JP4684817B2 - Powder dispersion device, classification device, and toner production method - Google Patents

Powder dispersion device, classification device, and toner production method Download PDF

Info

Publication number
JP4684817B2
JP4684817B2 JP2005264092A JP2005264092A JP4684817B2 JP 4684817 B2 JP4684817 B2 JP 4684817B2 JP 2005264092 A JP2005264092 A JP 2005264092A JP 2005264092 A JP2005264092 A JP 2005264092A JP 4684817 B2 JP4684817 B2 JP 4684817B2
Authority
JP
Japan
Prior art keywords
powder
classification
container
dispersion
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005264092A
Other languages
Japanese (ja)
Other versions
JP2007075681A (en
Inventor
登司彦 村上
隆男 米田
純一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005264092A priority Critical patent/JP4684817B2/en
Publication of JP2007075681A publication Critical patent/JP2007075681A/en
Application granted granted Critical
Publication of JP4684817B2 publication Critical patent/JP4684817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

本発明は、粉体分散装置および分級装置ならびにトナーの製造方法に関する。   The present invention relates to a powder dispersion device, a classification device, and a toner manufacturing method.

現像剤を用いる画像形成方法には、カールソンプロセスの応用による電子写真方式が広く用いられている。カールソンプロセスを採用した電子写真方式では、芯金の表面に感光層を形成した感光体を用い、帯電工程、露光工程、現像工程、転写工程、定着工程、クリーニング工程、除電工程などの工程を経て画像が形成される。帯電工程では、感光体の表面を均一に帯電する。露光工程では、帯電した感光体を露光して感光体の表面に静電荷像を形成する。現像工程では、感光体表面に形成された静電荷像にトナーなどの現像剤を付着させることにより可視像を形成する。転写工程では、トナーと逆極性の電荷を記録材に与えることによりトナー像を記録材に転写させる。定着工程では、加熱および加圧などによって記録材に転写された可視像を定着する。クリーニング工程では、記録材に転写されずに感光体の表面に残ったトナーを回収する。除電工程では、感光体を除電する。以上の工程によって、電子写真プロセスを利用した画像形成装置は記録材上に所望の画像を形成する。   As an image forming method using a developer, an electrophotographic method based on application of the Carlson process is widely used. In the electrophotographic system using the Carlson process, a photosensitive member having a photosensitive layer formed on the surface of a core metal is used, and a charging process, an exposure process, a development process, a transfer process, a fixing process, a cleaning process, a static elimination process and the like are performed. An image is formed. In the charging step, the surface of the photoreceptor is uniformly charged. In the exposure step, the charged photoconductor is exposed to form an electrostatic image on the surface of the photoconductor. In the development step, a visible image is formed by attaching a developer such as toner to the electrostatic image formed on the surface of the photoreceptor. In the transfer step, the toner image is transferred to the recording material by applying a charge having a polarity opposite to that of the toner to the recording material. In the fixing step, the visible image transferred to the recording material by heating and pressing is fixed. In the cleaning process, the toner remaining on the surface of the photoreceptor without being transferred to the recording material is collected. In the charge removal process, the photosensitive member is discharged. Through the above steps, the image forming apparatus using the electrophotographic process forms a desired image on the recording material.

このような画像形成方法に用いられるトナーは、少なくとも結着樹脂および着色剤を含有する組成物である。結着樹脂は、それ自身では成型できない着色剤、ワックス、帯電制御剤などを分散させ、成型するための樹脂である。着色剤は、有機または無機顔料、染料などの色材である。トナーは、たとえば、粉砕法、懸濁重合法、乳化重合法などによって製造され、製造コストなどの点から粉砕法が特に汎用されている。   The toner used in such an image forming method is a composition containing at least a binder resin and a colorant. The binder resin is a resin for molding by dispersing a colorant, wax, charge control agent and the like that cannot be molded by itself. The colorant is a color material such as an organic or inorganic pigment or dye. The toner is produced by, for example, a pulverization method, a suspension polymerization method, an emulsion polymerization method or the like, and the pulverization method is particularly widely used from the viewpoint of production cost.

粉砕法によるトナーの製造は、たとえば次のようにして行なわれる。まず、ミキサーなどの混合機を用いて予め結着樹脂、着色剤、ワックスなどの原料成分を予備的に混合した後、着色剤、ワックスなどの添加物を結着樹脂に分散させる溶融混練工程を行なう。溶融混練工程により得られる溶融混練物は、次の造粒工程において粉砕される。造粒工程では、まず溶融混練物をハンマー式の粉砕機などで粗粉砕し、数100μm〜数mmの粒径を有する粗粉砕物とする。次いで、超音速ジェット気流を利用して粉砕するジェット式粉砕機、高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、数μm〜10数μm程度の粒径の粒子からなる粉体に粉砕する。造粒工程で得られる粉体は、分級工程において所望の粒度分布を有する粒子群のみに分離され、分離される所望の粒度分布に含まれる粉体をトナー粒子として得る。   The production of toner by the pulverization method is performed, for example, as follows. First, a melt-kneading step of preliminarily mixing raw material components such as a binder resin, a colorant, and wax using a mixer such as a mixer and then dispersing additives such as a colorant and wax in the binder resin. Do. The melt-kneaded product obtained by the melt-kneading process is pulverized in the next granulation process. In the granulation step, the melt-kneaded product is first roughly pulverized with a hammer-type pulverizer or the like to obtain a coarsely pulverized product having a particle size of several hundred μm to several mm. Next, a jet-type pulverizer that uses a supersonic jet stream to pulverize, and pulverizes a coarsely pulverized material introduced into a space formed between a rotor (rotor) and a stator (liner) that rotate at high speed. Using an impact pulverizer or the like, the powder is pulverized into particles composed of particles having a particle diameter of about several μm to several tens μm. The powder obtained in the granulation step is separated into only particle groups having a desired particle size distribution in the classification step, and the powder contained in the desired particle size distribution to be separated is obtained as toner particles.

近年、形成される画像の高精細化を目的として、より粒径の小さいトナー、たとえば粒径が8.0μm以下の小粒径のトナーを製造することが求められている。ここで、トナー粒子の粒径が小さくなると、トナー粒子またはその内部に働く静電気力および分子間力がトナー粒子に働く重力および慣性力に比べて大きくなること、また、トナー粒子の表面積が大きくなり付着力が増大することなどによって、トナー粒子同士の凝集が起こりやすくなる。トナー粒子同士の凝集は、結着樹脂として透明性、光沢性を有するものを用いることが必須であるカラートナーを製造する際、特に生じやすい。   In recent years, it has been demanded to produce a toner having a smaller particle diameter, for example, a toner having a small particle diameter of 8.0 μm or less, for the purpose of increasing the definition of the formed image. Here, when the particle size of the toner particle is reduced, the electrostatic force and intermolecular force acting on the toner particle or the inside thereof become larger than the gravity and inertial force acting on the toner particle, and the surface area of the toner particle is increased. Aggregation of toner particles is likely to occur due to an increase in adhesive force. Aggregation of toner particles is particularly likely to occur when producing a color toner in which it is essential to use a binder resin having transparency and gloss.

このようなトナー粒子同士の凝集は、溶融混練工程で得られる溶融混練物を粉砕し造粒する造粒工程から、トナー粒子を所望の粒度分布を有する粒子群のみに分離する分級工程に移行するまでの間にも生じ、造粒工程により得た粉体が凝集することによって分級が正しく行われないことが問題となっている。   Such agglomeration of toner particles shifts from a granulation step of pulverizing and granulating the melt-kneaded product obtained in the melt-kneading step to a classification step of separating the toner particles only into particles having a desired particle size distribution. The problem is that classification is not performed correctly due to aggregation of the powder obtained by the granulation process.

粉体が凝集する状態で分級が行なわれると、次のような問題が生じる。たとえば、粉体に含まれる所望の粒径分布よりも小さい粒子が凝集し、該凝集物が1個の粒子としてみなされると、1個の粒子としてみなされた凝集物が製品としてのトナーに含まれることとなる。このような粉体凝集物がトナー中に含まれると、トナー中の所望の粒径よりも小さい微粉の含有率が高くなりトナーの帯電不均一性を招来するので、画像かぶりの発生など形成画像への悪影響が生じる。   When classification is performed in a state where the powder is aggregated, the following problems occur. For example, when particles smaller than a desired particle size distribution contained in the powder aggregate and the aggregate is regarded as one particle, the aggregate regarded as one particle is included in the toner as a product. Will be. When such powder aggregates are contained in the toner, the content of fine powder smaller than the desired particle size in the toner becomes high, resulting in non-uniform charging of the toner. Adverse effects on

さらに、粉体に含まれる所望の粒径分布に含まれる粒子が凝集し、該凝集物が1個の粒子としてみなされると、本来トナーに含まれるべき粒径を有する粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われることとなり、廃棄されるかまたは分級工程の前の工程に戻される。このため、造粒工程において製造される粉体の量よりも、分級工程後に得られるトナーの量が著しく少なくなり、トナーの収率が低下する。   Further, when the particles included in a desired particle size distribution included in the powder aggregate and the aggregate is regarded as one particle, the powder aggregate includes particles having a particle size that should originally be included in the toner. Will be treated as coarse powder larger than the desired particle size and will be discarded or returned to the process prior to the classification process. For this reason, the amount of toner obtained after the classification step is significantly smaller than the amount of powder produced in the granulation step, and the toner yield is reduced.

また分級工程では、トナー粒子同士の凝集の発生を防止するために分級装置に投入する単位時間当りの粉体投入量が定められている。ここで、トナーの製造効率を高めるためには単位時間当りの粉体投入量を増加させることが必要である。しかしながら、単位時間当りの粉体投入量を増加させると、粉体に含まれる粒子同士の接触回数が増加し、粉体の凝集が一層起こりやすくなるので、単位時間当りの粉体投入量を増加させることは困難である。   In the classification step, the amount of powder input per unit time to be input to the classification device is determined in order to prevent the aggregation of toner particles. Here, in order to increase the production efficiency of the toner, it is necessary to increase the amount of powder input per unit time. However, increasing the amount of powder input per unit time increases the number of contact between particles contained in the powder and makes it easier for the powder to agglomerate. Therefore, the amount of powder input per unit time is increased. It is difficult to make it.

そこで、トナーの収率および製造効率を向上させるとともに、所望の粒径よりも小さい微粉の含有率が低いトナーを得るために、造粒工程から分級工程に移行するまでの間に凝集する粉体を充分に分散させた状態で分級装置に導入することが望まれている。   Therefore, in order to improve the toner yield and production efficiency and to obtain a toner having a low content of fine powder smaller than the desired particle size, the powder aggregates during the transition from the granulation process to the classification process. It is desired to be introduced into the classifier in a sufficiently dispersed state.

分級装置としては、気流を利用して粉体を粒度に応じて分離する気流式の分級装置が汎用されている(たとえば、特許文献1参照)。特許文献1に開示の分級装置は、粉体を分級するための旋回分級室であって、該分級室の下部に形成されて粉体凝集物を該分級室の外部に排出する粗粉排出口、粗粉排出口の上方に回転自在に支持されて外部から該分級室に供給される粉体をその側面に衝突させて粉砕する回転部材、回転部材の上方に設けられて該分級室内部に浮遊する粉体凝集物を回収して該分級室の外部に排出する粗粉回収口、ならびに該分級室の上部に形成されて粉砕された微粉を外部に排出する微粉排出口を有する旋回分級室と、回転部材と同じ高さの旋回分級室側面に設けられて、分級処理されるべき粉体を回転部材に向けて回転部材の回転方向と同じ方向に気流噴射する粉体供給ノズルと、回転部材と同じ高さの旋回分級室側面の粉体供給ノズルと対向する位置に設けられて、粉体凝集物を回転部材の側面に向けて回転部材の回転方向と同じ方向に気流噴射する粗粉供給ノズルと、粗粉排出口および粗粉回収口から排出される粉体凝集物を粗粉供給ノズルに搬送する粉体凝集物搬送手段とを含んで構成される。   As a classifier, an airflow classifier that uses airflow to separate powder according to particle size is widely used (see, for example, Patent Document 1). The classification device disclosed in Patent Document 1 is a swirl classification chamber for classifying powder, and is a coarse powder outlet that is formed in the lower part of the classification chamber and discharges powder agglomerates to the outside of the classification chamber A rotating member that is rotatably supported above the coarse powder discharge port and pulverizes the powder supplied to the classification chamber from the outside by colliding with the side surface thereof; provided above the rotating member; A swirl classification chamber having a coarse powder collection port for collecting floating powder agglomerates and discharging it to the outside of the classification chamber, and a fine powder discharge port for discharging the pulverized fine powder formed at the top of the classification chamber to the outside And a powder supply nozzle that is provided on the side of the swirl classification chamber having the same height as the rotating member, and that injects the powder to be classified toward the rotating member in the same direction as the rotating direction of the rotating member, and a rotation Position facing the powder supply nozzle on the side of the swivel classification chamber at the same height as the member Coarse powder supply nozzle that is provided and sprays the powder aggregate toward the side of the rotating member in the same direction as the rotation direction of the rotating member, and the powder aggregate discharged from the coarse powder discharge port and the coarse powder recovery port And powder agglomerate conveying means for conveying the product to the coarse powder supply nozzle.

この分級装置によれば、粉体供給ノズルから粉体を気流噴射して回転部材に衝突させて粉体を粉砕し、粉砕された微粉は気流に乗って旋回分級室内部を上昇して微粉排出口から排出され、一方粉砕が充分に行われなかった粉体凝集物も気流に乗ってある程度までは旋回分級室内部を上昇するけれども、自重によって下降し、粗粉排出口および粗粉回収口から外部に排出されて粗粉供給ノズルに搬送され、再び回転部材に向けて気流噴射されて粉砕される。粉体凝集物ついては、粉砕されて所望の粒径を有する微粉になるまで、同じサイクルが繰返し実行される。このようにして、製品として粒度分布の狭いトナー粒子を得ることができる。   According to this classifier, powder is jetted from a powder supply nozzle and collided with a rotating member to pulverize the powder, and the pulverized fine powder rides on the air current and rises in the swirl classification chamber to discharge the fine powder. Powder agglomerates that have been discharged from the outlet and have not been sufficiently pulverized also rise in the swirl classification chamber to a certain extent by riding on the airflow, but are lowered by their own weight, from the coarse powder discharge port and the coarse powder collection port It is discharged to the outside, conveyed to the coarse powder supply nozzle, and again blown toward the rotating member to be crushed. For powder agglomerates, the same cycle is repeated until it is pulverized to a fine powder having the desired particle size. In this way, toner particles having a narrow particle size distribution can be obtained as a product.

特許文献1に開示される分級装置では、造粒工程から分級工程に移行するまでの間に粉体の凝集が生じても、粉体凝集物を回転部材に衝突させる際の衝突力により粉体凝集物を分散させることができることが期待される。しかしながら、特許文献1の分散装置では、搬送手段により搬送される粉体凝集物に略水平に気流を噴射して粉体凝集物の運動方向を気流噴射方向とし、該気流噴射方向と同方向に回転する回転部材に対して、気流の風圧力によって粉体凝集物を衝突させる。このため、粉体凝集物の運動方向と回転部材の回転方向とが略同じ方向となるので、粉体凝集物と回転部材との衝突力を、粉体凝集物の凝集を充分に解消できるほど大きなものにすることができない。なお、回転部材の回転する方向を気流噴射方向と反対にすると、回転部材の回転による遠心力と気流による風圧力とが打ち消しあい、重力とのバランスがとれなくなることによって分級を行なうことが困難となる。   In the classification device disclosed in Patent Document 1, even if powder agglomeration occurs during the period from the granulation process to the classification process, the powder is generated by the collision force when the powder agglomerate collides with the rotating member. It is expected that aggregates can be dispersed. However, in the dispersing apparatus of Patent Document 1, an air flow is jetted substantially horizontally onto the powder aggregate transported by the transport means, and the direction of movement of the powder aggregate is defined as the air flow jet direction, and the same direction as the air flow jet direction. The powder aggregate is caused to collide with the rotating member that rotates by the wind pressure of the airflow. For this reason, since the movement direction of the powder aggregate and the rotation direction of the rotating member are substantially the same direction, the collision force between the powder aggregate and the rotating member can be sufficiently eliminated. I can't make it big. If the direction of rotation of the rotating member is opposite to the airflow injection direction, it is difficult to perform classification because the centrifugal force due to the rotation of the rotating member and the wind pressure due to the airflow cancel each other out of balance with gravity. Become.

実開平1−65652号公報Japanese Utility Model Publication No. 1-65652

本発明の目的は、粉体中に含まれる粉体凝集物を充分に分散させることができる粉体分散装置および粉体分散装置を含む分級装置ならびに該分級装置を用いてトナーの収率および製造効率を向上させるとともに、トナー中の微粉の含有率を低減できるトナーの製造方法を提供することである。   An object of the present invention is to provide a powder dispersion device capable of sufficiently dispersing powder aggregates contained in powder, a classification device including the powder dispersion device, and a toner yield and production using the classification device. An object of the present invention is to provide a toner manufacturing method capable of improving efficiency and reducing the content of fine powder in the toner.

本発明は、粉体を造粒する造粒装置と、粉体受入口を有して造粒装置により造粒される粉体を分級する分級装置との間に、分級装置に連なるように設けられる粉体分散装置であって、
造粒装置から粉体凝集物を含む粉体の供給を受ける供給口と、分級装置の粉体受入口に連なり粉体を分級装置に供給する排出口とが形成される容器であって、上記容器内に設けられて粉体凝集物を衝突させて分散させる衝突部材であって、衝突部材の底面を含む仮想平面における前記容器の断面の面積に対して10%以上40%以下の底面の面積であり、供給口に向う方向に頂点を有する円錐状部材または多角錐状部材である衝突部材を備え、供給口は衝突部材よりも前記容器の上部に形成され、排出口は衝突部材よりも前記容器の下部に形成され、その内部空間で粉体を分散させる粉体分散容器と、
粉体分散容器の側壁に設けられる複数の気体噴射手段であって、供給口から供給される粉体に対して衝突部材に向う方向に衝突部材よりも上方から気体を噴射し、気体噴出方向と鉛直方向とが成す角度が20°以上90°以下である気体噴射手段とを含むことを特徴とする粉体分散装置である。
The present invention is provided between a granulating apparatus for granulating powder and a classifying apparatus having a powder receiving port and classifying powder granulated by the granulating apparatus so as to be connected to the classifying apparatus. A powder dispersing apparatus, comprising:
A container and the supply port, in which the powder continues into the powder receiving port of the classifying device classifying device for supplying the discharge port is formed to receive a supply of powder containing powder agglomerates from the granulator, the A collision member that is provided in the container and disperses the powder agglomerates by collision, and the bottom surface area is 10% or more and 40% or less with respect to the cross-sectional area of the container in a virtual plane including the bottom surface of the collision member And a collision member that is a conical member or a polygonal pyramid member having a vertex in a direction toward the supply port, the supply port is formed at the upper part of the container than the collision member, and the discharge port is more than the collision member. A powder dispersion container formed in the lower part of the container and dispersing the powder in its internal space;
A plurality of gas injection means provided on the side wall of the powder dispersion container, wherein gas is injected from above the collision member in a direction toward the collision member with respect to the powder supplied from the supply port , And a gas injection unit having an angle formed by a vertical direction of 20 ° to 90 ° .

また本発明は、前記記載の粉体分散装置を備える、粉体を分級する分級装置であって、
粉体分散装置によって分散される粉体を粒径、密度または形状の違いによって分級する分級手段を含むことを特徴とする分級装置である。
Further, the present invention is a classification device for classifying powder, comprising the powder dispersion device described above,
A classification device comprising classification means for classifying powder dispersed by a powder dispersion device according to a difference in particle diameter, density, or shape.

また本発明は、分級手段は、
粉体分散装置で分散される粉体を供給するための粉体受入口が形成される粉体分級容器を含み、
粉体分級容器は、
粉体受入口と粉体分散容器の排出口とを介して粉体分散容器と連通されることを特徴とする。
In the present invention, the classification means is
Including a powder classification container in which a powder receiving port for supplying powder dispersed by a powder dispersion device is formed,
The powder classification container
It is characterized in that it communicates with the powder dispersion container via the powder receiving port and the discharge port of the powder dispersion container.

また本発明は、結着樹脂および着色剤を含むトナーの製造方法において、
結着樹脂および着色剤を溶融混練する溶融混練工程と、
溶融混練工程で得られる溶融混練物を粉砕して造粒する造粒工程と、
造粒工程で得られる粉体凝集物を含む粉体を、前記記載の分級装置に備えられる前記記載の粉体分散装置で分散する分散工程と、
分散工程で分散される粉体を、前記記載の分級装置で分級する分級工程とを含むことを特徴とするトナーの製造方法である。
The present invention also relates to a method for producing a toner containing a binder resin and a colorant.
A melt-kneading step of melt-kneading the binder resin and the colorant;
A granulation step of pulverizing and granulating the melt-kneaded product obtained in the melt-kneading step;
A dispersion step of dispersing the powder containing the powder aggregate obtained in the granulation step with the above-described powder dispersion device provided in the classification device ;
And a classifying step of classifying the powder dispersed in the dispersing step with the classifying apparatus described above.

本発明によれば、粉体を造粒する造粒装置と、粉体受入口を有して造粒装置により造粒される粉体を分級する分級装置との間に、分級装置に連なるように設けられる粉体分散装置であって、造粒装置から粉体凝集物を含む粉体の供給を受ける供給口と、分級装置の粉体受入口に連なり粉体を分級装置に供給する排出口とが形成される容器であって、上記容器内に設けられて粉体凝集物を衝突させて分散させる衝突部材であって、衝突部材の底面を含む仮想平面における前記容器の断面の面積に対して10%以上40%以下の底面の面積であり、供給口に向う方向に頂点を有する円錐状部材または多角錐状部材である衝突部材を備え、供給口は衝突部材よりも前記容器の上部に形成され、排出口は衝突部材よりも前記容器の下部に形成され、その内部空間で粉体を分散させる粉体分散容器と、粉体分散容器の側壁に設けられる複数の気体噴射手段であって、供給口から供給される粉体に対して衝突部材に向う方向に衝突部材よりも上方から気体を噴射し、気体噴出方向と鉛直方向とが成す角度が20°以上90°以下である気体噴射手段とを含む粉体分散装置が提供される。このような粉体分散装置では、供給口から供給される粉体凝集物を含む粉体に対して気体噴射手段から衝突部材に向う方向に気体を噴射することによって、粉体凝集物を含む粉体を衝突部材に衝突させて充分に分散させることができる。また、気体噴出方向の傾斜角度がこのような範囲であると、衝突部材に対する粉体の衝突角度、すなわち粉体の運動方向と衝突部材の側壁面とがなす角度を90°未満とできる。また、粉体凝集物を含む粉体が衝突部材よりも粉体分散容器の供給口から供給されて衝突部材方向に重力により落下し、さらに粉体の鉛直方向下方すなわち衝突部材に向けての流速を高めるように気体噴射手段によって気体が噴射されるので、粉体凝集物を含む粉体と衝突部材との衝突力を一層増大させることができ、粉体凝集物をより確実に分散させることができる。また、このような形状の衝突部材は、供給口に向う側に収束する先細り形状を有するので、たとえば供給口が衝突部材よりも粉体分散容器の上部に設けられる場合、供給口から供給される粉体が衝突部材上に残留することなく、かつ粉体凝集物を含む粉体と衝突部材とが衝突する面積を充分に確保することができるので、粉体凝集物を一層容易に分散させることができる。 According to the present invention, between the granulating device for granulating the powder and the classifying device having the powder receiving port and classifying the powder granulated by the granulating device, it is connected to the classifying device. a powder dispersing device that are provided, the discharge is supplied from the granulator a supply port for receiving a supply of powder containing powder agglomerates, the classifier powder continues into the powder receiving port of the classifying device A container in which an outlet is formed, and is a collision member provided in the container to collide and disperse the powder agglomerates, and has a cross-sectional area of the container in a virtual plane including a bottom surface of the collision member And a collision member which is a conical member or a polygonal pyramid member having a bottom surface area of 10% or more and 40% or less and having a vertex in a direction toward the supply port. is formed on the discharge port is formed in the lower portion of the container than the collision member, its A powder dispersion chamber to disperse the powder within the space, a plurality of gas injection means provided in the side wall of the powder dispersion vessel, a collision in a direction towards the impact member relative to the powder supplied from the supply port There is provided a powder dispersing apparatus including gas injection means for injecting gas from above the member and having an angle formed by the gas injection direction and the vertical direction of 20 ° or more and 90 ° or less . In such a powder dispersion device, powder containing powder aggregates is injected by injecting gas in the direction from the gas injection means toward the collision member with respect to the powder containing powder aggregates supplied from the supply port. The body can be sufficiently dispersed by colliding with the collision member. Further, when the inclination angle of the gas ejection direction is within such a range, the collision angle of the powder with respect to the collision member, that is, the angle formed between the movement direction of the powder and the side wall surface of the collision member can be less than 90 °. Also, the powder containing the powder agglomerates is supplied from the supply port of the powder dispersion container rather than the collision member and falls by gravity in the direction of the collision member, and further the velocity of the powder vertically downward, that is, toward the collision member Since the gas is injected by the gas injection means so as to increase the collision force, the collision force between the powder containing the powder aggregate and the collision member can be further increased, and the powder aggregate can be more reliably dispersed. it can. In addition, since the collision member having such a shape has a tapered shape that converges toward the supply port, for example, when the supply port is provided above the collision member, the powder supplied from the supply port Since the body does not remain on the collision member and the area where the powder containing the powder aggregate and the collision member collide can be sufficiently secured, the powder aggregate can be more easily dispersed. it can.

また本発明によれば、前記記載の粉体分散装置を備える、粉体分散装置によって分散される粉体を粒径、密度または形状の違いによって分級する分級手段を含む分級装置が提供される。このような分級装置では、分級装置に備えられる粉体分散装置にて分散される粉体を分級することができるので、分級すべき粉体が再度凝集するのを防止でき、さらに分級精度の低下を防止できる。 According to the present invention comprises a powder dispersing device of the described powder particle size to be dispersed by the powder dispersing device, a classification apparatus comprising classifying means for classifying the difference in density or shape is provided. In such a classification device, the powder dispersed by the powder dispersion device provided in the classification device can be classified, so that the powder to be classified can be prevented from aggregating again, and the classification accuracy is further reduced. Can be prevented.

また本発明によれば、分級手段は粉体分散装置で分散される粉体を供給するための粉体受入口が形成される粉体分級容器を含み、粉体分級容器は粉体受入口と粉体分散容器の排出口とを介して粉体分散容器と連通される。このような構成とすることにより、粉体分散装置により分散される粉体を粉体分級容器に迅速に供給することができる。   According to the invention, the classifying means includes a powder classification container in which a powder inlet for supplying the powder dispersed by the powder dispersing device is formed, and the powder classification container includes the powder inlet and It communicates with the powder dispersion container via the discharge port of the powder dispersion container. By setting it as such a structure, the powder disperse | distributed by a powder dispersion apparatus can be rapidly supplied to a powder classification container.

また本発明によれば、結着樹脂および着色剤を溶融混練する溶融混練工程と、溶融混練工程で得られる溶融混練物を粉砕して造粒する造粒工程と、造粒工程で得られる粉体凝集物を含む粉体を前記記載の粉体分散装置で分散する分散工程と、分散工程で分散される粉体を前記記載の分級装置で分級する分級工程とを含むトナーの製造方法が提供される。このようなトナーの製造方法では、造粒工程により溶融混練物を粉砕し造粒した後、分散工程を経て分級工程が行なわれるので、分級工程において分級すべき粉体に凝集物が存在しない状態で粉体を分級することができる。したがって、トナーの収率を向上させることができるとともに、トナー中の微粉の含有率を低減することができる。さらに、分散工程において粉体が充分に分散されるので、分級工程における単位時間当りの粉体投入量を多くすることができ、生産効率を向上できるので、製品として有効なトナーの収率を一層高めることができる。   Further, according to the present invention, a melt-kneading step for melt-kneading the binder resin and the colorant, a granulation step for pulverizing and granulating the melt-kneaded product obtained in the melt-kneading step, and a powder obtained by the granulation step Provided is a toner manufacturing method including a dispersion step of dispersing powder containing aggregates with the powder dispersion device described above, and a classification step of classifying the powder dispersed in the dispersion step with the classification device described above. Is done. In such a toner production method, the melt-kneaded product is pulverized and granulated in the granulation step, and then the classification step is performed through the dispersion step. Therefore, there is no aggregate in the powder to be classified in the classification step. Can classify powder. Therefore, the toner yield can be improved and the content of fine powder in the toner can be reduced. In addition, since the powder is sufficiently dispersed in the dispersion process, the amount of powder input per unit time in the classification process can be increased, and the production efficiency can be improved. Can be increased.

図1は、本発明の実施の一形態である粉体分散装置1の構成を概略的に示す断面図である。粉体分散装置1は、溶融混練物から粉体を造粒する不図示の造粒装置と、粉体受入口3を有して造粒装置により造粒される粉体を分級する分級装置2との間に、分級装置2に連なるように設けられ、造粒装置から粉体凝集物を含む粉体の供給を受ける供給口4と、分級装置2の粉体受入口3に連なり粉体を分級装置2に供給する排出口5とが形成される粉体分散容器6であって、その内部空間で粉体を分散させる粉体分散容器6と、粉体分散容器6内に設けられて粉体凝集物を衝突させて分散させる衝突部材7と、粉体分散容器6の側壁に設けられる複数の気体噴射手段8であって、供給口4から供給される粉体に対して衝突部材7に向う方向に気体を噴射する気体噴射手段8とを含む。   FIG. 1 is a cross-sectional view schematically showing a configuration of a powder dispersion apparatus 1 according to an embodiment of the present invention. The powder disperser 1 includes a granulator (not shown) that granulates powder from a melt-kneaded product, and a classifier 2 that has a powder inlet 3 and classifies the powder granulated by the granulator. Between the supply port 4 for receiving the supply of powder containing powder agglomerates from the granulation device and the powder reception port 3 of the classification device 2. A powder dispersion container 6 in which a discharge port 5 to be supplied to the classification device 2 is formed, the powder dispersion container 6 for dispersing the powder in the internal space thereof, and the powder dispersion container 6 provided in the powder dispersion container 6 A collision member 7 that collides and disperses agglomerates, and a plurality of gas injection means 8 provided on the side wall of the powder dispersion container 6, wherein the collision member 7 is applied to the powder supplied from the supply port 4. Gas injection means 8 for injecting gas in the direction to go.

粉体分散容器6は、その内部空間に衝突部材7が設けられる略円筒形状の容器である。粉体分散容器6の衝突部材7よりも上部には、造粒装置からの粉体凝集物を含む粉体の供給を受ける供給口4が形成される。造粒装置により造粒される粉体が供給される供給口4には、不図示の粉体供給手段が接続される。   The powder dispersion container 6 is a substantially cylindrical container in which a collision member 7 is provided in the internal space. Above the collision member 7 of the powder dispersion container 6, a supply port 4 that receives supply of powder containing powder aggregates from the granulator is formed. A powder supply means (not shown) is connected to the supply port 4 to which the powder granulated by the granulator is supplied.

粉体供給手段としては、たとえば、造粒装置により造粒される粉体を一時的に貯留する貯留容器および振動フィーダーを備える粉体供給部と、粉体を圧送するための気体源である圧縮空気導入ノズルと、粉体供給部中の粉体を粉体分散装置1の供給口4に導入するための輸送管路とを含んで構成される。輸送管路は圧縮空気導入ノズルに接続され、圧縮空気導入ノズルにより導入される空気導入方向の圧縮空気導入ノズルよりも下流側に、粉体供給部および粉体分散装置1の供給口4がこの順番で接続される。   As the powder supply means, for example, a powder supply unit including a storage container for temporarily storing powder granulated by a granulator and a vibration feeder, and compression that is a gas source for pumping powder An air introduction nozzle and a transportation pipeline for introducing the powder in the powder supply unit into the supply port 4 of the powder dispersion device 1 are configured. The transport pipe is connected to a compressed air introduction nozzle, and the powder supply unit and the supply port 4 of the powder dispersion device 1 are located downstream of the compressed air introduction nozzle in the air introduction direction introduced by the compressed air introduction nozzle. Connected in order.

このような粉体供給手段によれば、まず、圧縮空気導入ノズルから輸送管路に圧縮空気を導入するとともに、粉体供給部の容器内に貯留される粉体を、振動フィーダーにより振動させることにより貯留容器から輸送管路に供給する。輸送管路に供給される粉体は、圧縮空気導入ノズルから導入される圧縮空気によって圧送され、輸送管路の空気導入方向下流側に接続される粉体分散装置1の供給口4から粉体分散容器6内に導入される。   According to such a powder supply means, first, compressed air is introduced from the compressed air introduction nozzle into the transport pipeline, and the powder stored in the container of the powder supply unit is vibrated by the vibration feeder. To supply from the storage container to the transport pipeline. The powder supplied to the transport pipeline is pumped by compressed air introduced from the compressed air introduction nozzle, and is supplied from the supply port 4 of the powder dispersion device 1 connected to the downstream side of the transport pipeline in the air introduction direction. It is introduced into the dispersion vessel 6.

ここで、粉体供給手段により粉体を導入する際の圧縮空気の圧力としては、供給する粉体の量にもよるけれども、たとえば、毎時30〜50kgの粉体を供給する場合、0.1MPa以上0.6MPa以下であることが好ましい。なお圧縮空気の圧力とは、圧縮空気の圧力と粉体分散容器6内の圧力との差である。圧縮空気の圧力が0.1MPa未満であると、粉体供給部から輸送管路に供給される粉体に付与する圧送力が小さくなり、供給口4から衝突部材7に向う粉体の流速が低減されるので、粉体と衝突部材7との衝突力が小さくなる恐れがある。圧縮空気の圧力が0.6MPaを超えると、粉体を均一な供給量で粉体分散容器6内に導入することが困難となる恐れがある。   Here, the pressure of the compressed air when the powder is introduced by the powder supply means depends on the amount of the powder to be supplied. For example, when supplying 30 to 50 kg of powder per hour, 0.1 MPa The pressure is preferably 0.6 MPa or less. The compressed air pressure is the difference between the compressed air pressure and the pressure in the powder dispersion container 6. When the pressure of the compressed air is less than 0.1 MPa, the pumping force applied to the powder supplied from the powder supply unit to the transport pipeline is reduced, and the flow rate of the powder from the supply port 4 toward the collision member 7 is reduced. Therefore, the collision force between the powder and the collision member 7 may be reduced. If the pressure of the compressed air exceeds 0.6 MPa, it may be difficult to introduce the powder into the powder dispersion container 6 with a uniform supply amount.

粉体分散容器6の衝突部材7よりも下部には、分級装置2の粉体受入口3に連なり粉体を分級装置2に供給する排出口5が形成される。   A discharge port 5 is formed below the collision member 7 of the powder dispersion container 6 so as to be connected to the powder receiving port 3 of the classification device 2 and supply powder to the classification device 2.

粉体分散容器6の内部空間に設けられる衝突部材7は、供給口4から供給される粉体に含まれる粉体凝集物を衝突させて分散させる金属製部材である。本実施形態では、衝突部材7は、供給口4に向う方向に頂点を有する円錐形状であり、円錐の頂点を通る中心線と、粉体分散容器6の軸心とが一致するように配置される。衝突部材7は、円錐の底面から粉体分散容器6の側壁面に向って水平に延びる支持部材9により粉体分散容器6の内部に支持される。   The collision member 7 provided in the internal space of the powder dispersion container 6 is a metal member that collides and disperses the powder aggregates contained in the powder supplied from the supply port 4. In the present embodiment, the collision member 7 has a conical shape having an apex in the direction toward the supply port 4, and is arranged so that the center line passing through the apex of the cone coincides with the axis of the powder dispersion container 6. The The collision member 7 is supported inside the powder dispersion container 6 by a support member 9 extending horizontally from the bottom surface of the cone toward the side wall surface of the powder dispersion container 6.

衝突部材7の形状は、円錐形状または多角錐形状である。さらに円錐形状または多角錐形状の底部に台座を有しても良い。衝突部材7がこのような形状であると、衝突部材7の形状が供給口4に向う側に収束する先細り形状となり、粉体分散容器6の上部に設けられる供給口4から供給される粉体が衝突部材7上に残留することなく、かつ粉体凝集物を含む粉体と衝突部材7とが衝突する面積を充分に確保することができるので、粉体凝集物を一層容易に分散させることができる。 The shape of the collision member 7, Ru circular cone shape or a pyramid shape der. Furthermore, you may have a base in the bottom part of a cone shape or a polygonal pyramid shape. When the collision member 7 has such a shape, the shape of the collision member 7 is a tapered shape that converges toward the supply port 4, and the powder supplied from the supply port 4 provided on the upper part of the powder dispersion container 6 is supplied. Since it is possible to ensure a sufficient area where the powder containing the powder aggregate and the collision member 7 collide without remaining on the collision member 7, the powder aggregate can be more easily dispersed. it can.

衝突部材7として円錐形状または多角錐形状のものを用いる場合、衝突部材7の底面もしくは台座の底面の面積は、衝突部材7の底面を含む仮想平面における粉体分散容器6の断面の面積に対して10%以上40%以下である。衝突部材7の底面の面積が10%未満であると、衝突部材7の大きさが粉体分散容器6に比べて小さくなり過ぎ、粉体凝集物を含む粉体が衝突部材7に衝突することなく排出されて分級装置2に導入される恐れがある。衝突部材7の底面の面積が40%を超えると、衝突部材7に衝突して分散された粉体が排出口5側に移動する際の通路となる衝突部材7と粉体分散容器6の側壁面との間の空間が小さくなり、粉体に含まれる粒子同士の接触回数が増加して粉体の再凝集が発生する恐れがある。
In the case of using a conical shape or a polygonal pyramid shape as the collision member 7, the area of the bottom surface of the collision member 7 or the bottom surface of the pedestal is relative to the area of the cross section of the powder dispersion container 6 in the virtual plane including the bottom surface of the collision member 7. der 10% to 40% Te Ru. When the area of the bottom surface of the collision member 7 is less than 10%, the size of the collision member 7 becomes too small compared to the powder dispersion container 6, and the powder containing the powder aggregates collides with the collision member 7. There is a risk of being discharged without being introduced into the classifier 2. When the area of the bottom surface of the collision member 7 exceeds 40%, the side of the collision member 7 and the powder dispersion container 6 that becomes a passage when the powder that collides with the collision member 7 and moves to the discharge port 5 side is moved. There is a possibility that the space between the wall surface becomes small, the number of contact between particles contained in the powder increases, and reaggregation of the powder occurs.

また、本実施形態では、衝突部材7は供給口4よりも粉体分散容器6の下部に、かつ排出口5よりも粉体分散容器6の上部に設けられ、さらに供給口4よりも排出口5寄りに設けられる。ここで、粉体分散容器6の長手方向において衝突部材7の設けられる位置は、排出口5により近い位置であって、供給口4からより遠い位置であることが好ましい。衝突部材7と排出口5との距離が長くなると、粉体が再凝集する恐れがある。また、衝突部材7と供給口4との距離が短くなると、粉体の鉛直方向下方、すなわち衝突部材7側に向う流速を充分に高めることができない状態で粉体と衝突部材7とが衝突することとなり、粉体中に含まれる粉体凝集物を分散できるほど大きな衝突力を発生させることができない恐れがある。ただし、衝突部材7と供給口4との距離が長くなり過ぎると、粉体供給手段により供給される粉体に付与される圧縮空気からの送圧力が粉体分散容器6内で分散され、粉体の流速が低減する恐れがあるので、衝突部材7と供給口4との距離はこれらを勘案して定められることが好ましい。   Further, in the present embodiment, the collision member 7 is provided below the powder dispersion container 6 than the supply port 4, and above the powder dispersion container 6 than the discharge port 5, and further, the discharge port than the supply port 4. It is provided close to 5. Here, the position where the collision member 7 is provided in the longitudinal direction of the powder dispersion container 6 is preferably a position closer to the discharge port 5 and a position farther from the supply port 4. When the distance between the collision member 7 and the discharge port 5 is increased, the powder may reaggregate. Further, when the distance between the collision member 7 and the supply port 4 is shortened, the powder and the collision member 7 collide with each other in a state where the flow velocity toward the lower side of the powder in the vertical direction, that is, toward the collision member 7 cannot be sufficiently increased. In other words, there is a possibility that a collision force that is large enough to disperse the powder aggregates contained in the powder cannot be generated. However, if the distance between the collision member 7 and the supply port 4 becomes too long, the feeding pressure from the compressed air applied to the powder supplied by the powder supply means is dispersed in the powder dispersion container 6, and the powder Since the flow velocity of the body may be reduced, the distance between the collision member 7 and the supply port 4 is preferably determined in consideration of these.

気体噴射手段8は、粉体分散容器6の側壁に複数が設けられ、供給口4から供給される粉体に対して衝突部材7に向う方向に気体を噴射する。気体噴射手段8としては、たとえば、空気を噴射する噴出孔が形成される噴射ノズルと、圧縮空気を生成し、生成される圧縮空気を噴射ノズルに供給するポンプと、噴射ノズルとポンプとを連携する配管とを備えるものを用いることができる。気体噴射手段8は、分散させるべき粉体の単位時間当りの供給量、粉体分散容器6の大きさなどに応じて、複数個が適宜設定され設けられる。   A plurality of gas injection means 8 are provided on the side wall of the powder dispersion container 6 and inject gas in the direction toward the collision member 7 with respect to the powder supplied from the supply port 4. As the gas injection means 8, for example, an injection nozzle in which an ejection hole for injecting air is formed, a pump that generates compressed air and supplies the generated compressed air to the injection nozzle, and the injection nozzle and the pump are linked. What is provided with piping to perform can be used. A plurality of gas injection means 8 are appropriately set and provided according to the supply amount of powder to be dispersed per unit time, the size of the powder dispersion container 6 and the like.

本実施形態では、気体噴射手段8は図示しない気体噴射手段も含めて6個が設けられ、各気体噴射手段8は粉体分散容器6の円周方向に等間隔で配置される。また、気体噴射手段8は、噴射ノズルに形成される噴出孔が衝突部材7よりも上方に配置されるように設けられ、このことにより供給口から供給される粉体に対して衝突部材7よりも上方から衝突部材に向う方向に圧縮空気を噴射する。   In the present embodiment, six gas injection means 8 including a gas injection means (not shown) are provided, and each gas injection means 8 is arranged at equal intervals in the circumferential direction of the powder dispersion container 6. Moreover, the gas injection means 8 is provided so that the injection hole formed in the injection nozzle is disposed above the collision member 7, whereby the collision member 7 applies the powder supplied from the supply port. Also, the compressed air is jetted in the direction from above toward the collision member.

気体噴射手段8により噴射する気体の圧力としては、供給される粉体の量、粉体分散容器6の容積などにもよるけれども、たとえば、毎時30〜50kgの粉体を供給する場合、0.4MPa以上0.8MPa以下であることが好ましい。圧力が0.4MPa未満であると、気体を噴出することにより粉体に付与する風圧力が小さく、粉体と衝突部材7との衝突力が小さくなるので、粉体に含まれる粉体凝集物を充分に分散できなくなる恐れがある。圧力が0.8MPaを超えると、粉体分散容器6に導入される粉体が粉体分散容器6の中央付近に圧送されて集合することによって新たな粉体の凝集を招く恐れがある。   The pressure of the gas injected by the gas injection means 8 depends on the amount of powder to be supplied, the volume of the powder dispersion container 6 and the like. For example, when supplying 30 to 50 kg of powder per hour, 0. The pressure is preferably 4 MPa or more and 0.8 MPa or less. When the pressure is less than 0.4 MPa, the wind pressure applied to the powder by jetting the gas is small, and the collision force between the powder and the collision member 7 is small. Therefore, the powder aggregate contained in the powder May not be sufficiently dispersed. When the pressure exceeds 0.8 MPa, the powder introduced into the powder dispersion container 6 may be pumped and collected near the center of the powder dispersion container 6 to cause aggregation of new powder.

ここで、気体噴出手段8が粉体に対して衝突部材7に向う方向に気体を噴射するという構成は、気体噴出手段8による気体の噴出方向が供給口4から供給される粉体が衝突部材7に衝突するように粉体を圧送する方向となるように設定されればよく、気体噴出手段8の噴出方向の延長線上に衝突部材7が存在するように気体噴出手段8が配置されることに限定するものではない。すなわち、気体噴出手段8による気体噴出方向は、たとえば、粉体分散容器6の中央部付近に向う水平方向などであってもよい。ただし、気体噴出手段8により噴出される気体の風圧力を受ける粉体が、鉛直方向下方すなわち衝突部材に向う方向における流速が高められるように、水平方向よりも鉛直方向下方に傾斜されて気体が噴出されることが好ましい。   Here, the configuration in which the gas jetting means 8 injects the gas in the direction toward the collision member 7 with respect to the powder is such that the powder jetted by the gas jetting means 8 is supplied from the supply port 4 through the collision member. The gas jetting means 8 may be set so as to be in the direction in which the powder is pumped so as to collide with the gas jetting means 7, and the gas jetting means 8 is arranged so that the collision member 7 exists on the extension line of the jetting direction of the gas jetting means 8. It is not limited to. That is, the gas ejection direction by the gas ejection means 8 may be, for example, the horizontal direction toward the vicinity of the center of the powder dispersion container 6. However, the powder that receives the wind pressure of the gas ejected by the gas ejection means 8 is inclined downward in the vertical direction rather than in the horizontal direction so that the flow velocity in the vertical direction, that is, in the direction toward the collision member, is increased. It is preferable to be ejected.

気体噴出手段8から噴出される気体の気体噴出方向の傾斜角度は、鉛直方向と気体噴出方向とが成す角度が20°以上90°以下である。気体噴出手段8による気体噴出方向の傾斜角度がこのような範囲であると、衝突部材7に対する粉体の衝突角度、すなわち粉体の運動方向と衝突部材7の側壁面とがなす角度を90°未満とできるので好ましい。鉛直方向と気体噴出方向とが成す角度が20°未満であると、粉体の受ける水平面内での風圧力が、鉛直方向での風圧力の大きさに比べて小さくなり、粉体中に含まれる粉体凝集物を衝突部材7に衝突させることができないまま排出口3から排出され、分級装置2に導入される恐れがある。鉛直方向と気体噴出方向とが成す角度が90°を超えると、鉛直方向下方すなわち衝突部材に向う方向における粉体の流速を低減する恐れがある。 The inclination angle of the gas ejection direction of the gas blown from the gas jetting means 8, the angle formed lead the straight direction and the gas ejection direction Ru der 20 ° to 90 °. When the inclination angle of the gas ejection direction by the gas ejection means 8 is within such a range, the collision angle of the powder with respect to the collision member 7, that is, the angle formed by the movement direction of the powder and the side wall surface of the collision member 7 is 90 °. Since it can be less than, it is preferable. When the angle formed by the vertical direction and the gas ejection direction is less than 20 °, the wind pressure in the horizontal plane that the powder receives is smaller than the magnitude of the wind pressure in the vertical direction and is included in the powder. There is a possibility that the powder agglomerated powder is discharged from the discharge port 3 without being allowed to collide with the collision member 7 and introduced into the classification device 2. If the angle formed by the vertical direction and the gas ejection direction exceeds 90 °, the flow rate of the powder in the vertical downward direction, that is, in the direction toward the collision member may be reduced.

粉体分散装置1では、まず、造粒装置により造粒され、粉体凝集物を含む粉体が不図示の粉体供給手段から供給口4を介して粉体分散容器6内に導入される。供給口4から供給される粉体凝集物を含む粉体は、粉体供給手段の圧縮空気導入ノズルからの空気の圧送力および粉体の重力により衝突部材7側に落下する。この落下する粉体に対して気体噴射手段8から衝突部材に向う方向に気体が噴射される。この気体の噴射によって粉体は衝突部材7に衝突し、凝集状態にある粉体が衝突部材7との衝突力により分散される。衝突部材7との衝突により分散される粉体は、衝突部材7と粉体分散容器6側壁との間の空間であって、支持部材9の設けられない部分を通路として排出口5側に移動し、排出口5から排出される。排出口5から排出される粉体凝集物を含まない粉体は、分級装置2により分級される。   In the powder dispersion apparatus 1, first, the powder is granulated by the granulation apparatus, and the powder containing the powder aggregate is introduced into the powder dispersion container 6 from the powder supply means (not shown) through the supply port 4. . The powder containing the powder aggregate supplied from the supply port 4 falls to the collision member 7 side by the pressure of air from the compressed air introduction nozzle of the powder supply means and the gravity of the powder. A gas is jetted from the gas jetting means 8 toward the collision member with respect to the falling powder. By this gas injection, the powder collides with the collision member 7, and the powder in the aggregated state is dispersed by the collision force with the collision member 7. The powder dispersed by the collision with the collision member 7 is a space between the collision member 7 and the side wall of the powder dispersion container 6 and moves to the discharge port 5 side using a portion where the support member 9 is not provided as a passage. And discharged from the discharge port 5. The powder that does not contain the powder aggregate discharged from the discharge port 5 is classified by the classifier 2.

粉体分散装置1によれば、供給口4から供給される粉体凝集物を含む粉体に対して気体噴射手段8から衝突部材7に向う方向に気体を噴射することによって、粉体中に含まれる粉体凝集物を衝突部材に衝突させて充分に分散させることができる。また、供給口4が衝突部材7よりも粉体分散容器6の上部に形成され、排出口5が衝突部材7よりも粉体分散容器6の下部に形成されるので、供給口4から供給される粉体を衝突部材7方向に重力により落下させることができ、粉体と衝突部材7との衝突力を一層大きくすることができる。さらに、気体噴射手段8が衝突部材7よりも上方から気体を噴射するように構成されるので、粉体の鉛直方向下方すなわち衝突部材に向けての流速を高めることができ、粉体凝集物を含む粉体と衝突部材7との衝突力を一層増大させることができる。   According to the powder dispersion device 1, gas is injected into the powder from the gas injection means 8 toward the collision member 7 onto the powder containing the powder aggregate supplied from the supply port 4. The contained powder aggregate can be sufficiently dispersed by colliding with the collision member. Further, since the supply port 4 is formed at the upper part of the powder dispersion container 6 than the collision member 7 and the discharge port 5 is formed at the lower part of the powder dispersion container 6 than the collision member 7, the supply port 4 is supplied from the supply port 4. Can be dropped by gravity in the direction of the collision member 7, and the collision force between the powder and the collision member 7 can be further increased. Furthermore, since the gas injection means 8 is configured to inject gas from above the collision member 7, the flow rate of powder downward in the vertical direction, that is, toward the collision member, can be increased, The collision force between the contained powder and the collision member 7 can be further increased.

粉体分散装置1を備える分級装置2は、粉体分散装置1によって分散される粉体を粒径、密度または形状の違いによって分級する分級手段と、粉体分散装置1の排出口5から排出される粉体を受入れる粉体受入口3を有する不図示の粉体分級容器とを含む。粉体分級容器には、粉体受入口3が粉体分散容器6の排出口5と連なって形成されることにより、粉体分散装置1の粉体分散容器6と連通するように構成される。分級装置2は、上記の構成を満たすものであり、導入される粉体をその粒径、密度または形状の違いによって分級することができる手段であれば、他の構成は特に限定されない。
Classifying apparatus 2 Ru with a powder dispersion device 1, the powder is dispersed by the powder dispersing device 1 particle size, and the classification unit classifying the difference in density or shape, from the discharge port 5 of the powder dispersing device 1 A powder classification container (not shown) having a powder receiving port 3 for receiving discharged powder. The powder classification container is configured to communicate with the powder dispersion container 6 of the powder dispersion apparatus 1 by forming the powder receiving port 3 in communication with the discharge port 5 of the powder dispersion container 6. . The classification device 2 satisfies the above-described configuration, and the other configuration is not particularly limited as long as it is a means capable of classifying the introduced powder according to the difference in particle size, density, or shape.

本実施形態では、導入される粉体を、粒径の違いによって分級する気流式分級装置を用いる。気流式分級装置は、粉体分級容器内に羽根車型の分級ロータを備え、該分級ロータの回転により粉体に作用する遠心力が重量の違いにより異なることを利用して、導入される粉体を、粒径が大きく重量の大きい粉体と、粒径が小さく重量の小さい粉体とに分級する。粒径の大きい粉体は、作用する遠心力が粒径の小さい粉体に作用する遠心力よりも大きいことにより、粉体分級容器内の外周側を旋回する。一方、粒径の小さい粉体は、作用する遠心力が粒径の大きい粉体に作用する遠心力よりも小さいことにより、粉体分級容器内の中央部付近を旋回する。粉体分級容器の下部には、粉体分級容器中央部付近に存在する粉体を排出する微粉排出管と、粉体分級容器外周付近の粉体を排出する粗粉排出管とが設けられ、各排出管にはそれぞれの排出管から排出される粉体を回収する回収容器が備えられる。   In the present embodiment, an airflow classifier that classifies the introduced powder according to the difference in particle size is used. The airflow classifier includes an impeller type classification rotor in a powder classification container, and the powder introduced by utilizing the fact that the centrifugal force acting on the powder due to the rotation of the classification rotor varies depending on the difference in weight. Are classified into a powder having a large particle size and a large weight, and a powder having a small particle size and a small weight. The powder having a large particle size swirls on the outer peripheral side in the powder classification container because the acting centrifugal force is larger than the centrifugal force acting on the small particle size powder. On the other hand, the powder having a small particle diameter swirls around the central portion in the powder classification container because the acting centrifugal force is smaller than the centrifugal force acting on the powder having a large particle diameter. At the bottom of the powder classification container, there are provided a fine powder discharge pipe for discharging the powder existing near the center of the powder classification container and a coarse powder discharge pipe for discharging the powder near the outer periphery of the powder classification container, Each discharge pipe is provided with a collection container for collecting powder discharged from the respective discharge pipe.

分級装置2による分級は、次のようにして行なわれる。まず、分級ロータが回転する状態で粉体分散装置1によって分散される粉体が導入される。該導入される粉体は、分級ロータの回転による遠心力により、粒径が大きい粉体は粉体分級容器内の外周付近を旋回し、粒径が小さい粉体は粉体分級容器内の中央部付近を旋回するようにして分離され、それぞれの粉体は重力により下降する。重力により下降する粉体のうち、粉体分級容器内の外周付近を旋回する粉体、すなわち粒径の大きい粉体は、粗粉排出管から排出され回収される。また、重力により下降する粉体のうち、粉体分級容器内の中央部付近を旋回する粉体、すなわち粒径の小さい粉体は、微粉排出管から排出され回収される。このようにして、粉体の分級が行なわれる。   Classification by the classification device 2 is performed as follows. First, the powder to be dispersed by the powder dispersion device 1 is introduced while the classification rotor rotates. The introduced powder is rotated around the outer periphery of the powder classification container by the centrifugal force generated by the rotation of the classification rotor, and the powder having a small particle diameter is the center in the powder classification container. The powder is separated so as to swirl around the portion, and each powder descends due to gravity. Of the powder descending due to gravity, the powder swirling around the outer periphery in the powder classification container, that is, the powder having a large particle diameter, is discharged from the coarse powder discharge pipe and collected. Of the powder descending due to gravity, the powder swirling around the central portion in the powder classification container, that is, the powder having a small particle diameter, is discharged from the fine powder discharge pipe and collected. In this way, powder classification is performed.

分級装置2は、粉体分散装置1によって分散される粉体凝集物を含まない粉体を分級することができるので、分級すべき粉体が再度凝集するのを防止でき、分級精度の低下を防止できる。さらに、粉体分散装置1によって粉体が充分に分散されるので、分級装置2に粉体を投入する際、投入量が多くなることによって粉体が再凝集する恐れがなく、単位時間当りの粉体投入量を増加させることができるので、生産効率が向上する。   Since the classification device 2 can classify the powder that does not contain the powder aggregates dispersed by the powder dispersion device 1, it can prevent the powder to be classified from aggregating again and reduce the classification accuracy. Can be prevented. Furthermore, since the powder is sufficiently dispersed by the powder dispersion device 1, there is no fear that the powder will re-aggregate due to an increase in the amount charged when the powder is charged into the classification device 2, and the unit per unit time. Since the amount of powder input can be increased, the production efficiency is improved.

なお、粉体分散装置1および分級装置2は、上記の構成に限定されることなく、種々の変更が可能である。   In addition, the powder dispersion apparatus 1 and the classification apparatus 2 are not limited to said structure, A various change is possible.

このような本発明の粉体分散装置1および粉体分散装置1を備える分級装置2は、たとえば、トナーの製造方法などに好ましく用いられる。以下本発明の粉体分散装置1および分級装置2を用いるトナーの製造方法について説明する。 Such powder dispersion device 1 and powder dispersing device 1 classification apparatus 2 Ru with the present invention, for example, is preferably used in such method for producing a toner. Hereinafter, a toner production method using the powder dispersion device 1 and the classification device 2 of the present invention will be described.

トナーの製造方法は、結着樹脂および着色剤を溶融混練する溶融混練工程と、溶融混練工程で得られる溶融混練物を粉砕して造粒する造粒工程と、造粒工程で得られる粉体凝集物を含む粉体を粉体分散装置1で分散する分散工程と、分散工程で分散される粉体を分級装置2で分級する分級工程とを含む。   A toner production method includes a melt-kneading step in which a binder resin and a colorant are melt-kneaded, a granulation step in which a melt-kneaded product obtained in the melt-kneading step is pulverized and granulated, and a powder obtained in the granulation step A dispersion step of dispersing the powder containing aggregates with the powder dispersion device 1, and a classification step of classifying the powder dispersed in the dispersion step with the classification device 2.

まず、トナーの構成材料である原料成分について説明する。トナーは、少なくとも結着樹脂および着色剤を含み、必要に応じてワックスなどの離型剤、帯電制御剤などの添加剤が含有される。   First, raw material components that are constituent materials of the toner will be described. The toner contains at least a binder resin and a colorant, and optionally contains additives such as a release agent such as wax and a charge control agent.

結着樹脂としては、公知の樹脂を用いることができ、たとえば、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリスチレン、ポリアミド樹脂、ポリウレタン樹脂、アクリル樹脂などを用いることができる。これらの樹脂は単独で用いられてもよく、2種以上が併用されてもよい。   As the binder resin, a known resin can be used. For example, a polyester resin, an epoxy resin, a silicone resin, polystyrene, a polyamide resin, a polyurethane resin, an acrylic resin, or the like can be used. These resins may be used alone or in combination of two or more.

着色剤としては、公知のものを用いることができ、たとえば、カーボンブラック、鉄黒、ニグロシン、ベンジンブルー、キナクリドン、ローダミンB、フタロシアニンブルーなどが挙げられる。着色剤は、結着樹脂100重量部に対して3〜12重量部含まれることが好ましい。   As the colorant, known materials can be used, and examples thereof include carbon black, iron black, nigrosine, benzine blue, quinacridone, rhodamine B, and phthalocyanine blue. The colorant is preferably contained in an amount of 3 to 12 parts by weight with respect to 100 parts by weight of the binder resin.

結着樹脂および着色剤以外にも、オフセット防止効果を高める目的で一般的な離型剤であるワックスを用いることが好ましい。ワックスとしては、公知のものを使用でき、たとえば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチレンアクリレート共重合体などが挙げられる。これらは単独で使用しても、あるいは2種以上を併用してもよい。ワックスの配合量は特に限定されないけれども、結着樹脂100重量部に対して2〜8重量部含まれることが好ましい。ワックスが2重量部未満であると、高温オフセットが発生しやすくなり、8重量部を超えると、感光体表面にワックスが付着するフィルミングが発生しやすくなる。   In addition to the binder resin and the colorant, it is preferable to use a wax that is a general release agent for the purpose of enhancing the offset prevention effect. As the wax, publicly known ones can be used, and examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethylene acrylate copolymer. These may be used alone or in combination of two or more. Although the compounding quantity of a wax is not specifically limited, It is preferable that 2-8 weight part is contained with respect to 100 weight part of binder resin. If the wax is less than 2 parts by weight, high temperature offset tends to occur, and if it exceeds 8 parts by weight, filming in which the wax adheres to the surface of the photoreceptor is likely to occur.

また、トナーには、結着樹脂、着色剤、ワックスのほかに、好ましい特性を損なわない範囲で帯電制御剤などの添加剤を含有してもよい。帯電制御剤の添加によって、トナーの摩擦帯電量を好適にすることができる。帯電制御剤としては、公知のものを使用でき、たとえば、モノアゾ染料の金属錯塩、ニトロフミン酸およびその塩、サリチル酸、ナフトエ酸、ジカルボン酸のコバルト、クロム、鉄などの金属錯体アミノ化合物、第4級アンモニウム化合物などが挙げられ、これらを単独で、もしくは2種以上を併用して使用することができる。帯電制御剤の配合量は特に限定されないけれども、結着樹脂100重量部に対して、通常0.05〜10重量部である。   In addition to the binder resin, the colorant, and the wax, the toner may contain an additive such as a charge control agent as long as preferable characteristics are not impaired. By adding the charge control agent, the triboelectric charge amount of the toner can be made suitable. As the charge control agent, known ones can be used, for example, metal complex salts of monoazo dyes, nitrohumic acid and its salts, salicylic acid, naphthoic acid, dicarboxylic acid cobalt, chromium, iron and other metal complex amino compounds, quaternary An ammonium compound etc. are mentioned, These can be used individually or in combination of 2 or more types. The blending amount of the charge control agent is not particularly limited, but is usually 0.05 to 10 parts by weight with respect to 100 parts by weight of the binder resin.

また、トナーを1成分系の磁性トナーとして用いる場合、磁性粉を含有させる。磁性粉としては、磁場の中に置かれて磁化される公知の物質を用いることができ、たとえば、鉄、コバルト、ニッケルなどの強磁性金属の粉末、マグネタイト、鉄以外の金属元素を含むフェライトの粉末などが挙げられる。磁性粉は、結着樹脂100重量部に対して40〜150重量部含まれることが好ましい。なお、トナーを2成分系の現像剤として用いる場合には磁性粉は含有されない。   Further, when the toner is used as a one-component magnetic toner, magnetic powder is contained. As the magnetic powder, a known substance that is magnetized by being placed in a magnetic field can be used. For example, a powder of a ferromagnetic metal such as iron, cobalt, or nickel, magnetite, or a ferrite containing a metal element other than iron. Examples thereof include powder. The magnetic powder is preferably contained in an amount of 40 to 150 parts by weight with respect to 100 parts by weight of the binder resin. When toner is used as a two-component developer, no magnetic powder is contained.

以上のような結着樹脂および着色剤と、必要に応じて添加されるワックス、帯電制御剤などの成分とを、溶融混練工程において溶融混練することによって、結着樹脂中に結着樹脂以外の各成分を分散させる。   The binder resin and colorant as described above and components such as wax and charge control agent added as necessary are melt-kneaded in the melt-kneading step, so that the binder resin other than the binder resin can be used. Disperse each component.

溶融混練工程を行なう前に、結着樹脂および着色剤と、必要に応じて添加されるワックス、帯電制御剤などとを含む原料を、混合装置を用いて予備的に混合してもよい。混合装置としては特に限定されるものではなく、たとえば、ダブルコンミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサーなどの高速攪拌型混合装置が挙げられる。混合された原料混合物は、溶融混練工程に供される。   Prior to performing the melt-kneading step, a raw material containing a binder resin and a colorant and, if necessary, a wax, a charge control agent and the like may be preliminarily mixed using a mixing device. The mixing device is not particularly limited, and examples thereof include high-speed stirring mixing devices such as a double-con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, and a Nauter mixer. The mixed raw material mixture is subjected to a melt-kneading step.

溶融混練工程では、結着樹脂および着色剤と、必要に応じて添加されるワックス、帯電制御剤などとを含む原料混合物を溶融混練し、結着樹脂中に結着樹脂以外の各成分を分散させる。   In the melt-kneading step, a raw material mixture containing a binder resin and a colorant and, if necessary, a wax, a charge control agent, and the like is melt-kneaded, and each component other than the binder resin is dispersed in the binder resin. Let

溶融混練工程に用いられる装置としては、特に限定されるものではなく、たとえば、二軸押出機、三本ロール、ラボブラストミルなどの一般的な混練機、TEM−100B(東芝機械社製)、PCM−30、PCM−65/87(以上、池貝鉄工社製)などの1軸または2軸のエクストルーダー、ニーデックス(三井鉱山社製)などのオープンロール方式の混練機などが挙げられる。   The apparatus used for the melt-kneading step is not particularly limited. For example, a general kneader such as a twin-screw extruder, a three-roll, a lab blast mill, TEM-100B (manufactured by Toshiba Machine Co., Ltd.), Examples thereof include monoaxial or biaxial extruders such as PCM-30 and PCM-65 / 87 (above, manufactured by Ikekai Tekko Co., Ltd.), and open roll type kneaders such as kneedex (manufactured by Mitsui Mining Co., Ltd.).

次いで、溶融混練工程で得られる溶融混練物を粉砕して造粒する造粒工程を行なう。造粒工程では、まず、クラッシャー、ハンマーミル、フェザーミルなどを用いて、溶融混練工程で得られる溶融混練物を数100μmから数mmの粗粉砕物に粗粉砕する。そして、超音速ジェット気流を利用して粉砕するジェット式粉砕機、高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、粗粉砕物を所望の粒径にまで粉砕する。   Subsequently, the granulation process which grind | pulverizes and granulates the melt-kneaded material obtained at a melt-kneading process is performed. In the granulation step, first, the melt-kneaded product obtained in the melt-kneading step is coarsely pulverized into a coarsely pulverized product of several hundred μm to several mm using a crusher, a hammer mill, a feather mill or the like. Then, a jet type pulverizer that uses a supersonic jet stream to pulverize, and pulverizes a coarsely pulverized material introduced into a space formed between a rotor (rotor) and a stator (liner) that rotate at high speed. The coarsely pulverized product is pulverized to a desired particle size using an impact pulverizer or the like.

造粒工程により造粒される溶融混練物からなる粉体は、粉体を構成する粒子同士の付着力、静電気力などにより、粉体凝集物を発生する。このような粉体中に含まれる粉体凝集物を分散させるために、上記の粉体分散装置1により粉体中に含まれる粉体凝集物を分散させる分散工程を行なう。   The powder composed of the melt-kneaded product granulated in the granulation step generates a powder aggregate due to the adhesion force between the particles constituting the powder, electrostatic force or the like. In order to disperse such powder agglomerates contained in the powder, a dispersion step of dispersing the powder agglomerates contained in the powder by the powder disperser 1 is performed.

粉体分散装置1により粉体中に含まれる粉体凝集物が分散されると、粉体分散装置1を備える分級装置2によって粉体をその粒径などによって分級する分級工程を分散工程と連続的に行なう。分級工程では、所望の粒度分布を有する粒子群が得られるまで、分散工程を含む同じサイクルが繰返し実行される。このようにして、所望の粒径を有するとともに、粒度分布の狭いトナーを得ることができる。 When the powder aggregate contained in the powder by the powder dispersing device 1 is dispersed, a classification step of classifying the like the particle size of the powder by powder dispersing device 1 classification apparatus 2 Ru and a dispersing step Do it continuously. In the classification step, the same cycle including the dispersion step is repeatedly performed until a particle group having a desired particle size distribution is obtained. In this way, a toner having a desired particle size and a narrow particle size distribution can be obtained.

上記の工程を経て得られるトナーは、体積平均粒径が5.0μm以上8.0μm以下であるものが好ましい。またこのようなトナーの中でも、粒径が4.00μm以下の粒子の含有率が25個数%未満であり、3.17μm以下の粒子の含有率が15個数%未満であるものがさらに好ましい。トナーの体積平均粒径が5.0μm未満であると、トナー粒径が小さくなり過ぎ、高帯電化、現像剤の低流動化が起こり、感光体にトナーを安定して供給することができないので、画像かぶり、画像濃度の低下などを引起こす恐れがある。また、トナーの体積平均粒径が8.0μmを超えると、トナーの粒径が大きいので、高画質な画像を得ることができず、また低帯電化に伴うトナーの感光体への供給安定性を失い、トナー飛散による機内汚染が悪化する恐れがある。   The toner obtained through the above steps preferably has a volume average particle size of 5.0 μm or more and 8.0 μm or less. Among such toners, those having a particle content of less than 4.00 μm in particle size of less than 25% by number and particles having a particle size of 3.17 μm or less in less than 15% by number are more preferable. If the volume average particle size of the toner is less than 5.0 μm, the toner particle size becomes too small, and high charging and low developer flow occur, and the toner cannot be stably supplied to the photoreceptor. There is a risk of causing image fogging and a decrease in image density. On the other hand, if the volume average particle diameter of the toner exceeds 8.0 μm, the particle diameter of the toner is large, so that a high-quality image cannot be obtained, and the supply stability of the toner to the photoreceptor due to the low charge is reduced. And in-flight contamination due to toner scattering may be worsened.

このようにして得られたトナーに、たとえば、粉体流動性向上、摩擦帯電性向上、耐熱性および長期保存性改善、クリーニング特性改善、感光体表面磨耗特性制御どの機能を担う外添剤を混合してもよい。外添剤としては、たとえば、シリカ微粉末、酸化チタン微粉末、アルミナ微粉末などが挙げられる。外添剤の添加量としては、トナーに必要な帯電量の付与、感光体への影響、トナーの環境特性などを考慮して、トナー100重量部に対し1重量部以下が実用上好適である。   The toner thus obtained is mixed with, for example, an external additive that performs functions such as powder flowability improvement, triboelectric chargeability improvement, heat resistance and long-term storage stability improvement, cleaning characteristic improvement, and photoreceptor surface wear characteristic control. May be. Examples of the external additive include silica fine powder, titanium oxide fine powder, and alumina fine powder. The addition amount of the external additive is practically preferably 1 part by weight or less with respect to 100 parts by weight of the toner in consideration of imparting a necessary charge amount to the toner, influence on the photoreceptor, environmental characteristics of the toner, and the like. .

さらに、上記のようにして作製し、必要に応じて外添剤を添加したトナーにキャリアを混合し、2成分系の現像剤としてもよい。2成分系の現像剤に用いられるキャリアとしては、公知のものが使用でき、たとえば、鉄粉、フェライト粉、ニッケル粉、磁性樹脂キャリアなどの磁性を有する粉体、ガラスビーズなど、ならびにこれらの表面を樹脂などで被覆したものが挙げられる。キャリアの被覆に使用できる樹脂としては、たとえば、シリコーン樹脂、アクリル樹脂、スチレン樹脂、フッ素樹脂などが挙げられる。   Furthermore, a carrier may be mixed with the toner prepared as described above and added with an external additive as necessary, to form a two-component developer. As the carrier used in the two-component developer, known ones can be used, for example, iron powder, ferrite powder, nickel powder, magnetic powder such as magnetic resin carrier, glass beads, etc., and their surfaces Is coated with a resin or the like. Examples of the resin that can be used for coating the carrier include a silicone resin, an acrylic resin, a styrene resin, and a fluororesin.

本発明の粉体分散装置1および分級装置2を用いるトナーの製造方法では、造粒工程により溶融混練物を粉砕し造粒した後、分散工程を経て分級工程が行なわれるので、分級工程において分級すべき粉体に凝集物が存在しない状態で粉体を分級することができる。したがって、分級工程において所望の粒径よりも大きい粒子を除去する際、所望の粒径の範囲内である粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われて除去されることが防止できるので、分級工程後に得られるトナーの量と造粒工程において製造される粉体の量との比であるトナーの収率を向上させることができる。   In the toner production method using the powder dispersion device 1 and the classification device 2 of the present invention, the melt-kneaded product is pulverized and granulated in the granulation step, and then the classification step is performed through the dispersion step. The powder can be classified in a state in which no agglomerates are present in the powder to be obtained. Therefore, when removing particles larger than the desired particle size in the classification step, the powder agglomerates containing particles within the desired particle size range are treated and removed as coarse powder larger than the desired particle size. Therefore, the yield of toner, which is the ratio of the amount of toner obtained after the classification step and the amount of powder produced in the granulation step, can be improved.

また、分級工程において所望の粒径よりも小さい粒子を除去する際、粉体に含まれる所望の粒径分布よりも小さい粒子の凝集物が1個の粒子としてみなされて製品としてのトナーに含まれることが防止されるので、トナー中に含まれる所望の粒径よりも小さい微粉の含有率を低減することができる。   Further, when particles smaller than the desired particle size are removed in the classification step, an aggregate of particles smaller than the desired particle size distribution contained in the powder is regarded as one particle and included in the toner as a product. Therefore, the content of fine powder smaller than the desired particle size contained in the toner can be reduced.

以下本発明の実施例について説明する。実施例および比較例では、次のようにしてトナーを製造した。   Examples of the present invention will be described below. In Examples and Comparative Examples, toners were produced as follows.

〔実施例1〕
以下に示すトナー原料をスーパーミキサー(カワタ社製:SMV−20)で充分に混合し、得られた混合物を二軸混練機(池貝鉄工社製:PCM−30)によって溶融混練工程を行なった。
[Example 1]
The following toner raw materials were sufficiently mixed with a super mixer (manufactured by Kawata: SMV-20), and the resulting mixture was subjected to a melt-kneading step with a twin-screw kneader (Ikegai Tekko Co., Ltd .: PCM-30).

(トナー原料)
結着樹脂:ポリエステル樹脂(酸価:21mgKOH/g)
芳香族系アルコール成分:ビスフェノールA プロピレンオキサイド、ビスフェノールA エチレンオキサイド
酸成分:フマル酸、無水メリット酸 87.5重量部
着色剤:C.I.Pigment Blue 15:1 5.0重量部
ワックス:無極性パラフィンワックス (DSCピーク78℃)6.0重量部
帯電制御剤:サリチル酸の亜鉛化合物 1.5重量部
(Toner raw material)
Binder resin: Polyester resin (acid value: 21 mgKOH / g)
Aromatic alcohol components: bisphenol A propylene oxide, bisphenol A ethylene oxide
Acid component: fumaric acid, 87.5 parts by weight of melitric anhydride Colorant: C.I. I. Pigment Blue 15: 1 5.0 parts by weight Wax: nonpolar paraffin wax (DSC peak 78 ° C.) 6.0 parts by weight Charge control agent: zinc compound of salicylic acid 1.5 parts by weight

なお、結着樹脂の酸価は次のようにして測定した。ポリエステル樹脂をテトラヒドロフランに溶解し、指示薬にフェノールフタレイン、滴定液に0.1N水酸化カリウム(化学式:KOH)エタノール溶液を用いて、自動滴定装置(京都電子工業(株)製:AT−510)によって電位差滴定を行った。この電位差滴定の際、中和するために使用した水酸化カリウムのmg数を酸価として固形分換算で算出した。   The acid value of the binder resin was measured as follows. Polyester resin is dissolved in tetrahydrofuran, phenolphthalein is used as an indicator, and 0.1N potassium hydroxide (chemical formula: KOH) ethanol solution is used as a titrant. An automatic titrator (Kyoto Electronics Industry Co., Ltd .: AT-510) A potentiometric titration was performed. In this potentiometric titration, the number of mg of potassium hydroxide used for neutralization was calculated in terms of solid content as the acid value.

また、ワックスのDSCピーク温度は、セイコーインスルメンツ社製のDSC200を用いて次のようにして測定した。サンプルおよび基準物質を入れた装置の電気炉内の雰囲気(不活性ガス)温度を20℃〜200℃まで1分間当たり10℃の割合で昇温させた後、200℃〜20℃まで降温させる過程を2回繰り返して、2回目の昇温時のサンプル温度を測定した。そして、このサンプル温度と基準物質の温度との差によって吸熱ピークを検出し、吸熱ピーク時の温度をDSCピーク温度とした。   The DSC peak temperature of the wax was measured as follows using DSC200 manufactured by Seiko Instruments Inc. The process of raising the temperature (inert gas) in the electric furnace of the apparatus containing the sample and reference material from 20 ° C. to 200 ° C. at a rate of 10 ° C. per minute and then lowering to 200 ° C. to 20 ° C. Was repeated twice to measure the sample temperature during the second temperature increase. And the endothermic peak was detected by the difference between the sample temperature and the temperature of the reference material, and the temperature at the endothermic peak was defined as the DSC peak temperature.

次いで、溶融混練工程で得られた溶融混練物を粗粉砕し、ジェット式粉砕機(日本ニューマチック工業社製:IDS−2)によって粉砕する造粒工程を行なった。造粒工程後、得られた粉体を、図1に示す粉体分散装置1および粉体分散装置1と連なって設けられる分級装置(ホソカワミクロン(株)製:315−TSPの改造機)を用いて、所望の粒度分布が得られるまで分散工程および分級工程を連続的に行なった。なお、粉体分散装置1による分散条件は以下の通りである。   Next, a granulation step was performed in which the melt-kneaded product obtained in the melt-kneading step was coarsely pulverized and pulverized by a jet type pulverizer (manufactured by Nippon Pneumatic Industry Co., Ltd .: IDS-2). After the granulation step, the obtained powder is used with the powder disperser 1 and a classifier provided in continuation with the powder disperser 1 (made by Hosokawa Micron Co., Ltd .: 315-TSP modified machine). Then, the dispersion step and the classification step were continuously performed until a desired particle size distribution was obtained. The dispersion conditions by the powder dispersion apparatus 1 are as follows.

粉体分散容器としては、内径10.5cm、高さ26.7cm、容積1965cmの略円筒形状容器を用いた。衝突部材は、底面が直径4.0cmの円形、高さが6.5cmの円錐形状のものを用い、排出口より1.5cm上方に設置した。粉体分散容器内への粉体供給手段からの粉体の供給は0.15MPaの圧縮空気により行ない、毎時30kgの粉体を粉体分散容器内に供給した。気体噴射手段は、粉体分散容器に6個備えられ、各気体噴射手段から衝突部材に向けて噴射する空気の圧力を0.6MPaに設定した。気体噴射手段は、排出口より15.7cm上方に設置され、気体噴出手段から噴出される気体の気体噴出方向の傾斜角度は40°であった。以上のようにして、実施例1のトナーを製造した。 As the powder dispersion container, a substantially cylindrical container having an inner diameter of 10.5 cm, a height of 26.7 cm, and a volume of 1965 cm 3 was used. The impact member was a circular shape with a bottom surface of 4.0 cm in diameter and a conical shape with a height of 6.5 cm, and was installed 1.5 cm above the discharge port. The powder was supplied from the powder supply means into the powder dispersion container by compressed air of 0.15 MPa, and 30 kg / hour of powder was supplied into the powder dispersion container. Six gas injection means were provided in the powder dispersion container, and the pressure of air injected from each gas injection means toward the collision member was set to 0.6 MPa. The gas injection means was installed 15.7 cm above the discharge port, and the inclination angle of the gas ejection direction of the gas ejected from the gas ejection means was 40 °. The toner of Example 1 was manufactured as described above.

〔実施例2〕
分散工程において、毎時40kgの粉体を粉体分散容器内に供給したこと以外は実施例1と同様にして、実施例2のトナーを製造した。
[Example 2]
The toner of Example 2 was produced in the same manner as in Example 1 except that 40 kg / hour of powder was supplied into the powder dispersion container in the dispersing step.

〔実施例3〕
分散工程において、毎時50kgの粉体を粉体分散容器内に供給したこと以外は実施例1と同様にして、実施例3のトナーを製造した。
Example 3
The toner of Example 3 was produced in the same manner as in Example 1 except that 50 kg / hour of powder was supplied into the powder dispersion container in the dispersing step.

〔実施例4〕
分散工程において、毎時50kgの粉体を粉体分散容器内に供給するとともに、各気体噴射手段から噴射する空気の圧力を0.4MPaに設定したこと以外は実施例1と同様にして、実施例4のトナーを製造した。
Example 4
In the dispersing step, Example 50 was performed in the same manner as in Example 1 except that 50 kg of powder per hour was supplied into the powder dispersing container and the pressure of the air injected from each gas injection unit was set to 0.4 MPa. 4 toner was produced.

〔比較例1〕
造粒工程後、得られた粉体を分散させることなく、0.15MPaの圧縮空気により分級装置(ホソカワミクロン(株)製:315−TSP)に粉体を毎時30kgで供給し、所望の粒度分布が得られるまで分級工程を行なったこと以外は実施例1と同様にして、比較例1のトナーを製造した。
[Comparative Example 1]
After the granulation step, without dispersing the obtained powder, the powder is supplied to a classification device (manufactured by Hosokawa Micron Co., Ltd .: 315-TSP) with compressed air of 0.15 MPa at a rate of 30 kg / hour to obtain a desired particle size distribution. A toner of Comparative Example 1 was produced in the same manner as in Example 1 except that the classification step was performed until a toner was obtained.

〔比較例2〕
造粒工程後、得られた粉体を分散させることなく、0.15MPaの圧縮空気により比較例1で用いた分級装置と同様の分級装置に粉体を毎時40kgで供給し、所望の粒度分布が得られるまで分級工程を行なったこと以外は実施例1と同様にして、比較例2のトナーを製造した。
[Comparative Example 2]
After the granulation step, without dispersing the obtained powder, the powder is supplied at a rate of 40 kg per hour to a classification device similar to the classification device used in Comparative Example 1 by compressed air of 0.15 MPa, and the desired particle size distribution A toner of Comparative Example 2 was produced in the same manner as in Example 1 except that the classification step was performed until a toner was obtained.

〔比較例3〕
造粒工程後、得られた粉体を分散させることなく、0.15MPaの圧縮空気により比較例1で用いた分級装置と同様の分級装置に粉体を毎時50kgで供給し、所望の粒度分布が得られるまで分級工程を行なったこと以外は実施例1と同様にして、比較例3のトナーを製造した。
[Comparative Example 3]
After the granulation step, without dispersing the obtained powder, the powder is supplied to a classification device similar to the classification device used in Comparative Example 1 with compressed air of 0.15 MPa at a rate of 50 kg per hour, and a desired particle size distribution. A toner of Comparative Example 3 was produced in the same manner as in Example 1 except that the classification step was performed until a toner was obtained.

〔比較例4〕
分散工程において、毎時50kgの粉体を粉体分散容器内に供給するとともに、気体噴射手段から空気を噴射しなかったこと以外は実施例1と同様にして、比較例4のトナーを製造した。
[Comparative Example 4]
In the dispersing step, the toner of Comparative Example 4 was produced in the same manner as in Example 1 except that 50 kg / hour of powder was supplied into the powder dispersing container and air was not jetted from the gas jetting means.

以上のようにして実施例および比較例のトナーの製造における分散工程および分級工程での各条件を表1に示す。   Table 1 shows the conditions in the dispersion step and the classification step in the production of the toners of Examples and Comparative Examples as described above.

Figure 0004684817
Figure 0004684817

以上のようにして製造した実施例および比較例のトナーの体積平均粒径を測定するとともに、トナー中に含まれる微粉の含有率を求め、評価した。体積平均粒径および微粉の含有率は、コールターマルチサイザーIII(コールター社製)によって得られた粒度分布から算出した。なお、微粉の含有率としては、粒径が4.00μm以下の粒子の含有率および粒径が3.17μm以下の粒子の含有率を求めた。   The volume average particle diameters of the toners of Examples and Comparative Examples produced as described above were measured, and the content of fine powder contained in the toner was determined and evaluated. The volume average particle size and the fine powder content were calculated from the particle size distribution obtained by Coulter Multisizer III (manufactured by Coulter Inc.). As the fine powder content, the content of particles having a particle size of 4.00 μm or less and the content of particles having a particle size of 3.17 μm or less were determined.

微粉の含有率についての評価は、粒径が4.00μm以下の粒子については、20個数%未満であるものを○(良好)、20個数%以上25個数%未満であるものを△(可)、25個数%以上であるものを×(不可)とした。粒径が3.17μm以下の粒子については、10個数%未満であるものを○(良好)、10個数%以上15個数%未満であるものを△(可)、15個数%以上であるものを×(不可)とした。   As for the evaluation of the content of fine powder, for particles having a particle size of 4.00 μm or less, ○ (good) is less than 20% by number, and Δ (good) is 20% or more and less than 25% by number. In the case of 25% by number or more, × (impossible). Regarding particles having a particle size of 3.17 μm or less, those having a particle size of less than 10% are good (good), those having a particle size of 10% or more but less than 15% are △ (possible), and those having a particle size of 15% or more. X (impossible).

また、実施例および比較例で製造したトナーの収率を評価した。なお、トナーの収率とは、分級工程後に得られるトナーの重量と造粒工程において製造される粉体の重量との比(分級工程後に得られるトナーの重量/造粒工程において製造される粉体の重量)である。トナーの収率の評価は、収率が70%以上であるものを○(良好)、60%以上70%未満であるものを△(可)、60%未満であるものを×(不可)とした。   Further, the yields of the toners produced in Examples and Comparative Examples were evaluated. The toner yield is the ratio of the weight of the toner obtained after the classification step to the weight of the powder produced in the granulation step (the weight of the toner obtained after the classification step / the powder produced in the granulation step). Body weight). The evaluation of the toner yield is ○ (good) when the yield is 70% or more, △ (possible) when it is 60% or more and less than 70%, and × (not possible) when it is less than 60%. did.

さらに、微粉の含有率とトナーの収率とから、総合判定を行なった。総合判定では、特に良好なものを◎、良好なものを○、実使用上は問題がないものを△、実使用が不可能であるものを×、非常に悪いものを××として評価した。   Further, a comprehensive judgment was made from the fine powder content and the toner yield. In the comprehensive judgment, evaluation was evaluated as ◎ for particularly good, ○ for good, △ for no problem in actual use, × for impossible to use, and × for very bad.

実施例および比較例で製造したトナーの体積平均粒径、微粉の含有率およびトナーの収率についての評価ならびに総合評価を表2に示す。   Table 2 shows the evaluation and overall evaluation of the volume average particle diameter, the fine powder content, and the toner yield of the toners produced in Examples and Comparative Examples.

Figure 0004684817
Figure 0004684817

表2に示すように、本発明の粉体分散装置1によって分散工程を行なってから分級工程を行なったトナー(実施例1〜4)は、微粉の含有率が低く、高い収率で製造することができた。また、単位時間当りの粉体の供給量を増加させても、微粉の含有率を大幅に増大させることなくトナーを製造することができた。なお実施例3と実施例4との総合評価の違いは、実施例3が微粉含有率およびトナーの収率のいずれについても実施例4よりも良好な結果が得られたことによるものである。   As shown in Table 2, the toners (Examples 1 to 4) in which the classification step is performed after the dispersion step is performed by the powder dispersing apparatus 1 of the present invention are manufactured with a low fine powder content and a high yield. I was able to. Further, even when the amount of powder supplied per unit time was increased, the toner could be produced without significantly increasing the fine powder content. The difference in comprehensive evaluation between Example 3 and Example 4 is because Example 3 obtained better results than Example 4 in both the fine powder content and the toner yield.

一方、分散工程を行なわなかったトナー(比較例1〜3)は、微粉の含有率が高く、収率も低いものであった。分散工程において空気の噴出を行なわなかったトナー(比較例4)についても、分散工程を行なわなかったトナーと同様の結果であった。   On the other hand, the toners (Comparative Examples 1 to 3) that were not subjected to the dispersing step had a high fine powder content and a low yield. The toner (Comparative Example 4) in which air was not ejected in the dispersion process was the same result as the toner in which the dispersion process was not performed.

本発明の実施の一形態である粉体分散装置1の構成を概略的に示す断面図である。It is sectional drawing which shows schematically the structure of the powder dispersion apparatus 1 which is one Embodiment of this invention.

符号の説明Explanation of symbols

1 粉体分散装置
2 分級装置
3 粉体受入口
4 供給口
5 排出口
6 粉体分散容器
7 衝突部材
8 気体噴射手段
9 支持部材
DESCRIPTION OF SYMBOLS 1 Powder dispersion apparatus 2 Classification apparatus 3 Powder receiving port 4 Supply port 5 Discharge port 6 Powder dispersion container 7 Collision member 8 Gas injection means 9 Support member

Claims (4)

粉体を造粒する造粒装置と、粉体受入口を有して造粒装置により造粒される粉体を分級する分級装置との間に、分級装置に連なるように設けられる粉体分散装置であって、
造粒装置から粉体凝集物を含む粉体の供給を受ける供給口と、分級装置の粉体受入口に連なり粉体を分級装置に供給する排出口とが形成される容器であって、上記容器内に設けられて粉体凝集物を衝突させて分散させる衝突部材であって、衝突部材の底面を含む仮想平面における前記容器の断面の面積に対して10%以上40%以下の底面の面積であり、供給口に向う方向に頂点を有する円錐状部材または多角錐状部材である衝突部材を備え、供給口は衝突部材よりも前記容器の上部に形成され、排出口は衝突部材よりも前記容器の下部に形成され、その内部空間で粉体を分散させる粉体分散容器と、
粉体分散容器の側壁に設けられる複数の気体噴射手段であって、供給口から供給される粉体に対して衝突部材に向う方向に衝突部材よりも上方から気体を噴射し、気体噴出方向と鉛直方向とが成す角度が20°以上90°以下である気体噴射手段とを含むことを特徴とする粉体分散装置。
Powder dispersion provided between the granulator for granulating the powder and the classifier for classifying the powder granulated by the granulator with a powder inlet. A device,
A container in which a supply port that receives supply of powder containing powder agglomerates from a granulator and a discharge port that is connected to the powder reception port of the classification device and supplies powder to the classification device are formed. A collision member that is provided in the container and disperses the powder agglomerates by collision, and the bottom surface area is 10% or more and 40% or less with respect to the cross-sectional area of the container in a virtual plane including the bottom surface of the collision member And a collision member that is a conical member or a polygonal pyramid member having a vertex in a direction toward the supply port, the supply port is formed at the upper part of the container than the collision member, and the discharge port is more than the collision member. A powder dispersion container formed in the lower part of the container and dispersing the powder in its internal space;
A plurality of gas injection means provided on the side wall of the powder dispersion container, wherein gas is injected from above the collision member in a direction toward the collision member with respect to the powder supplied from the supply port, A powder dispersion apparatus comprising: gas injection means having an angle formed by a vertical direction of 20 ° or more and 90 ° or less.
請求項1に記載の粉体分散装置を備える、粉体を分級する分級装置であって、
粉体分散装置によって分散される粉体を粒径、密度または形状の違いによって分級する分級手段を含むことを特徴とする分級装置。
A classification device for classifying powder, comprising the powder dispersion device according to claim 1,
A classification device comprising classification means for classifying powder dispersed by a powder dispersion device according to a difference in particle size, density, or shape.
分級手段は、
粉体分散装置で分散される粉体を供給するための粉体受入口が形成される粉体分級容器を含み、
粉体分級容器は、
粉体受入口と粉体分散容器の排出口とを介して粉体分散容器と連通されることを特徴とする請求項2記載の分級装置。
Classification means
Including a powder classification container in which a powder receiving port for supplying powder dispersed by a powder dispersion device is formed,
The powder classification container
3. The classification apparatus according to claim 2, wherein the classification device is communicated with the powder dispersion container via the powder receiving port and the discharge port of the powder dispersion container.
結着樹脂および着色剤を含むトナーの製造方法において、
結着樹脂および着色剤を溶融混練する溶融混練工程と、
溶融混練工程で得られる溶融混練物を粉砕して造粒する造粒工程と、
造粒工程で得られる粉体凝集物を含む粉体を、請求項2または3記載の分級装置に備えられる前記粉体分散装置で分散する分散工程と、
分散工程で分散される粉体を、請求項2または3記載の分級装置で分級する分級工程とを含むことを特徴とするトナーの製造方法。
In a method for producing a toner containing a binder resin and a colorant,
A melt-kneading step of melt-kneading the binder resin and the colorant;
A granulation step of pulverizing and granulating the melt-kneaded product obtained in the melt-kneading step;
A dispersion step of dispersing the powder containing the powder aggregate obtained in the granulation step with the powder dispersion device provided in the classification device according to claim 2 or 3 ;
A method for producing a toner, comprising a classification step of classifying the powder dispersed in the dispersing step with a classification device according to claim 2.
JP2005264092A 2005-09-12 2005-09-12 Powder dispersion device, classification device, and toner production method Active JP4684817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264092A JP4684817B2 (en) 2005-09-12 2005-09-12 Powder dispersion device, classification device, and toner production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264092A JP4684817B2 (en) 2005-09-12 2005-09-12 Powder dispersion device, classification device, and toner production method

Publications (2)

Publication Number Publication Date
JP2007075681A JP2007075681A (en) 2007-03-29
JP4684817B2 true JP4684817B2 (en) 2011-05-18

Family

ID=37936509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264092A Active JP4684817B2 (en) 2005-09-12 2005-09-12 Powder dispersion device, classification device, and toner production method

Country Status (1)

Country Link
JP (1) JP4684817B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370338B1 (en) * 2007-02-23 2014-03-05 삼성전자 주식회사 Computer and power supply method thereof
JP5831857B2 (en) 2012-01-24 2015-12-09 株式会社サンギ Powder dispersion device, fine powder production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160174A (en) * 1986-01-10 1987-07-16 帝人株式会社 Apparatus for classifying particulate material
JPH04330957A (en) * 1991-02-22 1992-11-18 Nisshin Flour Milling Co Ltd Powder dispersing machine
JPH0539687U (en) * 1991-10-31 1993-05-28 三田工業株式会社 Powder classifier
JPH07185383A (en) * 1993-11-20 1995-07-25 Ricoh Co Ltd Circulation type pulverizing and classifying machine
JPH10309530A (en) * 1997-05-08 1998-11-24 Mitsubishi Chem Corp Pulverizing and classifying method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160174A (en) * 1986-01-10 1987-07-16 帝人株式会社 Apparatus for classifying particulate material
JPH04330957A (en) * 1991-02-22 1992-11-18 Nisshin Flour Milling Co Ltd Powder dispersing machine
JPH0539687U (en) * 1991-10-31 1993-05-28 三田工業株式会社 Powder classifier
JPH07185383A (en) * 1993-11-20 1995-07-25 Ricoh Co Ltd Circulation type pulverizing and classifying machine
JPH10309530A (en) * 1997-05-08 1998-11-24 Mitsubishi Chem Corp Pulverizing and classifying method

Also Published As

Publication number Publication date
JP2007075681A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4850924B2 (en) Method for producing capsule toner
JP2004157267A (en) Method for manufacturing toner, toner, fixing device, and image forming apparatus
US20060093942A1 (en) Process for preparing toner
JP2008122623A (en) Method for producing aggregated particle and electrophotographic toner
JP4684817B2 (en) Powder dispersion device, classification device, and toner production method
JP2007185564A (en) Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner
JP2007187736A (en) Powder dispersion device, powder processing equipment, and method for manufacturing toner
JP2004077593A (en) Method for manufacturing electrophotographic toner
JP2013164522A (en) Capsule toner, two-component developer, and manufacturing method of capsule toner
KR101204528B1 (en) Process for preparing toner
JP5374171B2 (en) Nonmagnetic one-component negatively chargeable toner manufacturing method and nonmagnetic one-component negatively chargeable toner
JP5227929B2 (en) Method for producing capsule toner
JP2006308640A (en) Method for manufacturing toner
JP2010091647A (en) Toner manufacturing device and method for manufacturing toner
JP3740202B2 (en) Toner production method
JP2007296494A (en) Method for classifying powder, method for manufacturing toner and powder classifier
JP4967033B2 (en) Capsule toner manufacturing method and capsule toner
JP2011022219A (en) Capsule toner
JP2005024861A (en) Method for manufacturing toner and toner
JPH11109678A (en) Method for classifying toner
JP2011059355A (en) Method of producing toner
JP4422085B2 (en) Toner production method
JP2011070035A (en) Method for producing toner for single-component developer
JP2005024863A (en) Method for manufacturing toner and toner
JP2005024860A (en) Method for manufacturing toner and toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150