JP2007185564A - Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner - Google Patents

Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner Download PDF

Info

Publication number
JP2007185564A
JP2007185564A JP2006003748A JP2006003748A JP2007185564A JP 2007185564 A JP2007185564 A JP 2007185564A JP 2006003748 A JP2006003748 A JP 2006003748A JP 2006003748 A JP2006003748 A JP 2006003748A JP 2007185564 A JP2007185564 A JP 2007185564A
Authority
JP
Japan
Prior art keywords
powder
toner
dispersion
container
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006003748A
Other languages
Japanese (ja)
Inventor
Toshihiko Murakami
登司彦 村上
Takao Yoneda
隆男 米田
Junichi Saito
純一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006003748A priority Critical patent/JP2007185564A/en
Publication of JP2007185564A publication Critical patent/JP2007185564A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for dispersing powder, in which agglomerate powder contained in powder can be dispersed satisfactorily. <P>SOLUTION: A reticulate member 7 formed into a reticulate shape is arranged in a powder dispersion vessel 2, which has a supply port part 4 for supplying powder 3, a discharge port part 5 for discharging powder 3 and a flow passage 6 through which powder falls down from the supply port part 4 to the discharge port part 5, in at least a partial zone of the cross section 6a of the flow passage 6. As a result, agglomerate powder 3b contained in powder 3 can be dispersed satisfactorily by the impact force of powder 3 against the reticulate member 7 which is generated when the powder 3, which is supplied through the supply port part 4 and falls down to the discharge port part 5, collides against the reticulate member 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粉体分散装置および粉体処理設備ならびにトナーの製造方法に関する。   The present invention relates to a powder dispersion device, a powder processing facility, and a toner manufacturing method.

画像形成に用いられるトナーは、少なくとも結着樹脂および着色剤を含有する組成物である。結着樹脂は、それ自身では成型できない着色剤を結着樹脂中に分散させて成型するための樹脂である。着色剤は、有機または無機顔料もしくは染料などの色材である。トナーには、結着樹脂および着色剤の他に、ワックスおよび帯電制御剤などの添加剤が含有されてもよい。トナーは、たとえば粉砕法、懸濁重合法または乳化重合法などの製造方法によって製造される。これらのトナーの製造方法の中でも、製造コストなどの点から粉砕法が特に好ましい。   The toner used for image formation is a composition containing at least a binder resin and a colorant. The binder resin is a resin for molding by dispersing a colorant that cannot be molded by itself in the binder resin. The colorant is a colorant such as an organic or inorganic pigment or dye. In addition to the binder resin and the colorant, the toner may contain additives such as a wax and a charge control agent. The toner is produced by a production method such as a pulverization method, a suspension polymerization method or an emulsion polymerization method. Among these toner production methods, the pulverization method is particularly preferred from the standpoint of production cost.

粉砕法を用いるトナーの製造は、たとえば次のようにして行なわれる。ミキサーなどの混合機を用いて結着樹脂、着色剤および添加剤を含む原料を混合した後、原料が結着樹脂の軟化点以上の温度となるように保持しながら混練し、着色剤および添加剤を軟化または溶融した結着樹脂中に分散させる溶融混練工程を行なう。溶融混練工程によって得られる溶融混練物は、次の粉砕工程において粉砕される。粉砕工程では、まず溶融混練物の固化物をハンマー式の粉砕機などで粗粉砕し、100μm〜5mm程度の粒径を有する粗粉砕物とする。次いで、超音速ジェット気流を利用して粉砕するジェット式粉砕機または高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、5μm〜15μm程度の粒径の樹脂粒子からなる粉体を生成する。粉砕工程で生成される粉体は、分離工程においてたとえば粒径の違いなどに応じて分離され、分離される所望の粒径の範囲に含まれる粉体を、トナー粒子として得る。   The production of toner using the pulverization method is performed, for example, as follows. Mix the raw materials containing the binder resin, colorant and additive using a mixer such as a mixer, then knead while maintaining the raw material at a temperature above the softening point of the binder resin, and add the colorant and additive. A melt-kneading step is performed in which the agent is dispersed in the softened or melted binder resin. The melt-kneaded product obtained by the melt-kneading process is pulverized in the next pulverization process. In the pulverization step, the solidified product of the melt-kneaded product is first roughly pulverized with a hammer-type pulverizer or the like to obtain a coarsely pulverized product having a particle size of about 100 μm to 5 mm. Next, a coarsely pulverized material is introduced into a space formed between a rotor (rotor) rotating at a high speed and a stator (liner) for pulverization using a supersonic jet stream or pulverization. Using an impact pulverizer or the like, a powder composed of resin particles having a particle size of about 5 μm to 15 μm is generated. The powder produced in the pulverization step is separated in accordance with, for example, the difference in particle size in the separation step, and powder contained in a desired particle size range to be separated is obtained as toner particles.

このようにして得られるトナー粒子としては、形成される画像の高精細化を目的として、一層粒径の小さいトナー粒子、たとえば粒径が8.0μm以下の小粒径のトナー粒子が求められている。トナー粒子の粒径が小さくなると、トナー粒子同士に働く静電気力および分子間力がトナー粒子に働く重力および慣性力に比べて大きくなること、またトナー粒子の比表面積が大きくなり付着力が増大することなどによって、トナー粒子同士の凝集が起こりやすくなる。   As the toner particles obtained in this manner, toner particles having a smaller particle size, for example, toner particles having a small particle size of 8.0 μm or less, are required for the purpose of achieving high definition of the formed image. Yes. When the particle size of the toner particles is reduced, electrostatic force and intermolecular force acting on the toner particles are larger than gravity and inertial force acting on the toner particles, and the specific surface area of the toner particles is increased and the adhesion force is increased. As a result, toner particles tend to aggregate.

またカラートナーを製造する場合、結着樹脂として透光性および光沢性を有する樹脂であって、黒色トナーに用いる結着樹脂よりも軟化点の低い結着樹脂が用いられる。軟化点の低い結着樹脂を用いると、トナー粒子同士の摩擦で発生する摩擦熱によって結着樹脂が軟化し、トナー粒子同士が付着しやすくなる。したがって、カラートナーを製造する場合、トナー粒子同士の凝集が特に生じやすくなる。   In the case of manufacturing a color toner, a binder resin having translucency and glossiness and having a softening point lower than that of a binder resin used for black toner is used. When a binder resin having a low softening point is used, the binder resin is softened by frictional heat generated by friction between toner particles, and the toner particles are likely to adhere to each other. Therefore, when producing color toner, aggregation of toner particles is particularly likely to occur.

このようなトナー粒子同士の凝集は、溶融混練工程で得られる溶融混練物を粉砕する粉砕工程を終えてから、分離工程を開始するまでの間にも生じる。分離工程とは、たとえば上記のような溶融混練工程と粉砕工程とを含む粉体生成工程で生成された樹脂粒子を、所望の性質を有する粒子群と、所望の性質を有しない粒子群とに分離する工程である。分離工程とは、たとえば、粉体生成工程で生成された樹脂粒子を所望の粒径の範囲に含まれる粒子群と所望の粒径の範囲に含まれない粒子群とに分級する分級工程である。粉体生成工程にて得られた粉体中の樹脂粒子同士が凝集すると、粉体生成工程後に行われる分離工程が正しく行なわれないという問題が発生する。   Such agglomeration of toner particles also occurs after the pulverization process for pulverizing the melt-kneaded product obtained in the melt-kneading process until the separation process is started. The separation step refers to, for example, the resin particles produced in the powder production step including the melt-kneading step and the pulverization step as described above into particles having desired properties and particles not having desired properties. It is a process of separating. The separation step is, for example, a classification step in which the resin particles generated in the powder generation step are classified into a particle group included in a desired particle size range and a particle group not included in a desired particle size range. . When the resin particles in the powder obtained in the powder production process are aggregated, there arises a problem that the separation process performed after the powder production process is not performed correctly.

粉体中の樹脂粒子同士が凝集する状態で分離工程、たとえば粒径の違いによって粉体を分離する分級工程が行なわれると、具体的には次のような問題が生じる。たとえば、粉体に含まれる所望の粒径の範囲よりも小さい樹脂粒子が凝集し、樹脂粒子同士の凝集によって生じる粉体凝集物が1個の樹脂粒子としてみなされると、1個の樹脂粒子としてみなされた粉体凝集物が製品としてのトナーに含まれることとなる。このような粉体凝集物がトナー中に含まれると、トナー粒子同士の摩擦によって粉体凝集物が分散されて所望の粒径よりも小さい微粉粒子の含有率が高くなるので、トナーの帯電不均一性を招来し、画像かぶりの発生など形成画像への悪影響が生じる。   When the separation step, for example, the classification step of separating the powder by the difference in particle diameter, is performed in a state where the resin particles in the powder are aggregated, the following problems are specifically caused. For example, when resin particles smaller than the desired particle size range contained in the powder are aggregated and a powder aggregate formed by aggregation of the resin particles is regarded as one resin particle, The regarded powder agglomerates are included in the toner as a product. When such powder aggregates are contained in the toner, the powder aggregates are dispersed by friction between the toner particles, and the content of fine powder particles smaller than the desired particle size becomes high. Uniformity is caused, and an adverse effect on the formed image such as occurrence of image fogging occurs.

また粉体に含まれる所望の粒径の範囲に含まれる樹脂粒子が凝集し、粉体凝集物が1個の樹脂粒子としてみなされると、本来トナーに含まれるべき粒径を有する樹脂粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われることとなり、廃棄されるかまたは分級工程の前の工程、たとえば溶融混練物の固化物とともに粉砕され樹脂粒子の生成が行なわれる粉砕工程に戻される。これによって、粉体生成工程において得られる粉体の量よりも、分級工程後に得られるトナーの量が著しく少なくなり、粉体生成工程において得られる粉体の重量に対する分級工程後に得られるトナーの重量の比率であるトナーの収率が低下する。   In addition, when the resin particles included in a desired particle size range included in the powder are aggregated and the powder aggregate is regarded as one resin particle, the resin particle having a particle size that should originally be included in the toner is included. Pulverization in which the powder agglomerates are treated as coarse powder larger than the desired particle size and are discarded or pulverized together with the solidified product of the melt-kneaded product before the classification step, for example, to generate resin particles Returned to the process. As a result, the amount of toner obtained after the classification step becomes significantly smaller than the amount of powder obtained in the powder generation step, and the weight of the toner obtained after the classification step relative to the weight of the powder obtained in the powder generation step. The toner yield, which is the ratio of

またトナーの製造においては、単位時間当りに得られるトナーの量を増加させること、すなわちトナーの製造効率を高めることが求められている。分級工程では、樹脂粒子同士の凝集の発生を防止するために、分級装置に投入する単位時間当りの粉体投入量が定められている。トナーの製造効率を高めるためには単位時間当りの粉体投入量を増加させることが必要であるけれども、単位時間当りの粉体投入量を増加させることは、粉体に含まれる樹脂粒子同士の接触回数を増加させ、樹脂粒子同士の凝集を一層発生しやすくする。したがって、単位時間当りの粉体投入量を増加させてトナーの製造効率を高めることは困難である。   Further, in the production of toner, it is required to increase the amount of toner obtained per unit time, that is, to increase the toner production efficiency. In the classification process, in order to prevent the aggregation of the resin particles, the amount of powder input per unit time to be input to the classification device is determined. In order to increase the production efficiency of the toner, it is necessary to increase the amount of powder input per unit time. However, increasing the amount of powder input per unit time increases the amount of resin particles contained in the powder. Increasing the number of times of contact makes it easier for the resin particles to aggregate. Therefore, it is difficult to increase the production efficiency of toner by increasing the amount of powder input per unit time.

このような問題は、粉体生成工程と分級工程との間で凝集する粉体を、充分に分散させた状態、すなわち粉体凝集物の含有率が低減された状態で分級装置に導入することによって解決できると考えられる。またこれによって、トナーの収率および製造効率を向上させるとともに、所望の粒径よりも小さい微粉の含有率が低いトナーを得ることができると考えられる。   Such a problem is that the powder aggregated between the powder production process and the classification process is introduced into the classification device in a sufficiently dispersed state, that is, in a state where the content of the powder aggregate is reduced. It is thought that it can be solved by. In addition, it is considered that a toner having a low content of fine powder smaller than a desired particle size can be obtained while improving the toner yield and production efficiency.

凝集する粉体を充分に分散させた状態で分級を行なう分級装置としては、気流を利用して粉体を粒度に応じて分離する気流式の分級装置が提案されている(たとえば、特許文献1参照)。特許文献1に開示の分級装置は、粉体を分級するための旋回分級室であって、該分級室の下部に形成されて粉体凝集物および所定の粒径よりも大きい粒子を該分級室の外部に排出する粗粉排出口、粗粉排出口の上方に回転自在に支持されて外部から該分級室に供給される粉体をその側面に衝突させて粉体に含まれる粉体凝集物を分散させる回転部材、回転部材の上方に設けられて該分級室内部に浮遊する粉体凝集物を回収して該分級室の外部に排出する粗粉回収口、ならびに該分級室の上部であって、回転部材の上方に形成されて分散された微粉を外部に排出する微粉排出口を有する旋回分級室と、回転部材と同じ高さの旋回分級室側面に設けられて、分級処理されるべき粉体を回転部材に向けて回転部材の回転方向と同じ方向に気流噴射する粉体供給ノズルと、回転部材と同じ高さの旋回分級室側面の粉体供給ノズルと対向する位置に設けられて、粉体凝集物を回転部材の側面に向けて回転部材の回転方向と同じ方向に気流噴射する粗粉供給ノズルと、粗粉排出口および粗粉回収口から排出される粉体凝集物を粗粉供給ノズルに搬送する粉体凝集物搬送手段とを含んで構成される。   As a classification device that performs classification in a state where agglomerated powder is sufficiently dispersed, an airflow type classification device that separates powder according to particle size using an airflow has been proposed (for example, Patent Document 1). reference). The classifying device disclosed in Patent Document 1 is a swirl classifying chamber for classifying powder, and is formed in the lower part of the classifying chamber to collect powder aggregates and particles larger than a predetermined particle size. A coarse powder discharge port that discharges to the outside of the powder, and a powder aggregate that is rotatably supported above the coarse powder discharge port and collides with the side surface of the powder that is supplied to the classification chamber from the outside to be contained in the powder A rotating member that disperses the particles, a coarse powder collecting port that is provided above the rotating member and collects the powder agglomerates floating in the classification chamber and discharges them to the outside of the classification chamber, and an upper portion of the classification chamber. In addition, the swirl classification chamber having a fine powder discharge port for discharging the fine powder formed and dispersed above the rotating member to the outside and the side of the swirling classification chamber having the same height as the rotating member should be classified. The air current is jetted in the same direction as the rotation direction of the rotating member toward the rotating member. Provided at a position facing the powder supply nozzle and the powder supply nozzle on the side of the swivel classification chamber at the same height as the rotating member, and the powder aggregate is directed to the side of the rotating member and is the same as the rotating direction of the rotating member A coarse powder supply nozzle that jets airflow in the direction, and a powder aggregate transport means that transports the powder aggregate discharged from the coarse powder discharge port and the coarse powder recovery port to the coarse powder supply nozzle.

このような分級装置によれば、粉体供給ノズルから粉体を気流噴射して回転部材に衝突させて粉体に含まれる粉体凝集物を分散させる。分散された粉体中の微粉は気流に乗って旋回分級室内部を上昇し、微粉排出口から排出される。分散が充分に行なわれなかった粉体凝集物および所定の粒径よりも大きい粒子も気流に乗ってある程度までは旋回分級室内部を上昇するけれども、自重によって下降し、粗粉排出口および粗粉回収口から外部に排出されて粗粉供給ノズルに搬送され、再び回転部材に向けて気流噴射されて分散される。粉体凝集物については、分散されて所望の粒径を有する粒子になるまで、同じサイクルが繰返し実行される。このようにして、製品として粒度分布の狭いトナー粒子を得ることができる。   According to such a classifier, powder is jetted from a powder supply nozzle and collided with a rotating member to disperse powder aggregates contained in the powder. The fine powder in the dispersed powder rides on the air current, moves up in the swirl classification chamber, and is discharged from the fine powder outlet. Powder agglomerates that have not been sufficiently dispersed and particles larger than a predetermined particle size also rise in the swirl classification chamber to a certain extent by riding on the airflow, but descend due to their own weight, and the coarse powder outlet and coarse powder It is discharged from the recovery port to the outside and conveyed to the coarse powder supply nozzle, and is again sprayed and dispersed toward the rotating member. For powder agglomerates, the same cycle is repeated until dispersed to particles having the desired particle size. In this way, toner particles having a narrow particle size distribution can be obtained as a product.

特許文献1に開示される分級装置では、粉体生成工程と分級工程との間に粉体の凝集が生じても、粉体凝集物を回転部材に衝突させるときの衝突力によって粉体凝集物を分散させることができることが期待されるけれども、粉体を充分に分散させ、粉体中の粉体凝集物の含有率を低減することは困難である。   In the classification device disclosed in Patent Document 1, even if powder agglomeration occurs between the powder generation step and the classification step, the powder agglomerate is generated by a collision force when the powder agglomerate collides with the rotating member. However, it is difficult to sufficiently disperse the powder and reduce the content of the powder aggregate in the powder.

特許文献1に開示される分散装置では、搬送手段によって搬送される粉体凝集物に対して略水平に気流を噴射して粉体凝集物の運動方向を気流噴射方向とし、該気流噴射方向と同方向に回転する回転部材に対して、気流の風圧力によって粉体凝集物を衝突させる。このようにして粉体凝集物と回転部材とを衝突させる特許文献1に開示の分級装置では、粉体凝集物の運動方向と回転部材の回転方向とが略同じ方向となるので、粉体凝集物と回転部材との衝突力を、粉体凝集物の凝集を充分に解消できるほど大きなものにすることができない。粉体凝集物と回転部材との衝突力を大きくするために回転部材の回転する方向を気流噴射方向と反対にすると、回転部材の回転による遠心力と気流による風圧力とが打ち消しあい、重力とのバランスがとれなくなることによって分級を行なうことが困難となる。   In the dispersing apparatus disclosed in Patent Document 1, an air flow is jetted substantially horizontally to the powder aggregate transported by the transport means, and the direction of movement of the powder aggregate is defined as the air flow jet direction. The powder aggregate is caused to collide with the rotating member rotating in the same direction by the wind pressure of the airflow. In the classifying device disclosed in Patent Document 1 in which the powder aggregate and the rotating member collide in this manner, the movement direction of the powder aggregate and the rotation direction of the rotating member are substantially the same. The collision force between the object and the rotating member cannot be increased so as to sufficiently eliminate the aggregation of the powder aggregate. In order to increase the collision force between the powder agglomerate and the rotating member, if the rotating direction of the rotating member is opposite to the airflow injection direction, the centrifugal force due to the rotation of the rotating member and the wind pressure due to the airflow cancel each other, and gravity and It becomes difficult to classify because the balance is not balanced.

したがって、特許文献1に開示される分級装置では、粉体生成工程と分級工程との間で凝集する粉体を、充分に分散させた状態、すなわち粉体凝集物の含有率が低減された状態で旋回分級室に導入することが困難であるので、トナーの収率および製造効率を向上させることが困難であるとともに、分級工程後の粉体として、所望の粒径よりも小さい微粉の含有率を低減させたものを得ることができない。   Therefore, in the classification apparatus disclosed in Patent Document 1, the powder that aggregates between the powder generation process and the classification process is sufficiently dispersed, that is, the content of the powder aggregate is reduced. Therefore, it is difficult to improve the yield and production efficiency of the toner, and the content of fine powder smaller than the desired particle size as the powder after the classification process is difficult. Cannot be obtained.

実開平1−65652号公報Japanese Utility Model Publication No. 1-65652

本発明の目的は、粉体中に含まれる粉体凝集物の含有率を低減することができる粉体分散装置および粉体処理設備を提供することである。また本発明の目的は、粉体処理設備を用いてトナーの製造効率を向上させるとともに、分離すべき粒子よりも小さい粒子のトナー中の含有率を低減できるトナーの製造方法を提供することである。   An object of the present invention is to provide a powder dispersion device and a powder processing facility that can reduce the content of powder aggregates contained in a powder. Another object of the present invention is to provide a method for producing a toner capable of improving the production efficiency of toner using a powder processing facility and reducing the content of particles smaller than the particles to be separated in the toner. .

本発明は、粉体が供給される供給口部および粉体を排出する排出口部が形成され、供給口部から排出口部に粉体が流下する流路が形成される粉体分散容器と、
網状に形成される網状部材であって、粉体分散容器内に設けられ、流路断面の少なくとも一部領域に配置される網状部材とを含むことを特徴とする粉体分散装置である。
The present invention relates to a powder dispersion container in which a supply port for supplying powder and a discharge port for discharging powder are formed, and a flow path for powder to flow from the supply port to the discharge port is formed. ,
A powder dispersion apparatus comprising a mesh member formed in a mesh shape and provided in a powder dispersion container and disposed in at least a partial region of a channel cross section.

また本発明は、粉体の通過を阻止する粉体衝突面を有する衝突部材であって、粉体分散容器内に設けられ、流路断面の一部領域に配置される衝突部材をさらに含むことを特徴とする。   The present invention further includes a collision member having a powder collision surface for preventing the passage of powder, the collision member being provided in the powder dispersion container and disposed in a partial region of the flow path cross section. It is characterized by.

また本発明は、衝突部材の粉体衝突面は、
粉体の流下方向上流側に向けて先細状であり、かつ尖頭状に形成されることを特徴とする。
In the present invention, the powder collision surface of the collision member is
It is characterized by being tapered toward the upstream side in the flow direction of the powder and having a pointed shape.

また本発明は、投入口部から投入される粉体を粒径、密度または形状の違いによって分離する分離装置の投入口部に、排出口部が装着されることを特徴とする。   Further, the present invention is characterized in that the discharge port portion is attached to the input port portion of the separation device that separates the powder charged from the input port portion according to the difference in particle diameter, density, or shape.

また本発明は、粉体分散容器内で粉体の流下速度を増加させる増速手段を含むことを特徴とする。
また本発明は、増速手段は、気体を噴射する気体噴射手段であることを特徴とする。
In addition, the present invention is characterized by including speed increasing means for increasing the flow rate of the powder in the powder dispersion container.
According to the present invention, the speed increasing means is a gas injection means for injecting a gas.

また本発明は、前記本発明の粉体分散装置と、
粉体分散装置によって分散された粉体を粒径、密度または形状の違いによって分離する分離装置とを含むことを特徴とする粉体処理設備である。
The present invention also provides the powder dispersion device of the present invention,
A powder processing facility comprising: a separation device that separates powder dispersed by a powder dispersion device according to a difference in particle size, density, or shape.

また本発明は、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、
前記本発明の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含むことを特徴とするトナーの製造方法である。
The present invention also provides a powder production step for producing a resin powder containing a binder resin and a colorant,
And a powder processing step of processing the resin powder generated in the powder generation step to obtain a toner using the powder processing facility of the present invention.

本発明によれば、供給口部から供給されて排出口部に流下する粉体を、粉体分散容器内の粉体が流下する流路断面の少なくとも一部領域に配置される網状部材に衝突させ、粉体と網状部材との衝突力によって粉体に含まれる粉体凝集物を分散させることができる。粉体を衝突させる対象として網状部材を用いることによって、衝突され分散された粉体を速やかに排出口部に移動させることができるので、粉体が粉体分散容器内で再度凝集することを防止できる。これによって、粉体中の粉体凝集物の含有率を低減し、良好な分散状態の粉体を得ることができる。またこのような良好な分散状態の粉体が得られるので、粉体を分離するときに粉体凝集物が1個の粒子とみなされて分離工程が行なわれることが防止され、分離精度の向上を図ることができる。   According to the present invention, the powder supplied from the supply port portion and flowing down to the discharge port portion collides with a mesh member disposed in at least a partial region of the flow path cross section in which the powder in the powder dispersion container flows down. The powder agglomerates contained in the powder can be dispersed by the collision force between the powder and the mesh member. By using a mesh member as a target for powder collision, the collided and dispersed powder can be quickly moved to the discharge port, preventing the powder from aggregating again in the powder dispersion container. it can. Thereby, the content of the powder aggregate in the powder can be reduced, and a powder in a good dispersion state can be obtained. Further, since such a finely dispersed powder can be obtained, it is possible to prevent the powder agglomerates from being regarded as one particle when the powder is separated and to improve the separation accuracy. Can be achieved.

また本発明によれば、粉体の通過を阻止する粉体衝突面を有し、粉体分散容器内に設けられ、流路断面の一部領域に配置される衝突部材が設けられるので、供給口部から排出口部に流下する粉体に含まれる粉体凝集物のうち、流路断面の一部領域に存在する粉体凝集物については確実に衝突部材の粉体衝突面に衝突させることができる。これによって、流路断面の一部領域に存在する粉体凝集物については一層確実に分散させることができ、粉体に含まれる粉体凝集物の含有率を一層低減することができる。   Further, according to the present invention, a collision member that has a powder collision surface that prevents passage of powder, is provided in the powder dispersion container, and is disposed in a partial region of the flow path cross section is provided. Of the powder agglomerates contained in the powder flowing down from the mouth part to the outlet part, the powder agglomerates existing in a partial region of the channel cross-section must be made to collide with the powder collision surface of the collision member. Can do. As a result, the powder aggregates present in a partial region of the channel cross section can be more reliably dispersed, and the content of the powder aggregates contained in the powder can be further reduced.

また本発明によれば、衝突部材の粉体衝突面が粉体の流下方向上流側に向けて先細状であり、かつ尖頭状に形成されるので、衝突部材の粉体衝突面に衝突する粉体が、衝突部材の粉体衝突面に残留することなく、粉体衝突面に沿って粉体の流下方向下流側に導かれる。これによって、衝突部材に衝突するように粉体分散容器内で流下する粉体中の粒子が、衝突部材の粉体衝突面上に残留した粉体の粒子に接触して凝集することを防止できるので、粉体の再凝集の発生を防止することができる。また粉体凝集物を含む粉体と衝突部材とが衝突する面積を充分に確保することができるので、粉体凝集物を一層確実に分散させることができる。   Further, according to the present invention, the powder collision surface of the collision member is tapered toward the upstream side in the flow direction of the powder and has a pointed shape, so that it collides with the powder collision surface of the collision member. The powder is guided to the downstream side of the powder flow direction along the powder collision surface without remaining on the powder collision surface of the collision member. As a result, particles in the powder flowing down in the powder dispersion container so as to collide with the collision member can be prevented from contacting and aggregating with the powder particles remaining on the powder collision surface of the collision member. Therefore, occurrence of reaggregation of the powder can be prevented. Moreover, since the area where the powder containing the powder aggregate and the collision member collide can be sufficiently secured, the powder aggregate can be more reliably dispersed.

また本発明によれば、投入口部から投入される粉体を、粒径、密度または形状の違いによって分離する分離装置の投入口部に排出口部が装着されるので、粉体分散装置で分散させた直後の良好な分散状態にある粉体を、分離装置内に迅速に投入することができる。したがって粉体分散装置で粉体が分散された後、分散された粉体が放置されて分離すべき粉体が再度凝集するのを防止でき、粉体凝集物が1個の粒子とみなされて分離工程が行なわれることが防止されるので、分離精度の向上を図ることができる。   Further, according to the present invention, since the discharge port is attached to the input port of the separation device that separates the powder input from the input port according to the difference in particle size, density, or shape, The powder in a good dispersion state immediately after being dispersed can be quickly put into the separation apparatus. Therefore, after the powder is dispersed by the powder dispersion device, it is possible to prevent the dispersed powder from being left and agglomerated again, and the powder aggregate is regarded as one particle. Since the separation process is prevented from being performed, the separation accuracy can be improved.

また本発明によれば、増速手段によって粉体分散容器内で粉体の流下速度を増加させることができるので、粉体分散容器内に設けられる網状部材に対する粉体の衝突力および衝突部材が設けられる場合、衝突部材に対する粉体の衝突力を増大させることができるので、凝集力の大きい粉体凝集物を含む粉体についても充分に粉体凝集物を分散させることができる。   Further, according to the present invention, since the speed of the powder flow can be increased in the powder dispersion container by the speed increasing means, the collision force of the powder against the mesh member provided in the powder dispersion container and the collision member are When provided, the impact force of the powder against the impact member can be increased, so that the powder agglomerate can be sufficiently dispersed even in the powder containing the powder agglomerate having a large agglomeration force.

また本発明によれば、増速手段として粉体に対して気体を噴射する気体噴射手段が用いられるので、粉体に対して気体を噴射することによって粉体の流下速度を増加させることができる。これによって粉体の流下速度を増加することができるとともに粉体分散容器内における粉体に含まれる粒子同士の接触を防止することができるので、粉体中の粒子同士が再凝集を防止できる。   Further, according to the present invention, since the gas injection means for injecting gas to the powder is used as the speed increasing means, the flow rate of the powder can be increased by injecting the gas to the powder. . As a result, the flow rate of the powder can be increased, and the particles contained in the powder in the powder dispersion container can be prevented from contacting each other, so that the particles in the powder can be prevented from reaggregating.

また本発明によれば、前記本発明の粉体分散装置によって分散され、粉体凝集物の含有率が低減された粉体を粒径、密度または形状の違いによって分離することができる。これによって、粉体凝集物の含有率の低い粉体から所望の密度または形状の粉体を分離することができるので、凝集した複数の粒子が1つの粒子としてみなされて分離が行なわれることが防止され、粉体の分離精度の向上を図ることができる。   Further, according to the present invention, the powder dispersed by the powder dispersing apparatus of the present invention and having a reduced content of powder aggregates can be separated by the difference in particle diameter, density or shape. As a result, a powder having a desired density or shape can be separated from a powder having a low content of powder agglomerates, so that a plurality of agglomerated particles can be regarded as one particle and separated. Thus, the accuracy of powder separation can be improved.

また本発明によれば、粉体生成工程で生成され、結着樹脂および着色剤を含む樹脂粉体を、前記本発明の粉体処理設備を用いて処理する粉体処理工程が行なわれるので、粉体処理工程において樹脂粉体中に含まれる粉体凝集物の含有率の低減が図られるとともに、該粉体凝集物の含有率が低減された樹脂粉体を分離することができる。したがって、製造されたトナーは、粉体凝集物の含有率の低い粉体が粒径、密度または形状の違いによって分離されて得られる。これによって、所望の性質を有するトナーを得ることができ、たとえば粉体を粒径の違いによって分離する場合、トナー中の微粉の含有率が低減されたトナーを得ることができる。トナー中に微粉の含有率が低減されたトナーは、帯電均一性に優れるので、画像かぶりなどの発生を抑制し、優れた画像を形成することができる。   Further, according to the present invention, since the powder processing step of processing the resin powder containing the binder resin and the colorant generated in the powder generation step using the powder processing facility of the present invention is performed, In the powder processing step, the content of the powder aggregate contained in the resin powder can be reduced, and the resin powder with the reduced content of the powder aggregate can be separated. Therefore, the manufactured toner is obtained by separating powder having a low content of powder aggregates according to the difference in particle diameter, density, or shape. As a result, a toner having desired properties can be obtained. For example, when the powder is separated by the difference in particle diameter, a toner having a reduced content of fine powder in the toner can be obtained. Since the toner in which the content of fine powder in the toner is reduced is excellent in charging uniformity, generation of image fog and the like can be suppressed, and an excellent image can be formed.

図1は、本発明の実施の一形態である粉体分散装置1の構成を概略的に示す断面斜視図である。図1は、粉体分散装置1の粉体分散容器2を断面で示す。粉体分散装置1は、粉体3が供給される供給口部4および粉体3を排出する排出口部5が形成され、供給口部4から排出口部5に粉体3が流下する流路6が形成される粉体分散容器2と、網状に形成される網状部材7であって、粉体分散容器2内に設けられ、流路断面6aの少なくとも一部領域に配置される網状部材7とを含んで構成される。ここで粉体3とは、粒子3aの集合体を意味し、粉体凝集物3bとは複数の粒子3aが凝集した凝集粉を意味する。粉体3は、凝集した複数の粒子である粉体凝集物3bと凝集していない粒子3aとから構成される。   FIG. 1 is a cross-sectional perspective view schematically showing a configuration of a powder dispersion apparatus 1 according to an embodiment of the present invention. FIG. 1 shows a powder dispersion container 2 of a powder dispersion apparatus 1 in cross section. The powder dispersing apparatus 1 includes a supply port 4 to which the powder 3 is supplied and a discharge port 5 for discharging the powder 3, and a flow in which the powder 3 flows from the supply port 4 to the discharge port 5. A powder dispersion container 2 in which a channel 6 is formed, and a net-like member 7 formed in a net shape, the net-like member provided in the powder dispersion container 2 and disposed in at least a partial region of the channel cross section 6a. 7. Here, the powder 3 means an aggregate of particles 3a, and the powder aggregate 3b means an aggregated powder in which a plurality of particles 3a are aggregated. The powder 3 includes a powder aggregate 3b that is a plurality of aggregated particles and non-aggregated particles 3a.

粉体分散容器2は、粉体分散容器2内の流路断面6aの少なくとも一部領域に網状部材7が設けられる略円筒形状の容器である。粉体分散容器2の軸線方向における一方の端部には、粉体原料から粉体3を生成する粉体生成装置からの粉体凝集物3bを含む粉体3が供給される供給口部4が形成される。粉体分散容器2は、供給口部4が形成される部分での内径をD1とするとき、供給口部4から供給された粉体3が流下する方向である粉体流下方向8の供給口部4よりも下流側における内径D2が、D1よりも大きくなるように形成される。また粉体分散容器2は、排出口部5が形成される部分での内径をD3とするとき、供給口部4から供給された粉体3が流下する方向である粉体流下方向8の供給口部4よりも下流側における内径D2が、D3よりも大きくなるように形成される。このように粉体分散容器2の軸線2a方向中央部での流路が大きく形成されることによって、後述のように圧縮空気で供給される粉体3に含まれる粒子3a同士が接触して凝集することを防止できる。   The powder dispersion container 2 is a substantially cylindrical container in which a mesh member 7 is provided in at least a partial region of the flow path cross-section 6 a in the powder dispersion container 2. At one end in the axial direction of the powder dispersion container 2, a supply port 4 to which the powder 3 containing the powder aggregate 3 b from the powder generating device that generates the powder 3 from the powder raw material is supplied. Is formed. The powder dispersion container 2 has a supply port in the powder flow down direction 8, which is the direction in which the powder 3 supplied from the supply port 4 flows down, where D1 is the inner diameter of the portion where the supply port 4 is formed. An inner diameter D2 on the downstream side of the portion 4 is formed to be larger than D1. Further, the powder dispersion container 2 is supplied in the powder flow down direction 8, which is the direction in which the powder 3 supplied from the supply port 4 flows down when the inner diameter of the portion where the discharge port 5 is formed is D3. An inner diameter D2 on the downstream side of the mouth 4 is formed to be larger than D3. Thus, by forming a large flow path in the central portion of the powder dispersion container 2 in the direction of the axis 2a, particles 3a included in the powder 3 supplied with compressed air come into contact with each other and agglomerate as will be described later. Can be prevented.

粉体生成装置によって造粒される粉体3が供給される供給口部4には、粉体供給手段9が接続される。粉体供給手段9は、粉体生成装置によって造粒される粉体3を一時的に貯留する貯留容器およびスクリューフィーダを備える粉体供給部と、粉体3を圧送するための気体源である圧縮空気導入ノズルと、粉体供給部中の粉体3を粉体分散装置1の供給口部4に導入するための輸送管とを含んで構成される。輸送管は圧縮空気導入ノズルに接続され、圧縮空気導入ノズルによって導入される空気導入方向の圧縮空気導入ノズルよりも下流側に、粉体供給部および粉体分散装置1の供給口部4がこの順番で輸送管に接続される。粉体供給部は、上記の構成に限定されることなく、たとえばスクリューフィーダの代わりに振動フィーダを備える構成などであってもよい。   A powder supply means 9 is connected to the supply port 4 to which the powder 3 granulated by the powder generating apparatus is supplied. The powder supply means 9 is a gas supply unit including a storage container that temporarily stores the powder 3 granulated by the powder generating apparatus and a screw feeder, and a gas source for pumping the powder 3. A compressed air introduction nozzle and a transport pipe for introducing the powder 3 in the powder supply unit into the supply port 4 of the powder dispersion device 1 are configured. The transport pipe is connected to the compressed air introduction nozzle, and the powder supply section and the supply port section 4 of the powder dispersion apparatus 1 are located downstream of the compressed air introduction nozzle in the air introduction direction introduced by the compressed air introduction nozzle. Connected to the transport pipe in order. The powder supply unit is not limited to the above configuration, and may be a configuration including a vibration feeder instead of a screw feeder, for example.

粉体供給手段9によれば、圧縮空気導入ノズルから輸送管内に圧縮空気を導入するとともに、粉体供給部の貯留容器内に貯留される粉体3を、スクリューフィーダによって貯留容器から輸送管内に供給する。輸送管内に供給される粉体3は、圧縮空気導入ノズルから導入される圧縮空気によって圧送され、輸送管の空気導入方向下流側に接続される粉体分散装置1の供給口部4から粉体分散容器2内に導入される。   According to the powder supply means 9, the compressed air is introduced into the transport pipe from the compressed air introduction nozzle, and the powder 3 stored in the storage container of the powder supply unit is transferred from the storage container to the transport pipe by the screw feeder. Supply. The powder 3 supplied into the transport pipe is pumped by the compressed air introduced from the compressed air introduction nozzle, and powder is supplied from the supply port 4 of the powder dispersion device 1 connected to the downstream side of the transport pipe in the air introduction direction. It is introduced into the dispersion vessel 2.

粉体供給手段9によって粉体3を導入するときの圧縮空気の圧力と粉体分散容器2内の気体の圧力との差(以後、単に圧縮空気の圧力と称する)としては、単位時間当りに供給する粉体3の量にもよるけれども、たとえば、毎時30kg以上50kg以下の粉体3を供給する場合、0.1MPa以上0.6MPa以下であることが好ましい。   The difference between the pressure of compressed air when the powder 3 is introduced by the powder supply means 9 and the pressure of the gas in the powder dispersion container 2 (hereinafter simply referred to as compressed air pressure) Although depending on the amount of the powder 3 to be supplied, for example, when supplying the powder 3 of 30 kg or more and 50 kg or less per hour, the pressure is preferably 0.1 MPa or more and 0.6 MPa or less.

圧縮空気の圧力が上記範囲にあると、供給口部4から粉体分散容器2内への粉体3の導入を一定の供給量で安定して行なうことができる。また粉体3の輸送管内での流速が小さくなり過ぎることがないので、網状部材7と粉体3との衝突力が小さくならない。圧縮空気の圧力が0.1MPa未満であると、粉体供給部から輸送管内に供給される粉体3に付与する圧送力が小さく、供給口部4から網状部材7に向かう粉体3の流下速度が低減されるので、粉体3と網状部材7との衝突力が小さくなるおそれがある。圧縮空気の圧力が0.6MPaを超えると、粉体3が輸送管内で飛散し、粉体3を一定の供給量で粉体分散容器2内に安定して導入することが困難となるおそれがある。   When the pressure of the compressed air is in the above range, the powder 3 can be stably introduced from the supply port 4 into the powder dispersion container 2 with a constant supply amount. Further, since the flow velocity of the powder 3 in the transport pipe does not become too small, the collision force between the mesh member 7 and the powder 3 does not become small. When the pressure of the compressed air is less than 0.1 MPa, the pumping force applied to the powder 3 supplied from the powder supply unit into the transport pipe is small, and the powder 3 flows down from the supply port 4 toward the mesh member 7. Since the speed is reduced, the collision force between the powder 3 and the mesh member 7 may be reduced. If the pressure of the compressed air exceeds 0.6 MPa, the powder 3 may scatter in the transport pipe, and it may be difficult to stably introduce the powder 3 into the powder dispersion container 2 with a constant supply amount. is there.

粉体分散容器2の供給口部4が形成される側と反対側の端部には、分散された粉体3を分級装置10に供給するための排出口部5が形成される。   A discharge port 5 for supplying the dispersed powder 3 to the classifier 10 is formed at the end of the powder dispersion container 2 opposite to the side where the supply port 4 is formed.

図2は、粉体分散装置1の粉体分散容器2内に設けられる網状部材7を拡大して示す平面図である。網状部材7としては、たとえばステンレス鋼などの金属材料からなる複数の線状体を交差させて網目状に形成した平板状の編組体などを用いることができる。   FIG. 2 is an enlarged plan view showing the mesh member 7 provided in the powder dispersion container 2 of the powder dispersion apparatus 1. As the mesh member 7, for example, a flat braid formed by meshing a plurality of linear bodies made of a metal material such as stainless steel can be used.

本実施形態の網状部材7は、図2において紙面の上下方向に延びる縦線状体11aと紙面の左右方向に延びる横線状体11bとを1本ずつ交互に交差させて縦および横の長さ寸法がXである正方形の開口が形成される編組体である。以後、縦線状体11aと横線状体11bとを合わせて線状体11と称する。   The net-like member 7 of the present embodiment has vertical and horizontal lengths by alternately intersecting the vertical linear bodies 11a extending in the vertical direction of the paper in FIG. 2 and the horizontal linear bodies 11b extending in the horizontal direction of the paper, one by one. A braided body in which a square opening having a dimension X is formed. Hereinafter, the vertical linear body 11 a and the horizontal linear body 11 b are collectively referred to as a linear body 11.

網状部材7は、供給口部4から排出口部5に流下する粉体3の流下方向8に対して傾斜するように、粉体分散容器2内に設けられる。本実施形態では、網状部材7は、複数の線状体11を含む仮想平面が、供給口部4から排出口部5に流下する粉体3の流下方向8に対して垂直となるように設けられる。   The mesh member 7 is provided in the powder dispersion container 2 so as to be inclined with respect to the flow direction 8 of the powder 3 flowing down from the supply port 4 to the discharge port 5. In this embodiment, the mesh member 7 is provided such that a virtual plane including a plurality of linear bodies 11 is perpendicular to the flow direction 8 of the powder 3 flowing from the supply port 4 to the discharge port 5. It is done.

網状部材7は、粉体分散容器2内の、流路断面6aの少なくとも一部領域に配置される。網状部材7の配置される領域の面積は流路断面6aの面積の70%以上であることが好ましく、網状部材7の配置される領域の面積と、流路断面6aの面積とが等しくなることがさらに好ましい。本実施形態では、網状部材7の配置される領域の面積は、流路断面6aの面積と等しい。   The mesh member 7 is disposed in at least a partial region of the flow path cross-section 6 a in the powder dispersion container 2. The area of the area where the mesh member 7 is disposed is preferably 70% or more of the area of the flow path section 6a, and the area of the area where the mesh member 7 is disposed is equal to the area of the flow path section 6a. Is more preferable. In the present embodiment, the area of the region where the mesh member 7 is arranged is equal to the area of the flow path section 6a.

網状部材7の配置される領域の面積が流路断面6aの面積の70%以上であると、網状部材7の配置される領域の面積が大きく、供給された粉体3が網状部材7の配置される領域以外の領域に導かれることを防止できる。また網状部材7の配置される領域の面積と、流路断面6aの面積とが等しいと、供給された粉体3を網状部材7の配置される領域に確実に導くことができる。網状部材7の配置される領域の面積が流路断面6aの面積の70%未満であると、網状部材7の配置される領域の面積が小さく、供給された粉体3が網状部材7の配置される領域以外の領域に導かれ、粉体凝集物3bを分散させることができないまま排出口部5から排出されるおそれがある。   When the area of the area where the mesh member 7 is arranged is 70% or more of the area of the flow path cross-section 6 a, the area of the area where the mesh member 7 is arranged is large, and the supplied powder 3 is arranged in the area of the mesh member 7. It is possible to prevent being guided to an area other than the area to be applied. Further, when the area of the area where the mesh member 7 is arranged and the area of the channel cross section 6a are equal, the supplied powder 3 can be reliably guided to the area where the mesh member 7 is arranged. When the area of the area where the mesh member 7 is arranged is less than 70% of the area of the flow path cross-section 6 a, the area of the area where the mesh member 7 is arranged is small, and the supplied powder 3 is arranged in the arrangement of the mesh member 7. There is a possibility that the powder agglomerate 3b may be discharged from the discharge port 5 without being dispersed, being guided to a region other than the region where the powder is aggregated.

本発明では、粉体3を衝突させる対象として開口が形成される網状部材7が用いられるので、衝突され分散された粉体3を速やかに排出口部5に移動させることができる。これによって、粉体3が粉体分散容器2内で再度凝集することを防止でき、粉体3中の粉体凝集物3bの含有率が低減され、良好な分散状態の粉体3を得ることができる。   In the present invention, since the mesh member 7 in which the opening is formed is used as a target to which the powder 3 collides, the collided and dispersed powder 3 can be quickly moved to the discharge port portion 5. As a result, the powder 3 can be prevented from aggregating again in the powder dispersion container 2, the content of the powder aggregate 3b in the powder 3 is reduced, and the powder 3 in a good dispersion state can be obtained. Can do.

網状部材7の線状体11によって形成される正方形の開口の縦および横の長さ寸法である目開きXは、2mm以上5mm以下であることが好ましい。粉体3は、粉体3を構成する粒子3aの材料、大きさ、温度、湿度などの環境条件などにもよるけれども、たとえば、粉体3を構成する粒子3aが結着樹脂および着色剤を含む粒径8μm程度の樹脂粒子である場合、20〜100μmの大きさに凝集する。網状部材7の目開きXが上記のような範囲であると、粉体3に含まれる粉体凝集物3bを線状体11に衝突させて分散させることがより確実に行なえる。網状部材7の目開きXが2mm未満であると、供給口部4から供給される粉体3に含まれる粉体凝集物3bが、網状部材7の線状体11の粉体流下方向8上流側に残留するおそれがある。網状部材7の目開きXが5mmを超えると、粉体3が網状部材7の線状体11に衝突する確率が低くなり、粉体3を分散させることができなくなるおそれがある。   The mesh opening X, which is the vertical and horizontal length dimensions of the square opening formed by the linear body 11 of the mesh member 7, is preferably 2 mm or more and 5 mm or less. Although the powder 3 depends on environmental conditions such as the material, size, temperature, and humidity of the particles 3a constituting the powder 3, for example, the particles 3a constituting the powder 3 contain a binder resin and a colorant. In the case of resin particles having a particle size of about 8 μm, the particles aggregate to a size of 20 to 100 μm. When the mesh size X of the mesh member 7 is in the above range, the powder aggregate 3b contained in the powder 3 can be more reliably collided with the linear body 11 and dispersed. When the mesh X of the mesh member 7 is less than 2 mm, the powder aggregate 3b contained in the powder 3 supplied from the supply port 4 is upstream of the powder flow direction 8 upstream of the linear body 11 of the mesh member 7. May remain on the side. When the mesh size X of the mesh member 7 exceeds 5 mm, the probability that the powder 3 collides with the linear body 11 of the mesh member 7 becomes low, and there is a possibility that the powder 3 cannot be dispersed.

網状部材7の線状体11の幅Wは、0.2mm以上2mm以下であることが好ましい。線状体11の幅Wがこのような範囲であると、粉体3に含まれる粉体凝集物3bを線状体11に衝突させることが容易であるとともに、線状体11の粉体流下方向8上流側に粉体3が残留するおそれを低減することができる。線状体11の幅Wが0.2mm未満であると、粉体3に含まれる粉体凝集物3bを線状体11に衝突させることが困難となるおそれがある。線状体11の幅Wが2mmを超えると、線状体11の粉体流下方向8上流側に粉体3が残留するおそれがある。   The width W of the linear body 11 of the mesh member 7 is preferably 0.2 mm or more and 2 mm or less. When the width W of the linear body 11 is within such a range, the powder aggregate 3b contained in the powder 3 can easily collide with the linear body 11, and the powder flow of the linear body 11 can be reduced. The possibility that the powder 3 remains on the upstream side in the direction 8 can be reduced. If the width W of the linear body 11 is less than 0.2 mm, it may be difficult to cause the powder aggregate 3 b included in the powder 3 to collide with the linear body 11. If the width W of the linear body 11 exceeds 2 mm, the powder 3 may remain upstream of the linear body 11 in the powder flow direction 8.

また網状部材7の線状体11は、その断面形状が粉体流下方向8上流側に、粉体流下方向8に対して垂直な平面を含まない形状、たとえば線状体11の延びる方向に垂直な平面で切断したときの断面形状が円形状などであることが好ましい。網状部材7の線状体11がこのような形状であると、線状体11の粉体流下方向8上流側における粉体3の残留をさらに防止することができる。本実施形態の網状部材7は、線状体11の延びる方向に垂直な平面で切断したときの断面形状が円形状である線状体11によって構成される。   Further, the linear body 11 of the mesh member 7 has a cross-sectional shape upstream of the powder flow direction 8 and does not include a plane perpendicular to the powder flow direction 8, for example, perpendicular to the extending direction of the linear body 11. It is preferable that the cross-sectional shape when cut along a flat plane is a circular shape or the like. When the linear body 11 of the mesh member 7 has such a shape, it is possible to further prevent the powder 3 from remaining on the upstream side in the powder flow direction 8 of the linear body 11. The mesh member 7 of the present embodiment is configured by the linear body 11 having a circular cross section when cut along a plane perpendicular to the extending direction of the linear body 11.

また網状部材7の開孔率は40%以上であることが好ましく、45%以上70%以下であることがさらに好ましい。網状部材7の開孔率とは、粉体3の流下方向8に垂直な仮想平面での網状部材7の設けられる部分の投影面積に対する図2において斜線で示す部分である網状部材7の開口部分(目開き部分)Sの粉体3の流下方向8に垂直な仮想平面での投影面積の合計との比率(目開き部分Sの投影面積の合計/網状部材7の設けられる部分の投影面積)である。網状部材7の開孔率が上記好適な範囲であると、網状部材7に粉体凝集物3bを衝突させて分散させることが容易に行なえるとともに、粉体3が線状体11の粉体流下方向8上流側に残留することを防止できる。網状部材7の開孔率が40%未満であると、粉体3が線状体11の粉体流下方向8上流側に残留するおそれがある。また粉体3を供給するときの圧縮空気による送圧力に対して網状部材7の抵抗が大きく、網状部材7または粉体分散容器2が破損するおそれがある。網状部材7の開孔率が70%を超えると、粉体3を線状体11に対して衝突させ難くなり、粉体凝集物3bを分散させることができないおそれがある。   Further, the aperture ratio of the net member 7 is preferably 40% or more, and more preferably 45% or more and 70% or less. The aperture ratio of the mesh member 7 is an opening portion of the mesh member 7 which is a portion indicated by oblique lines in FIG. 2 with respect to the projected area of the portion where the mesh member 7 is provided on a virtual plane perpendicular to the flow-down direction 8 of the powder 3. (Aperture portion) The ratio of the projected area of the powder 3 on the virtual plane perpendicular to the flow direction 8 of the powder 3 (total projected area of the aperture portion S / projected area of the portion where the mesh member 7 is provided) It is. When the aperture ratio of the mesh member 7 is in the above preferred range, the powder aggregate 3 b can be easily collided with the mesh member 7 and dispersed, and the powder 3 is a powder of the linear body 11. It is possible to prevent remaining on the upstream side in the downstream direction 8. If the aperture ratio of the mesh member 7 is less than 40%, the powder 3 may remain on the upstream side 8 in the powder flow direction 8 of the linear body 11. Further, the resistance of the mesh member 7 is large with respect to the feeding pressure by the compressed air when supplying the powder 3, and the mesh member 7 or the powder dispersion container 2 may be damaged. If the open area ratio of the mesh member 7 exceeds 70%, it is difficult to cause the powder 3 to collide with the linear body 11, and the powder aggregate 3b may not be dispersed.

また本実施形態では、網状部材7は供給口部4よりも粉体分散容器2の粉体流下方向8下流側に、かつ排出口部5よりも粉体分散容器2の粉体流下方向8上流側に設けられ、さらに供給口部4よりも排出口部5寄りに設けられる。円筒形状の粉体分散容器2の軸線方向において網状部材7の設けられる位置は、粉体供給手段から付与される圧縮空気の粉体3に対する圧送力などに応じて定められることが好ましい。   In the present embodiment, the mesh member 7 is located downstream of the supply port 4 in the powder flow direction 8 of the powder dispersion container 2 and upstream of the discharge port 5 in the powder flow direction 8 of the powder dispersion container 2. It is provided on the side and further closer to the discharge port 5 than the supply port 4. The position where the mesh member 7 is provided in the axial direction of the cylindrical powder dispersion container 2 is preferably determined in accordance with the pressure feeding force of the compressed air applied from the powder supply means to the powder 3.

粉体分散装置1では、まず、粉体生成装置によって造粒され、粉体凝集物3bを含む粉体3が粉体供給手段9から供給口部4を介して粉体分散容器2内に導入される。供給口部4から供給される粉体凝集物3bを含む粉体3は、粉体供給手段の圧縮空気導入ノズルからの空気の圧送力によって網状部材7側に向かい、網状部材7の線状体11に衝突するので、粉体3に含まれる粉体凝集物3bを、網状部材7の線状体11との衝突力によって分散させることができる。これによって、粉体3中に含まれる粉体凝集物3bの含有率を低減することができる。網状部材7の線状体11との衝突によって分散される粉体3は、網状部材7の目開き部分から排出口部5側にさらに圧送され、排出口部5から排出される。   In the powder dispersion device 1, first, the powder 3, which is granulated by the powder generation device, is introduced into the powder dispersion container 2 from the powder supply means 9 through the supply port 4. Is done. The powder 3 including the powder agglomerate 3b supplied from the supply port 4 is directed to the mesh member 7 side by the pressure of air from the compressed air introduction nozzle of the powder supply means, and the linear member of the mesh member 7 11, the powder aggregate 3 b contained in the powder 3 can be dispersed by the collision force of the mesh member 7 with the linear body 11. Thereby, the content rate of the powder aggregate 3b contained in the powder 3 can be reduced. The powder 3 dispersed by the collision of the mesh member 7 with the linear body 11 is further pumped from the mesh portion of the mesh member 7 to the discharge port 5 side and discharged from the discharge port 5.

このような粉体分散装置1は、上記の構成に限定されることなく、種々の変更が可能である。たとえば、網状部材7としては、図2において紙面の上下方向に延びる縦線状体11aと紙面の左右方向に延びる横線状体11bとを1本ずつ交互に交差させて正方形の開口が形成される編組体に限定されることなく、複数本の線状体によって多角形が形成されるものであればどのようなものであってもよい。また網状部材は必ずしも複数の方向に延びる線状体を含む部材であることに限定されず、同一方向に延びる複数の線状体を備える部材であってもよい。同一方向に延びる複数の線状体を備える部材を網状部材として用いる場合、該網状部材は複数が設けられることが好ましく、同一方向に延びる複数の線状体を備える網状部材が複数設けられる場合、複数の網状部材の線状体の延びる方向が異なるように各網状部材が配置されることが好ましい。   Such a powder dispersion device 1 is not limited to the above configuration, and various modifications can be made. For example, as the mesh member 7, in FIG. 2, a square opening is formed by alternately intersecting the vertical linear body 11a extending in the vertical direction of the paper and the horizontal linear body 11b extending in the horizontal direction of the paper. Without being limited to the braided body, any material may be used as long as a polygon is formed by a plurality of linear bodies. The mesh member is not necessarily limited to a member including a linear body extending in a plurality of directions, and may be a member including a plurality of linear bodies extending in the same direction. When a member having a plurality of linear bodies extending in the same direction is used as a mesh member, a plurality of the mesh members are preferably provided, and when a plurality of mesh members having a plurality of linear bodies extending in the same direction are provided, It is preferable that the mesh members are arranged so that the extending directions of the linear bodies of the mesh members are different.

網状部材の線状体によって正方形以外の多角形の開口が形成される場合、開口の面積が4mm以上25mm以下であることが好ましい。また同一方向に延びる複数の線状体を備える部材を網状部材として用いる場合、複数の線状体の設けられる間隔が2mm以上5mm以下であることが好ましい。このような網状部材であっても、粉体3に含まれる粉体凝集物3bを線状体11に衝突させて分散させることが容易に行なえる。 When a polygonal opening other than a square is formed by the linear member of the mesh member, the area of the opening is preferably 4 mm 2 or more and 25 mm 2 or less. Moreover, when using the member provided with the several linear body extended in the same direction as a mesh member, it is preferable that the space | interval in which a several linear body is provided is 2 mm or more and 5 mm or less. Even with such a net-like member, the powder aggregate 3b contained in the powder 3 can be easily collided with the linear body 11 and dispersed.

このような粉体分散装置1は、たとえば、結着樹脂および着色剤を含む画像形成用のトナーの製造などに用いられる。   Such a powder dispersion device 1 is used, for example, for the production of an image forming toner containing a binder resin and a colorant.

図3は、図1に示す粉体分散装置1が設けられるトナー製造装置12の回路図である。トナー製造装置12は、結着樹脂および着色剤を含む樹脂粉体3(以後、単に粉体とも呼ぶ)を生成する粉体生成装置13と、本実施形態の粉体分散装置1と、粉体分散装置1によって分散された粉体3を粒径の違いによって分離する分離装置である分級装置10とを含んで構成される。粉体分散装置1と、分級装置10とは、粉体処理設備14を構成する。   FIG. 3 is a circuit diagram of the toner manufacturing apparatus 12 in which the powder dispersion apparatus 1 shown in FIG. 1 is provided. The toner manufacturing apparatus 12 includes a powder generation apparatus 13 that generates a resin powder 3 (hereinafter also simply referred to as powder) containing a binder resin and a colorant, the powder dispersion apparatus 1 of the present embodiment, and a powder. And a classification device 10 that is a separation device for separating the powder 3 dispersed by the dispersion device 1 according to the difference in particle diameter. The powder dispersion device 1 and the classification device 10 constitute a powder processing facility 14.

本実施形態の粉体分散装置1は、粉体生成装置13にて造粒された樹脂粉体3を粒径の違いによって分離(以後、分級とも呼ぶ)する分級装置10との間に設けられる。また少なくとも分級装置10は粉体分散装置1に連なるように設けられる。トナー製造装置12を用いるトナーの製造方法については後述する。   The powder dispersion device 1 of the present embodiment is provided between a classification device 10 that separates (hereinafter also referred to as classification) the resin powder 3 granulated by the powder generation device 13 according to the difference in particle size. . At least the classification device 10 is provided so as to be connected to the powder dispersion device 1. A toner manufacturing method using the toner manufacturing apparatus 12 will be described later.

粉体分散装置1に連なるように設けられる分級装置10は、粉体分散装置1によって分散される粉体3を分級する分級手段と、粉体分散装置1の排出口部5から排出される粉体3が投入される投入口を有する粉体分級容器とを含む。   The classification device 10 provided so as to be connected to the powder dispersion device 1 includes classification means for classifying the powder 3 dispersed by the powder dispersion device 1 and powder discharged from the discharge port 5 of the powder dispersion device 1. And a powder classification container having an input port into which the body 3 is input.

本実施形態では、投入口から投入される密度が等しい粒子3aから構成される粉体3を、粒径の違いによって分級する気流式分級装置を用いる。気流式分級装置は、粉体分級容器内に羽根車型の分級ロータを備え、該分級ロータの回転によって粉体分級容器内に気流を発生し、該気流によって粉体3に付与される遠心力が重量の違いによって異なることを利用して、導入される粉体3を、相対的に粒径が大きく重量の大きい粉体3と、相対的に粒径が小さく重量の小さい粉体3とに分級する。粒径の大きい粉体3は、作用する遠心力が粒径の小さい粉体3に作用する遠心力よりも大きいことによって、粉体分級容器内の外周寄りの部分で旋回する。また粒径の小さい粉体3は、作用する遠心力が粒径の大きい粉体3に作用する遠心力よりも小さいことによって、粉体分級容器内の中央寄りの部分で旋回する。粉体分級容器の下部には、粉体分級容器中央部付近に存在する粉体3を排出する微粉排出管と、粉体分級容器外周付近の粉体3を排出する粗粉排出管とが設けられ、各排出管にはそれぞれの排出管から排出される粉体3を回収する回収容器が備えられる。   In the present embodiment, an airflow classifier is used that classifies the powder 3 composed of particles 3a having the same density charged from the charging port according to the difference in particle diameter. The airflow classifier includes an impeller-type classification rotor in a powder classification container, and an airflow is generated in the powder classification container by the rotation of the classification rotor, and centrifugal force applied to the powder 3 by the airflow is generated. Using the difference in weight, the introduced powder 3 is classified into a powder 3 having a relatively large particle size and a large weight, and a powder 3 having a relatively small particle size and a small weight. To do. The powder 3 having a large particle diameter swirls at a portion near the outer periphery in the powder classification container because the acting centrifugal force is larger than the centrifugal force acting on the powder 3 having a small particle diameter. In addition, the powder 3 having a small particle diameter is swung in a portion closer to the center in the powder classification container because the centrifugal force acting is smaller than the centrifugal force acting on the powder 3 having a large particle diameter. A lower part of the powder classification container is provided with a fine powder discharge pipe for discharging the powder 3 existing near the center of the powder classification container and a coarse powder discharge pipe for discharging the powder 3 near the outer periphery of the powder classification container. Each discharge pipe is provided with a collection container for collecting the powder 3 discharged from the respective discharge pipe.

分級装置10による分級は、次のようにして行なわれる。まず、分級ロータが回転している状態で粉体分散装置1によって分散された粉体3が投入される。投入される粉体3は、分級ロータの回転による遠心力によって、粒径が大きい粒子3aおよび粉体凝集物3bは粉体分級容器内の外周寄りの部分を旋回し、粒径が小さい粒子3aは粉体分級容器内の中央寄りの部分を旋回するようにして分離される。このようにして分離される粉体3は重力によってそれぞれ下降する。重力によって下降する粉体3のうち、粉体分級容器内の外周寄りの部分を旋回する粉体3、すなわち相対的に粒径の大きい粒子3aおよび粉体凝集物3bは、粗粉排出管から排出され回収される。また、重力によって下降する粉体3のうち、粉体分級容器内の中央寄りの部分を旋回する粉体3、すなわち相対的に粒径の小さい粒子3aは、微粉排出管から排出され回収される。このようにして、粉体3の分級が行なわれる。   Classification by the classification device 10 is performed as follows. First, the powder 3 dispersed by the powder dispersion device 1 is charged while the classification rotor is rotating. The charged powder 3 is swung around the outer periphery of the powder classification container by the centrifugal force generated by the rotation of the classification rotor, so that the particles 3a and the powder aggregate 3b have a small particle diameter. Are separated by swirling around the center of the powder classification container. The powder 3 separated in this way is lowered by gravity. Of the powder 3 that descends due to gravity, the powder 3 that swirls around the outer periphery of the powder classification container, that is, the relatively large particle 3a and the powder aggregate 3b are removed from the coarse powder discharge pipe. It is discharged and collected. Of the powder 3 that descends due to gravity, the powder 3 that swirls around the center of the powder classification container, that is, the relatively small particle 3a is discharged from the fine powder discharge pipe and collected. . In this way, the powder 3 is classified.

粉体処理設備14では、粉体分散装置1によって分散される粉体凝集物3bの含有率の低い粉体3を分級装置10によって分級することができる。したがって、分級装置10では、粉体分散装置で分散された粉体3が分級されるので、所望の粒径未満の粒子3a同士が凝集した粉体凝集物3bが所望の粒径を有する粒子群に含まれること、および所望の粒径である粒子3a同士が凝集した粉体凝集物3bが所望の粒径を有する粒子群から外れることを防止することができるので、分級精度の向上を図ることができる。また分級装置10に粉体3を投入するとき、投入量が多くなっても粉体3を充分に分散させることができ、粉体3の再凝集を防止できる。これによって、単位時間当りの粉体投入量を増加させることができるので、トナーの製造効率が向上する。   In the powder processing facility 14, the powder 3 having a low content of the powder aggregate 3 b dispersed by the powder dispersing device 1 can be classified by the classifying device 10. Accordingly, since the powder 3 dispersed by the powder dispersing device is classified in the classifying device 10, the powder aggregate 3b obtained by agglomerating particles 3a having a particle diameter less than the desired particle diameter has a desired particle diameter. In addition, it is possible to prevent the powder agglomerates 3b in which the particles 3a having a desired particle size are aggregated from being separated from the particle group having the desired particle size, so that the classification accuracy can be improved. Can do. In addition, when the powder 3 is charged into the classifier 10, the powder 3 can be sufficiently dispersed even if the amount of charge increases, and reaggregation of the powder 3 can be prevented. As a result, the amount of powder charged per unit time can be increased, so that the toner production efficiency is improved.

分級装置10としては、上記の構成に限定されることなく、たとえば篩式の分級装置を用いるなど、種々の変更が可能である。また粒径の違いによって粉体3を分離する分級装置10に代えて、密度または形状の違いによって粉体3を分離する分離装置などを用いることもできる。たとえば、粒径が似ているけれども密度が異なる粒子を含む粉体を密度の違いによって分離する分離装置としては、粉体3に付与される遠心力を用いて分離をする装置などを用いることができる。また粒子の重量が似ているけれども形状が異なる粒子を含む粉体を形状の違いによって分離する分離装置としては、篩などによって分離する分離装置などを用いることができる。このような分離装置を用いる場合にも、粉体凝集物3bの含有率の低い粉体3から所望の密度または形状の粉体3を分離することができるので、複数の粒子が凝集した粉体凝集物3bが1つの粒子としてみなされることを防止でき、粉体3の分離精度の向上を図ることができる。   The classification device 10 is not limited to the above-described configuration, and various modifications such as using a sieve type classification device are possible. Moreover, it can replace with the classification apparatus 10 which isolate | separates the powder 3 by the difference in a particle size, and the separation apparatus etc. which isolate | separate the powder 3 by the difference in a density or a shape can also be used. For example, as a separation device that separates powders containing particles having similar particle sizes but different densities by using a difference in density, a device that separates powders using centrifugal force applied to the powder 3 may be used. it can. In addition, as a separation device that separates powders containing particles having similar shapes but different shapes depending on the shape, a separation device that separates powders using a sieve or the like can be used. Even when such a separating apparatus is used, the powder 3 having a desired density or shape can be separated from the powder 3 having a low content of the powder aggregate 3b. The aggregate 3b can be prevented from being regarded as one particle, and the separation accuracy of the powder 3 can be improved.

図4は、本発明の実施の第2形態である粉体分散装置21の構成を概略的に示す断面図である。本実施形態の粉体分散装置21は、前述の第1実施形態の粉体分散装置1に類似し、対応する部分については同一の参照符号を付して説明を省略するとともに、全体の構成図を省略する。   FIG. 4 is a cross-sectional view schematically showing a configuration of a powder dispersion device 21 according to the second embodiment of the present invention. The powder dispersion device 21 of the present embodiment is similar to the powder dispersion device 1 of the first embodiment described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted, and the entire configuration diagram Is omitted.

本実施形態の粉体分散装置は、網状部材22が粉体3の流下方向8に対して90°よりも小さい角度θで傾斜して設けられることを特徴とする。網状部材22は、粉体3の流下方向8に対して90°よりも小さい角度θで傾斜して設けられること以外は前述の第1実施形態の網状部材7と同じであるので説明を省略する。   The powder dispersion device of this embodiment is characterized in that the mesh member 22 is provided to be inclined at an angle θ smaller than 90 ° with respect to the flow-down direction 8 of the powder 3. The mesh member 22 is the same as the mesh member 7 of the first embodiment described above except that the mesh member 22 is inclined at an angle θ smaller than 90 ° with respect to the flow-down direction 8 of the powder 3, and thus the description thereof is omitted. .

網状部材22が粉体流下方向8に対して90°よりも小さい角度で傾斜して設けられると、粉体3が線状体の粉体流下方向8上流側に残留しても、矢符23で示す圧縮空気導入ノズルからの空気の圧送力によって、残留する粉体3が矢符24で示す網状部材22の傾斜方向に移動する。これによって、粉体3の線状体への残留を防止することができ、残留する粉体3を網状部材22の目開き部分に移動させて該目開き部分から排出口部5側に粉体3を導くことが容易となる。   If the mesh member 22 is provided to be inclined at an angle smaller than 90 ° with respect to the powder flow direction 8, the arrow mark 23 even if the powder 3 remains on the upstream side of the powder flow direction 8 of the linear body. The residual powder 3 moves in the inclination direction of the mesh member 22 indicated by an arrow 24 by the pressure of air from the compressed air introduction nozzle shown in FIG. Accordingly, the powder 3 can be prevented from remaining on the linear body, and the remaining powder 3 is moved to the opening portion of the mesh member 22 and the powder is moved from the opening portion to the discharge port portion 5 side. 3 is easily derived.

図5は、本発明の実施の第3形態である粉体分散装置31の構成を概略的に示す断面図である。粉体分散装置31は、前述の第1実施形態の粉体分散装置1に類似し、対応する部分については同一の参照符号を付して説明を省略する。また輸送管38は、粉体供給手段9に含まれるけれども、理解を容易にするために粉体供給手段9とは別に記載する。図5において、紙面の上下方向が鉛直方向である。   FIG. 5 is a cross-sectional view schematically showing a configuration of a powder dispersion device 31 according to the third embodiment of the present invention. The powder dispersion device 31 is similar to the powder dispersion device 1 of the first embodiment described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. Further, although the transport pipe 38 is included in the powder supply means 9, it is described separately from the powder supply means 9 for easy understanding. In FIG. 5, the vertical direction of the paper is the vertical direction.

本実施形態の粉体分散装置31は、粉体3の通過を阻止する粉体衝突面を有する衝突部材32であって、粉体分散容器33内に設けられ、流路断面6aの一部領域に配置される衝突部材32をさらに含むことを特徴とする。また本実施形態の粉体分散装置31は、粉体分散容器33内で粉体3の流下速度を増加させる増速手段として、気体を噴射する気体噴射手段34を含むことを特徴とする。また本実施形態の粉体分散装置31は、排出口部35が、分級装置10の投入口部36に装着されることを特徴とする。   The powder dispersion device 31 of the present embodiment is a collision member 32 having a powder collision surface that prevents the passage of the powder 3, and is provided in the powder dispersion container 33, and is a partial region of the flow path cross section 6 a. It further includes a collision member 32 disposed on the surface. Further, the powder dispersion device 31 of the present embodiment is characterized by including a gas injection means 34 for injecting gas as speed increasing means for increasing the flow speed of the powder 3 in the powder dispersion container 33. Further, the powder dispersion device 31 of the present embodiment is characterized in that the discharge port portion 35 is attached to the input port portion 36 of the classification device 10.

本実施形態の粉体分散装置31の粉体分散容器33は、前述の第1実施形態の粉体分散容器2と同様に、その内部空間に網状部材7が設けられる略円筒形状の容器である。粉体分散容器33には、略円筒形状の軸線33a方向における一方の側に粉体原料から粉体3を生成する粉体生成装置からの粉体凝集物3bを含む粉体3の供給を受ける供給口部37が形成され、他方の側に粉体3を排出する排出口部35が形成される。   The powder dispersion container 33 of the powder dispersion device 31 of the present embodiment is a substantially cylindrical container in which the net-like member 7 is provided in the internal space, like the powder dispersion container 2 of the first embodiment described above. . The powder dispersion container 33 is supplied with the powder 3 including the powder agglomerate 3b from the powder generating device that generates the powder 3 from the powder raw material on one side in the direction of the substantially cylindrical axis 33a. A supply port portion 37 is formed, and a discharge port portion 35 for discharging the powder 3 is formed on the other side.

本実施形態の粉体分散装置31は、供給口部37が粉体分散容器33の上部に形成され、排出口部35が粉体分散容器33の下部に形成される。また粉体分散装置31は、供給口部37と排出口部35とが、供給口部37から排出口部35に向かう方向、すなわち粉体流下方向が鉛直方向下向きとなるように設けられる。これによって、供給口部37から供給される粉体凝集物3bを含む粉体3を、圧縮空気導入ノズルからの空気の圧送力だけでなく重力によっても網状部材7に向かう側に移動させることができるので、粉体流下方向が鉛直方向下向きでない場合に比べて網状部材7に対する粉体3の衝突力を大きくすることができる。   In the powder dispersion device 31 of this embodiment, the supply port portion 37 is formed in the upper part of the powder dispersion container 33, and the discharge port portion 35 is formed in the lower part of the powder dispersion container 33. The powder dispersing device 31 is provided such that the supply port portion 37 and the discharge port portion 35 are directed in the direction from the supply port portion 37 to the discharge port portion 35, that is, the powder flow direction is downward in the vertical direction. Thereby, the powder 3 including the powder aggregate 3b supplied from the supply port 37 can be moved to the side toward the mesh member 7 not only by the pressure of air from the compressed air introduction nozzle but also by gravity. Therefore, the collision force of the powder 3 against the mesh member 7 can be increased as compared with the case where the powder flow direction is not downward in the vertical direction.

粉体生成装置によって造粒される粉体3が供給される供給口部37には、前述の第1実施形態と同様に粉体供給手段が接続される。粉体供給手段の輸送管38は、粉体分散容器33内部に粉体3を供給するように、供給口部37を形成する。粉体生成装置からの粉体凝集物3bを含む粉体3は、供給口に挿通される輸送管38を介して供給口部37から粉体分散容器33内に供給される。   A powder supply means is connected to the supply port 37 to which the powder 3 granulated by the powder generating apparatus is supplied, as in the first embodiment. The transport pipe 38 of the powder supply means forms a supply port 37 so as to supply the powder 3 into the powder dispersion container 33. The powder 3 including the powder aggregate 3b from the powder generating device is supplied into the powder dispersion container 33 from the supply port portion 37 through the transport pipe 38 inserted through the supply port.

粉体分散容器33の内部空間には、衝突部材32が設けられる。衝突部材32は、粉体3の通過を阻止する粉体衝突面を有し、粉体分散容器33内の流路断面6aの一部領域に配置され、粉体3に含まれる粉体凝集物3bを衝突させて分散させる。このような衝突部材32としては、粉体衝突面が、粉体3の流下方向上流側に向けて先細状であり、かつ尖頭状に形成されることが好ましく、たとえば円錐形状、多角錐形状などの形状であることが好ましい。本実施形態では、衝突部材32は、供給口部37を臨む側に頂点を有する円錐形状の金属製部材であり、円錐の頂点を通る中心線32aと、円筒形状の粉体分散容器33の軸線33aとが一致するように配置される。図5においては、円錐の頂点を通る中心線32aと、円筒形状の粉体分散容器33の軸線33aとをずらして記載している。衝突部材32は、網状部材7の上に固定されて設けられる。   A collision member 32 is provided in the internal space of the powder dispersion container 33. The collision member 32 has a powder collision surface that prevents the passage of the powder 3, is disposed in a partial region of the flow path cross section 6 a in the powder dispersion container 33, and is a powder aggregate contained in the powder 3. 3b is collided and dispersed. As such a collision member 32, the powder collision surface is preferably tapered toward the upstream side in the flow direction of the powder 3 and has a pointed shape, for example, a cone shape or a polygonal cone shape. It is preferable that the shape is. In the present embodiment, the collision member 32 is a conical metal member having an apex on the side facing the supply port portion 37, and a center line 32 a passing through the apex of the cone and an axis of the cylindrical powder dispersion container 33. 33a is arranged so as to match. In FIG. 5, the center line 32 a passing through the apex of the cone is shifted from the axis 33 a of the cylindrical powder dispersion container 33. The collision member 32 is fixedly provided on the mesh member 7.

衝突部材32の粉体衝突面が、粉体3の流下方向上流側に向けて先細状であり、かつ尖頭状に形成されると、粉体分散容器33の上部に設けられる供給口部37から供給される粉体3が衝突部材32上に残留することがなく、かつ粉体凝集物3bを含む粉体3と衝突部材32とが衝突する面積を充分に確保することができるので、粉体凝集物3bを一層容易に分散させることができる。衝突部材32には排出口部35側の面である底部32bに台座が設けられてもよい。   When the powder collision surface of the collision member 32 is tapered toward the upstream side in the flow direction of the powder 3 and formed in a pointed shape, the supply port portion 37 provided at the upper portion of the powder dispersion container 33. Since the powder 3 supplied from the powder 3 does not remain on the collision member 32 and the area where the powder 3 containing the powder aggregate 3b collides with the collision member 32 can be secured sufficiently, The body aggregate 3b can be more easily dispersed. The impingement member 32 may be provided with a pedestal on a bottom portion 32b which is a surface on the discharge port portion 35 side.

衝突部材32として円錐形状または多角錐形状の部材を用いる場合、衝突部材32の底面もしくは台座の底面の面積は、衝突部材32の底面を含む仮想平面における粉体分散容器33の断面の面積に対して10%以上40%以下の大きさであることが好ましい。衝突部材32の底面の面積が10%未満であると、衝突部材32の大きさが粉体分散容器33に比べて小さくなり過ぎ、粉体凝集物3bを含む粉体3が衝突部材32に衝突しない可能性が高くなり、衝突部材32を設けることによって粉体凝集物3bを一層確実に分散させる効果が得られないおそれがある。衝突部材32の底面の面積が40%を超えると、衝突部材32に衝突して分散された粉体3が排出口部35側に移動するときに通路となる衝突部材32と粉体分散容器33の側壁との間の空間が小さくなり、粉体3に含まれる粒子3a同士の接触回数が増加して粉体3の再凝集が発生し、網状部材7への衝突だけでは充分に粉体3を分散させることができなくなるおそれがある。   When a conical or polygonal pyramid shaped member is used as the collision member 32, the area of the bottom surface of the collision member 32 or the base of the pedestal is relative to the area of the cross section of the powder dispersion container 33 in the virtual plane including the bottom surface of the collision member 32. The size is preferably 10% or more and 40% or less. When the area of the bottom surface of the collision member 32 is less than 10%, the size of the collision member 32 becomes too small compared to the powder dispersion container 33, and the powder 3 including the powder aggregate 3b collides with the collision member 32. There is a possibility that the effect of dispersing the powder aggregate 3b more reliably by providing the collision member 32 may not be obtained. When the area of the bottom surface of the collision member 32 exceeds 40%, the collision member 32 and the powder dispersion container 33 that become a passage when the powder 3 that collides with and collides with the collision member 32 moves to the discharge port 35 side. The space between the side walls of the powder 3 is reduced, the number of contact between the particles 3a contained in the powder 3 is increased, and re-aggregation of the powder 3 occurs. May not be able to be dispersed.

気体噴射手段34は、網状部材7よりも粉体流下方向上流側に設けられ、供給口部37から供給される粉体3に対して網状部材7に向かう方向と略平行に気体を噴射する。気体噴射手段34としては、たとえば、空気を噴射する噴射孔が形成される噴射ノズルと、圧縮空気を生成し、生成される圧縮空気を噴射ノズルに供給するポンプと、噴射ノズルとポンプとが接続される配管とを備える手段を用いることができる。   The gas injection means 34 is provided upstream of the mesh member 7 in the powder flow downward direction, and injects gas substantially parallel to the direction toward the mesh member 7 with respect to the powder 3 supplied from the supply port portion 37. As the gas injection means 34, for example, an injection nozzle in which an injection hole for injecting air is formed, a pump that generates compressed air and supplies the generated compressed air to the injection nozzle, and the injection nozzle and the pump are connected. Means comprising a pipe to be made can be used.

気体噴射手段34は、略円筒形状の粉体分散容器33の側壁33bに、輸送管38の粉体排出部38aよりも供給口部37寄りに設けられ、矢符39に示すように、粉体分散容器33の半径方向内方に気体を噴射する。気体噴射手段34から粉体分散容器33の半径方向内方に向かう方向に噴射された気体は、粉体分散容器33の内壁および輸送管38で反発されることによって、その流れが矢符40に示すように粉体分散容器33の内壁の延びる方向および輸送管38の延びる方向である網状部材7に向かう方向と略平行となる。このように、噴射された気体の流れが網状部材7および衝突部材32に向かう方向と略平行となることによって、輸送管38の粉体排出部38aから粉体分散容器33内に排出された粉体3を、気体噴射手段34から噴射される気体の風圧力によって網状部材7または衝突部材32に向かう方向に圧送することができる。   The gas injection means 34 is provided on the side wall 33 b of the substantially cylindrical powder dispersion container 33 closer to the supply port portion 37 than the powder discharge portion 38 a of the transport pipe 38. A gas is injected inward in the radial direction of the dispersion container 33. The gas injected from the gas injection means 34 in the direction toward the radially inward direction of the powder dispersion container 33 is repelled by the inner wall of the powder dispersion container 33 and the transport pipe 38, and the flow is changed to an arrow 40. As shown, it is substantially parallel to the direction of the inner wall of the powder dispersion container 33 and the direction toward the mesh member 7, which is the direction of extension of the transport pipe 38. Thus, the powder discharged from the powder discharge portion 38a of the transport pipe 38 into the powder dispersion container 33 by the flow of the injected gas being substantially parallel to the direction toward the mesh member 7 and the collision member 32. The body 3 can be pumped in the direction toward the mesh member 7 or the collision member 32 by the wind pressure of the gas ejected from the gas ejection means 34.

気体噴射手段34から噴射される気体の圧力としては、単位時間当りに供給される粉体3の重量、粉体分散容器33の容積などにもよるけれども、たとえば、毎時30kg以上50kg以下の粉体3を供給する場合、0.4MPa以上であることが好ましく、0.4MPa以上0.8MPa以下であることがさらに好ましい。気体噴射手段34から噴射される気体の圧力がこのような範囲であると、気体を噴射することによって粉体3に付与する風圧力を大きくすることができ、粉体3と網状部材7との衝突力および粉体3と衝突部材32との衝突力を増大させて粉体3に含まれる粉体凝集物3bを充分に分散させることができる。   The pressure of the gas injected from the gas injection means 34 depends on, for example, the weight of the powder 3 supplied per unit time and the volume of the powder dispersion container 33. 3 is preferably 0.4 MPa or more, more preferably 0.4 MPa or more and 0.8 MPa or less. When the pressure of the gas injected from the gas injection means 34 is in such a range, the wind pressure applied to the powder 3 can be increased by injecting the gas. By increasing the collision force and the collision force between the powder 3 and the collision member 32, the powder aggregate 3b contained in the powder 3 can be sufficiently dispersed.

圧力が0.4MPa未満であると、気体を噴射することによって粉体3に付与される風圧力が小さく、粉体3と網状部材7との衝突力および粉体3と衝突部材32との衝突力が小さくなるので、粉体3に含まれる粉体凝集物3bを充分に分散できなくなるおそれがある。圧力が0.8MPaを超えると、粉体3が一部分に集合しやすくなり、網状部材7の目開き部分に目詰まりが生じるおそれがある。   When the pressure is less than 0.4 MPa, the wind pressure applied to the powder 3 by jetting the gas is small, the collision force between the powder 3 and the mesh member 7 and the collision between the powder 3 and the collision member 32. Since the force becomes small, there is a possibility that the powder aggregate 3b contained in the powder 3 cannot be sufficiently dispersed. When the pressure exceeds 0.8 MPa, the powder 3 is likely to gather in a part, and there is a possibility that clogging may occur in the opening portion of the mesh member 7.

本実施形態の粉体分散装置31によれば、前述の第1実施形態と同様に、供給口部37から供給される粉体3を網状部材7に衝突させ、粉体3に含まれる粉体凝集物3bを分散させることができる。さらに本実施形態では、衝突部材32が設けられることによって、供給口部37から排出口部35に流下する粉体3に含まれる粉体凝集物3bを、衝突部材32の粉体衝突面に衝突させて分散させることができる。このような粉体衝突面を有する衝突部材32が設けられると、網状部材7に衝突せず、網状部材7の目開き部分を通り抜ける程度に小さい粉体凝集物3bについても、衝突部材32の粉体衝突面に衝突させて分散させることができるので、粉体3に含まれる粉体凝集物3bの量を一層低減することができる。   According to the powder dispersion device 31 of the present embodiment, the powder 3 contained in the powder 3 is caused to collide with the mesh member 7 with the powder 3 supplied from the supply port portion 37 as in the first embodiment. Aggregate 3b can be dispersed. Furthermore, in this embodiment, by providing the collision member 32, the powder aggregate 3 b included in the powder 3 flowing down from the supply port portion 37 to the discharge port portion 35 collides with the powder collision surface of the collision member 32. Can be dispersed. When the collision member 32 having such a powder collision surface is provided, the powder agglomerate 3b that does not collide with the mesh member 7 and is small enough to pass through the opening portion of the mesh member 7 is also used. Since it can be made to collide and disperse | distribute to a body collision surface, the quantity of the powder aggregate 3b contained in the powder 3 can be reduced further.

また増速手段として気体を噴射する気体噴射手段34を用いることによって、供給口部37から供給される粉体凝集物3bを含む粉体3に対して気体噴射手段34から気体を噴射し、粉体分散容器33内での粉体3の流下速度を増加させることができる。これによって、粉体分散容器33内に設けられる網状部材7および衝突部材32に対する粉体3の衝突力を増大させることができ、粉体3に含まれる粉体凝集物3bを一層確実に分散させることができる。さらに増速手段として粉体3に対して気体を噴射する気体噴射手段34が用いられると、粉体3の流下速度を増加することができるとともに、風圧力によって粉体分散容器33内における粉体3に含まれる粒子3a同士の接触を防止することができるので、粉体3中の粒子3a同士が粉体分散容器33内で凝集することを防止できる。   Moreover, by using the gas injection means 34 which injects gas as a speed-increasing means, gas is injected from the gas injection means 34 with respect to the powder 3 containing the powder aggregate 3b supplied from the supply port part 37, and powder The flow speed of the powder 3 in the body dispersion container 33 can be increased. Thereby, the collision force of the powder 3 against the mesh member 7 and the collision member 32 provided in the powder dispersion container 33 can be increased, and the powder aggregate 3b contained in the powder 3 can be more reliably dispersed. be able to. Further, when the gas injection means 34 for injecting gas to the powder 3 is used as the speed increasing means, the flow speed of the powder 3 can be increased and the powder in the powder dispersion container 33 can be increased by the wind pressure. 3 can be prevented from contacting with each other, so that the particles 3 a in the powder 3 can be prevented from aggregating in the powder dispersion container 33.

また本実施形態の粉体分散装置31は、前述のように排出口を形成する排出口部35が、分級装置10の投入口部36に装着されるので、排出口部35から排出される粉体分散装置31で分散させた直後の極めて良好な分散状態にある粉体3を、投入口部36から分級装置10内に迅速に導入することができる。したがって、粉体分散装置31で粉体3が分散された後、該分散された粉体3が放置されて分離すべき粉体3が再度凝集することを防止できるので、分級精度の向上を図ることができる。また単位時間当りの粉体投入量をさらに増加させることができるので、トナーの製造効率を一層向上させることができる。   Further, in the powder dispersion device 31 of the present embodiment, since the discharge port portion 35 that forms the discharge port is attached to the input port portion 36 of the classifier 10 as described above, the powder discharged from the discharge port portion 35 The powder 3 in a very good dispersed state immediately after being dispersed by the body dispersing device 31 can be quickly introduced into the classifying device 10 from the inlet 36. Therefore, after the powder 3 is dispersed by the powder dispersion device 31, it is possible to prevent the dispersed powder 3 from being left to stand and separate again, so that the classification accuracy can be improved. be able to. Further, since the amount of powder input per unit time can be further increased, the toner production efficiency can be further improved.

このような粉体分散装置31についても、上記の構成に限定されることなく、種々の変更が可能である。たとえば、気体噴射手段34は、前述のように、粉体分散容器33の中心に向かう方向に気体を噴射し、粉体分散容器33の内壁および輸送管38で反発させることによって粉体流下方向と略平行に気体の流れが変化するように気体を噴射する手段に限定されることなく、粉体分散容器33の内壁および輸送管38で反発させずに、粉体流下方向と略平行に気体を直接噴射する手段であってもよい。   Such a powder dispersion device 31 is not limited to the above-described configuration, and various modifications can be made. For example, as described above, the gas injection means 34 injects gas in the direction toward the center of the powder dispersion container 33 and repels it by the inner wall of the powder dispersion container 33 and the transport pipe 38 so that the powder flow direction is reduced. Without being limited to means for injecting the gas so that the gas flow changes substantially in parallel, the gas is not substantially repelled by the inner wall of the powder dispersion container 33 and the transport pipe 38, but the gas is substantially parallel to the powder flow downward direction. It may be a means for direct injection.

粉体分散容器33の内壁および輸送管38で反発させずに、粉体流下方向と略平行に気体を噴射する手段を用いる場合、たとえば粉体分散容器33の上面部材の供給口部37の周囲に気体噴射手段の噴射ノズルを設ける。このとき、略円筒形状の粉体分散容器33の半径方向における気体の風圧力が、粉体分散容器33内において均一になるように、気体噴射手段の噴射ノズルは供給口部37の周囲に等間隔で複数設けられることが好ましい。   When using means for injecting gas substantially parallel to the powder flow down direction without repelling the inner wall of the powder dispersion container 33 and the transport pipe 38, for example, around the supply port 37 of the upper surface member of the powder dispersion container 33 Is provided with an injection nozzle of gas injection means. At this time, the injection nozzle of the gas injection means is arranged around the supply port 37 so that the gas wind pressure in the radial direction of the substantially cylindrical powder dispersion container 33 is uniform in the powder dispersion container 33. It is preferable that a plurality are provided at intervals.

本実施形態の粉体分散容器33の内壁および輸送管38で反発させることによって網状部材7に向かう方向と略平行となるように気体の流れが変化するように気体を噴射する気体噴射手段34は、粉体分散容器33の内壁および輸送管38での反発によって粉体分散容器33内における気体の風圧力が均一になるので、複数の噴射ノズルを設ける必要がなく好ましい。   The gas injection means 34 for injecting gas so that the gas flow changes so as to be substantially parallel to the direction toward the mesh member 7 by repelling the inner wall of the powder dispersion container 33 and the transport pipe 38 of the present embodiment. Since the gas wind pressure in the powder dispersion container 33 becomes uniform due to repulsion in the inner wall of the powder dispersion container 33 and the transport pipe 38, it is preferable that a plurality of injection nozzles need not be provided.

また気体噴射手段34は、粉体流下方向と平行に気体を噴射する手段に限定されることなく、二点鎖線で示すように配置され、供給口から供給される粉体3に対して衝突部材32に向う方向に気体を噴射する噴射ノズル41を有する気体噴射手段であってもよい。   Further, the gas injection means 34 is not limited to the means for injecting gas in parallel with the powder flow downward direction, and is arranged as shown by a two-dot chain line to collide with the powder 3 supplied from the supply port. Gas injection means having an injection nozzle 41 that injects gas in a direction toward 32 may be used.

二点鎖線で示す気体噴射手段の噴射ノズル41は、粉体分散容器33の側壁に設けられる噴射ノズルであって、供給口部37から供給される粉体3に対して衝突部材32に向う方向である矢符42方向に気体を噴射する。噴射ノズル41は、分散させるべき粉体3の単位時間当りの供給量、粉体分散容器33の大きさなどに応じて、複数個が適宜設けられる。   The injection nozzle 41 of the gas injection means indicated by a two-dot chain line is an injection nozzle provided on the side wall of the powder dispersion container 33, and is directed to the collision member 32 with respect to the powder 3 supplied from the supply port portion 37. The gas is jetted in the direction of the arrow 42. A plurality of spray nozzles 41 are appropriately provided according to the supply amount of the powder 3 to be dispersed per unit time, the size of the powder dispersion container 33, and the like.

たとえば、噴射ノズル41は図示しない噴射ノズルも含めて6個が設けられ、各噴射ノズル41は粉体分散容器33の円周方向に等間隔で配置される。また、噴射ノズル41は、噴射ノズル41に形成される噴射孔が網状部材7および衝突部材32よりも供給口部37側に配置されるように設けられる。これによって供給口部37から供給される粉体3に対して衝突部材32よりも上方から衝突部材32に向う方向に圧縮空気を噴射する。   For example, six injection nozzles 41 including an injection nozzle (not shown) are provided, and each injection nozzle 41 is arranged at equal intervals in the circumferential direction of the powder dispersion container 33. The injection nozzle 41 is provided such that the injection holes formed in the injection nozzle 41 are arranged closer to the supply port 37 than the mesh member 7 and the collision member 32. As a result, compressed air is injected in the direction from the upper side of the collision member 32 toward the collision member 32 with respect to the powder 3 supplied from the supply port portion 37.

噴射ノズル41から噴射される気体の圧力としては、単位時間当りに供給される粉体3の重量、粉体分散容器33の容積などにもよるけれども、たとえば、毎時30kg以上50kg以下の粉体3を供給する場合、0.4MPa以上0.8MPa以下であることが好ましい。圧力が0.4MPa未満であると、気体を噴射することによって粉体3に付与される風圧力が小さく、粉体3と衝突部材32との衝突力が小さくなるので、粉体3に含まれる粉体凝集物3bを一層確実に分散させる効果が得られなくなるおそれがある。圧力が0.8MPaを超えると、粉体分散容器33に導入される粉体3が粉体分散容器33の中央付近に圧送されて集合することによって新たな粉体3の凝集を招くおそれがある。   Although the pressure of the gas injected from the injection nozzle 41 depends on the weight of the powder 3 supplied per unit time, the volume of the powder dispersion container 33, etc., for example, the powder 3 of 30 kg or more and 50 kg or less per hour. Is preferably 0.4 MPa or more and 0.8 MPa or less. When the pressure is less than 0.4 MPa, the wind pressure applied to the powder 3 by jetting the gas is small, and the collision force between the powder 3 and the collision member 32 is small. There is a possibility that the effect of further reliably dispersing the powder aggregate 3b cannot be obtained. When the pressure exceeds 0.8 MPa, the powder 3 introduced into the powder dispersion container 33 may be pumped and gathered near the center of the powder dispersion container 33 to cause aggregation of new powder 3. .

また粉体分散容器内で粉体3の流下速度を増加させる増速手段として用いることはできないけれども、噴射ノズル41からの気体噴射方向42を、たとえば、粉体分散容器33の中央部付近に向う水平方向などに設定してもよい。このような方向に気体が噴射されることによって、粉体3を一層確実に衝突部材32に衝突させることができる。   Further, although it cannot be used as a speed increasing means for increasing the flow speed of the powder 3 in the powder dispersion container, the gas injection direction 42 from the injection nozzle 41 is directed, for example, to the vicinity of the center of the powder dispersion container 33. It may be set in the horizontal direction. By injecting the gas in such a direction, the powder 3 can be made to collide with the collision member 32 more reliably.

また粉体分散容器内で粉体3の流下速度を増加させる増速手段として用いるとともに、粉体3を一層確実に衝突部材32に衝突させるために、粉体3の流下方向が鉛直下向きである場合、水平方向よりも鉛直方向下方に傾斜されて気体が噴射する気体噴射手段を用いることも好ましい。   In addition, it is used as a speed increasing means for increasing the flow speed of the powder 3 in the powder dispersion container, and in order to make the powder 3 collide with the collision member 32 more reliably, the flow direction of the powder 3 is vertically downward. In this case, it is also preferable to use gas injection means that injects gas by being inclined downward in the vertical direction than in the horizontal direction.

粉体3に対して衝突部材32に向う方向に気体を噴射する噴射ノズル41を含む気体噴射手段が設けられると、粉体3の衝突部材32に向かう流下速度を増大させることができ、粉体3と衝突部材32との衝突力を増大させることができる。これによって、粉体3に含まれる粉体凝集物3bを一層容易に分散させることができる。また衝突部材32と衝突されなかった粉体3については、網状部材7の線状体11と衝突させることによって、分散させることができる。   If gas injection means including an injection nozzle 41 that injects gas in the direction toward the collision member 32 with respect to the powder 3 is provided, the flow speed of the powder 3 toward the collision member 32 can be increased, and the powder 3 and the collision force of the collision member 32 can be increased. Thereby, the powder aggregate 3b contained in the powder 3 can be more easily dispersed. The powder 3 that has not collided with the collision member 32 can be dispersed by colliding with the linear body 11 of the mesh member 7.

以上のような粉体分散装置を含む粉体処理設備は、前述のように、たとえばトナーの製造方法などに好ましく用いられる。本発明の粉体分散装置を含む粉体処理設備を用いて製造されるトナーは、たとえば、電子写真法による画像形成に用いられる。   As described above, the powder processing equipment including the powder dispersing apparatus as described above is preferably used for, for example, a toner manufacturing method. The toner manufactured using the powder processing equipment including the powder dispersing apparatus of the present invention is used for image formation by electrophotography, for example.

電子写真法による画像形成は、導電性支持体の表面に光導電性物質を含む感光層が形成される電子写真感光体(以後、感光体とも称する)を用い、帯電工程、露光工程、現像工程、転写工程、定着工程、クリーニング工程および除電工程などの工程を経て行なわれる。帯電工程では、感光体の表面を均一に帯電する。露光工程では、帯電した感光体を露光して感光体の表面に静電荷像を形成する。現像工程では、感光体表面に形成された静電荷像をトナーで現像することによってトナー像を形成する。転写工程では、トナーと逆極性の電荷を記録媒体に付与してトナー像を記録媒体に転写させる。定着工程では、加熱および加圧などによって記録媒体に転写された可視像を定着する。クリーニング工程では、記録媒体に転写されずに感光体の表面に残ったトナーを回収して感光体を清浄化する。除電工程では、感光体を除電する。以上のような工程によって、記録媒体に画像が形成される。   Image formation by electrophotography uses an electrophotographic photosensitive member (hereinafter also referred to as a photosensitive member) in which a photosensitive layer containing a photoconductive substance is formed on the surface of a conductive support, and is charged, exposed, and developed. The transfer process, the fixing process, the cleaning process, and the charge eliminating process are performed. In the charging step, the surface of the photoreceptor is uniformly charged. In the exposure step, the charged photoconductor is exposed to form an electrostatic image on the surface of the photoconductor. In the development step, a toner image is formed by developing the electrostatic image formed on the surface of the photoreceptor with toner. In the transfer step, the toner image is transferred to the recording medium by applying a charge having a polarity opposite to that of the toner to the recording medium. In the fixing step, the visible image transferred to the recording medium is fixed by heating and pressing. In the cleaning step, the toner remaining on the surface of the photoconductor without being transferred to the recording medium is collected to clean the photoconductor. In the charge removal process, the photosensitive member is discharged. An image is formed on the recording medium by the process described above.

このようにして画像を形成するトナーの製造方法は、大略、結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、本発明の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含む。   The toner manufacturing method for forming an image in this manner generally includes a powder generation process for generating a resin powder containing a binder resin and a colorant, and a powder generation process using the powder processing equipment of the present invention. A powder processing step of processing the resin powder produced in the step to obtain a toner.

粉体生成工程は、たとえば、結着樹脂および着色剤を溶融混練する溶融混練工程と、溶融混練工程で得られる溶融混練物を粉砕し、樹脂粉体を生成する粉砕工程とを含む。粉体処理工程は、粉体生成工程で得られる樹脂粉体を粉体処理設備に含まれる分散装置によって分散する分散工程と、分散工程で分散される樹脂粉体を粉体処理設備に含まれる分級装置などの分離装置で分離し、トナーを得る分離工程とを含む。本実施形態では、樹脂粉体の分離は粒径の違いによって行なう。したがって分離工程および分離装置を分級工程および分級装置とそれぞれ呼ぶことがある。   The powder production step includes, for example, a melt-kneading step in which the binder resin and the colorant are melt-kneaded, and a pulverizing step in which the melt-kneaded product obtained in the melt-kneading step is crushed to produce resin powder. The powder processing step includes a dispersion step in which the resin powder obtained in the powder generation step is dispersed by a dispersion device included in the powder processing facility, and a resin powder dispersed in the dispersion step is included in the powder processing facility. Separating with a separating device such as a classification device to obtain toner. In the present embodiment, the resin powder is separated based on the difference in particle size. Therefore, the separation step and the separation device may be referred to as a classification step and a classification device, respectively.

まず、トナーの構成材料について説明する。トナーは、少なくとも結着樹脂および着色剤を含む。結着樹脂は、それ自身では成型できない着色剤を結着樹脂中に分散させて成型するための樹脂である。着色剤は、有機または無機顔料もしくは染料などの色材である。   First, constituent materials of the toner will be described. The toner contains at least a binder resin and a colorant. The binder resin is a resin for molding by dispersing a colorant that cannot be molded by itself in the binder resin. The colorant is a colorant such as an organic or inorganic pigment or dye.

結着樹脂としては、たとえば、ポリエステル樹脂、エポキシ樹脂、シリコーン樹脂、ポリスチレン、ポリアミド樹脂、ポリウレタン樹脂、アクリル樹脂などを用いることができる。これらの樹脂は単独で用いられてもよく、2種以上が併用されてもよい。   As the binder resin, for example, polyester resin, epoxy resin, silicone resin, polystyrene, polyamide resin, polyurethane resin, acrylic resin, or the like can be used. These resins may be used alone or in combination of two or more.

着色剤としては、たとえば、カーボンブラック、鉄黒、ニグロシン、ベンジジンブルー、キナクリドン、ローダミンB、フタロシアニンブルーなどが挙げられる。着色剤は、結着樹脂100重量部に対して3重量部以上12重量部以下の割合で含まれることが好ましい。着色剤の使用割合が上記範囲に含まれると、充分な着色力を有するトナーを得ることができる。着色剤の使用割合が3重量部未満であると、充分な着色力が得られず、所望の画像濃度を有する画像を形成するのに要するトナー量が増加し、トナーの消費量が増大するおそれがある。着色剤の使用割合が12重量部を超えると、樹脂混練物中における着色剤の分散性が低下し、均一な着色力を有するトナーが得られないおそれがある。   Examples of the colorant include carbon black, iron black, nigrosine, benzidine blue, quinacridone, rhodamine B, and phthalocyanine blue. The colorant is preferably contained in a proportion of 3 parts by weight to 12 parts by weight with respect to 100 parts by weight of the binder resin. When the use ratio of the colorant is within the above range, a toner having sufficient coloring power can be obtained. If the ratio of the colorant used is less than 3 parts by weight, sufficient coloring power cannot be obtained, the amount of toner required to form an image having a desired image density increases, and the toner consumption may increase. There is. When the ratio of the colorant used exceeds 12 parts by weight, the dispersibility of the colorant in the resin kneaded product is lowered, and there is a possibility that a toner having a uniform coloring power cannot be obtained.

結着樹脂および着色剤以外にも、オフセット防止効果を高める目的で一般的な離型剤であるワックスを用いることが好ましい。ワックスとしては、たとえば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−酢酸ビニル共重合体、エチレン−エチレンアクリレート共重合体などが挙げられる。これらは単独で使用しても、あるいは2種以上を併用してもよい。ワックスの配合量は特に限定されないけれども、結着樹脂100重量部に対して2重量部以上8重量部以下の割合で含まれることが好ましい。ワックスの使用割合が2重量部未満であると、高温オフセットが発生するおそれがある。ワックスの使用割合が8重量部を超えると、感光体表面にトナーが付着して薄い膜を形成するフィルミングを発生するおそれがある。   In addition to the binder resin and the colorant, it is preferable to use a wax that is a general release agent for the purpose of enhancing the offset prevention effect. Examples of the wax include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, and ethylene-ethylene acrylate copolymer. These may be used alone or in combination of two or more. The blending amount of the wax is not particularly limited, but is preferably included in a ratio of 2 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the binder resin. If the use ratio of the wax is less than 2 parts by weight, high temperature offset may occur. When the proportion of the wax used exceeds 8 parts by weight, there is a possibility that filming occurs in which the toner adheres to the surface of the photoreceptor and forms a thin film.

またトナーには、結着樹脂、着色剤、ワックスのほかに、好ましい特性を損なわない範囲で帯電制御剤などの添加剤を含有してもよい。帯電制御剤の添加によって、トナーの摩擦帯電量を好適にすることができる。帯電制御剤としては、たとえば、モノアゾ染料の金属錯塩、ニトロフミン酸およびその塩、サリチル酸、ナフトエ酸およびジカルボン酸のコバルト、クロム、鉄などの金属錯体アミノ化合物、第4級アンモニウム化合物などが挙げられ、これらを単独で、もしくは2種以上を併用して使用することができる。帯電制御剤の配合量は特に限定されないけれども、結着樹脂100重量部に対して、0.05重量部以上10重量部以下である。帯電制御剤がこのような範囲で含まれることによって、環境変動によるトナーの帯電量変化を防止する帯電量安定制御を行うことができる。帯電制御剤が0.05重量部未満であると、トナーに帯電安定性を付与することができないおそれがある。また帯電制御剤が10重量部を超えると、帯電制御剤を結着樹脂中に均一に分散させることが困難になるおそれがある。   In addition to the binder resin, the colorant, and the wax, the toner may contain an additive such as a charge control agent as long as preferable characteristics are not impaired. By adding the charge control agent, the triboelectric charge amount of the toner can be made suitable. Examples of the charge control agent include metal complex salts of monoazo dyes, nitrohumic acid and its salts, metal complexes of salicylic acid, naphthoic acid and dicarboxylic acid such as cobalt, chromium and iron, quaternary ammonium compounds, and the like. These can be used alone or in combination of two or more. The blending amount of the charge control agent is not particularly limited, but is 0.05 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the binder resin. By including the charge control agent in such a range, it is possible to perform charge amount stability control that prevents changes in the toner charge amount due to environmental fluctuations. If the charge control agent is less than 0.05 parts by weight, it may not be possible to impart charge stability to the toner. If the charge control agent exceeds 10 parts by weight, it may be difficult to uniformly disperse the charge control agent in the binder resin.

またトナーを1成分系の磁性トナーとして用いる場合、原料に磁性粉を含有させる。磁性粉としては、磁場の中に置かれて磁化される物質を用いることができ、たとえば、鉄、コバルト、ニッケルなどの強磁性金属の粉末、マグネタイト、鉄以外の金属元素を含むフェライトの粉末などが挙げられる。磁性粉は、結着樹脂100重量部に対して40重量部以上150重量部以下の割合で含まれることが好ましい。なお、トナーを2成分系の現像剤として用いる場合には磁性粉は含有されない。   When the toner is used as a one-component magnetic toner, the raw material contains magnetic powder. As the magnetic powder, a substance that is magnetized by being placed in a magnetic field can be used. For example, a powder of ferromagnetic metal such as iron, cobalt, nickel, etc., a powder of ferrite containing a metal element other than iron, cobalt, etc. Is mentioned. The magnetic powder is preferably contained in a proportion of 40 to 150 parts by weight with respect to 100 parts by weight of the binder resin. When toner is used as a two-component developer, no magnetic powder is contained.

以上のような結着樹脂および着色剤と、必要に応じて添加されるワックス、帯電制御剤などとを含む原料を、溶融混練する溶融混練工程を行なう。溶融混練工程では、結着樹脂を溶融または軟化させ(以後、溶融も含めて軟化と称する)、軟化する結着樹脂中に結着樹脂以外の原料を分散させる。   A melt-kneading step of melt-kneading a raw material containing the binder resin and colorant as described above and a wax, a charge control agent and the like added as necessary is performed. In the melt-kneading step, the binder resin is melted or softened (hereinafter referred to as softening including melting), and raw materials other than the binder resin are dispersed in the softened binder resin.

溶融混練工程を行なう前に、結着樹脂および着色剤と、必要に応じて添加されるワックス、帯電制御剤などとを含む原料を、混合装置を用いて予備的に混合してもよい。混合装置としては特に限定されるものではなく、たとえば、ダブルコンミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサーなどの高速攪拌型混合装置が挙げられる。混合された原料混合物は、溶融混練工程にて溶融混練される。   Prior to performing the melt-kneading step, a raw material containing a binder resin and a colorant and, if necessary, a wax, a charge control agent and the like may be preliminarily mixed using a mixing device. The mixing device is not particularly limited, and examples thereof include high-speed stirring mixing devices such as a double-con mixer, a V-type mixer, a drum-type mixer, a super mixer, a Henschel mixer, and a Nauter mixer. The mixed raw material mixture is melt-kneaded in a melt-kneading step.

溶融混練工程に用いられる装置としては、特に限定されるものではなく、たとえば、二軸押出機、三本ロール、ラボブラストミルなどの一般的な混練機、TEM−100B(商品名、東芝機械株式会社製)、PCM−30、PCM−65/87(以上いずれも商品名、株式会社池貝製)などの1軸または2軸のエクストルーダー、ニーデックス(商品名、三井鉱山株式会社製)などのオープンロール方式の混練機などが挙げられる
次いで、溶融混練工程で得られる溶融混練物を粉砕し、樹脂粉体を生成する粉砕工程を行なう。粉砕工程では、まず、クラッシャー、ハンマーミル、フェザーミルなどを用いて、溶融混練工程で得られる溶融混練物を100μmから5mm程度の粗粉砕物に粗粉砕する。そして、超音速ジェット気流を利用して粉砕するジェット式粉砕機、高速で回転する回転子(ロータ)と固定子(ライナー)との間に形成される空間に粗粉砕物を導入して粉砕する衝撃式粉砕機などを用いて、粗粉砕物を所望の粒径、たとえば8μm以下にまで粉砕する。
The apparatus used in the melt-kneading step is not particularly limited, and examples thereof include general kneaders such as a twin-screw extruder, three-roll, lab blast mill, TEM-100B (trade name, Toshiba Machine Co., Ltd.). 1-axis or 2-axis extruder such as PCM-30, PCM-30 / PCM-65 / 87 (all of which are trade names, manufactured by Ikegai Co., Ltd.), Needex (trade name, manufactured by Mitsui Mining Co., Ltd.), etc. Examples thereof include an open roll type kneader. Next, a melt kneaded product obtained in the melt kneading step is pulverized to perform a pulverizing step for producing a resin powder. In the pulverization step, first, the melt-kneaded product obtained in the melt-kneading step is roughly pulverized into a coarsely pulverized product of about 100 μm to 5 mm using a crusher, a hammer mill, a feather mill or the like. Then, a jet type pulverizer that uses a supersonic jet stream to pulverize, and pulverizes a coarsely pulverized material introduced into a space formed between a rotor (rotor) and a stator (liner) that rotate at high speed. The coarsely pulverized product is pulverized to a desired particle size, for example, 8 μm or less, using an impact pulverizer or the like.

粉体生成工程は、以上のような溶融混練工程および粉砕工程を含む工程から樹脂粉体を生成する工程に限定されない。粉体生成工程では、たとえば、懸濁重合法、乳化重合法などの湿式法を用いる工程を経て樹脂粉体が生成されてもよい。粉体生成工程によって生成される樹脂粉体は、樹脂粉体を構成する粒子同士の静電気力、分子間力などの付着力によって、粉体凝集物を発生する。またカラートナーを製造する場合、結着樹脂として透光性および光沢性を有する樹脂を用いることが必須であり、透光性および光沢性を有する樹脂として、たとえばポリエステル樹脂などの軟化点の低い結着樹脂が用いられる。軟化点の低い結着樹脂を用いると、トナー粒子同士の摩擦で発生する摩擦熱によって結着樹脂が軟化し、トナー粒子同士が付着しやすくなり、さらに粉体凝集物が発生しやすくなる。   The powder generation step is not limited to the step of generating resin powder from the steps including the melt kneading step and the pulverization step as described above. In the powder production step, for example, the resin powder may be produced through a step using a wet method such as a suspension polymerization method or an emulsion polymerization method. The resin powder produced by the powder production process generates powder aggregates due to adhesion forces such as electrostatic force and intermolecular force between particles constituting the resin powder. In the case of manufacturing a color toner, it is essential to use a resin having translucency and gloss as a binder resin. As a resin having translucency and gloss, for example, a binder having a low softening point such as a polyester resin is used. A resin is used. When a binder resin having a low softening point is used, the binder resin is softened by frictional heat generated by friction between toner particles, the toner particles are easily adhered to each other, and powder agglomerates are easily generated.

本発明のトナーの製造方法では、このような樹脂粉体中に含まれる粉体凝集物を分散させるために、本発明の粉体処理設備に含まれる粉体分散装置によって粉体中に含まれる粉体凝集物を分散させる分散工程を行なう。   In the toner production method of the present invention, in order to disperse the powder agglomerates contained in such a resin powder, it is contained in the powder by the powder dispersing apparatus included in the powder processing facility of the present invention. A dispersion step of dispersing the powder aggregate is performed.

本発明の粉体分散装置によって粉体中に含まれる粉体凝集物が分散されると、粉体処理設備に含まれる分級装置によって粉体をその粒径の違いによって分級する分級工程を分散工程と連続的に行なう。分級工程では、所望の粒径範囲に含まれる粒子群が得られるまで、分散工程を含む同じサイクルが繰返し実行される。このようにして、所望の粒径範囲に含まれる粒子群から構成されるトナーを得ることができる。   When the powder agglomerate contained in the powder is dispersed by the powder dispersion device of the present invention, the classification step of classifying the powder by the difference in particle size by the classification device included in the powder processing facility is the dispersion step And continuously. In the classification step, the same cycle including the dispersion step is repeatedly executed until a particle group included in a desired particle size range is obtained. In this way, a toner composed of a particle group included in a desired particle size range can be obtained.

上記の分散工程および分級工程を含む粉体処理工程を経て得られるトナーは、体積平均粒径が5.0μm以上8.0μm以下であるものが好ましい。トナーの体積平均粒径がこのような範囲であると、高精細な画像を長期にわたって安定して形成することができる。トナーの体積平均粒径が5.0μm未満であると、トナー粒径が小さくなり過ぎ、高帯電化、現像剤の低流動化が起こり、感光体にトナーを安定して供給することができないので、画像かぶり、画像濃度の低下などを引起こすおそれがある。トナーの体積平均粒径が8.0μmを超えると、トナーの粒径が大きいので、高精細な画像を得ることができず、またトナーの帯電量が小さくなることによってトナーの感光体への供給安定性を失い、トナー飛散による機内汚染が発生するおそれがある。   The toner obtained through the powder treatment step including the dispersion step and the classification step preferably has a volume average particle size of 5.0 μm or more and 8.0 μm or less. When the volume average particle diameter of the toner is in such a range, a high-definition image can be stably formed over a long period of time. If the volume average particle size of the toner is less than 5.0 μm, the toner particle size becomes too small, and high charging and low developer flow occur, and the toner cannot be stably supplied to the photoreceptor. There is a risk of causing image fogging and a decrease in image density. When the volume average particle diameter of the toner exceeds 8.0 μm, since the toner particle diameter is large, a high-definition image cannot be obtained, and the toner charge amount is reduced, so that the toner is supplied to the photoreceptor. It may lose stability and cause in-machine contamination due to toner scattering.

また上記のような体積平均粒径であるトナーの中でも、粒径が4.00μm以下の粒子の含有率が30個数%未満であることが好ましい。また粒径が4.00μm以下の粒子の含有率が30個数%未満であり、かつ3.17μm以下の粒子の含有率が20個数%未満であるものがさらに好ましい。このような所望の粒径よりも小さい粒径の粒子である微粉の含有率が低いトナーは、粒子の凝集を生じにくく、帯電性能にばらつきが少ないので、感光体に安定してトナーを供給することができる。粒径が4μm以下の粒子の含有率が30個数%以上であると、微粉の含有率が高くなり、高帯電化、現像剤の低流動化が起こり、感光体にトナーを安定して供給することができないので、画像かぶり、画像濃度の低下などを引起こすおそれがある。粒径が3.17μm以下の粒子の含有率が20個数%以上である場合においても、高帯電化、現像剤の低流動化の問題が生じるおそれがある。   Among the toners having the volume average particle diameter as described above, the content ratio of particles having a particle diameter of 4.00 μm or less is preferably less than 30% by number. More preferably, the content of particles having a particle size of 4.00 μm or less is less than 30% by number and the content of particles having a particle size of 3.17 μm or less is less than 20% by number. A toner having a low content of fine powder, which is a particle having a particle size smaller than a desired particle size, is less likely to cause aggregation of the particles and has little variation in charging performance. Therefore, the toner can be stably supplied to the photoreceptor. be able to. When the content of particles having a particle size of 4 μm or less is 30% by number or more, the content of fine powder increases, and high charging and low developer flow occur, and toner is stably supplied to the photoreceptor. Therefore, there is a risk of causing image fogging and a decrease in image density. Even when the content of particles having a particle size of 3.17 μm or less is 20% by number or more, there is a possibility that problems of high charge and low developer flow may occur.

このようにして得られたトナーに、たとえば、粉体流動性向上、摩擦帯電性向上、耐熱性、長期保存性改善、クリーニング特性改善、感光体表面磨耗特性制御などの機能を担う外添剤を混合してもよい。外添剤としては、たとえば、シリカ微粉末、酸化チタン微粉末、アルミナ微粉末などが挙げられる。外添剤の添加量としては、トナーに必要な帯電量、外添剤を添加することによる感光体の摩耗に対する影響、トナーの環境特性などを考慮して、トナー100重量部に対し1重量部以下が好適である。   For example, external additives responsible for functions such as powder flowability improvement, triboelectric chargeability improvement, heat resistance, long-term storage stability improvement, cleaning property improvement, and photoreceptor surface wear property control are added to the toner thus obtained. You may mix. Examples of the external additive include silica fine powder, titanium oxide fine powder, and alumina fine powder. The amount of the external additive added is 1 part by weight with respect to 100 parts by weight of the toner in consideration of the charge amount necessary for the toner, the influence on the abrasion of the photoreceptor due to the addition of the external additive, and the environmental characteristics of the toner. The following are preferred.

以上のようにして製造されるトナーは、そのままで1成分系の現像剤として用いることができるけれども、さらにトナーにキャリアを混合し、2成分系の現像剤としてもよい。2成分系の現像剤に用いられるキャリアとしては、たとえば、鉄粉、フェライト粉、ニッケル粉、磁性分含有樹脂キャリアなどの磁性を有する粉体およびガラスビーズなど、ならびにこれらの表面を樹脂などで被覆したものが挙げられる。磁性を有する粉体の被覆に使用できる樹脂としては、たとえば、シリコーン樹脂、アクリル樹脂、スチレン樹脂、フッ素樹脂などが挙げられる。   The toner produced as described above can be used as it is as a one-component developer as it is, but a carrier may be further mixed with the toner to form a two-component developer. Carriers used in two-component developers include, for example, iron powder, ferrite powder, nickel powder, magnetic powders such as resin carrier containing magnetic content, glass beads, etc., and their surfaces are coated with resin, etc. The thing which was done is mentioned. Examples of the resin that can be used for coating the magnetic powder include silicone resin, acrylic resin, styrene resin, and fluororesin.

本発明の粉体分散装置を含む粉体処理設備を用いるトナーの製造方法では、粉体生成工程によって結着樹脂および着色剤を含む樹脂粉体を生成した後、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程が行なわれる。この粉体処理工程では、分散工程を経て分級工程が行なわれるので、分級工程において分級すべき樹脂粉体における粉体凝集物の含有率が低い状態で樹脂粉体を分級することができる。したがって、分級工程において所望の粒径よりも大きい粒子を除去するときに、所望の粒径の範囲内である粒子を含む粉体凝集物が所望の粒径よりも大きい粗粉として扱われて除去されることが防止できるので、分級工程後に得られるトナーの量と粉体生成工程において製造される粉体の量との比であるトナーの収率を向上させることができる。   In the toner manufacturing method using the powder processing facility including the powder dispersion apparatus of the present invention, the resin powder containing the binder resin and the colorant is generated in the powder generation process, and then generated in the powder generation process. A powder processing step is performed in which resin powder is processed to obtain toner. In this powder processing step, the classification step is performed after the dispersion step, so that the resin powder can be classified with a low content of the powder aggregate in the resin powder to be classified in the classification step. Therefore, when removing particles larger than the desired particle size in the classification step, the powder aggregate containing particles within the desired particle size range is treated as coarse powder larger than the desired particle size and removed. Therefore, it is possible to improve the toner yield, which is the ratio between the amount of toner obtained after the classification step and the amount of powder produced in the powder production step.

また、分級工程において所望の粒径よりも小さい粒子を除去するときに、粉体に含まれる所望の粒径範囲よりも小さい粒子の凝集物が1個の粒子としてみなされて製品としてのトナーに含まれることが防止されるので、トナー中に含まれる所望の粒径よりも小さい微粉の含有率を低減することができる。トナー中に微粉の含有率が低減されたトナーは、帯電均一性に優れるので、画像かぶりなどの生じない、優れた画像を形成することができる。   In addition, when particles smaller than the desired particle size are removed in the classification step, an aggregate of particles smaller than the desired particle size range contained in the powder is regarded as one particle, and becomes a product toner. Since inclusion is prevented, the content of fine powder smaller than the desired particle size contained in the toner can be reduced. Since the toner in which the content of fine powder in the toner is reduced is excellent in charging uniformity, an excellent image free from image fogging can be formed.

以下本発明の実施例について説明する。実施例および比較例では、次のようにしてトナーを製造した。   Examples of the present invention will be described below. In Examples and Comparative Examples, toners were produced as follows.

〔実施例1〕
以下に示すトナー原料をスーパーミキサー(商品名:SMV−20、株式会社カワタ製)で充分に混合し、得られた混合物を二軸混練機(商品名:PCM−30、株式会社池貝製)によって溶融混練する溶融混練工程を行なった。
[Example 1]
The following toner raw materials are sufficiently mixed with a super mixer (trade name: SMV-20, manufactured by Kawata Co., Ltd.), and the resulting mixture is mixed with a biaxial kneader (trade name: PCM-30, manufactured by Ikekai Co., Ltd.). A melt kneading step for melt kneading was performed.

(トナー原料)
結着樹脂:ポリエステル樹脂(酸価:21mgKOH/g)
芳香族系アルコール成分:ビスフェノールAプロピレンオキサイド、ビスフェノールAエチレンオキサイド
酸成分:フマル酸、無水トリメリット酸 87.5重量部
着色剤:C.I.Pigment Blue 15:1 5.0重量部
ワックス:無極性パラフィンワックス (DSCピーク78℃)6.0重量部
帯電制御剤:サリチル酸の亜鉛化合物 1.5重量部
(Toner raw material)
Binder resin: Polyester resin (acid value: 21 mgKOH / g)
Aromatic alcohol components: bisphenol A propylene oxide, bisphenol A ethylene oxide
Acid component: fumaric acid, trimellitic anhydride 87.5 parts by weight Colorant: C.I. I. Pigment Blue 15: 1 5.0 parts by weight Wax: nonpolar paraffin wax (DSC peak 78 ° C.) 6.0 parts by weight Charge control agent: zinc compound of salicylic acid 1.5 parts by weight

結着樹脂の酸価は次のようにして測定した。ポリエステル樹脂1gをテトラヒドロフランに溶解し、指示薬にフェノールフタレイン、滴定液に0.1N(0.1g/L)水酸化カリウム(化学式:KOH)エタノール溶液を用いて、自動滴定装置(商品名:AT−510、京都電子工業株式会社製)によって電位差滴定を行なった。この電位差滴定において、中和するために使用した水酸化カリウムのmg数を、酸価として固形分換算で算出した。   The acid value of the binder resin was measured as follows. 1 g of polyester resin is dissolved in tetrahydrofuran, phenolphthalein is used as an indicator, and 0.1N (0.1 g / L) potassium hydroxide (chemical formula: KOH) ethanol solution is used as a titrant. -510, manufactured by Kyoto Electronics Industry Co., Ltd.). In this potentiometric titration, the number of mg of potassium hydroxide used for neutralization was calculated as an acid value in terms of solid content.

また、ワックスのDSCピーク温度は、セイコーインスルメンツ株式会社製のDSC200(商品名)を用いて次のようにして測定した。サンプルおよび基準物質を入れた装置の電気炉内の雰囲気(不活性ガス)温度を20℃から200℃まで1分間当たり10℃の割合で昇温させた後、200℃から20℃まで降温させる過程を2回繰り返して、2回目の昇温時のサンプル温度を測定した。そして、このサンプル温度と基準物質の温度との差によって吸熱ピークを検出し、吸熱ピーク時の温度をDSCピーク温度とした。   The DSC peak temperature of the wax was measured as follows using DSC200 (trade name) manufactured by Seiko Instruments Inc. The process of increasing the temperature (inert gas) in the electric furnace of the apparatus containing the sample and reference material from 20 ° C. to 200 ° C. at a rate of 10 ° C. per minute and then decreasing from 200 ° C. to 20 ° C. Was repeated twice to measure the sample temperature during the second temperature increase. And the endothermic peak was detected by the difference between the sample temperature and the temperature of the reference material, and the temperature at the endothermic peak was defined as the DSC peak temperature.

次いで、溶融混練工程で得られた溶融混練物を粗粉砕し、ジェット式粉砕機(商品名:IDS−2、日本ニューマチック工業株式会社製)によって粉砕し、樹脂粉体を生成する粉砕工程を行なった。このような溶融混練工程と粉砕工程とを含む粉体生成工程後、得られた樹脂粉体を、図5に示す粉体分散装置31および分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)を用いて、体積平均粒径が6.0μm以上7.5μm以下の範囲となるまで分散および分級する分散工程および分級工程を連続的に繰返し行なった。粉体分散装置1による分散条件は以下の通りである。   Next, the melt-kneaded product obtained in the melt-kneading step is roughly pulverized and pulverized by a jet-type pulverizer (trade name: IDS-2, manufactured by Nippon Pneumatic Industry Co., Ltd.) to produce a resin powder. I did it. After the powder production process including such a melt-kneading process and a pulverizing process, the obtained resin powder is divided into a powder dispersion device 31 and a classification device (trade name: 315-TSP modified machine, Hosokawa Micron shown in FIG. The dispersion step and the classification step were performed continuously and repeatedly until the volume average particle size was in the range of 6.0 μm to 7.5 μm. The dispersion conditions by the powder dispersion apparatus 1 are as follows.

粉体分散容器としては、最大内径10.5cm、供給口部から排出口部までの長さ26.7cm、容積1965cmの略円筒形状容器を用いた。ただし気体噴射手段から気体を噴射しなかった。網状部材としては、図2に示すような、目開きXが3.43mm、線状体の幅Wが0.8mm、開孔率が65.8%の網状体を用い、排出口部より粉体流下方向の1.5cm上流側に設置した。粉体分散容器内への粉体供給手段からの粉体の供給は0.15MPaの圧縮空気によって行ない、毎時30kgの粉体を粉体分散容器内に供給した。粉体分散容器内での分散工程終了後、排出口部から収集タンクに粉体を収集し、分級装置で分級工程を行なうバッチ処理を行なった。以上のようにして、実施例1のトナーを製造した。 As the powder dispersion container, a substantially cylindrical container having a maximum inner diameter of 10.5 cm, a length from the supply port portion to the discharge port portion of 26.7 cm, and a volume of 1965 cm 3 was used. However, no gas was injected from the gas injection means. As the mesh member, a mesh member having an opening X of 3.43 mm, a linear member having a width W of 0.8 mm, and an aperture ratio of 65.8% as shown in FIG. It was installed 1.5 cm upstream in the body flow downward direction. The powder was supplied from the powder supply means into the powder dispersion container by compressed air of 0.15 MPa, and 30 kg / hour of powder was supplied into the powder dispersion container. After the dispersion process in the powder dispersion container was completed, the powder was collected from the discharge port into a collection tank, and a batch process was performed in which a classification process was performed with a classification device. The toner of Example 1 was manufactured as described above.

〔実施例2〕
粉体分散容器内に、底面が直径4.0cmの円形状であり、高さが6.5cmの円錐形状の衝突部材を、衝突部材の底面が粉体分散装置の排出口部より粉体流下方向の1.5cm上流側に位置するようにさらに設置したこと以外は実施例1と同様にして、実施例2のトナーを製造した。
[Example 2]
In the powder dispersion container, the bottom surface is a circular shape having a diameter of 4.0 cm and the height is 6.5 cm, and the bottom surface of the collision member flows down from the discharge port of the powder dispersion device. The toner of Example 2 was produced in the same manner as in Example 1 except that it was further installed so as to be located 1.5 cm upstream in the direction.

〔実施例3〕
粉体分散容器内に、底面が直径4.0cmの円形状であり、高さが6.5cmの円錐形状の衝突部材を、衝突部材の底面が粉体分散装置の排出口部より粉体流下方向の1.5cm上流側に位置するように設置し、排出口部と分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)の投入口部とを装着し、粉体分散装置と分級装置とを連なるようにして設けたこと以外は実施例1と同様にして、実施例3のトナーを製造した。
Example 3
In the powder dispersion container, the bottom surface is a circular shape having a diameter of 4.0 cm and the height is 6.5 cm, and the bottom surface of the collision member flows down from the discharge port of the powder dispersion device. Installed so as to be located 1.5 cm upstream of the direction, equipped with a discharge port and a classification device (product name: 315-TSP modified machine, manufactured by Hosokawa Micron Co., Ltd.), a powder dispersion device The toner of Example 3 was produced in the same manner as in Example 1 except that the device and the classifier were connected in series.

〔実施例4〕
粉体分散容器内に、底面が直径4.0cmの円形状であり、高さが6.5cmの円錐形状の衝突部材を、衝突部材の底面が粉体分散装置の排出口部より粉体流下方向の1.5cm上流側に位置するように設置し、排出口部と分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)の投入口部とを装着し、粉体分散装置と分級装置とを連なるようにして設けるとともに、図5に示す気体噴射手段24から気体を噴射したこと以外は実施例1と同様にして、実施例4のトナーを製造した。気体噴射手段から樹脂粉体に対して噴射した空気の圧力は、0.6MPaであった。
Example 4
In the powder dispersion container, the bottom surface is a circular shape having a diameter of 4.0 cm and the height is 6.5 cm, and the bottom surface of the collision member flows down from the discharge port of the powder dispersion device. Installed so as to be located 1.5 cm upstream of the direction, fitted with a discharge port and a classification device (trade name: 315-TSP modified machine, manufactured by Hosokawa Micron Corporation), a powder dispersion device The toner of Example 4 was manufactured in the same manner as in Example 1 except that the gas jetting unit 24 shown in FIG. The pressure of air jetted from the gas jetting means to the resin powder was 0.6 MPa.

〔比較例1〕
粉体生成工程後、得られた樹脂粉体を分散させることなく、0.15MPaの圧縮空気によって分級装置(商品名:315−TSPの改造機、ホソカワミクロン株式会社製)に粉体を毎時30kgで供給し、体積平均粒径が6.0μm以上7.5μm以下の範囲となるまで分級工程を行なったこと以外は実施例1と同様にして、比較例1のトナーを製造した。
[Comparative Example 1]
After the powder production step, the powder is applied to a classification device (trade name: 315-TSP modified machine, manufactured by Hosokawa Micron Corporation) with compressed air of 0.15 MPa without dispersing the obtained resin powder at 30 kg / hour. A toner of Comparative Example 1 was produced in the same manner as in Example 1 except that the classification step was performed until the volume average particle diameter was 6.0 μm or more and 7.5 μm or less.

以上のようにして実施例および比較例のトナーの製造における分散工程および分級工程での各条件を表1に示す。   Table 1 shows the conditions in the dispersion step and the classification step in the production of the toners of Examples and Comparative Examples as described above.

Figure 2007185564
Figure 2007185564

以上のようにして製造した実施例および比較例のトナーの体積平均粒径を測定するとともに、トナー中に含まれる微粉の含有率を求め、評価した。体積平均粒径および微粉の含有率は、コールターマルチサイザーIII(商品名、コールター株式会社(現ベックマン・コールター株式会社)製)によって得られた粒度分布から算出した。なお、微粉の含有率としては、粒径が4.00μm以下の粒子の含有率および粒径が3.17μm以下の粒子の含有率を求めた。   The volume average particle diameters of the toners of Examples and Comparative Examples produced as described above were measured, and the content of fine powder contained in the toner was determined and evaluated. The volume average particle size and the fine powder content were calculated from the particle size distribution obtained by Coulter Multisizer III (trade name, manufactured by Coulter, Inc. (currently Beckman Coulter, Inc.). As the fine powder content, the content of particles having a particle size of 4.00 μm or less and the content of particles having a particle size of 3.17 μm or less were determined.

微粉の含有率についての評価は、粒径が4.00μm以下の粒子については、25.00個数%未満であるものを○(良好)、25.00個数%以上30.00個数%未満であるものを△(可)、30.00個数%以上であるものを×(不可)とした。粒径が3.17μm以下の粒子については、15.00個数%未満であるものを○(良好)、15.00個数%以上20.00個数%未満であるものを△(可)、20.00個数%以上であるものを×(不可)とした。   As for the evaluation of the content of fine powder, for particles having a particle diameter of 4.00 μm or less, those having a particle size of less than 25.00% are good (good) and are not less than 25.00% and less than 30.00%. Those with Δ (possible) or 30.00% by number or more were marked with × (impossible). As for particles having a particle size of 3.17 μm or less, those having a particle size of less than 15.00% are ◯ (good), particles having a particle size of 15.00% to less than 20.00% are △ (good); Those with 00% by number or more were marked as x (impossible).

また実施例および比較例で製造したトナーの収率について評価した。トナーの収率とは、粉体生成工程において製造される粉体の重量に対する分級工程後に得られるトナーの重量の比率(分級工程後に得られるトナーの重量/粉体生成工程において製造される粉体の重量)である。トナーの収率の評価は、65.0%以上であるものを○(良好)、60.0%以上65.0%未満であるものを△(可)、60.0%未満であるものを×(不可)とした。   Further, the yields of the toners produced in Examples and Comparative Examples were evaluated. The toner yield is the ratio of the weight of the toner obtained after the classification step to the weight of the powder produced in the powder production step (the weight of the toner obtained after the classification step / the powder produced in the powder production step). Weight). The toner yield is evaluated as ◯ (good) when it is 65.0% or more, △ (good) when it is 60.0% or more and less than 65.0%, or less than 60.0%. X (impossible).

さらに微粉の含有率およびトナーの収率の評価結果から、総合判定を行なった。総合判定では、評価に×および△がなく、特に良好なものを◎、評価に×がなく、△が2つ以内であり良好なものを○、評価に×がなく、△が3つであり実使用上は問題がないものを△、評価に×が1つあり実使用が不可能であるものを×、評価に×が2つ以上あり非常に悪いものを××として評価した。   Further, comprehensive evaluation was performed from the evaluation results of the fine powder content and the toner yield. In the comprehensive judgment, there is no x and △ in the evaluation, especially good one is ◎, there is no x in the evaluation, △ is within 2 and good, ○ is good, there is no x and △ is 3 The evaluation was evaluated as Δ for the case where there was no problem in actual use, × where the evaluation was one and x was impossible, and the evaluation was evaluated as ×, and the evaluation was two or more x and the evaluation was very bad.

実施例および比較例で製造したトナーの体積平均粒径、微粉の含有率およびトナーの収率についての評価ならびに総合評価を表2に示す。   Table 2 shows the evaluation and overall evaluation of the volume average particle diameter, the fine powder content, and the toner yield of the toners produced in Examples and Comparative Examples.

Figure 2007185564
Figure 2007185564

表2に示すように、本発明の粉体分散装置によって分散工程を行なわなかったトナー(比較例1)は、微粉の含有率が高く、収率も低いものであった。   As shown in Table 2, the toner (Comparative Example 1) that was not subjected to the dispersing step by the powder dispersing apparatus of the present invention had a high fine powder content and a low yield.

これに対して、本発明の粉体分散装置を含む粉体処理設備を用いて粉体処理工程を行なったトナー(実施例1〜4)は、微粉の含有率が低く、高い収率でトナーを製造することができた。これらの中でも、網状部材に加えて円錐形状の衝突部材をさらに設けた粉体分散装置を用いて製造されたトナー(実施例2〜4)は、微粉の含有率およびトナーの収率の点においてさらに優れるものであった。また粉体分散装置と分級装置とが連結されない粉体処理設備によって製造されたトナー(実施例1および2)では、分散工程を行なうことによって粉体が粉砕工程直後の粉体に比べて球形に近くなり、表面積が小さくなったので、バッチ処理によっても充分に粉体凝集物の発生を防止することができた。さらに粉体分散装置と分級装置とが連結される粉体処理設備によって製造されたトナー(実施例3および4)は、微粉の含有率を一層低減することができた。また気体噴射手段から気体を噴射する粉体分散装置によって分散工程が行なわれたトナー(実施例4)は、微粉の含有率をさらに低減することができるとともに、トナーの収率もさらに高いものであった。   On the other hand, the toner (Examples 1 to 4) in which the powder processing process was performed using the powder processing equipment including the powder dispersion apparatus of the present invention has a low fine powder content and a high yield. Could be manufactured. Among these, the toners (Examples 2 to 4) manufactured using the powder dispersion device further provided with the conical collision member in addition to the mesh member are in terms of the fine powder content and the toner yield. It was even better. In addition, in the toner (Examples 1 and 2) manufactured by the powder processing equipment in which the powder dispersing device and the classifying device are not connected, the powder is made spherical as compared with the powder immediately after the pulverizing step by performing the dispersing step. Since the surface area became smaller, the generation of powder aggregates could be sufficiently prevented even by batch processing. Further, the toner (Examples 3 and 4) manufactured by the powder processing facility in which the powder dispersing device and the classifying device are connected was able to further reduce the fine powder content. In addition, the toner (Example 4) in which the dispersion process is performed by the powder dispersion device that ejects gas from the gas ejection unit can further reduce the content of fine powder and also has a higher toner yield. there were.

本発明の実施の一形態である粉体分散装置1の構成を概略的に示す断面斜視図である。1 is a cross-sectional perspective view schematically showing a configuration of a powder dispersion device 1 according to an embodiment of the present invention. 粉体分散装置1の粉体分散容器2内に設けられる網状部材7を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing a net member 7 provided in a powder dispersion container 2 of the powder dispersion apparatus 1. 図1に示す粉体分散装置1が設けられるトナー製造装置12の回路図である。FIG. 2 is a circuit diagram of a toner manufacturing apparatus 12 in which the powder dispersion device 1 shown in FIG. 1 is provided. 本発明の実施の第2形態である粉体分散装置21の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the powder dispersion apparatus 21 which is 2nd Embodiment of this invention. 本発明の実施の第3形態である粉体分散装置31の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the powder dispersion apparatus 31 which is 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1,21,31 粉体分散装置
2,33 粉体分散容器
3 粉体
3a 粒子
3b 粉体凝集物
4,37 供給口部
5,35 排出口部
6 流路
6a 流路断面
7,22 網状部材
8 粉体流下方向
9 粉体供給手段
10 分級装置
11a 縦線状体
11b 横線状体
12 トナー製造装置
13 粉体生成装置
14 粉体処理設備
23 圧縮空気導入方向
24 網状部材傾斜方向
32 衝突部材
34 気体噴射手段
36 投入口部
38 輸送管
41 噴射ノズル
DESCRIPTION OF SYMBOLS 1,21,31 Powder disperser 2,33 Powder dispersion container 3 Powder 3a Particle 3b Powder aggregate 4,37 Supply port part 5,35 Discharge port part 6 Channel 6a Channel cross section 7,22 Net member 8 Powder Flow Down Direction 9 Powder Supply Means 10 Classifying Device 11a Vertical Lined Body 11b Horizontal Lined Body 12 Toner Manufacturing Device 13 Powder Generation Device 14 Powder Processing Equipment 23 Compressed Air Introduction Direction 24 Mesh Member Inclination Direction 32 Collision Member 34 Gas injection means 36 Input port 38 Transport pipe 41 Injection nozzle

Claims (8)

粉体が供給される供給口部および粉体を排出する排出口部が形成され、供給口部から排出口部に粉体が流下する流路が形成される粉体分散容器と、
網状に形成される網状部材であって、粉体分散容器内に設けられ、流路断面の少なくとも一部領域に配置される網状部材とを含むことを特徴とする粉体分散装置。
A powder dispersion container in which a supply port for supplying powder and a discharge port for discharging powder are formed, and a flow path for powder to flow from the supply port to the discharge port is formed;
A powder dispersion apparatus comprising: a mesh member formed in a mesh shape; and a mesh member provided in a powder dispersion container and disposed in at least a partial region of a flow path cross section.
粉体の通過を阻止する粉体衝突面を有する衝突部材であって、粉体分散容器内に設けられ、流路断面の一部領域に配置される衝突部材をさらに含むことを特徴とする請求項1記載の粉体分散装置。   A collision member having a powder collision surface for blocking the passage of powder, further comprising a collision member provided in a powder dispersion container and disposed in a partial region of a flow path cross section. Item 2. A powder dispersion apparatus according to Item 1. 衝突部材の粉体衝突面は、
粉体の流下方向上流側に向けて先細状であり、かつ尖頭状に形成されることを特徴とする請求項2記載の粉体分散装置。
The powder impact surface of the impact member is
3. The powder dispersing apparatus according to claim 2, wherein the powder dispersing device is tapered toward the upstream side in the flow direction of the powder and has a pointed shape.
投入口部から投入される粉体を粒径、密度または形状の違いによって分離する分離装置の投入口部に、排出口部が装着されることを特徴とする請求項1〜3のいずれか1つに記載の粉体分散装置。   The discharge port part is attached to the input port part of the separation device that separates the powder charged from the input port part according to the difference in particle diameter, density, or shape. The powder disperser described in 1. 粉体分散容器内で粉体の流下速度を増加させる増速手段を含むことを特徴とする請求項1〜4のいずれか1つに記載の粉体分散装置。   The powder dispersing apparatus according to any one of claims 1 to 4, further comprising speed increasing means for increasing a flow rate of the powder in the powder dispersing container. 増速手段は、気体を噴射する気体噴射手段であることを特徴とする請求項5記載の粉体分散装置。   6. The powder dispersing apparatus according to claim 5, wherein the speed increasing means is a gas injection means for injecting a gas. 請求項1〜6のいずれか1つに記載の粉体分散装置と、
粉体分散装置によって分散された粉体を粒径、密度または形状の違いによって分離する分離装置とを含むことを特徴とする粉体処理設備。
A powder dispersion apparatus according to any one of claims 1 to 6,
A powder processing facility comprising: a separation device for separating powder dispersed by a powder dispersion device according to a difference in particle size, density, or shape.
結着樹脂および着色剤を含む樹脂粉体を生成する粉体生成工程と、
請求項7記載の粉体処理設備を用いて、粉体生成工程で生成される樹脂粉体を処理してトナーを得る粉体処理工程とを含むことを特徴とするトナーの製造方法。
A powder production step for producing a resin powder containing a binder resin and a colorant;
A method for producing a toner, comprising: using a powder processing facility according to claim 7 to process a resin powder produced in the powder production step to obtain a toner.
JP2006003748A 2006-01-11 2006-01-11 Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner Pending JP2007185564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003748A JP2007185564A (en) 2006-01-11 2006-01-11 Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003748A JP2007185564A (en) 2006-01-11 2006-01-11 Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner

Publications (1)

Publication Number Publication Date
JP2007185564A true JP2007185564A (en) 2007-07-26

Family

ID=38341102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003748A Pending JP2007185564A (en) 2006-01-11 2006-01-11 Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner

Country Status (1)

Country Link
JP (1) JP2007185564A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110512A (en) * 2009-11-27 2011-06-09 Ricoh Co Ltd Powder dispersion device, classification apparatus, classification method, and method for manufacturing toner
JP2015104429A (en) * 2013-11-28 2015-06-08 株式会社サンギ Powder circulation device
KR20230141021A (en) * 2022-03-31 2023-10-10 동의대학교 산학협력단 Dispersing device inside the liquid reservoir containing micro-particles of the liquid dispenser
CN117861476A (en) * 2024-03-13 2024-04-12 肇庆理士电源技术有限公司 Lithium battery electrode preparation device capable of preventing agglomeration and uniform feeding and preparation process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110512A (en) * 2009-11-27 2011-06-09 Ricoh Co Ltd Powder dispersion device, classification apparatus, classification method, and method for manufacturing toner
JP2015104429A (en) * 2013-11-28 2015-06-08 株式会社サンギ Powder circulation device
KR20230141021A (en) * 2022-03-31 2023-10-10 동의대학교 산학협력단 Dispersing device inside the liquid reservoir containing micro-particles of the liquid dispenser
KR102646026B1 (en) * 2022-03-31 2024-03-08 동의대학교 산학협력단 Dispersing device inside the liquid reservoir containing micro-particles of the liquid dispenser
CN117861476A (en) * 2024-03-13 2024-04-12 肇庆理士电源技术有限公司 Lithium battery electrode preparation device capable of preventing agglomeration and uniform feeding and preparation process

Similar Documents

Publication Publication Date Title
WO2012173164A1 (en) Heat treatment apparatus and method of obtaining toner
JP2004157267A (en) Method for manufacturing toner, toner, fixing device, and image forming apparatus
JP4662462B2 (en) Toner manufacturing apparatus and manufacturing method
JP2007185564A (en) Apparatus for dispersing powder, equipment for treating powder and method for manufacturing toner
JP2007187736A (en) Powder dispersion device, powder processing equipment, and method for manufacturing toner
JP3005132B2 (en) Method of manufacturing toner and manufacturing apparatus system therefor
JP4684817B2 (en) Powder dispersion device, classification device, and toner production method
JP3890240B2 (en) Toner production method
JP5374171B2 (en) Nonmagnetic one-component negatively chargeable toner manufacturing method and nonmagnetic one-component negatively chargeable toner
JP2006308640A (en) Method for manufacturing toner
JP3740202B2 (en) Toner production method
JP3486524B2 (en) Method and system for manufacturing toner
JP2010091647A (en) Toner manufacturing device and method for manufacturing toner
JPH1115196A (en) Production of toner and production system
JP2004078063A (en) Method for classifying toner particles and method for manufacturing toner particles
JP2007296494A (en) Method for classifying powder, method for manufacturing toner and powder classifier
JP2011110512A (en) Powder dispersion device, classification apparatus, classification method, and method for manufacturing toner
JP6108202B2 (en) Classification device, toner production method, and pulverization classification device
JPH1115194A (en) Production of toner
JPH11109678A (en) Method for classifying toner
JP3220918B2 (en) Method and apparatus for manufacturing toner
JP3138379B2 (en) Method for producing toner for developing electrostatic images
JP3155855B2 (en) Method for producing toner for developing electrostatic images
JP2016173518A (en) Developing device and image forming apparatus
JPH09187731A (en) Preparation of toner