrix with developed pores obtained by adding an organic solvent during suspension polymerization is used as a matrix. In the present invention, any ion exchange resin can be used as a raw material without limitation to physical properties. In the present invention, an unused ion exchange resin and an unused ion exchange resin can be used as a raw material as well. As the used ion exchange resin, for example, a waste ion exchange resin that has been used for pure water production equipment, soft water production equipment, sugar solution production process, separation, concentration, purification, etc. and is discarded as such It can be used as a raw material. Further, in the present invention, the ion exchange resin used as a raw material may be a single kind or a mixture of two or more kinds, for example, a mixed bed type column in which different kinds of resins are mixed and packed, The activated carbon can be obtained by simultaneously treating a mixture of a cation exchange resin and an anion exchange resin discharged from a multi-layer bed type column in which different kinds of resins are separately packed in upper and lower parts.

【0006】本発明においては、イオン交換樹脂を不活
性ガス中で加熱処理して炭化する。イオン交換樹脂は、
加熱処理の前にあらかじめ乾燥することができ、あるい
は、湿潤状態で加熱処理を施し、加熱処理の初期段階を
乾燥にあてることができる。使用する不活性ガスには特
に制限はないが、窒素は入手が容易であり特に好適に使
用することができる。加熱処理に使用する装置には特に
制限はなく、イオン交換樹脂の処理量や加熱条件などに
応じて、丸がま、立てがま、回転がまなどより任意に選
定することができる。加熱装置に仕込んだイオン交換樹
脂は、所定の温度まで昇温し、加熱処理により炭化す
る。昇温速度は、毎分5〜10℃であることが好まし
く、加熱処理温度は450〜1000℃の任意の温度を
選択できるが、600〜900℃が特に好ましい。昇温
速度が毎分5℃未満であると、昇温に要する時間が長
く、昇温速度が毎分10℃を超えると、イオン交換樹脂
の粒子が破砕するおそれがある。加熱処理温度が450
℃未満であると炭化が十分に進まず、加熱処理温度が1
000℃を超えると炭化物の収率が低下する。イオン交
換樹脂を加熱処理すると、イオン交換樹脂は炭化し収縮
するが、元の粒子の形状は保たれる。加熱処理により得
られたイオン交換樹脂の炭化物は、必要に応じて、水洗
することにより不純物を除去する。本発明においては、
加熱処理により得られたイオン交換樹脂の炭化物は、ア
ルカリ金属化合物の存在下に賦活処理し、活性炭とす
る。アルカリ金属化合物としては、例えば、リチウム、
ナトリウム、カリウムの水酸化物、塩化物、炭酸塩、重
炭酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、蓚酸塩な
どを使用することができる。これらのアルカリ金属化合
物の中で、水酸化カリウムを特に好適に使用することが
できる。イオン交換樹脂の炭化物とこれらのアルカリ金
属化合物の混合方法は任意であり、例えば、イオン交換
樹脂の炭化物と粒状又はフレーク状のアルカリ金属化合
物を混合することができ、あるいは、イオン交換樹脂の
炭化物をアルカリ金属化合物の水溶液に浸漬したのち乾
燥することにより、イオン交換樹脂の炭化物にアルカリ
金属化合物を付着させることができる。使用ずみのイオ
ン交換樹脂がナトリウムイオンやカリウムイオンのよう
なアルカリ金属イオンを吸着しているときは、これらの
吸着されたイオンもアルカリ金属源として利用すること
ができるので好ましい。従来の炭酸ガスや水蒸気などに
よるガス賦活法では、原料、イオン交換樹脂や炭化物に
対して、あらかじめ塩酸などによる酸洗浄工程が必要と
されるが、本発明のアルカリ金属化合物の存在下におけ
る賦活では、このような酸洗浄の必要はない。
In the present invention, the ion exchange resin is carbonized by heat treatment in an inert gas. Ion exchange resin is
It can be dried in advance before the heat treatment, or the heat treatment can be performed in a wet state and the initial stage of the heat treatment can be applied to the drying. The inert gas used is not particularly limited, but nitrogen is easily available and can be used particularly preferably. The apparatus used for the heat treatment is not particularly limited, and can be arbitrarily selected from a round kettle, a stand kettle, a rotary kettle, etc., depending on the treatment amount of the ion exchange resin and the heating conditions. The ion exchange resin charged in the heating device is heated to a predetermined temperature and carbonized by heat treatment. The temperature rising rate is preferably 5 to 10 ° C. per minute, and the heat treatment temperature can be selected from any temperature of 450 to 1000 ° C., but 600 to 900 ° C. is particularly preferable. If the rate of temperature increase is less than 5 ° C./min, the time required for temperature increase is long, and if the rate of temperature increase exceeds 10 ° C./min, the particles of the ion exchange resin may be crushed. Heat treatment temperature is 450
If it is less than ℃, carbonization does not proceed sufficiently and the heat treatment temperature is 1
If it exceeds 000 ° C, the yield of carbides decreases. When the ion-exchange resin is heat-treated, the ion-exchange resin is carbonized and shrinks, but the original particle shape is maintained. Impurities are removed from the carbide of the ion exchange resin obtained by the heat treatment by washing with water, if necessary. In the present invention,
The carbide of the ion exchange resin obtained by the heat treatment is activated in the presence of an alkali metal compound to obtain activated carbon. Examples of the alkali metal compound include lithium,
Sodium, potassium hydroxide, chlorides, carbonates, bicarbonates, nitrates, sulfates, phosphates, acetates, oxalates and the like can be used. Among these alkali metal compounds, potassium hydroxide can be particularly preferably used. The method for mixing the carbide of the ion exchange resin and these alkali metal compounds is arbitrary, for example, the carbide of the ion exchange resin and the granular or flake alkali metal compound can be mixed, or the carbide of the ion exchange resin can be mixed. The alkali metal compound can be attached to the carbide of the ion exchange resin by immersing in an aqueous solution of the alkali metal compound and then drying. When the used ion exchange resin adsorbs alkali metal ions such as sodium ions and potassium ions, these adsorbed ions can also be utilized as an alkali metal source, which is preferable. In the conventional gas activation method using carbon dioxide gas or water vapor, the raw material, the ion exchange resin and the carbide require an acid cleaning step with hydrochloric acid in advance, but in the activation in the presence of the alkali metal compound of the present invention, , No need for such acid cleaning.

【0007】本発明においては、アルカリ金属化合物と
イオン交換樹脂の炭化物の質量比は、2〜10であるこ
とが好ましく、3〜6であることがより好ましい。アル
カリ金属化合物とイオン交換樹脂の炭化物の質量比が2
未満であると、得られる活性炭の比表面積が十分大きく
ならないおそれがある。アルカリ金属化合物とイオン交
換樹脂の炭化物の質量比が10を超えても、得られる活
性炭の比表面積はアルカリ金属化合物の増量に見合って
は増加しない。本発明においては、アルカリ金属化合物
と混合し、あるいは、アルカリ金属化合物を付着したイ
オン交換樹脂の炭化物は、加熱することにより賦活処理
する。賦活処理時には不活性ガスを流してもよい。使用
する不活性ガスに特に制限はないが、窒素は入手が容易
であり特に好適に使用することができる。賦活処理に使
用する装置には特に制限はなく、イオン交換樹脂の炭化
物の処理量や加熱条件などに応じて、丸がま、立てが
ま、回転がまなどより任意に選定することができる。加
熱装置に仕込んだアルカリ金属化合物とイオン交換樹脂
の炭化物、又は、アルカリ金属化合物を付着したイオン
交換樹脂の炭化物は、所定の温度まで昇温し、加熱によ
り賦活する。賦活処理は、毎分1〜10℃の速度で昇温
したのち、400〜800℃において、10〜180分
保持することにより行うことが好ましい。賦活処理温度
が400℃未満であると賦活が十分に進まず、得られる
活性炭の比表面積が十分大きくならないおそれがある。
賦活処理温度が800℃を超えると、活性炭の収率が低
下する。賦活処理時間が10分未満であると賦活が十分
に進まず、得られる活性炭の比表面積が十分大きくなら
ないおそれがある。賦活処理時間が180分を超えて
も、得られる活性炭の収率は低下し比表面積は賦活処理
時間の延長に見合っては増加しない。
In the present invention, the mass ratio of the alkali metal compound and the carbide of the ion exchange resin is preferably from 2 to 10, more preferably from 3 to 6. The mass ratio of the alkali metal compound and the carbide of the ion exchange resin is 2
If it is less than the range, the specific surface area of the resulting activated carbon may not be sufficiently large. Even if the mass ratio of the alkali metal compound and the carbide of the ion exchange resin exceeds 10, the specific surface area of the resulting activated carbon does not increase in proportion to the increase in the amount of the alkali metal compound. In the present invention, the carbide of the ion exchange resin mixed with the alkali metal compound or having the alkali metal compound attached thereto is subjected to activation treatment by heating. An inert gas may be passed during the activation treatment. The inert gas to be used is not particularly limited, but nitrogen is easily available and can be used particularly preferably. The apparatus used for the activation treatment is not particularly limited, and can be arbitrarily selected from a round kettle, a stand kettle, a rotary kettle, etc. according to the treatment amount of the carbide of the ion exchange resin, the heating conditions and the like. The alkali metal compound and the carbide of the ion exchange resin charged in the heating device or the carbide of the ion exchange resin to which the alkali metal compound is attached are heated to a predetermined temperature and activated by heating. The activation treatment is preferably performed by raising the temperature at a rate of 1 to 10 ° C. per minute and then holding the temperature at 400 to 800 ° C. for 10 to 180 minutes. If the activation treatment temperature is lower than 400 ° C., the activation will not proceed sufficiently and the resulting activated carbon may not have a sufficiently large specific surface area.
If the activation treatment temperature exceeds 800 ° C., the yield of activated carbon decreases. If the activation treatment time is less than 10 minutes, the activation will not proceed sufficiently and the resulting activated carbon may not have a sufficiently large specific surface area. Even if the activation treatment time exceeds 180 minutes, the yield of the activated carbon obtained decreases and the specific surface area does not increase in proportion to the extension of the activation treatment time.

【0008】本発明において、賦活処理により得られた
活性炭は、室温まで冷却し、水により洗浄する。又、必
要に応じて塩酸で洗浄できる。得られる活性炭は、原料
として用いたイオン交換樹脂に含まれていた無機物など
や、イオン交換基に含まれていた硫黄や窒素などや、さ
らに賦活処理のために添加したアルカリ金属化合物は除
去されていて、炭素を主成分とする活性炭である。本発
明により得られる活性炭は、通常その比表面積は1,0
00m2/g以上であり、二酸化炭素、エチレン、アン
モニアなどの平衡吸着容量が大きいばかりでなく、細孔
径が揃っているので初期吸着速度が速く、短時間で平衡
吸着容量に達するというすぐれた吸着能を有している。
本発明においては、原料として未使用のイオン交換樹脂
のみならず使用ずみのイオン交換樹脂も使用することが
でき、廃イオン交換樹脂を炭素資源として利用すること
ができるので、資源のカスケード的利用法のひとつとし
て、また、環境保全及び埋立地不足の問題解決の上から
もきわめて大きい効果を発揮する。
In the present invention, the activated carbon obtained by the activation treatment is cooled to room temperature and washed with water. If necessary, it can be washed with hydrochloric acid. The resulting activated carbon had the inorganic substances contained in the ion exchange resin used as a raw material, sulfur and nitrogen contained in the ion exchange groups, and the alkali metal compound added for the activation treatment removed. It is an activated carbon containing carbon as a main component. The activated carbon obtained by the present invention usually has a specific surface area of 1.0.
It has an adsorption capacity of more than 00 m 2 / g, and has a large equilibrium adsorption capacity for carbon dioxide, ethylene, ammonia, etc., and its pore size is uniform, so the initial adsorption rate is fast and it reaches an equilibrium adsorption capacity in a short time. Has the ability.
In the present invention, not only the unused ion exchange resin but also the used ion exchange resin can be used as the raw material, and the waste ion exchange resin can be used as the carbon resource. As one of the above, it will be extremely effective in terms of environmental protection and the solution of landfill shortages.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 陽イオン交換樹脂[ダイヤイオンPK228L、三菱化
学(株)製]を室温で乾燥したのち、縦型電気管状炉を用
い、窒素を通じながら、5℃/分で900℃まで昇温
し、そのまま900℃で60分保持したのち、冷却、水
洗、乾燥してイオン交換樹脂の炭化物を得た。このイオ
ン交換樹脂の炭化物1.0kgを、粒状水酸化カリウム5.
0kg(水酸化カリウム/炭化物の質量比5)と混合した
後電気ルツボ炉を用い、窒素を通じながら2℃/分で5
00℃まで昇温し、そのまま500℃で100分保持し
て賦活したのち、冷却、水洗、乾燥して、活性炭を得
た。この活性炭の比表面積は、1,540m2/gであっ
た。気体容量法により、この活性炭の30℃、760T
orrにおける二酸化炭素及びエチレンの吸着速度を測
定した。結果を図1の気相吸着速度曲線に示す。120
秒後の吸着容量は、二酸化炭素が53cm3(STP)/gであ
り、エチレンが76cm3(STP)/gであった。 実施例2 賦活温度を600℃とした以外は、実施例1と同じ操作
を繰り返し、活性炭を得た。この活性炭の比表面積は、
2,110m2/gであった。図2は、この活性炭の二酸
化炭素及びエチレンに対する気相吸着速度曲線である。
120秒後の吸着容量は、二酸化炭素が55cm3(STP)/
gであり、エチレンが82cm3(STP)/gであった。 実施例3 賦活温度を700℃とした以外は、実施例1と同じ操作
を繰り返し、活性炭を得た。この活性炭の比表面積は、
3,180m2/gであった。図3は、この活性炭の二酸
化炭素及びエチレンに対する気相吸着速度曲線である。
120秒後の吸着容量は、二酸化炭素が57cm3(STP)/
gであり、エチレンが103cm3(STP)/gであった。 実施例4 実施例1で得たイオン交換樹脂の炭化物200gを、水
酸化ナトリウム1.0kg(水酸化ナトリウム/炭化物の
質量比5)と混合し、電気ルツボ炉を用い、窒素を通じ
ながら5℃/分で600℃まで昇温し、そのまま600
℃で100分保持して賦活したのち、冷却、水洗、乾燥
して、活性炭を得た。実施例1と同様にして、この活性
炭の比表面積を測定したところ、2,430m2/gであ
った。また、実施例1と同様に、この活性炭の30℃、
760Torrにおける二酸化炭素及びエチレンの吸着
速度を測定した。結果を図4の気相吸着速度曲線に示
す。120秒後の吸着容量は、二酸化炭素が42cm3(ST
P)/gであり、エチレンが68cm3(STP)/gであった。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Example 1 After drying a cation exchange resin [Diaion PK228L, manufactured by Mitsubishi Chemical Co., Ltd.] at room temperature, the temperature was raised to 900 ° C. at 5 ° C./min while flowing nitrogen using a vertical electric tubular furnace. After being kept as it is at 900 ° C. for 60 minutes, it was cooled, washed with water and dried to obtain a carbide of an ion exchange resin. 1.0 kg of carbide of this ion exchange resin was mixed with granular potassium hydroxide 5.
After mixing with 0 kg (potassium hydroxide / carbide mass ratio 5), using an electric crucible furnace, while flowing nitrogen, 5 at 2 ° C / min
The temperature was raised to 00 ° C., the temperature was kept at 500 ° C. for 100 minutes to activate the mixture, and then the mixture was cooled, washed with water and dried to obtain activated carbon. The specific surface area of this activated carbon was 1,540 m 2 / g. According to the gas volume method, this activated carbon at 30 ° C, 760T
The adsorption rates of carbon dioxide and ethylene at orr were measured. The results are shown in the gas phase adsorption rate curve in FIG. 120
The adsorption capacity after 2 seconds was 53 cm 3 (STP) / g of carbon dioxide and 76 cm 3 (STP) / g of ethylene. Example 2 The same operation as in Example 1 was repeated except that the activation temperature was set to 600 ° C. to obtain activated carbon. The specific surface area of this activated carbon is
It was 2,110 m 2 / g. FIG. 2 is a gas phase adsorption rate curve for carbon dioxide and ethylene of this activated carbon.
The adsorption capacity after 120 seconds was as follows: carbon dioxide 55 cm 3 (STP) /
and ethylene was 82 cm 3 (STP) / g. Example 3 The same operation as in Example 1 was repeated except that the activation temperature was 700 ° C. to obtain activated carbon. The specific surface area of this activated carbon is
It was 3,180 m 2 / g. FIG. 3 is a gas phase adsorption rate curve for carbon dioxide and ethylene of this activated carbon.
The adsorption capacity after 120 seconds was as follows: carbon dioxide 57 cm 3 (STP) /
and ethylene was 103 cm 3 (STP) / g. Example 4 200 g of the ion-exchange resin carbide obtained in Example 1 was mixed with 1.0 kg of sodium hydroxide (sodium hydroxide / carbide mass ratio of 5), and the mixture was heated at 5 ° C. while flowing nitrogen using an electric crucible furnace. Heat up to 600 ℃ in minutes
After activated by holding at 100 ° C. for 100 minutes, it was cooled, washed with water and dried to obtain activated carbon. When the specific surface area of this activated carbon was measured in the same manner as in Example 1, it was 2,430 m 2 / g. Further, as in Example 1, the activated carbon at 30 ° C.,
The adsorption rate of carbon dioxide and ethylene at 760 Torr was measured. The results are shown in the gas phase adsorption rate curve in FIG. After 120 seconds, the adsorption capacity of carbon dioxide was 42 cm 3 (ST
P) / g and ethylene was 68 cm 3 (STP) / g.

【0010】比較例1 実施例1で得たイオン交換樹脂の炭化物を、縦型電気管
状炉を用い、二酸化炭素25容量%、窒素75容量%の
混合気体を通じながら5℃/分で900℃まで昇温し、
そのまま900℃で60分保持してガス賦活したのち、
冷却して、活性炭を得た。実施例1と同様にして、この
活性炭の比表面積を測定したところ、1,470m2/g
であった。また、実施例1と同様に、この活性炭の30
℃、760Torrにおける二酸化炭素及びエチレンの
吸着速度を測定した。結果を図5の気相吸着速度曲線に
示す。120秒後の吸着容量は、二酸化炭素が36cm
3(STP)/gであり、エチレンが55cm3(STP)/gであっ
た。この活性炭は、アルカリ金属化合物の存在下に賦活
した実施例の活性炭と比較すると、同程度の比表面積を
有しているにもかかわらず、吸着容量が低い。 比較例2 市販のヤシ殻系活性炭[武田薬品工業(株)製、シラサ
ギ]について、実施例1と同様にして、比表面積及び3
0℃、760Torrにおける二酸化炭素及びエチレン
の吸着速度を測定した。比表面積は、1,030m2/g
であった。図6の気相吸着速度曲線から、120秒後の
吸着容量は、二酸化炭素が46cm3(STP)/gであり、エ
チレンが73cm3(STP)/gであるが、初期吸着速度が遅
いことが分かる。 比較例3 市販の石炭系活性炭[東洋カルゴン(株)製、F400]
について、実施例1と同様にして、比表面積及び30
℃、760Torrにおける二酸化炭素及びエチレンの
吸着速度を測定した。比表面積は、930m2/gであ
った。図7の気相吸着速度曲線から、120秒後の吸着
容量は、二酸化炭素が43cm3(STP)/gであり、エチレ
ンが68cm3(STP)/gであるが、初期吸着速度が遅いこ
とが分かる。実施例1〜4及び比較例1〜3の結果をま
とめて第1表に示す。
Comparative Example 1 The carbide of the ion exchange resin obtained in Example 1 was heated at 5 ° C./min up to 900 ° C. in a vertical electric tubular furnace while passing a mixed gas of 25% by volume of carbon dioxide and 75% by volume of nitrogen. Raise the temperature,
After maintaining it at 900 ° C for 60 minutes to activate the gas,
Upon cooling, activated carbon was obtained. When the specific surface area of this activated carbon was measured in the same manner as in Example 1, it was 1,470 m 2 / g.
Met. Also, as in Example 1, 30% of this activated carbon was used.
The adsorption rate of carbon dioxide and ethylene at 760 ° C. and 760 Torr was measured. The results are shown in the gas phase adsorption rate curve of FIG. The adsorption capacity after 120 seconds is 36 cm for carbon dioxide.
3 (STP) / g and ethylene was 55 cm 3 (STP) / g. This activated carbon has a low adsorption capacity as compared with the activated carbon of the example activated in the presence of an alkali metal compound, although it has the same specific surface area. Comparative Example 2 A commercially available coconut shell-based activated carbon [Shirasagi, manufactured by Takeda Yakuhin Kogyo Co., Ltd.] was used in the same manner as in Example 1, and the specific surface area and 3
The adsorption rate of carbon dioxide and ethylene at 0 ° C. and 760 Torr was measured. Specific surface area is 1,030 m 2 / g
Met. From the gas phase adsorption rate curve of FIG. 6, the adsorption capacity after 120 seconds is 46 cm 3 (STP) / g for carbon dioxide and 73 cm 3 (STP) / g for ethylene, but the initial adsorption rate is slow. I understand. Comparative Example 3 Commercially available coal-based activated carbon [F400 manufactured by Toyo Calgon Co., Ltd.]
For the specific surface area and 30
The adsorption rate of carbon dioxide and ethylene at 760 ° C. and 760 Torr was measured. The specific surface area was 930 m 2 / g. From the gas phase adsorption rate curve of FIG. 7, the adsorption capacity after 120 seconds is 43 cm 3 (STP) / g for carbon dioxide and 68 cm 3 (STP) / g for ethylene, but the initial adsorption rate is slow. I understand. The results of Examples 1 to 4 and Comparative Examples 1 to 3 are summarized in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明によれば、イオン交換樹脂の炭化
物の原料に対し、従来のガス賦活法と比較し、アルカリ
金属化合物の存在下で賦活することにより、比表面積が
大きく、均一径細孔を備えた活性炭が製造でき、その活
性炭はガスに対して初期吸着速度が速く、吸着容量が大
きいすぐれた吸着能を有する。
EFFECTS OF THE INVENTION According to the present invention, the raw material of the carbide of the ion exchange resin is activated in the presence of an alkali metal compound as compared with the conventional gas activation method, so that the specific surface area is large and the diameter is uniform. Activated carbon having pores can be produced, and the activated carbon has a high initial adsorption rate for gas and a large adsorption capacity and excellent adsorption ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法により得られた活性炭の気
相吸着速度曲線である。
FIG. 1 is a gas phase adsorption rate curve of activated carbon obtained by the method of the present invention.

【図2】図2は、本発明方法により得られた活性炭の気
相吸着速度曲線である。
FIG. 2 is a gas phase adsorption rate curve of activated carbon obtained by the method of the present invention.

【図3】図3は、本発明方法により得られた活性炭の気
相吸着速度曲線である。
FIG. 3 is a gas phase adsorption rate curve of activated carbon obtained by the method of the present invention.

【図4】図4は、本発明方法により得られた活性炭の気
相吸着速度曲線である。
FIG. 4 is a gas phase adsorption rate curve of activated carbon obtained by the method of the present invention.

【図5】図5は、二酸化炭素賦活により得られた活性炭
の気相吸着速度曲線である。
FIG. 5 is a gas phase adsorption rate curve of activated carbon obtained by carbon dioxide activation.

【図6】図6は、市販ヤシ殻系活性炭の気相吸着速度曲
線である。
FIG. 6 is a gas phase adsorption rate curve of commercially available coconut shell-based activated carbon.

【図7】図7は、市販石炭系活性炭の気相吸着速度曲線
である。
FIG. 7 is a gas phase adsorption rate curve of commercial coal-based activated carbon.

フロントページの続き (72)発明者 松下 聿宏 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内Front page continuation (72) Inventor Toshihiro Matsushita 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオン交換樹脂を不活性ガス中で加熱処理
して炭化したのち、アルカリ金属化合物の存在下に賦活
処理することを特徴とする活性炭の製造方法。
1. A method for producing activated carbon, which comprises heat-treating an ion-exchange resin in an inert gas to carbonize it, and then activating it in the presence of an alkali metal compound.
JP04127495A 1995-02-06 1995-02-06 Method for producing activated carbon Expired - Fee Related JP3629743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04127495A JP3629743B2 (en) 1995-02-06 1995-02-06 Method for producing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04127495A JP3629743B2 (en) 1995-02-06 1995-02-06 Method for producing activated carbon

Publications (2)

Publication Number Publication Date
JPH08208212A true JPH08208212A (en) 1996-08-13
JP3629743B2 JP3629743B2 (en) 2005-03-16

Family

ID=12603874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04127495A Expired - Fee Related JP3629743B2 (en) 1995-02-06 1995-02-06 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP3629743B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015968A (en) * 2001-08-18 2003-02-26 주식회사 솔나노켐 Preparation of activated carbons using ion exchange resins and preparation method thereof
JP2005518465A (en) * 2002-02-25 2005-06-23 ジェンテックス コーポレーション Multifunctional protective materials and methods of use (cross-reference of related applications) This patent application claims the benefit of the priority date of US Provisional Application 60 / 360,050 filed February 25,2002.
JP2006131461A (en) * 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP2006256882A (en) * 2005-03-15 2006-09-28 Japan Organo Co Ltd Activated carbon, its production method, and therapeutic agent for kidney/liver disorders
JP2006273772A (en) * 2005-03-30 2006-10-12 Japan Organo Co Ltd Orally administered drug and method for producing the same
JP2007136320A (en) * 2005-11-17 2007-06-07 Takuma Co Ltd Oxygen-selective adsorbent
KR101234223B1 (en) * 2011-01-24 2013-02-18 인하대학교 산학협력단 Method for preparing high efficiency carbon dioxide adsorbents using ion exchange resins
CN105110330A (en) * 2015-08-17 2015-12-02 中国科学院上海高等研究院 Preparation method for activated carbon material and application thereof
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
CN111892069A (en) * 2020-08-28 2020-11-06 江苏理工学院 Needle-shaped C-Na2CO3Preparation method of (1)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030015968A (en) * 2001-08-18 2003-02-26 주식회사 솔나노켐 Preparation of activated carbons using ion exchange resins and preparation method thereof
JP2005518465A (en) * 2002-02-25 2005-06-23 ジェンテックス コーポレーション Multifunctional protective materials and methods of use (cross-reference of related applications) This patent application claims the benefit of the priority date of US Provisional Application 60 / 360,050 filed February 25,2002.
JP2006131461A (en) * 2004-11-08 2006-05-25 Japan Organo Co Ltd Activated carbon, its manufacturing method, and renal disease therapeutic drug
JP4693030B2 (en) * 2004-11-08 2011-06-01 オルガノ株式会社 Method for producing activated carbon
JP4666467B2 (en) * 2005-03-15 2011-04-06 オルガノ株式会社 Activated carbon, method for producing the same, and therapeutic agent for renal liver disease
JP2006256882A (en) * 2005-03-15 2006-09-28 Japan Organo Co Ltd Activated carbon, its production method, and therapeutic agent for kidney/liver disorders
JP2006273772A (en) * 2005-03-30 2006-10-12 Japan Organo Co Ltd Orally administered drug and method for producing the same
JP4634283B2 (en) * 2005-11-17 2011-02-16 株式会社タクマ Oxygen selective adsorbent
JP2007136320A (en) * 2005-11-17 2007-06-07 Takuma Co Ltd Oxygen-selective adsorbent
KR101234223B1 (en) * 2011-01-24 2013-02-18 인하대학교 산학협력단 Method for preparing high efficiency carbon dioxide adsorbents using ion exchange resins
CN105110330A (en) * 2015-08-17 2015-12-02 中国科学院上海高等研究院 Preparation method for activated carbon material and application thereof
CN107490526A (en) * 2017-09-06 2017-12-19 中国工程物理研究院核物理与化学研究所 Macromolecule material aging effect the cannot-harm-detection device and its detection method
CN107490526B (en) * 2017-09-06 2023-08-22 中国工程物理研究院核物理与化学研究所 Nondestructive testing device and method for aging effect of high polymer material
CN111892069A (en) * 2020-08-28 2020-11-06 江苏理工学院 Needle-shaped C-Na2CO3Preparation method of (1)
CN111892069B (en) * 2020-08-28 2022-05-24 江苏理工学院 Needle-shaped C-Na2CO3Preparation method of (1)

Also Published As

Publication number Publication date
JP3629743B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
CA1081619A (en) Liquid phase adsorption using pyrolyzed polymers
US4040990A (en) Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
US5162286A (en) Method of producing granular activated carbon
Rodríguez et al. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: Equilibrium and kinetics
Jiao et al. Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode
EP0401285B1 (en) Carbon dioxide removal using aminated carbon molecular sieves
US4820318A (en) Removal of organic compounds from gas streams using carbon molecular sieves
JP2004529747A (en) Enhanced and functionalized carbon molecular sieve for simultaneous removal of CO2 and water from air
JPH0466125A (en) Water absorbent, manufacture of the absorbent and water content reducing method for powder using the absorbent
CN108383117B (en) High-performance spherical activated carbon, preparation method and application thereof
JP3629743B2 (en) Method for producing activated carbon
Martel et al. Sorption of aromatic compounds in water using polymer sorbents containing amino groups
US6225256B1 (en) Activated carbon feedstock
CN101323794A (en) Spherical active carbon fuel oil adsorption desulfurizing agent and preparation thereof
JPH07215711A (en) Production of high performance active carbon
Marzec et al. Poly (ethylene terephthalate) as a source for activated carbon
Sun et al. Adsorption of phenol from aqueous solution by aminated hypercrosslinked polymers
JPH07508215A (en) Activated carbon and adsorption thereby by treating lignite with potassium hydroxide and/or sodium hydroxide or their salts
US5597545A (en) Recovery of HF from aqueous streams
JPH04118048A (en) Granular lithium adsorbent, its manufacture and method for concentrating lithium
KR101574416B1 (en) Method for producing granular meso-porous silica
KR100599254B1 (en) High porous activated carbon for hydrogen storage and preparation thereof
EP0394350B1 (en) Hydrophobic carbon molecular sieves
JPH03242310A (en) Spherical porous carbon particle and production thereof
Li et al. Investigating the adsorption behavior of functional biochar-based porous composite for efficiently removing Cu (ii) in aqueous solution

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees