JP4680365B2 - 車両用駆動制御装置 - Google Patents

車両用駆動制御装置 Download PDF

Info

Publication number
JP4680365B2
JP4680365B2 JP2000302419A JP2000302419A JP4680365B2 JP 4680365 B2 JP4680365 B2 JP 4680365B2 JP 2000302419 A JP2000302419 A JP 2000302419A JP 2000302419 A JP2000302419 A JP 2000302419A JP 4680365 B2 JP4680365 B2 JP 4680365B2
Authority
JP
Japan
Prior art keywords
engine
rotating element
stall
motor generator
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000302419A
Other languages
English (en)
Other versions
JP2002118902A (ja
Inventor
正清 小島
清城 上岡
恭士 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2000302419A priority Critical patent/JP4680365B2/ja
Publication of JP2002118902A publication Critical patent/JP2002118902A/ja
Application granted granted Critical
Publication of JP4680365B2 publication Critical patent/JP4680365B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両用駆動制御装置に係り、特に、エンジンの出力トルクに対して電動機が反力トルクを出力することによって走行する場合に、エンジンに過大な負荷が作用してストールすることを防止する技術に関するものである。
【0002】
【従来の技術】
(a) 燃料の燃焼によって作動するエンジンに連結された第1回転要素と、モータジェネレータに連結された第2回転要素と、駆動輪へ出力する第3回転要素と、を有する歯車式の合成分配装置を備えており、(b) 前記第1回転要素、第2回転要素、および第3回転要素が相対回転可能な状態で、前記エンジンおよび前記モータジェネレータを共に作動させて第1回転要素および第2回転要素にトルクを加え、第3回転要素を回転させて走行する車両用駆動制御装置が知られている。例えば、特開平9−193676号公報に記載されている装置はその一例で、合成分配装置として遊星歯車装置が用いられている。
【0003】
また、図1は未だ公知ではないが、合成分配装置としてダブルピニオン型の遊星歯車装置18が用いられている場合で、第1回転要素としてのサンギヤ18sにエンジン14が連結され、第2回転要素としてのキャリア18cにモータジェネレータ16が連結され、第3回転要素としてのリングギヤ18rが第2クラッチC2を介して変速機12に連結されて駆動輪に出力するようになっている。そして、第1クラッチC1および第1ブレーキB1が解放されるとともに第2クラッチC2が係合させられたETCモードでは、例えば図5の(a) に示すようにエンジン14を作動させてサンギヤ18s(S)に正方向のトルクを加えるとともに、モータジェネレータ16が逆回転する状態で回生制御してキャリア18c(C)に回生制動トルクを加えることにより、リングギヤ18r(R)を正方向へ回転させて走行することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような車両用駆動制御装置においては、例えば上記図5(a) のETCモードで走行中に障害物を乗り越えたり急ブレーキなどで大きな負荷が作用し、車速更にはリングギヤ18r(R)の回転速度が急激に低下すると、図9の(b) に破線で示すようにエンジン回転速度(サンギヤ18s(S)の回転速度)が低下し、エンジンストール、すなわちエンジンが失速して失火し、トルクを発生できなくなる、可能性がある。特に、モータジェネレータ16を逆回転させて回生制御するためにモータ回転速度が所定値(マイナス)になるように回転速度制御している場合には、車速の低下がエンジン回転速度の低下で吸収される可能性が高く、エンジンストールの可能性が高くなる。また、前記図1のハイブリッド駆動制御装置のように、例えば第1クラッチC1を係合させてモータジェネレータ16により走行するなど、エンジン14の作動が適宜停止させられる場合には、運転者がエンジンストールを判断し難いため、エンジンストールの発生を防止することが強く望まれる。
【0005】
なお、エンジンストールの原因としては、例えば図9の(b) において、リングギヤ18r(R)の回転速度が低下する代わりに、モータジェネレータ16の回生制動トルクが急激に増加してキャリア18c(C)の回転速度が変化(0に近くなる)した場合も、サンギヤ18s(S)の回転速度が低下してストールする可能性があるなど、エンジンやモータジェネレータの連結状態に応じて種々の形態が考えられる。
【0006】
本発明は以上の事情を背景として為されたもので、その目的とするところは、エンジンおよび電動機を共に作動させて走行する場合に、エンジンに過大な負荷が作用してストールすることを防止することにある。
【0008】
【課題を解決するための手段】
第1発明は、(a) 燃料の燃焼によって作動するエンジンに連結された第1回転要素と、モータジェネレータに連結された第2回転要素と、駆動輪へ出力する第3回転要素とを有し、その3つの回転要素の回転速度の関係を示す共線図において第1回転要素と第2回転要素との間に第3回転要素が位置するように構成された歯車式の合成分配装置を備えており、(b) 前記第1回転要素、第2回転要素、および第3回転要素が相対回転可能な状態で、前記エンジンを作動させてその第1回転要素にエンジントルクを加えるとともに、前記モータジェネレータを発電させることにより、その第3回転要素を回転させて走行するETCモードを有する車両用駆動制御装置において、(c) 前記ETCモードでの走行時に、前記エンジンの回転速度が低下してストールする可能性があるか否かを検出するエンジンストール検出手段と、(d) そのエンジンストール検出手段によってストールの可能性がある旨の判断が為された場合に、前記モータジェネレータ発電量を低下させて前記エンジンに作用する負荷を低減するエンジンストール防止手段と、を有することを特徴とする。
【0009】
第2発明は、第1発明の車両用駆動制御装置において、前記エンジンストール防止手段によって前記モータジェネレータ発電量を低下させる時間は1秒以下であることを特徴とする。
【0012】
発明は、第1発明または第2発明の車両用駆動制御装置において、前記エンジンストール検出手段は、前記エンジンの回転速度変化に基づいてストールを予測するものであることを特徴とする。
【0013】
発明は、第1発明〜第発明の何れかの車両用駆動制御装置において、前記駆動輪は、車両の前輪および後輪の何れか一方で、その前輪および後輪の他方を駆動する第2の駆動源を備えていることを特徴とする。
【0014】
発明は、第発明の車両用駆動制御装置において、前記エンジンストール防止手段によって前記エンジンの負荷を低減する際に、前記第2の駆動源による駆動力を増加させる補助駆動手段を有することを特徴とする。
【0015】
【発明の効果】
第1発明の車両用駆動制御装置においては、エンジンストール検出手段によってエンジンがストールする可能性があるか否かを検出し、ストールの可能性がある旨の判断が為された場合にはエンジンストール防止手段によってモータジェネレータ発電量を低下させるため、これによりエンジンに作用する負荷が低減され、エンジン回転速度の低下が抑制され或いは自力でエンジン回転速度が上昇して、エンジンストールが防止される。その場合に、モータジェネレータの制御は高い応答性が得られるため、エンジンストールを効果的に防止できる。
【0017】
第2発明では、エンジンストール防止手段によってモータジェネレータ発電量を低下させる時間が1秒以下であるため、モータジェネレータ発電量低下に伴う駆動力の低下が極短時間に抑えられる。
【0019】
発明では、エンジンストール検出手段が、エンジンの回転速度変化に基づいてストールを予測するため、エンジン回転速度が比較的高い段階でエンジンストールの可能性を検出でき、エンジンストールを未然に高い可能性で防止できる。
【0020】
発明では、エンジンストール防止手段によってエンジンの負荷を低減する際に、補助駆動手段によって第2の駆動源による駆動力が増加させられるため、エンジン負荷の低減に伴う駆動力低下が車両全体として軽減される。また、このように駆動力の低下が軽減されることから、エンジンストールを防止するためのエンジン負荷の低減時間を長くすることが可能で、エンジンのトルク落ち込みからの復帰時間を十分に確保できるようになる。
【0021】
【発明の実施の形態】
前記歯車式の合成分配装置としては、ダブルピニオン型或いはシングルピニオン型の遊星歯車装置が好適に用いられるが、傘歯車式の差動歯車装置を用いることも可能である。その合成分配装置に対するエンジンおよび電動機の接続形態は種々の態様が可能である。
【0022】
上記合成分配装置は、例えば第2回転要素の回転速度が略一定の状態で第3回転要素の回転速度が低下すると第1回転要素の回転速度も低下するように構成され、その場合は、障害物やブレーキ操作などで車速が急激に低下した時にエンジンストールを生じる可能性がある。また、第3回転要素の回転速度が略一定の状態で電動機のトルク増加に伴う第2回転要素の回転速度変化に起因して第1回転要素の回転速度が低下するように構成され、その場合は、モータトルクが急激に増加した時にエンジンストールを生じる可能性がある。
【0023】
具体的には、合成分配装置がダブルピニオン型の遊星歯車装置の場合、例えば(a) サンギヤにエンジンが連結されるとともにキャリアに電動機が連結される一方、(b) その遊星歯車装置のリングギヤをケースに連結する第1ブレーキと、(c) 前記キャリアを変速機に連結する第1クラッチと、(d) 前記リングギヤを前記変速機に連結する第2クラッチと、を有して構成され、第1クラッチおよび第1ブレーキが解放されるとともに第2クラッチが係合される走行モードでの走行時に本発明は適用される。この場合は、障害物やブレーキ操作などで車速が急激に低下した時にエンジンストールを生じる可能性があるし、モータトルク(逆回転の場合は回生制動トルク、正回転の場合は力行トルク)が急激に増加した時にもエンジンストールを生じる可能性がある。
【0024】
電動機は、電気エネルギーで回転駆動される電動モータとしてだけ機能するものでも、回転駆動されることによって発電するとともに制動トルクを発生する発電機としてだけ機能するものでも、或いは電動モータおよび発電機の両方の機能を有するモータジェネレータであっても良い。
【0025】
エンジンストール検出手段は、例えば第発明のようにエンジンの回転速度変化に基づいてストールを予測するように構成することが望ましいが、エンジンの回転速度が所定の下限値を下回ったか否かによって判断しても良いし、車速の減速度などエンジンの負荷に関連する他の物理量からエンジンストールの可能性を判断することも可能である。また、車速やエンジン回転速度が所定値以下になった場合にエンジンストールの可能性を判断するなど、種々の態様を採用できる。
【0026】
第1発明のエンジンストール防止手段は、例えばモータジェネレータ発電量を0、すなわち回転自在にするように構成されるが、モータジェネレータ発電量を一定量、或いは一定割合だけ低下させたり、エンジンストールの可能性などに応じて所定量だけ低下させたりするなど、種々の態様を採用できる。
【0027】
第2発明では、モータジェネレータ発電量を低下させる時間が1秒以下であるが、更には500m秒以下が望ましい。他の手段でエンジンの負荷を低減する場合でも、駆動力の低下を必要最小限に抑制するために、その低減時間を1秒以下とすることが望ましい。なお、エンジン回転速度やその変化などに基づいて、エンジンストールが回避されたか否かを判断し、エンジンストール防止手段によるエンジン負荷の低減制御を中止するようにしても良い。
【0030】
発明のエンジンストール検出手段は、例えばエンジン回転速度Neの一定時間当りの変化量ΔNeが所定値(マイナス)以下であるか否か、或いは目標エンジン回転速度Ne* と実際のエンジン回転速度Neとの偏差(Ne* −Ne)が所定値以上になったか否か、を判断するように構成される。走行負荷の急激な変化などでエンジン回転速度Neが急に変化した場合に偏差(Ne* −Ne)が大きくなるため、偏差(Ne* −Ne)が所定値以上になったか否かによってエンジンストールを予測する場合も、エンジンの回転速度変化に基づくものである。
【0031】
上記変化量ΔNeや偏差(Ne* −Ne)でエンジンストールを予測する所定値(判定値)は、一定値であっても良いが、車速やエンジン回転速度などをパラメータとして設定することもできる。
【0032】
発明で補助駆動手段により第2の駆動源による駆動力を増加させる増加量は、エンジンストール防止手段によるエンジン負荷の低減に伴う駆動力の低下量と略一致させることが望ましいが、予め定められた一定量だけ増加させるものでも良い。また、エンジンストール防止手段によって電動機のトルクを0にする場合は、前後輪の一方の駆動力が0になるため、運転者の出力要求量に応じて求められる駆動力の総てを第2の駆動源で発生させるようにしても良い。
【0033】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明の一実施例である車両用駆動制御装置としてのハイブリッド駆動制御装置10を説明する概略構成図で、図2は変速機12を含む骨子図であり、このハイブリッド駆動制御装置10は、燃料の燃焼で動力を発生する内燃機関等のエンジン14、電動モータおよび発電機として用いられるモータジェネレータ16、およびダブルピニオン型の遊星歯車装置18を備えて構成されており、FF(フロントエンジン・フロントドライブ)車両などに横置きに搭載されて使用される。遊星歯車装置18のサンギヤ18sにはエンジン14が連結され、キャリア18cにはモータジェネレータ16が連結され、リングギヤ18rは第1ブレーキB1を介してケース20に連結されるようになっている。また、キャリア18cは第1クラッチC1を介して変速機12の入力軸22に連結され、リングギヤ18rは第2クラッチC2を介して入力軸22に連結されるようになっている。上記モータジェネレータ16は電動機に相当し、遊星歯車装置18は歯車式の合成分配装置に相当し、サンギヤ18sは第1回転要素、キャリア18cは第2回転要素、リングギヤ18rは第3回転要素に相当する。
【0034】
上記クラッチC1、C2および第1ブレーキB1は、何れも油圧アクチュエータによって摩擦係合させられる湿式多板式の油圧式摩擦係合装置で、油圧制御回路24から供給される作動油によって摩擦係合させられるようになっている。図3は、油圧制御回路24の要部を示す図で、電動ポンプを含む電動式油圧発生装置26で発生させられた元圧PCが、マニュアルバルブ28を介してシフトレバー30(図1参照)のシフトポジションに応じて各クラッチC1、C2、ブレーキB1へ供給されるようになっている。シフトレバー30は、運転者によって操作されるシフト操作部材で、本実施例では「B」、「D」、「N」、「R」、「P」の5つのシフトポジションに選択操作されるようになっており、マニュアルバルブ28はケーブルやリンク等を介してシフトレバー30に連結され、そのシフトレバー30の操作に従って機械的に切り換えられるようになっている。
【0035】
「B」ポジションは、前進走行時に変速機12のダウンシフトなどにより比較的大きな動力源ブレーキが発生させられるシフトポジションで、「D」ポジションは前進走行するシフトポジションであり、これ等のシフトポジションでは出力ポート28aからクラッチC1およびC2へ元圧PCが供給される。第1クラッチC1へは、シャトル弁31を介して元圧PCが供給されるようになっている。「N」レンジは動力源からの動力伝達を遮断するシフトポジションで、「R」ポジションは後進走行するシフトポジションで、「P」ポジションは動力源からの動力伝達を遮断するとともに図示しないパーキングロック装置により機械的に駆動輪の回転を阻止するシフトポジションであり、これ等のシフトポジションでは出力ポート28bから第1ブレーキB1へ元圧PCが供給される。出力ポート28bから出力された元圧PCは戻しポート28cへも入力され、上記「R」ポジションでは、その戻しポート28cから出力ポート28dを経てシャトル弁31から第1クラッチC1へ元圧PCが供給されるようになっている。
【0036】
クラッチC1、C2、およびブレーキB1には、それぞれコントロール弁32、34、36が設けられ、それ等の油圧PC1、PC2、PB1が制御されるようになっている。クラッチC1の油圧PC1についてはON−OFF弁38によって調圧され、クラッチC2およびブレーキB1についてはリニアソレノイド弁40によって調圧されるようになっている。
【0037】
そして、上記クラッチC1、C2、およびブレーキB1の作動状態に応じて、図4に示す各走行モードが成立させられる。すなわち、「B」レンジまたは「D」レンジでは、「ETCモード」、「直結モード」、「モータ走行モード(前進)」の何れかが成立させられ、「ETCモード」では、第2クラッチC2を係合するとともに第1クラッチC1および第1ブレーキB1を解放した状態、言い換えればサンギヤ18s、キャリア18c、およびリングギヤ18rが相対回転可能な状態で、エンジン14およびモータジェネレータ16を共に作動させてサンギヤ18sおよびキャリア18cにトルクを加え、リングギヤ18rを回転させて車両を前進走行させる。「直結モード」では、クラッチC1、C2を係合するとともに第1ブレーキB1を解放した状態で、エンジン14を作動させて車両を前進走行させる。また、「モータ走行モード(前進)」では、第1クラッチC1を係合するとともに第2クラッチC2および第1ブレーキB1を解放した状態で、モータジェネレータ16を作動させて車両を前進走行させる。「モータ走行モード(前進)」ではまた、アクセルOFF時などにモータジェネレータ16を回生制御することにより、車両の運動エネルギーで発電してバッテリ42(図1参照)を充電するとともに車両に制動力を発生させることができる。
【0038】
図5は、上記前進モードにおける遊星歯車装置18の作動状態を示す共線図で、「S」はサンギヤ18s、「R」はリングギヤ18r、「C」はキャリア18cを表しているとともに、それ等の間隔はギヤ比ρ(=サンギヤ18sの歯数/リングギヤ18rの歯数)によって定まる。具体的には、「S」と「C」の間隔を1とすると、「R」と「C」の間隔がρになり、本実施例ではρが0.6程度である。また、(a) のETCモードにおけるトルク比は、エンジントルクTe:CVT入力軸トルクTin:モータトルクTm=ρ:1:1−ρであり、モータトルクTmはエンジントルクTeより小さくて済むとともに、定常状態ではそれ等のモータトルクTmおよびエンジントルクTeを加算したトルクがCVT入力軸トルクTinになる。CVTは無段変速機の意味であり、本実施例では変速機12としてベルト式無段変速機が設けられている。
【0039】
図4に戻って、「N」レンジまたは「P」レンジでは、「ニュートラル」または「充電・Eng始動モード」の何れかが成立させられ、「ニュートラル」ではクラッチC1、C2および第1ブレーキB1の何れも解放する。「充電・Eng始動モード」では、クラッチC1、C2を解放するとともに第1ブレーキB1を係合し、モータジェネレータ16を逆回転させてエンジン14を始動したり、エンジン14により遊星歯車装置18を介してモータジェネレータ16を回転駆動するとともにモータジェネレータ16を回生制御して発電し、バッテリ42(図1参照)を充電したりする。
【0040】
「R」レンジでは、「モータ走行モード(後進)」または「フリクション走行モード」が成立させられ、「モータ走行モード(後進)」では、第1クラッチC1を係合するとともに第2クラッチC2および第1ブレーキB1を解放した状態で、モータジェネレータ16を逆方向へ回転駆動してキャリア18c更には入力軸22を逆回転させることにより車両を後進走行させる。「フリクション走行モード」は、上記「モータ走行モード(後進)」での後進走行時にアシスト要求が出た場合に実行されるもので、エンジン14を始動してサンギヤ18sを正方向へ回転させるとともに、そのサンギヤ18sの回転に伴ってリングギヤ18rが正方向へ回転させられている状態で、第1ブレーキB1をスリップ係合させてそのリングギヤ18rの回転を制限することにより、キャリア18cに逆方向の回転力を作用させて後進走行をアシストするものである。
【0041】
前記変速機12はベルト式無段変速機で、その出力軸44からカウンタ歯車46を経て差動装置48のリングギヤ50に動力が伝達され、その差動装置48により左右の駆動輪(本実施例では前輪)52に動力が分配される。
【0042】
本実施例のハイブリッド駆動制御装置10は、図1に示すHVECU60によって走行モードが切り換えられるようになっている。HVECU60は、CPU、RAM、ROM等を備えていて、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を実行することにより、電子スロットルECU62、エンジンECU64、M/GECU66、T/MECU68、前記油圧制御回路24のON−OFF弁38、リニアソレノイド弁40、エンジン14のスタータ70などを制御する。電子スロットルECU62はエンジン14の電子スロットル弁72を開閉制御するもので、エンジンECU64はエンジン14の燃料噴射量や可変バルブタイミング機構、点火時期などによりエンジン出力を制御するもので、M/GECU66はインバータ74を介してモータジェネレータ16の力行トルクや回生制動トルク等を制御するもので、T/MECU68は変速機12の変速比γ(=入力軸回転速度Nin/出力軸回転速度Nout )やベルト張力などを制御するものである。前記油圧制御回路24は、変速機12の変速比γやベルト張力を制御するための回路を備えている。スタータ70は電動モータで、モータ軸に設けられたピニオンをエンジン14のフライホイール等に設けられたリングギヤに噛み合わせてエンジン14をクランキングするものである。
【0043】
上記HVECU60には、アクセル操作量センサ76からアクセル操作部材としてのアクセルペダル78の操作量θacを表す信号が供給されるとともに、シフトポジションセンサ80からシフトレバー30の操作ポジション(シフトポジション)を表す信号が供給される。また、エンジン回転速度センサ82、モータ回転速度センサ84、入力軸回転速度センサ86、出力軸回転速度センサ88から、それぞれエンジン回転速度(回転数)Ne、モータ回転速度(回転数)Nm、入力軸回転速度(入力軸22の回転速度)Nin、出力軸回転速度(出力軸44の回転速度)Nout を表す信号がそれぞれ供給される。出力軸回転速度Nout は車速Vに対応する。この他、バッテリ42の蓄電量SOCなど、運転状態を表す種々の信号が供給されるようになっている。蓄電量SOCは単にバッテリ電圧であっても良いが、充放電量を逐次積算して求めるようにしても良い。上記アクセル操作量θacは運転者の出力要求量を表している。
【0044】
図6は、シフトレバー30が「D」ポジションまたは「B」ポジションへ操作されている前進走行時に、運転状態に応じて前記「ETCモード」、「直結モード」、「モータ走行モード(前進)」を適宜切り換える際の作動を説明するフローチャートで、HVECU60の信号処理によって実行される。
【0045】
図6のステップS1では、シフトレバー30のシフトポジションが「D」または「B」か否かを判断し、「D」または「B」の場合はステップS2で車速Vが判定車速V1以下か否かを判断する。判定車速V1は、モータジェネレータ16およびエンジン14の出力特性やエネルギー消費量等に基づいて例えば15km/h程度等の一定値が定められており、V>V1であればステップS7で「直結モード」を選択し、V≦V1の場合は、ステップS3で運転者の出力要求量SPが判定値SP1以下か否かを判断する。出力要求量SPは、アクセル操作量θacや車速Vなどに基づいて予め定められた演算式やマップなどから求められ、判定値SP1は、例えばモータジェネレータ16だけでは必要な駆動力が得られないような出力値で、変速比γなどをパラメータとして設定される。そして、SP>SP1であれば、ステップS6で「ETCモード」を選択し、SP≦SP1の場合は、ステップS4で蓄電量SOCが判定値SOC1以上が否かを判断する。判定値SOC1は、充放電効率などに基づいて予め定められた下限値で、SOC≧SOC1であればステップS5で「モータ走行モード(前進)」を選択するが、SOC<SOC1の場合は前記ステップS6で「ETCモード」を選択する。
【0046】
図7は、「ETCモード」による走行時におけるエンジン制御およびモータ制御の一例を説明するフローチャートで、エンジンECU64、M/GECU66などの信号処理によって実行される。
【0047】
図7のステップSS1では、アクセルONか否か、すなわちアクセルペダル78が踏込み操作されているか否かを、アクセル操作量θacに基づいて判断し、アクセルONの場合は、ステップSS2でモータジェネレータ16の回転速度Nmが目標モータ回転速度Nm* になるように、モータジェネレータ16を回転速度制御する。目標モータ回転速度Nm* は、モータジェネレータ16を回生制御して発電することによりバッテリ42を充電するために、逆回転方向の所定の回転速度、例えば−1000rpm程度等の一定値、或いは車速Vなどをパメラータとして設定される。また、回転速度制御は、モータ回転速度Nmが目標モータ回転速度Nm* と略一致するように、モータジェネレータ16の回生制動トルクをフィードバック制御するもので、この時発生した電気エネルギーでバッテリ42を充電する。
【0048】
次のステップSS3では、アクセル操作量θacに応じてエンジン14の出力制御を行う。具体的には、本実施例ではモータジェネレータ16の目標モータ回転速度Nm* から車速Vおよび変速機12の変速比γに応じて求められる目標エンジン回転速度Ne* になるように、アクセル操作量θacに応じて電子スロットル弁72のスロットル弁開度等を制御する。
【0049】
一方、ステップSS1の判断がNOの場合、すなわちアクセルOFFのコースト走行時の場合は、ステップSS4でエンジン回転速度Neが予め定められたアイドル回転速度Neidl になるようにエンジン14の出力制御を行うとともに、ステップSS5では、モータジェネレータ16の回転速度制御を中止して、モータジェネレータ16の定トルク制御に移行する。
【0050】
また、最後のステップSS6ではエンジンストール防止制御を実行し、エンジン回転速度Neの急激な低下などでエンジンストールが発生することを防止する。すなわち、上記ステップSS2ではモータジェネレータ16が回転速度制御されることから、障害物の乗り越えなどで車両に過大な走行負荷が作用した場合に、図9の(b) に破線で示すように遊星歯車装置18のリングギヤ18r(R)の回転速度が低下するとともに、サンギヤ18s(S)の回転速度すなわちエンジン回転速度Neが低下して、エンジンストールを生じる可能性があるのである。
【0051】
ステップSS6のエンジンストール防止制御は、例えば図8に示すフローチャートに従って実行される。この図8のフローチャートはM/GECU66の信号処理によって実行され、ステップR1−1では、前記ステップSS3で求められる目標エンジン回転速度Ne* から実際のエンジン回転速度Neを引き算した偏差(Ne* −Ne)が予め定められた所定値α以上か否かを判断する。所定値αは、エンジン回転速度Neの低下でエンジンストールが発生することを予測するためのもので、過大な走行負荷によりエンジン回転速度Neが急激に低下した場合に発生する比較的大きな値、すなわち通常のエンジン制御では殆ど生じることがない偏差であり、予め一定値が定められても良いが、車速V或いはエンジン回転速度Neなどをパラメータとして、例えば車速Vやエンジン回転速度Neが低い程小さい値が設定されるようにしても良い。このステップR1−1は、エンジン14の回転速度変化に基づいてエンジンストールを予測するエンジンストール検出手段として機能している。
【0052】
そして、上記偏差(Ne* −Ne)が所定値α以上の場合は、エンジンストールする可能性が高いと判断してステップR1−2を実行し、モータジェネレータ16のトルク、具体的には回生制動トルクを一時的に低下させる。これにより、モータジェネレータ16の回転速度変化が許容され、図9の(a) に破線で示すようにモータジェネレータ16に連結されたキャリア18c(C)の回転速度が、車速Vの低下すなわちリングギヤ18r(R)の低下に伴って低下(逆回転方向の回転速度が増加)させられる一方、サンギヤ18s(S)に連結されたエンジン14の負荷が低減されて、エンジン回転速度Neの低下が抑制され、或いは自力でエンジン回転速度Neが上昇してストールが防止される。また、このようにモータジェネレータ16のトルクを低下させると、車両の駆動力が低下するため、トルクを低下させる時間は1秒以下、例えば300m秒程度で、直ちにモータジェネレータ16の回生制御を再開することにより、駆動力の低下を必要最小限に抑えるようになっている。すなわち、エンジン14等に不具合があってエンジン回転速度Neが低下した場合のエンジンストールを防止するものではない。上記ステップR1−2はエンジンストール防止手段として機能している。
【0053】
このように、本実施例のハイブリッド駆動制御装置10によれば、ETCモードでの走行時に、図8のステップR1−1で偏差(Ne* −Ne)に基づいてエンジンストールする可能性が高いか否かを判断し、エンジンストールする可能性が高い場合はステップR1−2でモータジェネレータ16のトルクを一時的に低下させてエンジン14に作用する負荷を低減するようになっているため、障害物などで過大な走行負荷が作用した場合にエンジン回転速度Neが低下してストールすることが防止される。
【0054】
その場合に、モータジェネレータ16のトルク制御は高い応答性が得られるため、エンジンストールを効果的に防止できる。また、モータジェネレータ16のトルクを低下させる時間が1秒以下と極短時間であるため、モータジェネレータ16のトルク低下に伴う駆動力の低下が必要最小限に抑えられる。また、偏差(Ne* −Ne)に基づいてエンジンストールを予測するため、エンジン回転速度Neが比較的高い段階でエンジンストールの可能性を検出でき、エンジンストールを未然に高い可能性で防止できる。
【0055】
本実施例のハイブリッド駆動制御装置10は、前進走行時にエンジン14を駆動源として走行する「直結モード」、モータジェネレータ16を駆動源として走行する「モータ走行モード」、および上記「ETCモード」があり、運転状態によってエンジン14を作動させたり停止したりするため、エンジンストールでエンジン14が停止しても運転者は判断できず、エンジンストールが未然に高い可能性で防止されることにより、車両としての品質や信頼性が向上する。
【0056】
次に、本発明の他の実施例を説明する。
図10は、前記図8に対応するフローチャートで、図7におけるステップSS6のエンジンストール防止制御の他の態様であり、ステップR2−1では、一定時間(例えば図7のフローチャートの1サイクル)当りのエンジン回転速度Neの変化量ΔNeが予め定められた所定値β以下か否かを判断する。所定値βは、エンジン回転速度Neの低下でエンジンストールが発生することを予測するためのもので、過大な走行負荷によりエンジン回転速度Neが急激に低下した場合に生じるマイナスの比較的大きな値、すなわち通常のエンジン制御では殆ど生じることがない変化量であり、予め一定値が定められても良いが、車速V或いはエンジン回転速度Neなどをパラメータとして、例えば車速Vやエンジン回転速度Neが低い程小さい値(0に近い)が設定されるようにしても良い。このステップR2−1は、エンジン14の回転速度変化に基づいてエンジンストールを予測するエンジンストール検出手段として機能している。
【0057】
そして、上記変化量ΔNeが所定値β以下の場合は、エンジンストールする可能性が高いと判断してステップR2−2を実行する。ステップR2−2はエンジンストール防止手段として機能するもので、前記図8のステップR1−2と同様にしてエンジンストールを防止する。この場合も前記実施例と同様の効果が得られる。
【0058】
図11は、同じく前記図8に対応するフローチャートで、図7におけるステップSS6のエンジンストール防止制御の更に別の態様であり、ステップR3−1では、エンジン回転速度Neが予め定められた下限値Nemin 以下になったか否かを判断する。下限値Nemin は、回転速度Neの低下でエンジンストールが発生することを予測するためのもので、過大な走行負荷などによりエンジン回転速度Neが異常に低下した場合に生じる値、すなわち通常のエンジン制御では殆ど生じることがない回転速度であり、エンジン14のアイドル回転速度Neidl より低いとともに、エンジン14が失火する回転速度よりも高い一定値である。このステップR3−1は、エンジンストールの可能性があるか否かを検出するエンジンストール検出手段として機能している。
【0059】
そして、エンジン回転速度Neが下限値Nemin 以下になると、エンジンストールする可能性が高いと判断してステップR3−2を実行する。ステップR3−2はエンジンストール防止手段として機能するもので、前記図8のステップR1−2と同様にしてエンジンストールを防止する。この場合は、エンジン回転速度Neが下限値Nemin 以下になったか否かによってエンジンストールの可能性を判断するため、前記実施例に比較してエンジンストールの判断が遅くなる可能性があるが、必要以上にエンジンストールと判断して駆動力が低下することが抑制される。
【0060】
図12は、同じく前記図8に対応するフローチャートで、図7におけるステップSS6のエンジンストール防止制御の更に別の態様であり、ステップR4−1では、前記ステップR1−1、R2−1、或いはR3−1と同様にしてエンジンストールの可能性を判断する。そして、エンジンストールの可能性がある場合は、ステップR4−2でモータジェネレータ16の制御を回転速度制御からトルク制御へ切り換え、所定の回生制動トルクに制御してエンジン負荷を低減する。この時のトルク値は、走行負荷によりモータジェネレータ16の回転速度Nmが変化するようにギヤ比ρ等を考慮して定められ、例えばエンジントルクに対して1桁程度小さい値に設定される。これにより、エンジン14の負荷が低減されて、エンジン回転速度Neの低下が抑制され或いは自力でエンジン回転速度Neが上昇するようになってストールが防止され、前記各実施例と同様の効果が得られる。ステップR4−1はエンジンストール検出手段として機能しており、ステップR4−2はエンジンストール防止手段として機能している。
【0061】
上記ステップR4−2のトルク制御は1秒以下、例えば前記各実施例と同様に300m秒程度だけ実施され、続くステップR4−3では、直ちに回転速度制御へ復帰するとともに、その目標モータ回転速度Nm* を通常の設定値へ徐々に変化させる。
【0062】
図13の車両用駆動制御装置は、前記ハイブリッド駆動制御装置10の他に第2の駆動源としてリヤ側モータジェネレータ90を備えており、インバータ92を介して前記バッテリ42に電気的に接続され、力行制御および回生制御されるようになっている。また、差動装置94を介して左右の後輪96に機械的に連結され、力行制御されることにより後輪96を回転駆動するとともに、回生制御により後輪96に回生制動力を作用させる。
【0063】
このような車両用駆動制御装置においても、フロント側のハイブリッド駆動制御装置10については基本的に前記各実施例と同様な制御を行うことができる。その場合に、図7のステップSS6のエンジンストール防止制御では、例えば図14のフローチャートに示すようにリヤ側モータジェネレータ90を用いてアシスト制御することが可能である。すなわち、ステップR5−1では、前記各実施例と同様にしてエンジンストールを予測し、ステップR5−2では、モータジェネレータ16のトルクを一時的に0にしてエンジンストールを防止する一方、ステップR5−3で、リヤ側モータジェネレータ90による駆動力を通常よりも大きくして、上記ステップR5−2の実施によるフロント側のハイブリッド駆動制御装置10の駆動力低下を後輪96側でアシストするのである。リヤ側モータジェネレータ90による駆動力の増加量は、例えばステップR5−2の実施に伴う駆動力の低下量と略一致させることが望ましいが、予め定められた一定量だけ増加させるものでも良く、リヤ側モータジェネレータ90のトルク容量などに応じて適宜設定される。ステップR5−1はエンジンストール検出手段として機能しており、ステップR5−2はエンジンストール防止手段として機能しており、ステップR5−3は補助駆動手段として機能している。なお、上記ステップR5−2ではモータジェネレータ16のトルクを一時的に0にしているが、前記各実施例と同様に所定量だけ低下させるものでも良い。
【0064】
このようにすれば、エンジンストールを防止するためにモータジェネレータ16のトルクが0とされる際に、リヤ側モータジェネレータ90による後輪96の駆動力が大きくされるため、車両全体としてエンジンストール防止時の駆動力の低下が軽減される。また、このように駆動力の低下が軽減されることから、ステップR5−2のモータトルク一時OFFの時間を長くすることが可能で、エンジン14のトルク落ち込みからの復帰時間を十分に確保できるようになる。すなわち、車両全体としての駆動力の低下を抑制しつつ、ステップR5−2でモータトルクを0にする時間を1秒以上継続して、エンジンストールを一層確実に防止することができるようになるのである。
【0065】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明が適用されたハイブリッド駆動制御装置を説明する概略構成図である。
【図2】図1のハイブリッド駆動制御装置の動力伝達系を示す骨子図である。
【図3】図1の油圧制御回路の一部を示す回路図である。
【図4】図1のハイブリッド駆動制御装置において成立させられる幾つかの走行モードと、クラッチおよびブレーキの作動状態との関係を説明する図である。
【図5】図4のETCモード、直結モード、およびモータ走行モード(前進)における遊星歯車装置の各回転要素の回転速度の関係を示す共線図である。
【図6】図1のハイブリッド駆動制御装置において、前進走行時に運転状態に応じて「モータ走行モード」、「ETCモード」、或いは「直結モード」に切り換える作動の一例を説明するフローチャートである。
【図7】図1のハイブリッド駆動制御装置においてETCモードで走行する際の作動を説明するフローチャートである。
【図8】図7におけるステップSS7のエンジンストール防止制御の具体的内容を説明するフローチャートである。
【図9】ETCモードでの走行時に過大な走行負荷が作用した場合の遊星歯車装置の各回転要素の回転速度変化を説明する共線図で、(a) は図8のフローチャートに従ってエンジンストール防止制御が行われた場合、(b) はエンジンストール防止制御が行われなかった場合である。
【図10】図7におけるステップSS7のエンジンストール防止制御の別の例を説明するフローチャートである。
【図11】図7におけるステップSS7のエンジンストール防止制御の更に別の例を説明するフローチャートである。
【図12】図7におけるステップSS7のエンジンストール防止制御の更に別の例を説明するフローチャートである。
【図13】本発明が適用された車両用駆動制御装置の別の例を説明する概略構成図である。
【図14】図13の車両用駆動制御装置におけるエンジンストール防止制御の一例を説明するフローチャートで、図8に対応する図である。
【符号の説明】
10:ハイブリッド駆動制御装置(車両用駆動制御装置) 14:エンジン
16:モータジェネレータ(電動機) 18:遊星歯車装置(合成分配装置) 18s:サンギヤ(第1回転要素) 18c:キャリア(第2回転要素) 18r:リングギヤ(第3回転要素) 52:駆動輪 66:M/GECU 90:リヤ側モータジェネレータ(第2の駆動源) 96:後輪
ステップR1−1、R2−1、R3−1、R4−1、R5−1:エンジンストール検出手段
ステップR1−2、R2−2、R3−2、R4−2、R5−2:エンジンストール防止手段
ステップR5−3:補助駆動手段

Claims (5)

  1. 燃料の燃焼によって作動するエンジンに連結された第1回転要素と、モータジェネレータに連結された第2回転要素と、駆動輪へ出力する第3回転要素とを有し、該3つの回転要素の回転速度の関係を示す共線図において該第1回転要素と該第2回転要素との間に該第3回転要素が位置するように構成された歯車式の合成分配装置を備えており、
    前記第1回転要素、第2回転要素、および第3回転要素が相対回転可能な状態で、前記エンジンを作動させて該第1回転要素にエンジントルクを加えるとともに、前記モータジェネレータを発電させることにより、該第3回転要素を回転させて走行するETCモードを有する車両用駆動制御装置において、
    前記ETCモードでの走行時に、前記エンジンの回転速度が低下してストールする可能性があるか否かを検出するエンジンストール検出手段と、
    該エンジンストール検出手段によってストールの可能性がある旨の判断が為された場合に、前記モータジェネレータ発電量を低下させて前記エンジンに作用する負荷を低減するエンジンストール防止手段と、
    を有することを特徴とする車両用駆動制御装置。
  2. 前記エンジンストール防止手段によって前記モータジェネレータ発電量を低下させる時間は1秒以下である
    ことを特徴とする請求項1に記載の車両用駆動制御装置。
  3. 前記エンジンストール検出手段は、前記エンジンの回転速度変化に基づいてストールを予測するものである
    ことを特徴とする請求項1または2に記載の車両用駆動制御装置。
  4. 前記駆動輪は、車両の前輪および後輪の何れか一方で、該前輪および後輪の他方を駆動する第2の駆動源を備えている
    ことを特徴とする請求項1〜の何れか1項に記載の車両用駆動制御装置。
  5. 前記エンジンストール防止手段によって前記エンジンの負荷を低減する際に、前記第2の駆動源による駆動力を増加させる補助駆動手段を有する
    ことを特徴とする請求項に記載の車両用駆動制御装置。
JP2000302419A 2000-10-02 2000-10-02 車両用駆動制御装置 Expired - Fee Related JP4680365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000302419A JP4680365B2 (ja) 2000-10-02 2000-10-02 車両用駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000302419A JP4680365B2 (ja) 2000-10-02 2000-10-02 車両用駆動制御装置

Publications (2)

Publication Number Publication Date
JP2002118902A JP2002118902A (ja) 2002-04-19
JP4680365B2 true JP4680365B2 (ja) 2011-05-11

Family

ID=18783772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000302419A Expired - Fee Related JP4680365B2 (ja) 2000-10-02 2000-10-02 車両用駆動制御装置

Country Status (1)

Country Link
JP (1) JP4680365B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259773B2 (ja) * 2012-02-03 2018-01-10 ジーイー・ハイブリッド・テクノロジーズ・エルエルシー ハイブリッド車両において動力を供給するための装置および方法
JP6528354B2 (ja) * 2014-03-25 2019-06-12 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法
CN114347989B (zh) * 2021-12-13 2024-04-16 潍柴动力股份有限公司 一种车速控制方法及装置

Also Published As

Publication number Publication date
JP2002118902A (ja) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4032639B2 (ja) 車両の回生制御装置
US6655485B1 (en) Hybrid drive system wherein clutch in engaged when engine speed has exceeded motor speed upon switching from motor drive mode to engine drive mode
US6722332B2 (en) Apparatus and method for vehicular engine start control
US6637530B1 (en) Hybrid vehicle control apparatus wherein battery is charged based on required charging amount and/or energy conversion efficiency of electric generator
US8132635B2 (en) Motor lock prevention control for hybrid electric vehicle
US6524217B1 (en) Apparatus for controlling vehicle drive units
US9090247B2 (en) Control apparatus for vehicular drive system
US20080228363A1 (en) Engine start control system for hybrid vehicle
US20070227790A1 (en) Transmitting state switching control apparatus for hybrid vehicle
JP4747818B2 (ja) 車両用駆動装置の制御装置
JP3826637B2 (ja) 車両の回生制動装置
JP4244986B2 (ja) 車両の回生制動装置
JP4557402B2 (ja) 車両用駆動制御装置
JP4947832B2 (ja) エンジンストール防止制御装置
JP4680365B2 (ja) 車両用駆動制御装置
US20220402480A1 (en) Control apparatus for vehicle
JP2001108055A (ja) 車両のトルクリミッタ装置
JP2002340172A (ja) 車両用駆動制御装置
JP2003018707A (ja) ハイブリッド駆動制御装置
US20230406284A1 (en) Control system for hybrid vehicle
WO2022181409A1 (ja) 車両用駆動装置
JP4449250B2 (ja) 車両用変速機の制御装置
JP2004166386A (ja) 車輛用駆動制御装置
JP2023169919A (ja) 車両の制御装置
JP2004140942A (ja) 車両用駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees