JP4685650B2 - Raman spectroscopy device and Raman spectroscopy apparatus - Google Patents

Raman spectroscopy device and Raman spectroscopy apparatus Download PDF

Info

Publication number
JP4685650B2
JP4685650B2 JP2006027969A JP2006027969A JP4685650B2 JP 4685650 B2 JP4685650 B2 JP 4685650B2 JP 2006027969 A JP2006027969 A JP 2006027969A JP 2006027969 A JP2006027969 A JP 2006027969A JP 4685650 B2 JP4685650 B2 JP 4685650B2
Authority
JP
Japan
Prior art keywords
raman
light
anodized
spectroscopic device
raman spectroscopic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006027969A
Other languages
Japanese (ja)
Other versions
JP2006250924A (en
Inventor
雄一 都丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006027969A priority Critical patent/JP4685650B2/en
Publication of JP2006250924A publication Critical patent/JP2006250924A/en
Application granted granted Critical
Publication of JP4685650B2 publication Critical patent/JP4685650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、表面凹凸構造を有するラマン分光用デバイス、及びこれを用いたラマン分光装置に関する。   The present invention relates to a Raman spectroscopic device having an uneven surface structure and a Raman spectroscopic device using the same.

ラマン分光法は、物質に単波長光を照射して得られる散乱光を分光して、ラマン散乱光のスペクトル(ラマンスペクトル)を得る方法であり、物質の同定等に利用されている。ラマン散乱光は微弱な光であるが、金属体、特に表面に微細な凹凸を有する金属体に物質を接触させた状態で光を照射すると、ラマン散乱光の強度が増強されることが知られている。   Raman spectroscopy is a method of obtaining a spectrum of Raman scattered light (Raman spectrum) by dispersing scattered light obtained by irradiating a substance with single wavelength light, and is used for identification of substances. Although Raman scattered light is weak light, it is known that the intensity of Raman scattered light is enhanced when light is irradiated in a state where a substance is in contact with a metal body, particularly a metal body having fine irregularities on the surface. ing.

従来、光が照射され散乱される光散乱面を有するラマン分光用デバイスとして、(1)金属体の表面を、酸化還元等を利用して電気化学的にランダムに粗面化したものや、(2)金属体の表面に金属微粒子をランダムに固着させたもの等が開示されている(特許文献1)。   Conventionally, as a Raman spectroscopic device having a light scattering surface that is irradiated with light and scattered, (1) a surface of a metal body that is electrochemically randomly roughened using oxidation-reduction or the like, 2) A material in which metal fine particles are randomly fixed on the surface of a metal body is disclosed (Patent Document 1).

また、(3)基板の表面に、金属コーティングされた微粒子が規則的に固着されたラマン分光用デバイス、及び、その製造方法として、基板上に、シリカ等の微粒子を周期的に配列した粒子層を形成し、これを金属及びポリマーを含有する溶液中に入れた後、取り出して乾燥し、さらに、ポリマーを焼却でき、かつ金属が凝集することなく金属を微粒子に固定することができる温度で粒子層を焼成して、金属コーティングされた微粒子を基板に固着させる方法が開示されている(特許文献2)。
特開平6−174723号公報 特開2004−170334号公報
(3) A Raman spectroscopic device in which metal-coated fine particles are regularly fixed on the surface of the substrate, and as a method for producing the same, a particle layer in which fine particles such as silica are periodically arranged on the substrate. The particles are placed in a solution containing a metal and a polymer, and then taken out and dried. Further, the particles can be heated at a temperature at which the polymer can be incinerated and the metal can be fixed to the fine particles without agglomeration of the metal. A method is disclosed in which the layer is baked to fix the metal-coated fine particles to the substrate (Patent Document 2).
JP-A-6-174723 JP 2004-170334 A

特許文献1に記載の上記従来技術(1)及び(2)では、表面凹凸がランダムであるため、ラマン散乱強度は面内不均一となってしまう。そのため、ラマン散乱光の検出が安定せず、高精度測定を安定的に実施することが難しい。   In the prior arts (1) and (2) described in Patent Document 1, since the surface irregularities are random, the Raman scattering intensity becomes in-plane non-uniform. Therefore, detection of Raman scattered light is not stable, and it is difficult to stably perform high-precision measurement.

特許文献2に記載の従来技術(3)では、基板の表面に金属コーティングされた微粒子が規則的に固着されているので、上記問題は解消される。しかしながら、(a)基板上にナノオーダー等の微粒子を周期的に配列した粒子層を形成すること、(b)固定されていない微粒子の配列を維持したまま、粒子層を形成した基板を金属及びポリマーを含有する溶液中に入れてかつ取り出すこと、(c)粒子層の焼成をコントロールし、ポリマーは焼却する一方、金属を凝集させることなく金属を微粒子に固定することは、いずれも困難であり、製造工程が極めて複雑である。   In the prior art (3) described in Patent Document 2, since the fine particles coated with metal are regularly fixed on the surface of the substrate, the above problem is solved. However, (a) a particle layer in which nano-order fine particles are periodically arranged is formed on the substrate, and (b) a substrate on which the particle layer is formed while maintaining the arrangement of the unfixed fine particles. It is difficult to put the polymer in a solution containing the polymer and (c) control the firing of the particle layer and incinerate the polymer, while fixing the metal to the fine particles without aggregating the metal. The manufacturing process is extremely complicated.

本発明は上記事情に鑑みてなされたものであり、ラマン散乱強度の面内均一性が高く、高精度のラマン分光測定を安定的に実施でき、製造も容易なラマン分光用デバイス、これを用いたラマン分光装置を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and a Raman spectroscopic device that has high in-plane uniformity of Raman scattering intensity, can stably perform high-precision Raman spectroscopic measurement, and is easy to manufacture. It is an object of the present invention to provide a Raman spectrometer.

本発明のラマン分光用デバイスは、散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するラマン分光用デバイスにおいて、平面視略同一形状の複数の凹部が略同一ピッチで規則配列したアレイ構造部を有する微細構造体を備え、前記アレイ構造部側の表面が前記光散乱面であることを特徴とするものである。   The Raman spectroscopic device of the present invention is used in Raman spectroscopy that detects scattered light by dispersing scattered light. The Raman spectroscopic device having a light scattering surface on which light is irradiated and scattered is substantially the same in plan view. A fine structure having an array structure portion in which a plurality of concave portions having a shape regularly arranged at substantially the same pitch is provided, and the surface on the array structure portion side is the light scattering surface.

本明細書において、ピッチが「略同一」であることは、凹部のピッチが平均ピッチPave±10%の範囲内にあることと定義する。 In the present specification, that the pitch is “substantially the same” is defined as that the pitch of the recesses is within the range of the average pitch P ave ± 10%.

本発明のラマン分光用デバイスは、前記微細構造体の前記アレイ構造部側に、前記アレイ構造部の構成材料よりもラマン散乱強度の大きいラマン散乱増強物質が固着されたものであることが好ましい。   In the Raman spectroscopic device of the present invention, it is preferable that a Raman scattering enhancing substance having a Raman scattering intensity larger than that of the constituent material of the array structure portion is fixed to the array structure portion side of the microstructure.

本発明の好適な態様として、散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するラマン分光用デバイスにおいて、被陽極酸化金属体を陽極酸化して一部を金属酸化物層とし、該金属酸化物層を除去した後に残る、前記被陽極酸化金属体の非陽極酸化部分である微細構造体を備えたものが挙げられる。   As a preferred embodiment of the present invention, a metal object to be anodized is used in a Raman spectroscopic device having a light scattering surface which is used for Raman spectroscopy to detect scattered light by dispersing scattered light and is irradiated and scattered. And a fine structure which is a non-anodized portion of the metal to be anodized and remains after the metal oxide layer is removed.

この態様において、例えば、前記被陽極酸化金属体がアルミニウムを主成分とする金属体である場合、前記微細構造体は、平面視略正六角形状の複数の凹部が隣接して配列したアレイ構造部を有するものとなる。   In this aspect, for example, when the metal body to be anodized is a metal body mainly composed of aluminum, the fine structure has an array structure portion in which a plurality of concave portions having a substantially regular hexagonal shape in plan view are arranged adjacent to each other. It will have.

本明細書において、被陽極酸化金属体の「主成分」は、含量90%以上の成分と定義する。   In the present specification, the “main component” of the metal to be anodized is defined as a component having a content of 90% or more.

本発明の他の好適な態様として、散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するラマン分光用デバイスにおいて、被陽極酸化金属体を陽極酸化して一部を金属酸化物層とし、該金属酸化物層を一部除去した後に残る、前記被陽極酸化金属体の非陽極酸化部分と前記金属酸化物層の残部とからなる微細構造体を備えたものが挙げられる。   As another preferred embodiment of the present invention, in a Raman spectroscopic device having a light scattering surface which is used for Raman spectroscopy to detect scattered light by dispersing scattered light and is irradiated and scattered, anodization is performed. From the non-anodized portion of the metal body to be anodized and the remainder of the metal oxide layer remaining after the metal body is anodized to form part of the metal oxide layer and the metal oxide layer is partially removed The thing provided with the microstructure which becomes.

本発明のラマン分光装置は、上記の本発明のラマン分光用デバイスと、該ラマン分光用デバイスの前記光散乱面に特定波長の光を照射する光照射手段と、前記光散乱面で発生する散乱光を分光し、ラマン散乱光のスペクトルを得る分光手段とを備えたことを特徴とするものである。   The Raman spectroscopic apparatus of the present invention includes the above-described Raman spectroscopic device of the present invention, light irradiation means for irradiating the light scattering surface of the Raman spectroscopic device with light of a specific wavelength, and scattering generated on the light scattering surface. And a spectroscopic unit that obtains a spectrum of Raman scattered light.

本発明のラマン分光用デバイスは、平面視略同一形状の複数の凹部が略同一ピッチで規則配列したアレイ構造部を有する微細構造体を備え、アレイ構造部側の面を光散乱面とする構成であるので、光散乱面の表面凹凸の均一性が高く、ラマン散乱強度の面内均一性が高く、高精度のラマン分光測定を安定的に実施することができる。   The Raman spectroscopic device of the present invention includes a fine structure having an array structure portion in which a plurality of concave portions having substantially the same shape in plan view are regularly arranged at substantially the same pitch, and the surface on the array structure portion side is a light scattering surface Therefore, the surface unevenness of the light scattering surface is high, the in-plane uniformity of the Raman scattering intensity is high, and highly accurate Raman spectroscopic measurement can be stably performed.

また、凹部を規則的に形成して、規則的な表面凹凸を設ける構成としているので、金属コーティングされた微粒子を固着させて規則的な表面凹凸を形成する従来技術(「背景技術」の項で挙げた特許文献2)と異なり、製造もはるかに容易である。   In addition, since the concave portions are regularly formed to provide regular surface irregularities, the conventional technique for forming regular surface irregularities by fixing fine particles coated with metal (in the section of “Background Technology”). Unlike the cited patent document 2), the manufacture is much easier.

特に、規則配列性を有する金属酸化物層を形成できるという陽極酸化の特徴を利用し、金属酸化物層の少なくとも一部を除去し、残る部分を微細構造体として用いることで、規則的な表面凹凸を有する微細構造体を備えた本発明のラマン分光用デバイスを容易に製造でき、好ましい。   In particular, by utilizing the feature of anodization that a metal oxide layer having a regular arrangement property can be formed, by removing at least a part of the metal oxide layer and using the remaining part as a microstructure, a regular surface is obtained. The device for Raman spectroscopy of the present invention provided with a fine structure having irregularities can be easily produced, which is preferable.

「第1実施形態のラマン分光用デバイス」
図面を参照し、本発明に係る第1実施形態のラマン分光用デバイスの構造について説明する。図1(a)は平面図、図1(b)はA−A’断面図である。図2は製造方法を示す工程図であり、図2(a)、(b)は斜視図、図2(c)、(d)は図1(b)に対応する断面図である。
"Device for Raman spectroscopy of the first embodiment"
The structure of the Raman spectroscopic device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view along AA ′. 2A and 2B are process diagrams showing the manufacturing method. FIGS. 2A and 2B are perspective views, and FIGS. 2C and 2D are cross-sectional views corresponding to FIG.

本実施形態のラマン分光用デバイス1は、散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するものである。   The Raman spectroscopic device 1 according to the present embodiment is used for Raman spectroscopy in which scattered light is dispersed to detect Raman scattered light, and has a light scattering surface on which light is irradiated and scattered.

図1に示す如く、ラマン分光用デバイス1は、平面視略同一形状の多数のディンプル状凹部12が略同一ピッチPで規則配列したアレイ構造部13を有する微細構造体11を主とし、アレイ構造部13の表面に、その表面凹凸形状に沿って、アレイ構造部13の構成材料よりもラマン散乱強度の大きいラマン散乱増強物質20が固着されたものである。   As shown in FIG. 1, the Raman spectroscopic device 1 mainly includes a microstructure 11 having an array structure portion 13 in which a large number of dimple-like recesses 12 having substantially the same shape in plan view are regularly arranged at substantially the same pitch P. A Raman scattering enhancing substance 20 having a Raman scattering intensity larger than that of the constituent material of the array structure portion 13 is fixed to the surface of the portion 13 along the surface irregularity shape.

ラマン分光用デバイス1のアレイ構造部13側の表面が光散乱面1sとなっている。アレイ構造部13をなす個々のディンプル状凹部12は平面視略正六角形状であり、1個のディンプル状凹部12に対して、6個のディンプル状凹部12が隣接して配列している。   The surface on the array structure part 13 side of the Raman spectroscopic device 1 is a light scattering surface 1s. The individual dimple-like recesses 12 forming the array structure portion 13 have a substantially regular hexagonal shape in plan view, and six dimple-like recesses 12 are arranged adjacent to one dimple-like recess 12.

微細構造体11は、図2に示す如く、アルミニウム(Al)を主成分とし、微少不純物を含んでいてもよい被陽極酸化金属体10を陽極酸化して、被陽極酸化金属体10の一部をアルミナ(Al)層(金属酸化物層)30とし、アルミナ層30を除去した後に残る、被陽極酸化金属体10の非陽極酸化部分である。通常、被陽極酸化金属体10の非陽極酸化部分に対して、生成されるアルミナ層30は薄いが、図面では、視認しやすくするため、アルミナ層30を大きく図示してある。 As shown in FIG. 2, the microstructure 11 is formed by anodizing the anodized metal body 10 that is mainly composed of aluminum (Al) and may contain minute impurities, and a part of the anodized metal body 10. Is an alumina (Al 2 O 3 ) layer (metal oxide layer) 30, and is a non-anodized portion of the anodized metal body 10 that remains after the alumina layer 30 is removed. Usually, the generated alumina layer 30 is thin with respect to the non-anodized portion of the metal body 10 to be anodized, but in the drawing, the alumina layer 30 is greatly illustrated for easy visual recognition.

被陽極酸化金属体10の形状は制限されず、板状等が挙げられる。また、支持体の上に被陽極酸化金属体10が層状に成膜されたものなど、支持体付きの形態で用いることも差し支えない。   The shape of the anodized metal body 10 is not limited, and examples thereof include a plate shape. Further, it may be used in a form with a support such as a layered metal object 10 to be anodized on a support.

陽極酸化は、例えば、被陽極酸化金属体10を陽極とし、カーボンやアルミニウム等を陰極(対向電極)として、これらを陽極酸化用電解液に浸漬させ、陽極と陰極の間に電圧を印加することで実施できる。電解液としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。   In anodization, for example, the metal body 10 to be anodized is used as an anode, carbon or aluminum is used as a cathode (counter electrode), these are immersed in an anodizing electrolyte, and a voltage is applied between the anode and the cathode. Can be implemented. The electrolytic solution is not limited, and an acidic electrolytic solution containing one or more acids such as sulfuric acid, phosphoric acid, chromic acid, oxalic acid, sulfamic acid, benzenesulfonic acid, and amidosulfonic acid is preferably used.

被陽極酸化金属体10を陽極酸化すると、図2(b)に示す如く、表面10s(図示上面)から該面に対して略垂直方向に酸化反応が進行し、アルミナ層30が生成される。   When the anodized metal body 10 is anodized, as shown in FIG. 2B, an oxidation reaction proceeds from the surface 10s (upper surface in the drawing) in a direction substantially perpendicular to the surface, and an alumina layer 30 is generated.

陽極酸化により生成されるアルミナ層30は、平面視略正六角形状の微細柱状体31が隣接して配列した構造を有するものとなる。各微細柱状体31の略中心部には、表面10sから深さ方向に微細孔32が開孔される。また、各微細柱状体31の底面は、図示する如く、丸みを帯びた形状となり、被陽極酸化金属体10の非陽極酸化部分のアルミナ層30側の面には、上記ディンプル状凹部12が生成される。陽極酸化により生成されるアルミナ層の構造は、益田秀樹、「陽極酸化法によるメソポーラスアルミナの調製と機能材料としての応用」、材料技術Vol.15,No.10、1997年、p.34等に記載されている。   The alumina layer 30 produced by anodization has a structure in which fine columnar bodies 31 having a substantially regular hexagonal shape in plan view are arranged adjacent to each other. A micro hole 32 is opened in the depth direction from the surface 10 s at a substantially central portion of each micro columnar body 31. Further, as shown in the drawing, the bottom surface of each fine columnar body 31 has a rounded shape, and the dimple-like recess 12 is formed on the surface of the non-anodized portion of the anodized metal body 10 on the alumina layer 30 side. Is done. The structure of the alumina layer produced by anodization is described in Hideki Masuda, “Preparation of mesoporous alumina by anodization and its application as a functional material”, Material Technology Vol.15, No.10, 1997, p.34, etc. Are listed.

微細構造体11では、アルミナ層30をなす微細柱状体31のピッチがそのまま、ディンプル状凹部12のピッチPとなり、微細柱状体31の丸みを帯びた底部部分の厚みが、ディンプル状凹部12の深さとなる。例えば、ディンプル状凹部12のピッチPは10〜500nm程度、深さは5〜250nmである。   In the fine structure 11, the pitch of the fine columnar bodies 31 forming the alumina layer 30 is directly the pitch P of the dimple-shaped recesses 12, and the thickness of the rounded bottom portion of the fine columnar bodies 31 is the depth of the dimple-shaped recesses 12. It becomes. For example, the pitch P of the dimple-like recesses 12 is about 10 to 500 nm and the depth is 5 to 250 nm.

通常の陽極酸化では、微細孔32を有するアルミナ層30(メソポーラスアルミナ)を形成することが目的であるので、ある程度酸化反応を進行させて、用途に応じた厚みのアルミナ層30を形成する必要がある。これに対して、本実施形態では、被陽極酸化金属体10の非陽極酸化部分にディンプル状凹部12を形成するために陽極酸化を実施し、陽極酸化により生成されるアルミナ層30は除去するので、ディンプル状凹部12が安定的に生成しさえすれば、最小限のアルミナ層30を形成すれば足る。   In normal anodic oxidation, the purpose is to form an alumina layer 30 (mesoporous alumina) having fine pores 32. Therefore, it is necessary to advance the oxidation reaction to some extent to form an alumina layer 30 having a thickness according to the application. is there. On the other hand, in this embodiment, anodization is performed to form the dimple-like recess 12 in the non-anodized portion of the anodized metal body 10, and the alumina layer 30 generated by the anodization is removed. As long as the dimple-like recess 12 is stably generated, it is sufficient to form the minimum alumina layer 30.

したがって、陽極酸化条件は、非陽極酸化部分が残り、かつ非陽極酸化部分の表面にディンプル状凹部12が安定的に生成される範囲内で、適宜設計すればよい。電解液としてシュウ酸を用いる場合、好適な条件例としては、電解液濃度0.5M、液温15℃、印加電圧40Vが挙げられる。電解時間を変えることで、任意の層厚のアルミナ層30を生成できる。陽極酸化前の被陽極酸化金属体10の厚みを、生成されるアルミナ層30よりも厚く設定しておけば、非陽極酸化部分が残り、微細構造体11が得られる。   Therefore, the anodic oxidation conditions may be appropriately designed within a range where the non-anodized portion remains and the dimple-like recess 12 is stably generated on the surface of the non-anodized portion. When oxalic acid is used as the electrolytic solution, preferable conditions include an electrolytic solution concentration of 0.5 M, a liquid temperature of 15 ° C., and an applied voltage of 40 V. By changing the electrolysis time, the alumina layer 30 having an arbitrary thickness can be generated. If the thickness of the anodized metal body 10 before anodization is set to be thicker than the alumina layer 30 to be produced, the non-anodized portion remains and the microstructure 11 is obtained.

被陽極酸化金属体10の非陽極酸化部分を残して、アルミナ層30を選択的に除去する方法としては特に制限されず、例えば、アルミナを選択的に溶解するエッチング液(例えば、クロム酸溶液)を用いたウエットエッチングや、陽極酸化終了後に、被陽極酸化金属体10と対向電極とに逆方向に電圧を印加する方法等が挙げられる。   The method for selectively removing the alumina layer 30 while leaving the non-anodized portion of the metal body 10 to be anodized is not particularly limited. For example, an etching solution (for example, chromic acid solution) that selectively dissolves alumina. And a method of applying a voltage in the opposite direction to the anodized metal body 10 and the counter electrode after the completion of anodization.

ラマン散乱増強物質20としては、局在プラズモン共鳴現象によるラマン散乱増強効果が得られるものが好ましく用いられる。局在プラズモン共鳴現象は、凸部の自由電子が光の電場に共鳴して振動することで凸部周辺に強い電場が生じる現象であり、発生する光の電場によってラマン散乱が増強されるとされている。局在プラズモン共鳴現象は自由電子を有する金属であれば任意の金属で起こり得るが、その中でもラマン散乱増強効果が比較的大きいものが好ましい。また、ラマン散乱増強効果を有することはもちろん、化学的安定性(試料に対する安定性)が高く、ラマン散乱信号に対する影響が小さいものが好ましく用いられる。ラマン散乱増強物質20としては、金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、ニッケル(Ni)、チタン(Ti)等が好ましく、ラマン散乱増強効果が大きいことから、金(Au)、銀(Ag)等が特に好ましい。   As the Raman scattering enhancing substance 20, a material capable of obtaining the Raman scattering enhancing effect by the localized plasmon resonance phenomenon is preferably used. The localized plasmon resonance phenomenon is a phenomenon in which a free electric field in a convex part oscillates in resonance with the electric field of light, and a strong electric field is generated around the convex part. Raman scattering is enhanced by the electric field of the generated light. ing. The localized plasmon resonance phenomenon can occur in any metal as long as it has a free electron, but among them, the one having a relatively large Raman scattering enhancement effect is preferable. In addition, it is preferable to use a material having not only an effect of enhancing Raman scattering but also high chemical stability (stability with respect to the sample) and small influence on the Raman scattering signal. As the Raman scattering enhancing substance 20, gold (Au), silver (Ag), copper (Cu), platinum (Pt), nickel (Ni), titanium (Ti) and the like are preferable, and since the Raman scattering enhancing effect is large, Gold (Au), silver (Ag) and the like are particularly preferable.

ラマン散乱増強物質20の固着方法としては制限されず、例えば、アレイ構造部13の表面に、ラマン散乱増強物質20及び必要に応じて樹脂等のバインダを含む溶液を塗布し乾燥する方法、アレイ構造部13の表面にラマン散乱増強物質20を蒸着する方法等が挙げられる。   The method for fixing the Raman scattering enhancing substance 20 is not limited. For example, a method of applying a solution containing the Raman scattering enhancing substance 20 and, if necessary, a binder such as a resin to the surface of the array structure portion 13 and drying, an array structure Examples thereof include a method of vapor-depositing the Raman scattering enhancing substance 20 on the surface of the portion 13.

ラマン散乱増強物質20の固着形態は制限されず、粒子状のラマン散乱増強物質20が多数固着されたものや、ラマン散乱増強物質20がバインダと共に層状に固着されたもの等が挙げられる。   The fixing form of the Raman scattering enhancing substance 20 is not limited, and examples include those in which a large number of particulate Raman scattering enhancing substances 20 are fixed, and those in which the Raman scattering enhancing substance 20 is fixed in a layer together with a binder.

本実施形態のラマン分光用デバイス1は、平面視略六角形状の多数のディンプル状凹部12が略同一ピッチPで規則配列したアレイ構造部13を有する微細構造体11を主とし、アレイ構造部13の表面に、その表面凹凸形状に沿ってラマン散乱増強物質20を固着する構成としている。したがって、光散乱面1sは、アレイ構造部13と同様の凹凸形状パターンを有している。   The Raman spectroscopic device 1 according to the present embodiment mainly includes a microstructure 11 having an array structure portion 13 in which a large number of dimple-like recesses 12 having a substantially hexagonal shape in plan view are regularly arranged at substantially the same pitch P. The Raman scattering enhancing substance 20 is fixed to the surface of the surface along the uneven surface shape. Therefore, the light scattering surface 1 s has the same concavo-convex pattern as the array structure portion 13.

ラマン分光用デバイス1ではこのように、光散乱面1sにナノオーダーの凹凸パターンが形成されているので、光散乱面が平坦なものに比して、高いラマン散乱増強効果(例えば、10倍以上の増強効果)が得られる。これは、表面凹凸による表面積の増大や局在プラズモン共鳴現象によると考えられる。局在プラズモン共鳴現象は、上記した如く、凸部の自由電子が光の電場に共鳴して振動することで凸部周辺に強い電場が生じる現象である。   As described above, in the Raman spectroscopic device 1, since the nano-order uneven pattern is formed on the light scattering surface 1 s, the Raman scattering enhancement effect (for example, 10 times or more) is higher than that of the flat light scattering surface. Enhancement effect). This is thought to be due to an increase in surface area due to surface irregularities and a localized plasmon resonance phenomenon. As described above, the localized plasmon resonance phenomenon is a phenomenon in which a strong electric field is generated in the vicinity of the convex portion when the free electrons of the convex portion resonate with the electric field of light and vibrate.

アレイ構造部13にはラマン散乱増強物質20が固着されているので、局在プラズモン共鳴現象がより効果的に起こり、ラマン散乱増強効果がより高いレベルで得られる。ただし、微細構造体11がAlを主成分とするものであり、Alによっても局在プラズモン共鳴現象は起こるので、微細構造体11の表面凹凸構造とAlによるラマン散乱増強効果によって、ラマン散乱増強物質20を固着させなくても、良好なラマン散乱増強効果は得られる。また、微細構造体11よりラマン散乱強度の大きいラマン散乱増強物質20の代わりに、微細構造体11と同じAlを固着させる構成としてもよい。   Since the Raman scattering enhancing substance 20 is fixed to the array structure portion 13, the localized plasmon resonance phenomenon occurs more effectively, and the Raman scattering enhancing effect is obtained at a higher level. However, since the fine structure 11 is mainly composed of Al, and the localized plasmon resonance phenomenon occurs also by Al, the Raman scattering enhancing substance is obtained by the surface uneven structure of the fine structure 11 and the Raman scattering enhancement effect by Al. Even if 20 is not fixed, a good Raman scattering enhancement effect can be obtained. Moreover, it is good also as a structure which fixes the same Al as the fine structure 11 instead of the Raman scattering enhancing substance 20 whose Raman scattering intensity is larger than the fine structure 11.

本実施形態のラマン分光用デバイス1では、光散乱面1sの凹凸の面内均一性が高いので、ラマン散乱強度の面内均一性が高く、ラマン分光測定を安定的に実施できる。しかも、光散乱面1sの凹凸の面内均一性が高い本実施形態のラマン分光用デバイス1では、表面凹凸がランダムな従来技術に比して、より大きいラマン散乱増強効果が得られる。   In the Raman spectroscopic device 1 of the present embodiment, since the in-plane uniformity of the unevenness of the light scattering surface 1s is high, the in-plane uniformity of the Raman scattering intensity is high, and Raman spectroscopic measurement can be stably performed. Moreover, in the Raman spectroscopic device 1 of the present embodiment having high in-plane uniformity of the unevenness of the light scattering surface 1s, a greater Raman scattering enhancement effect can be obtained as compared with the prior art in which the surface unevenness is random.

局在プラズモン共鳴現象は、微細構造体の表面にある凹部のサイズに依存して起こる。本実施形態では、微細構造体11の表面に形成された多数の凹部12のサイズ均一性が高いため、すべての凹部12内で局在プラズモン共鳴現象が効果的に起こり、表面凹凸がランダムな従来技術に比して、より大きいラマン散乱増強効果が得られると推察される。   The localized plasmon resonance phenomenon occurs depending on the size of the concave portion on the surface of the fine structure. In the present embodiment, since the size uniformity of a large number of recesses 12 formed on the surface of the fine structure 11 is high, the local plasmon resonance phenomenon occurs effectively in all the recesses 12 and the surface unevenness is random. It is presumed that a greater Raman scattering enhancement effect can be obtained compared to the technology.

本実施形態では、ラマン散乱強度の面内均一性が高く安定な測定が実施できること、及び表面凹凸均一性によって、表面凹凸がランダムな従来技術に比して、より大きいラマン散乱増強効果が得られることの効果が相俟って、データ信頼性が高く、データ再現性が良好な高精度のラマン分光測定が実施できる。   In the present embodiment, the in-plane uniformity of the Raman scattering intensity is high and stable measurement can be performed, and the surface unevenness can provide a greater Raman scattering enhancement effect than the conventional technique with random surface unevenness. Combined with this effect, highly accurate Raman spectroscopic measurement with high data reliability and good data reproducibility can be performed.

さらに、本実施形態では、規則配列性を有するアルミナ層を形成できるという陽極酸化の特徴を利用し、陽極酸化により生成されるアルミナ層30を除去して、被陽極酸化金属体10の非陽極酸化部分のみを残すことで、ディンプル状凹部12が規則配列された微細構造体11を得る構成としている。陽極酸化では、被陽極酸化金属体10を陽極として、電解液に浸漬させ、電圧を印加するだけで、規則配列性を有するアルミナ層30を形成できるので、ディンプル状凹部12が規則配列された微細構造体11を、簡易なプロセスで低コストに得ることができる。陽極酸化条件を調整することで、ディンプル状凹部12のピッチPや深さの制御も容易である。また、被陽極酸化金属体10の表面全体を一括処理できるので、大面積化にも容易に対応できる。   Further, in the present embodiment, utilizing the feature of anodization that an alumina layer having regular arrangement can be formed, the alumina layer 30 generated by anodization is removed, and the anodized metal body 10 is non-anodized. By leaving only the portion, the fine structure 11 in which the dimple-like recesses 12 are regularly arranged is obtained. In the anodic oxidation, the alumina layer 30 having a regular arrangement can be formed simply by immersing the metal body 10 to be anodized in an electrolytic solution and applying a voltage, so that the dimple-like recesses 12 are arranged in a fine array. The structure 11 can be obtained at a low cost by a simple process. By adjusting the anodic oxidation conditions, it is easy to control the pitch P and the depth of the dimple-like recess 12. In addition, since the entire surface of the anodized metal body 10 can be collectively processed, it is possible to easily cope with an increase in area.

本実施形態においては、被陽極酸化金属体10の主成分として、Alのみを挙げたが、陽極酸化可能な任意の金属が使用できる。Al以外の陽極酸化可能な金属としては、Ti、Ta、Hf、Zr等が挙げられる。また、被陽極酸化金属体10は、陽極酸化可能な金属を2種以上含むものであってもよい。   In this embodiment, although only Al was mentioned as a main component of the metal body 10 to be anodized, any metal that can be anodized can be used. Examples of metals that can be anodized other than Al include Ti, Ta, Hf, and Zr. Further, the anodized metal body 10 may contain two or more kinds of metals that can be anodized.

用いる被陽極酸化金属の種類によって、形成される凹部の平面パターンは変わるが、平面視略同一形状のディンプル状凹部12が隣接して配列した構造を有するアレイ構造部が形成されることには変わりない。   Depending on the type of anodized metal to be used, the planar pattern of the recesses to be formed changes, but an array structure part having a structure in which dimple-like recesses 12 having substantially the same shape in plan view are arranged adjacently is changed. Absent.

「第2実施形態のラマン分光用デバイス」
図3に基づいて、本発明に係る第2実施形態のラマン分光用デバイスの構造について説明する。図3は、上記実施形態の図2(c)、(d)に対応する図である。
"Device for Raman spectroscopy of the second embodiment"
Based on FIG. 3, the structure of the Raman spectroscopic device according to the second embodiment of the present invention will be described. FIG. 3 is a diagram corresponding to FIGS. 2C and 2D of the above embodiment.

本実施形態のラマン分光用デバイス2は、第1実施形態と同様、光が照射され散乱される光散乱面2sを有するものである。   Similar to the first embodiment, the Raman spectroscopic device 2 of the present embodiment has a light scattering surface 2s on which light is irradiated and scattered.

ラマン分光用デバイス2は、第1実施形態の図2(a)、(b)で示したように陽極酸化を実施した後、図3に示す如く、アルミナ層30を完全に除去せずに、アルミナ層30を深さ方向に一部除去して残る、被陽極酸化金属体10の非陽極酸化部分11とアルミナ層30の残部30rとからなる微細構造体14を主として構成されている。   After performing the anodization as shown in FIGS. 2A and 2B of the first embodiment, the Raman spectroscopic device 2 does not completely remove the alumina layer 30 as shown in FIG. The fine structure 14 mainly composed of the non-anodized portion 11 of the metal body 10 to be anodized and the remaining portion 30r of the alumina layer 30 is left mainly after the alumina layer 30 is partially removed in the depth direction.

第1実施形態で説明したように、陽極酸化により生成されるアルミナ層30は、平面視略正六角形状の微細柱状体31が隣接して配列した構造を有し、各微細柱状体31の略中心部には、表面10sから深さ方向に微細孔32が開孔された層構造を有するので、アルミナ層30の残部30rも同様の構成を有するものとなる。すなわち、微細構造体14は、凹部である平面視略同一形状(略円状)の微細孔32が、略同一ピッチで規則配列したアレイ構造部15を有するものとなる。微細孔32のピッチは、第1実施形態と同様である。以下、微細孔32を凹部32と称す。   As described in the first embodiment, the alumina layer 30 generated by anodic oxidation has a structure in which fine columnar bodies 31 having a substantially regular hexagonal shape in plan view are arranged adjacent to each other. Since the center portion has a layer structure in which the fine holes 32 are opened in the depth direction from the surface 10s, the remaining portion 30r of the alumina layer 30 has the same configuration. That is, the fine structure 14 has the array structure portion 15 in which the fine holes 32 having substantially the same shape (substantially circular shape) in plan view, which are concave portions, are regularly arranged at substantially the same pitch. The pitch of the fine holes 32 is the same as in the first embodiment. Hereinafter, the fine hole 32 is referred to as a recess 32.

本実施形態においても、アレイ構造部15の表面に、その表面凹凸形状に沿って、ラマン散乱増強物質20が固着されている。本実施形態では、アレイ構造部15が非金属のアルミナからなるので、ラマン散乱増強物質20としては、Au、Ag、Cu、Pt、Ni、Ti、Al等が好ましく、Au、Ag等が特に好ましい。   Also in the present embodiment, the Raman scattering enhancing substance 20 is fixed to the surface of the array structure portion 15 along the uneven surface shape. In the present embodiment, since the array structure 15 is made of non-metallic alumina, the Raman scattering enhancing material 20 is preferably Au, Ag, Cu, Pt, Ni, Ti, Al, or the like, and Au, Ag, or the like is particularly preferable. .

本実施形態のラマン分光用デバイス2では、凹部32が略同一ピッチで規則配列したアレイ構造部15を有する微細構造体14を主とし、アレイ構造部15の表面に、その表面形状に沿ってラマン散乱増強物質20を固着する構成としている。したがって、光散乱面2sは、微細構造体14のアレイ構造部15と同様の凹凸形状パターンを有する。   In the Raman spectroscopic device 2 of the present embodiment, the microstructure 14 having the array structure portion 15 in which the concave portions 32 are regularly arranged at substantially the same pitch is mainly used, and the Raman structure is formed on the surface of the array structure portion 15 along the surface shape. The scattering enhancing substance 20 is fixed. Therefore, the light scattering surface 2 s has the same uneven shape pattern as the array structure portion 15 of the fine structure 14.

ラマン分光用デバイス2ではこのように、光散乱面2sにナノオーダーの凹凸パターンが形成されており、アレイ構造部15にラマン散乱増強物質20が固着されているので、第1実施形態と同様、表面凹凸による表面積の増大や、局在プラズモン共鳴現象によって、高いラマン散乱増強効果が得られる。なお、第1実施形態では、アレイ構造部が金属(Al)からなるので、ラマン散乱増強物質を固着しなくても充分なラマン散乱増強効果が得られるのに対し、本実施形態では、アレイ構造部15は非金属のアルミナからなるので、良好なラマン散乱増強効果を得るには、ラマン散乱増強物質20を固着させることが必要となる。   In the Raman spectroscopic device 2, a nano-order uneven pattern is formed on the light scattering surface 2s as described above, and the Raman scattering enhancing substance 20 is fixed to the array structure unit 15. Thus, as in the first embodiment, A high Raman scattering enhancement effect can be obtained by an increase in surface area due to surface irregularities and a localized plasmon resonance phenomenon. In the first embodiment, since the array structure portion is made of metal (Al), a sufficient Raman scattering enhancing effect can be obtained without fixing the Raman scattering enhancing substance, whereas in the present embodiment, the array structure is formed. Since the portion 15 is made of non-metallic alumina, it is necessary to fix the Raman scattering enhancing substance 20 in order to obtain a good Raman scattering enhancing effect.

本実施形態のラマン分光用デバイス2では、第1実施形態と同様、光散乱面2sの凹凸の面内均一性が高いので、ラマン散乱強度の面内均一性が高く、ラマン分光測定を安定的に実施できる。しかも、光散乱面2sの凹凸の面内均一性が高い本実施形態のラマン分光用デバイス2では、局在プラズモン共鳴現象が効果的に起こると推察され、第1実施形態と同様、表面凹凸がランダムな従来技術に比して、より大きいラマン散乱増強効果が得られる。したがって、第1実施形態と同様、データ信頼性が高く、データ再現性が良好な高精度のラマン分光測定が実施できる。   In the Raman spectroscopic device 2 of the present embodiment, since the in-plane uniformity of the unevenness of the light scattering surface 2s is high as in the first embodiment, the in-plane uniformity of the Raman scattering intensity is high, and the Raman spectroscopic measurement is stable. Can be implemented. Moreover, in the Raman spectroscopic device 2 of the present embodiment, which has high in-plane uniformity of the unevenness of the light scattering surface 2s, it is assumed that the localized plasmon resonance phenomenon occurs effectively, and the surface unevenness is the same as in the first embodiment. Compared to random prior art, a greater Raman scattering enhancement effect is obtained. Therefore, as in the first embodiment, highly accurate Raman spectroscopic measurement with high data reliability and good data reproducibility can be performed.

さらに、本実施形態においても、規則配列性を有するアルミナ層を形成できるという陽極酸化の特徴を利用し、陽極酸化により生成されるアルミナ層30を深さ方向に一部除去して、残る部分を微細構造体14としている。したがって、第1実施形態と同様、凹部32が規則配列された微細構造体14を、簡易なプロセスで低コストに得ることができる。また、被陽極酸化金属体10の表面全体を一括処理できるので、大面積化にも容易に対応できる。   Furthermore, also in this embodiment, utilizing the feature of anodization that an alumina layer having regular arrangement can be formed, the alumina layer 30 generated by anodization is partially removed in the depth direction, and the remaining portion is removed. The microstructure 14 is formed. Therefore, as in the first embodiment, the microstructure 14 in which the recesses 32 are regularly arranged can be obtained at a low cost by a simple process. In addition, since the entire surface of the anodized metal body 10 can be collectively processed, it is possible to easily cope with an increase in area.

本実施形態においては、被陽極酸化金属体10の主成分としてAlのみを挙げたが、第1実施形態と同様、陽極酸化可能な任意の金属が使用でき、陽極酸化可能な金属を2種以上含むものであってもよい。   In the present embodiment, only Al is cited as the main component of the anodized metal body 10, but as in the first embodiment, any anodizable metal can be used, and two or more kinds of anodizable metals can be used. It may be included.

上記第1、第2実施形態では、陽極酸化を利用して凹部を規則配列させる場合について説明したが、平面視略同一形状の複数の凹部が略同一ピッチで規則配列したアレイ構造部を有する微細構造体を備え、アレイ構造部側の表面が光散乱面であるラマン分光用デバイス自体が新規である。なお、微細構造体において、アレイ構造部は、少なくともラマン分光測定を実施する際に、光照射を受ける範囲に形成されていればよい。   In the first and second embodiments described above, the case where the concave portions are regularly arranged using anodization has been described. However, a fine structure having an array structure portion in which a plurality of concave portions having substantially the same shape in plan view are regularly arranged at substantially the same pitch. A Raman spectroscopic device itself having a structure and having a light scattering surface on the surface of the array structure portion is novel. Note that, in the fine structure, the array structure portion only needs to be formed in a range where light irradiation is performed at least when performing Raman spectroscopic measurement.

陽極酸化を利用する以外に、複数の凹部が規則配列したアレイ構造部を有する微細構造体を得る方法としては、樹脂等の基体の表面にナノインプリント技術により規則配列した複数の凹部を形成する、金属等の基体の表面に、集束イオンビーム(FIB)、電子ビーム(EB)等の電子描画技術により規則配列した複数の凹部を描画する等の微細加工技術が挙げられる。   In addition to using anodization, a method for obtaining a microstructure having an array structure part in which a plurality of recesses are regularly arranged is a metal in which a plurality of recesses regularly arranged by a nanoimprint technique is formed on the surface of a substrate such as a resin. For example, a fine processing technique such as drawing a plurality of concave portions regularly arranged by an electron drawing technique such as a focused ion beam (FIB) or an electron beam (EB) on the surface of the substrate.

いかなる方法を採用するにせよ、本発明では凹部を規則的に形成して、規則的な表面凹凸を設ける構成としているので、金属コーティングされた微粒子を固着させて規則的な表面凹凸を形成する従来技術(「背景技術」の項で挙げた特許文献2)と異なり、製造ははるかに容易である。特に、表面全面を一括処理でき、大面積化に対応でき、高価な装置を必要としないことから、陽極酸化を利用した上記第1、第2実施形態は好ましい。   Regardless of the method used, the present invention has a structure in which the concave portions are regularly formed and the regular surface irregularities are provided, so that the metal-coated fine particles are fixed to form the regular surface irregularities. Unlike the technology (Patent Document 2 mentioned in the section of “Background Art”), the production is much easier. In particular, the first and second embodiments using anodic oxidation are preferable because the entire surface can be collectively processed, can cope with a large area, and does not require an expensive apparatus.

上記第1、第2実施形態では、微細構造体11、14のアレイ構造部13、15の表面全体にラマン散乱増強物質20を固着する場合について説明したが、ラマン散乱増強物質20の塗布等を制御すれば、凹部12、32ごとにラマン散乱増強物質20が孤立するよう、ラマン散乱増強物質20を固着させることができる。この場合には、より大きな局在プラズモン共鳴が起こり、より大きなラマン増強効果が得られ、好ましい。かかる構成では、物質(試料)のみから測定されるラマン散乱に対して、1011〜1014倍のラマン増強効果が期待できる(「現代化学」、2003年9月、p.20等参照)。 In the first and second embodiments described above, the case where the Raman scattering enhancing substance 20 is fixed to the entire surface of the array structures 13 and 15 of the fine structures 11 and 14 has been described. If controlled, the Raman scattering enhancing substance 20 can be fixed so that the Raman scattering enhancing substance 20 is isolated for each of the recesses 12 and 32. In this case, a larger localized plasmon resonance occurs, and a larger Raman enhancement effect is obtained, which is preferable. In such a configuration, a Raman enhancement effect of 10 11 to 10 14 times can be expected with respect to the Raman scattering measured only from the substance (sample) (see “Modern Chemistry”, September 2003, p. 20, etc.).

「ラマン分光装置」
次に、図4に基づいて、上記第1実施形態のラマン分光用デバイス1を用いる場合を例として、本発明に係る実施形態のラマン分光装置について説明する。図4は、第1実施形態の図1(b)に対応する断面図である。上記第2実施形態のラマン分光用デバイス2を用いる場合も、装置構成は同様である。
"Raman Spectrometer"
Next, the Raman spectroscopic apparatus according to the embodiment of the present invention will be described with reference to FIG. 4 by taking as an example the case where the Raman spectroscopic device 1 according to the first embodiment is used. FIG. 4 is a cross-sectional view corresponding to FIG. 1B of the first embodiment. The apparatus configuration is the same when the Raman spectroscopic device 2 of the second embodiment is used.

本実施形態のラマン分光装置3は、ラマン分光用デバイス1が内部に設置される容器40と、特定波長の光を照射する光照射手段50と、散乱光を分光する分光手段60とから概略構成されている。   The Raman spectroscopic device 3 of the present embodiment is schematically configured from a container 40 in which the Raman spectroscopic device 1 is installed, a light irradiating means 50 for irradiating light of a specific wavelength, and a spectroscopic means 60 for splitting scattered light. Has been.

容器40は箱状であり、底面に、光散乱面1sに試料(図示略)を載せたラマン分光用デバイス1が設置される。容器40の上面には、ラマン分光用デバイス1の光散乱面1sと対向する位置に透明窓41が嵌め込まれている。   The container 40 is box-shaped, and the Raman spectroscopic device 1 in which a sample (not shown) is placed on the light scattering surface 1s is installed on the bottom surface. A transparent window 41 is fitted on the upper surface of the container 40 at a position facing the light scattering surface 1 s of the Raman spectroscopic device 1.

光照射手段50は、レーザ等の光源と光源から出射される光を導光する導光系とからなる。光照射手段50は、容器40の外部に配置され、容器40の透明窓41を介してラマン分光用デバイス1の光散乱面1sに特定波長の光を照射するよう、構成されている。   The light irradiation unit 50 includes a light source such as a laser and a light guide system that guides light emitted from the light source. The light irradiation means 50 is disposed outside the container 40 and is configured to irradiate light having a specific wavelength to the light scattering surface 1 s of the Raman spectroscopic device 1 through the transparent window 41 of the container 40.

分光手段60は分光検出器等からなり、ラマン分光用デバイス1の光散乱面1sで発生する散乱光を分光し、ラマン散乱光のスペクトル(ラマンスペクトル)を得るものである。分光手段60は容器40の外部に設置され、ラマン分光用デバイス1の光散乱面1sで発生する散乱光が容器40の透明窓41を介して分光手段60に入射するよう、構成されている。   The spectroscopic means 60 is composed of a spectroscopic detector or the like, and disperses the scattered light generated on the light scattering surface 1s of the Raman spectroscopic device 1 to obtain a spectrum of Raman scattered light (Raman spectrum). The spectroscopic means 60 is installed outside the container 40, and is configured such that scattered light generated on the light scattering surface 1 s of the Raman spectroscopic device 1 enters the spectroscopic means 60 through the transparent window 41 of the container 40.

以上の構成の本実施形態のラマン分光装置3では、光照射手段50から照射された特定波長の光が、試料に面したラマン分光用デバイス1の光散乱面1sで散乱され、発生する散乱光が分光手段60に入射し、分光手段60により散乱光が分光されて、ラマンスペクトルが生成される。測定する試料の種類によってラマンスペクトルが変わるので、物質の同定等が実施できる。   In the Raman spectroscopic device 3 of the present embodiment having the above-described configuration, the light having a specific wavelength irradiated from the light irradiation means 50 is scattered by the light scattering surface 1s of the Raman spectroscopic device 1 facing the sample and generated scattered light. Enters the spectroscopic means 60, and the scattered light is spectrally separated by the spectroscopic means 60 to generate a Raman spectrum. Since the Raman spectrum changes depending on the type of sample to be measured, identification of substances can be performed.

例えば、ラマン分光用デバイス1の光散乱面1sに既知の抗体を固定して測定を行えば、試料に抗原が含まれると、両者の結合が生じて、得られるラマンスペクトルが変化するので、抗原の同定が実施できる。光散乱面1sに既知の抗原を固定すれば、抗体の同定も同様に実施できる。   For example, when a known antibody is immobilized on the light scattering surface 1s of the Raman spectroscopic device 1 and measurement is performed, if an antigen is contained in a sample, the binding between the two occurs and the resulting Raman spectrum changes. Can be identified. If a known antigen is immobilized on the light scattering surface 1s, the antibody can be identified in the same manner.

本実施形態のラマン分光装置3は、ラマン分光用デバイス1を用いて構成されたものであるので、データ信頼性が高く、データ再現性が良好な高精度のラマン分光測定を実施できる。ラマン分光装置3では、ラマン分光用デバイス1の表面凹凸の面内均一性が高いので、同一試料に対して、光照射箇所を変えて測定を実施しても、再現性のよいデータが得られる。したがって、同一試料に対して、光照射箇所を変えて複数のデータを取り、データの信頼性を上げることも可能である。   Since the Raman spectroscopic apparatus 3 of the present embodiment is configured using the Raman spectroscopic device 1, high-precision Raman spectroscopic measurement with high data reliability and good data reproducibility can be performed. In the Raman spectroscopic device 3, since the in-plane uniformity of the surface irregularities of the Raman spectroscopic device 1 is high, even if the measurement is performed by changing the light irradiation position on the same sample, highly reproducible data can be obtained. . Therefore, it is possible to take a plurality of data by changing the light irradiation location for the same sample, and to improve the reliability of the data.

本発明に係る実施例及び比較例について説明する。   Examples and comparative examples according to the present invention will be described.

(実施例1,2)
下記手順にて、上記第1実施形態のラマン分光用デバイス1を製造した。
(Examples 1 and 2)
The Raman spectroscopic device 1 of the first embodiment was manufactured by the following procedure.

被陽極酸化金属体10として、アルミニウム板(Al純度99.99%、10mm厚)を用意し、このアルミニウム板を陽極とし、アルミニウムを陰極として、アルミニウム板の一部がアルミナ層30となる条件で、陽極酸化を実施した。液温は15℃とした。その他の反応条件は以下の通りとした。
実施例1:電解液0.3M硫酸、印加電圧25V、反応時間8時間、
実施例2:電解液0.5Mシュウ酸、印加電圧40V、反応時間5時間。
An aluminum plate (Al purity 99.99%, 10 mm thickness) is prepared as the metal body 10 to be anodized. This aluminum plate is used as an anode, aluminum is used as a cathode, and a part of the aluminum plate is an alumina layer 30. Anodization was performed. The liquid temperature was 15 ° C. Other reaction conditions were as follows.
Example 1: Electrolyte 0.3M sulfuric acid, applied voltage 25V, reaction time 8 hours,
Example 2: Electrolytic solution 0.5 M oxalic acid, applied voltage 40 V, reaction time 5 hours.

いずれの例についても、反応終了後にクロム酸溶液を用いたウエットエッチングを実施してアルミナ層30を除去し、非陽極酸化部分からなる微細構造体11を得た。   In any example, after the reaction was completed, wet etching using a chromic acid solution was performed to remove the alumina layer 30, thereby obtaining a microstructure 11 including a non-anodized portion.

得られた微細構造体11の表面をSEM観察したところ、平面視略正六角形状のディンプル状凹部12が規則配列した表面構造であった。ディンプル状凹部12のピッチPは、以下の通りであった。
実施例1:ピッチP=63nm、実施例2:ピッチP=100nm。
When the surface of the obtained fine structure 11 was observed with an SEM, it was a surface structure in which dimple-like concave portions 12 having a substantially regular hexagonal shape in a plan view were regularly arranged. The pitch P of the dimple-like recesses 12 was as follows.
Example 1: Pitch P = 63 nm, Example 2: Pitch P = 100 nm.

ディンプル状凹部12の深さは測定していないが、実施例1は概ね5〜15nmの深さ、実施例2は概ね5〜20nmの深さと推定される。   Although the depth of the dimple-like recess 12 is not measured, it is estimated that Example 1 has a depth of about 5 to 15 nm and Example 2 has a depth of about 5 to 20 nm.

いずれの例についても、得られた微細構造体11の表面にラマン散乱増強物質20として金を蒸着して、本発明のラマン分光用デバイス1を得た。ディンプル状凹部12の中心の金厚みが10nmとなり、微細構造体11の表面全体が金で覆われる条件で、蒸着を行った(図1(b)参照)。   In any of the examples, gold was deposited as the Raman scattering enhancing substance 20 on the surface of the obtained fine structure 11 to obtain the Raman spectroscopic device 1 of the present invention. Vapor deposition was performed under the condition that the gold thickness at the center of the dimple-like recess 12 was 10 nm and the entire surface of the fine structure 11 was covered with gold (see FIG. 1B).

(比較例1,2)
ガラス基板上に金を蒸着して、表面増強ラマン効果があるとされている島状蒸着膜を成膜した。金蒸着は実施例1,2の金蒸着と同条件で実施し、蒸着膜の厚みを10nmとした。その後、下記条件でアニールを行い、比較用のラマン分光用デバイスを得た。
比較例1:500℃5分間のアニールを1回実施、
比較例2:500℃5分間のアニールを2回実施(2回目のアニールは、1回目のアニールを終了し常温まで降温した後に実施)。
(Comparative Examples 1 and 2)
Gold was vapor-deposited on a glass substrate to form an island-like vapor-deposited film that is believed to have a surface-enhanced Raman effect. Gold vapor deposition was carried out under the same conditions as those of Examples 1 and 2, and the thickness of the vapor deposition film was 10 nm. Thereafter, annealing was performed under the following conditions to obtain a comparative Raman spectroscopic device.
Comparative Example 1: Annealing was performed once at 500 ° C. for 5 minutes.
Comparative Example 2: Annealing was performed twice at 500 ° C. for 5 minutes (the second annealing was performed after the first annealing was completed and the temperature was lowered to room temperature).

(評価)
各例で得られたラマン分光用デバイスの表面に同じ試料液を付着させて、上記実施形態のラマン分光装置3と同様の装置構成である堀場社製「HR800」を用いてラマンスペクトルの測定を行った。発振波長532nmのレーザを光源とし、いずれの例もレーザパワーを同一として測定を行った。分光手段60としては、150L/mmの分光検出器を用いた。試料液としては、数mMまで希釈したR6G溶液を用いた。R6Gは1360cm−1付近にラマンスペクトルピークが現れることが知られている。
(Evaluation)
The same sample solution is adhered to the surface of the Raman spectroscopic device obtained in each example, and the Raman spectrum is measured using “HR800” manufactured by Horiba, which has the same configuration as the Raman spectroscopic device 3 of the above embodiment. went. Measurement was performed with a laser having an oscillation wavelength of 532 nm as a light source and the laser power was the same in all examples. As the spectroscopic means 60, a spectroscopic detector of 150 L / mm was used. As the sample solution, an R6G solution diluted to several mM was used. R6G is known to have a Raman spectrum peak near 1360 cm −1 .

各例において得られたラマンスペクトルを図5に示す(測定波長は785nm)。図中、縦軸の強度は一目盛りが500(a.u.)である。実施例1,2のラマン分光デバイスは、比較例1,2より1360cm−1の信号が強く増強されており、本発明の有効性が示された。 FIG. 5 shows the Raman spectrum obtained in each example (measurement wavelength is 785 nm). In the figure, the vertical axis has a scale of 500 (au). In the Raman spectroscopic devices of Examples 1 and 2, the signal of 1360 cm −1 was strongly enhanced as compared with Comparative Examples 1 and 2, indicating the effectiveness of the present invention.

本発明の技術は、物質に単波長光を照射して得られる散乱光を分光してラマンスペクトルを得、物質の同定等を行うラマン分光装置に適用できる。   The technology of the present invention can be applied to a Raman spectroscopic device that obtains a Raman spectrum by spectroscopically analyzing scattered light obtained by irradiating a substance with single wavelength light, and identifies the substance.

本発明に係る第1実施形態のラマン分光用デバイスの構造を示す図The figure which shows the structure of the device for Raman spectroscopy of 1st Embodiment which concerns on this invention 図1のラマン分光用デバイスの製造方法を示す図The figure which shows the manufacturing method of the device for Raman spectroscopy of FIG. 本発明に係る第2実施形態のラマン分光用デバイスの構造と製造方法を示す図The figure which shows the structure and manufacturing method of the device for Raman spectroscopy of 2nd Embodiment which concerns on this invention 本発明に係る実施形態のラマン分光装置の構造を示す図The figure which shows the structure of the Raman spectroscopy apparatus of embodiment which concerns on this invention 実施例1,2及び比較例1,2のラマンスペクトルRaman spectra of Examples 1 and 2 and Comparative Examples 1 and 2

符号の説明Explanation of symbols

1、2 ラマン分光用デバイス
1s、2s 光散乱面
10 被陽極酸化金属体
11、14 微細構造体
12、32 凹部
13、15 アレイ構造部
30 金属酸化物層
30r 金属酸化物層の残部
20 ラマン散乱増強物質
3 ラマン分光装置
50 光照射手段
60 分光手段
DESCRIPTION OF SYMBOLS 1, 2 Device for Raman spectroscopy 1s, 2s Light scattering surface 10 Metal object to be anodized 11, 14 Fine structure 12, 32 Recessed part 13, 15 Array structure part 30 Metal oxide layer 30r The remainder of the metal oxide layer 20 Raman scattering Enhancement substance 3 Raman spectroscopic device 50 Light irradiation means 60 Spectroscopic means

Claims (4)

散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するラマン分光用デバイスにおいて、
被陽極酸化金属体を陽極酸化して一部を金属酸化物層とし、該金属酸化物層を除去した後に残る、前記被陽極酸化金属体の非陽極酸化部分である微細構造体を備え
前記非陽極酸化部分の表面が前記光散乱面であることを特徴とするラマン分光用デバイス。
In a Raman spectroscopic device having a light scattering surface that is used for Raman spectroscopy to detect Raman scattered light by dispersing scattered light and is irradiated and scattered with light,
An anodized metal body to be anodized to form a metal oxide layer, and a microstructure that is a non-anodized portion of the anodized metal body remaining after the metal oxide layer is removed ;
A Raman spectroscopic device , wherein the surface of the non-anodized portion is the light scattering surface .
散乱光を分光してラマン散乱光を検出するラマン分光法に用いられ、光が照射され散乱される光散乱面を有するラマン分光用デバイスにおいて、In a Raman spectroscopic device having a light scattering surface that is used for Raman spectroscopy to detect Raman scattered light by dispersing scattered light and is irradiated and scattered with light,
被陽極酸化金属体を陽極酸化して一部を金属酸化物層とし、該金属酸化物層を除去した後に残る、前記被陽極酸化金属体の非陽極酸化部分と、Anodizing the metal body to be anodized to form a part of the metal oxide layer, and removing the metal oxide layer, the non-anodized portion of the metal body to be anodized remaining;
該非陽極酸化部分の前記金属酸化物層が除去された側の表面に固着された、該表面の構成材料よりもラマン散乱強度の大きいラマン散乱増強物質とからなる微細構造体を備え、A microstructure comprising a Raman scattering enhancing substance having a higher Raman scattering intensity than the constituent material of the surface, fixed to the surface of the non-anodized portion from which the metal oxide layer has been removed;
該微細構造体の前記ラマン散乱増強物質が固着されている側の表面が前記光散乱面であることを特徴とするラマン分光用デバイス。A Raman spectroscopic device, wherein the surface of the fine structure to which the Raman scattering enhancing substance is fixed is the light scattering surface.
前記被陽極酸化金属体がアルミニウムを主成分とする金属体であり、
前記微細構造体は、平面視略正六角形状の複数の凹部が隣接して配列したアレイ構造部を有することを特徴とする請求項1又は2に記載のラマン分光用デバイス。
The anodized metal body is a metal body mainly composed of aluminum;
3. The Raman spectroscopic device according to claim 1, wherein the fine structure has an array structure portion in which a plurality of concave portions having a substantially regular hexagonal shape in plan view are arranged adjacent to each other. 4.
請求項1〜3のいずれかに記載のラマン分光用デバイスと、
該ラマン分光用デバイスの前記光散乱面に特定波長の光を照射する光照射手段と、
前記光散乱面で発生する散乱光を分光し、ラマン散乱光のスペクトルを得る分光手段とを備えたことを特徴とするラマン分光装置。
The Raman spectroscopic device according to any one of claims 1 to 3 ,
A light irradiation means for irradiating the light scattering surface of the Raman spectroscopic device with light of a specific wavelength;
A Raman spectroscopic apparatus comprising: a spectroscopic unit that spectrally scatters scattered light generated on the light scattering surface to obtain a spectrum of Raman scattered light.
JP2006027969A 2005-02-14 2006-02-06 Raman spectroscopy device and Raman spectroscopy apparatus Expired - Fee Related JP4685650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027969A JP4685650B2 (en) 2005-02-14 2006-02-06 Raman spectroscopy device and Raman spectroscopy apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035564 2005-02-14
JP2006027969A JP4685650B2 (en) 2005-02-14 2006-02-06 Raman spectroscopy device and Raman spectroscopy apparatus

Publications (2)

Publication Number Publication Date
JP2006250924A JP2006250924A (en) 2006-09-21
JP4685650B2 true JP4685650B2 (en) 2011-05-18

Family

ID=37091580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027969A Expired - Fee Related JP4685650B2 (en) 2005-02-14 2006-02-06 Raman spectroscopy device and Raman spectroscopy apparatus

Country Status (1)

Country Link
JP (1) JP4685650B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026109A (en) 2006-07-20 2008-02-07 Fujifilm Corp Fine structure, its manufacturing method, sensor device and raman spectroscopic device
CN102348966A (en) * 2009-03-13 2012-02-08 惠普开发有限公司 Broad band structures for surface enhanced raman spectroscopy
JP6024119B2 (en) * 2012-02-23 2016-11-09 リコーイメージング株式会社 Dust-proof and low-scattering aluminum reflecting mirror, method for manufacturing the same, and optical apparatus including the same
JP6064339B2 (en) * 2012-02-23 2017-01-25 リコーイメージング株式会社 Dustproof and low scattering aluminum reflecting mirror and method for manufacturing the same
CN108844940B (en) 2012-08-10 2021-10-29 浜松光子学株式会社 Surface enhanced Raman scattering unit and using method thereof
EP2884264B1 (en) 2012-08-10 2019-11-20 Hamamatsu Photonics K.K. Surface-enhanced raman scattering element, and method for producing same
WO2014025035A1 (en) 2012-08-10 2014-02-13 浜松ホトニクス株式会社 Surface-enhanced raman scattering element
CN104508465B (en) 2012-08-10 2018-12-21 浜松光子学株式会社 Surface enhanced raman scattering unit
JP6282762B2 (en) * 2017-01-17 2018-02-21 浜松ホトニクス株式会社 Surface-enhanced Raman scattering unit
KR101932195B1 (en) 2017-10-27 2018-12-24 한국과학기술원 Method of manufacturing surface enhanced raman spectroscopy substrates
KR20230095630A (en) * 2021-12-22 2023-06-29 한국재료연구원 Rapid and sensitive detection device of pathogen and analyzing method of pathogen using the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
JP2002257721A (en) * 2000-12-28 2002-09-11 Mitsubishi Chemicals Corp Method and analyzer for analyzing specimen
JP2003511666A (en) * 1999-10-06 2003-03-25 サーロメッド・インコーポレーテッド Novel surface-enhanced Raman scattering (SERS) -active substrate and method of connecting Raman spectroscopy to capillary electrophoresis (CE)
JP2003268592A (en) * 2002-01-08 2003-09-25 Fuji Photo Film Co Ltd Structure, method for manufacturing structure, and sensor using the same
JP2004170334A (en) * 2002-11-22 2004-06-17 Japan Science & Technology Agency Raman scattering measuring sensor, and its manufacturing method
JP2004232027A (en) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd Fine structure, producing method therefor, and sensor
WO2004074790A1 (en) * 2003-02-18 2004-09-02 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (sers) substrate
JP2004279364A (en) * 2003-03-19 2004-10-07 Fuji Photo Film Co Ltd Sensor chip, manufacturing method for sensor chip, and sensor using sensor chip
JP2005172569A (en) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd Fine structure, method for creating fine structure, and raman spectroscopy and spectroscope
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
JP2006038506A (en) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd Fine structure
JP2006083450A (en) * 2004-09-17 2006-03-30 Fuji Photo Film Co Ltd Microstructure and its production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099982A2 (en) * 2001-03-01 2002-12-12 Illumina, Inc. Methods for improving signal detection from an array

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009800A (en) * 1999-04-27 2001-01-16 Canon Inc Nano structure and manufacture thereof
JP2003511666A (en) * 1999-10-06 2003-03-25 サーロメッド・インコーポレーテッド Novel surface-enhanced Raman scattering (SERS) -active substrate and method of connecting Raman spectroscopy to capillary electrophoresis (CE)
JP2002257721A (en) * 2000-12-28 2002-09-11 Mitsubishi Chemicals Corp Method and analyzer for analyzing specimen
JP2003268592A (en) * 2002-01-08 2003-09-25 Fuji Photo Film Co Ltd Structure, method for manufacturing structure, and sensor using the same
JP2004170334A (en) * 2002-11-22 2004-06-17 Japan Science & Technology Agency Raman scattering measuring sensor, and its manufacturing method
JP2004232027A (en) * 2003-01-30 2004-08-19 Fuji Photo Film Co Ltd Fine structure, producing method therefor, and sensor
WO2004074790A1 (en) * 2003-02-18 2004-09-02 Intel Corporation Metal coated nanocrystalline silicon as an active surface enhanced raman spectroscopy (sers) substrate
JP2006514286A (en) * 2003-02-18 2006-04-27 インテル・コーポレーション Metal-coated nanocrystalline silicon as a substrate for active surface enhanced Raman spectroscopy (SERS)
JP2004279364A (en) * 2003-03-19 2004-10-07 Fuji Photo Film Co Ltd Sensor chip, manufacturing method for sensor chip, and sensor using sensor chip
JP2005172569A (en) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd Fine structure, method for creating fine structure, and raman spectroscopy and spectroscope
JP2005336538A (en) * 2004-05-26 2005-12-08 Fuji Photo Film Co Ltd Fine structure and method of producing the same
JP2006038506A (en) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd Fine structure
JP2006083450A (en) * 2004-09-17 2006-03-30 Fuji Photo Film Co Ltd Microstructure and its production method

Also Published As

Publication number Publication date
JP2006250924A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4685650B2 (en) Raman spectroscopy device and Raman spectroscopy apparatus
US8502970B2 (en) Microstructured body, process for producing the microstructured body, sensor device, and Raman spectrometry device
JP4163606B2 (en) Fine structure, method for producing fine structure, Raman spectroscopy method and apparatus
US7952707B2 (en) Microstructures, method for producing microstructures, and optical field amplifying device
US7623231B2 (en) Device for Raman spectroscopy and Raman spectroscopic apparatus
US7579588B2 (en) Base plate for use in mass spectrometry analysis, and method and apparatus for mass spectrometry analysis
JP4818197B2 (en) Probe for surface-enhanced vibration spectroscopy and method for manufacturing the same
JP5394627B2 (en) Method for producing fine structure and fine structure
CN104949957A (en) Embedded type nano dot array surface enhanced Raman active substrate and preparation method thereof
JP2008292281A (en) Mass spectrometric device, and mass spectrometer using it
JP2009270852A (en) Raman spectrum detecting method and raman spectrum detector
Cui et al. UV SERS at well ordered Pd sphere segment void (SSV) nanostructures
US8045171B2 (en) Inspection chip producing method and specimen detecting method
JP2004232027A (en) Fine structure, producing method therefor, and sensor
Grochowska et al. Properties of ordered titanium templates covered with Au thin films for SERS applications
JP5097590B2 (en) Raman signal measuring method and Raman signal measuring apparatus
JP2008168396A (en) Minute structural body and its manufacturing method, device for raman spectroscopy, raman spectroscopic apparatus
Li et al. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates
JP2008261752A (en) Fine structure and its manufacturing method, electric field reinforcing device
JP2010101772A (en) Method and device for preparing optical device
JP2010066060A (en) Laser eliminating ionizing mass analyzing method and substrate for mass analysis used therein
JP2009127080A (en) Method for manufacturing fine structure
JP2010071949A (en) Device for mass spectrometry and mass spectrograph using the same, and mass spectrography

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4685650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees