JP4679832B2 - Fine particle assembly manufacturing method and fine particle array - Google Patents

Fine particle assembly manufacturing method and fine particle array Download PDF

Info

Publication number
JP4679832B2
JP4679832B2 JP2004114228A JP2004114228A JP4679832B2 JP 4679832 B2 JP4679832 B2 JP 4679832B2 JP 2004114228 A JP2004114228 A JP 2004114228A JP 2004114228 A JP2004114228 A JP 2004114228A JP 4679832 B2 JP4679832 B2 JP 4679832B2
Authority
JP
Japan
Prior art keywords
fine particle
fine
substrate
liquid
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004114228A
Other languages
Japanese (ja)
Other versions
JP2005296747A (en
Inventor
佳丈 増田
邦仁 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004114228A priority Critical patent/JP4679832B2/en
Publication of JP2005296747A publication Critical patent/JP2005296747A/en
Application granted granted Critical
Publication of JP4679832B2 publication Critical patent/JP4679832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、微粒子集積体の製造方法及び微粒子細線アレイに関する。更に詳しくは、本発明は、いわゆるフォトニック結晶や光学素子等として利用できる微粒子集積体の簡易かつ低コストな製造方法、とりわけ微粒子集積体の新規な形態としての微粒子細線アレイの製造方法と、微粒子細線アレイとに関する。   The present invention relates to a method for manufacturing a fine particle assembly and a fine particle array. More specifically, the present invention relates to a simple and low-cost production method of a fine particle assembly that can be used as a so-called photonic crystal, optical element, etc., in particular, a method for producing a fine particle array as a novel form of a fine particle assembly, and a fine particle It relates to a thin wire array.

近年、材料を微粒子化することにより発現する新たな特性の研究が盛んになり、更に、そのような微粒子を規則的に多数配列して得られる微粒子集積体の性能を利用する研究も行われている。   In recent years, research on new characteristics that are manifested by making materials finer has become active, and research has also been conducted on the performance of fine particle assemblies obtained by regularly arranging a large number of such fine particles. Yes.

一方、周期的に多数配置した多重量子井戸において電子エネルギーの新たなバンド構造が生じるさまを、自然結晶の周期ポテンシャルが自然のバンド構造を生むのに因んで「人工結晶」と呼んでおり、例えば上記した微粒子集積体のように、特定の材料からなる微粒子を規則的に多数配列させることにより光の屈折率を周期的に変調した構造は「フォトニック結晶」と呼ばれている。フォトニック結晶は、レーザーや光の振動モードを人工的に制御すること等を目的とする光学素子への応用が考えられている。   On the other hand, the fact that a new band structure of electron energy occurs in multiple quantum wells arranged periodically in large numbers is called an `` artificial crystal '' because the periodic potential of the natural crystal produces a natural band structure, for example, A structure in which the refractive index of light is periodically modulated by regularly arranging a large number of fine particles made of a specific material like the above-described fine particle aggregate is called a “photonic crystal”. A photonic crystal is considered to be applied to an optical element for the purpose of artificially controlling the vibration mode of a laser or light.

微粒子集積体やその製造方法に関する従来技術としては、例えば、一定の基板上にプローブ等を用いて微粒子を1個ずつ並べる手法、半導体加工技術等の応用により基板に微細・精密な加工を加えて結果的に微粒子集積体を構成する手法等があるが、これらの手法は特殊な装置を必要とし、莫大な時間及びコストを要すると言う問題がある。   For example, as a conventional technique related to a fine particle assembly and its manufacturing method, for example, a method of arranging fine particles one by one using a probe on a certain substrate, or applying fine and precise processing to a substrate by applying semiconductor processing technology, etc. As a result, there are methods for constructing a fine particle assembly, but these methods require a special apparatus and have a problem that enormous time and cost are required.

最近、微粒子のコロイド状懸濁液を利用して基板上に自己組織的に微粒子集積体を形成しようとする試みが、例えば下記の特許文献1や特許文献2に見られるように、幾つか提案されている。   Recently, several proposals have been made to attempt to form a fine particle aggregate on a substrate using a colloidal suspension of fine particles, as shown in, for example, Patent Document 1 and Patent Document 2 below. Has been.

特許第02905712号公報 この特許文献1には、直径が0.1〜10μmの微粒子の懸濁液を調製し、これに基板を浸漬した後に引き上げることにより、基板上に微粒子の単層膜を移流集積させ、もってミクロンオーダーの微粒子の最密充填六方格子単層微粒子膜を形成する技術が開示されている。Patent No. 02905712 In this patent document 1, a suspension of fine particles having a diameter of 0.1 to 10 μm is prepared, and the substrate is immersed in the suspension, and then pulled up, whereby the fine particle single layer film is transferred to the substrate. A technique for forming a close-packed hexagonal lattice single layer fine particle film of fine particles on the order of microns is disclosed.

特開平15−201194号公報 この特許文献2には、例えばシリカ、アルミナ、酸化チタン等の微粒子を懸濁させたコロイド溶液を調製し、このコロイド溶液中に縦方向に配向させた2枚の支持板により構成されるギャップモジュールを浸漬し、毛管現象によりギャップモジュールのギャップにコロイド溶液を浸入させつつギャップモジュールを次第に引き上げることにより、このギャップの内部に人工結晶体(微粒子集積体)を形成させる技術が開示されている。In JP-A-15-201194, for example, a colloidal solution in which fine particles such as silica, alumina, and titanium oxide are suspended is prepared, and two sheets of support are oriented in the longitudinal direction in the colloidal solution. A technology for forming artificial crystals (fine particle aggregates) inside the gap by immersing the gap module composed of plates and gradually pulling up the gap module while allowing the colloidal solution to enter the gap of the gap module by capillary action. Is disclosed.

しかし、上記特許文献1及び特許文献2に記載された従来技術は、簡易・低コストな微粒子集積体の製造方法ではあるものの、いずれの場合にも、製造される微粒子集積体は非常にプリミティブな構成のものであり、今後における微粒子集積体の多様な用途展開に十分に対応できない、と言う不満がある。   However, although the prior art described in Patent Document 1 and Patent Document 2 described above is a simple and low-cost method for producing a fine particle assembly, in any case, the produced fine particle assembly is very primitive. There is a dissatisfaction that it is of a configuration and cannot sufficiently cope with future development of various uses of the fine particle aggregate.

即ち、特許文献1に係る微粒子集積体の構成は、微粒子が一様な単層膜状に集積したものであるに過ぎない。特許文献2に係る微粒子集積体の構成は、ギャップモジュールのギャップ幅に対応した一定の厚さの一様なプレート状に微粒子が集積したものであるに過ぎない。   That is, the structure of the fine particle assembly according to Patent Document 1 is merely a structure in which fine particles are collected in a uniform single-layer film shape. The configuration of the fine particle assembly according to Patent Document 2 is merely a collection of fine particles in a uniform plate shape having a constant thickness corresponding to the gap width of the gap module.

そこで本発明は、今後における微粒子集積体の多様な用途展開に対応すべく、特徴ある新規な構成の微粒子集積体を提供し、かつ、これらの微粒子集積体を簡易かつ低コストに製造できる微粒子集積体の製造方法を提供することを、解決すべき技術的課題とする。   In view of this, the present invention provides a particle assembly having a novel structure with a unique structure in order to respond to various application developments of the particle assembly in the future, and enables the particle assembly to be manufactured easily and at low cost. Providing a body manufacturing method is a technical problem to be solved.

(第1発明の構成)
上記課題を解決するための本願第1発明の構成は、一定の粒径の微粒子が分散されたコロイド液に対して、その液面に交差するように微粒子集積体の基板を縦向きに浸漬し、コロイド液の溶媒を蒸発させてコロイド液の液面近傍の微粒子を順次基板の表面に供給することにより、微粒子が単層又は2層以上で規則的に集積・配列した微粒子層を基板上に自己組織的に形成させる、微粒子集積体の製造方法である。
(Configuration of the first invention)
The structure of the first invention of the present application for solving the above-described problem is that the substrate of the particle assembly is vertically immersed in a colloidal liquid in which particles having a certain particle diameter are dispersed so as to intersect the liquid surface. , By evaporating the solvent of the colloidal liquid and supplying fine particles near the liquid surface of the colloidal liquid sequentially to the surface of the substrate, a fine particle layer in which the fine particles are regularly accumulated and arranged in a single layer or two or more layers is formed on the substrate. This is a method for producing a fine particle aggregate formed in a self-organizing manner.

(第2発明の構成)
上記課題を解決するための本願第2発明の構成は、以下のいずれか1以上の手段により、前記第1発明に係るコロイド液中の微粒子を良好な分散状態に維持する、微粒子集積体の製造方法である。
(1)pHの調整
(2)界面活性剤の使用
(3)微粒子表面の修飾
(第3発明の構成)
上記課題を解決するための本願第3発明の構成は、前記第1発明又は第2発明に係る基板上に微粒子層を形成させるに当たり、溶媒の蒸発によるコロイド液の液面低下速度を一定の程度以上に設定することにより、又は、コロイド液の液面に対する基板の位置を間欠的に所要の速度で上方へ相対的に変位させることにより、前記微粒子層を多数の平行な細線状に形成させる微粒子集積体の製造方法である。
(Configuration of the second invention)
The structure of the second invention of the present application for solving the above-mentioned problem is the production of a fine particle aggregate in which the fine particles in the colloidal liquid according to the first invention are maintained in a well dispersed state by any one or more of the following means. Is the method.
(1) pH adjustment (2) Use of surfactant (3) Modification of fine particle surface (Structure of the third invention)
The structure of the third invention of the present application for solving the above-mentioned problem is that the rate of decrease in the level of the colloidal liquid due to the evaporation of the solvent is controlled to a certain level when the fine particle layer is formed on the substrate according to the first or second invention. Fine particles that form the fine particle layer in a number of parallel fine lines by setting the above or by intermittently displacing the position of the substrate relative to the liquid surface of the colloidal liquid upward at a required speed. It is a manufacturing method of an aggregate.

(第4発明の構成)
上記課題を解決するための本願第4発明の構成は、前記第3発明に係る多数の細線状の微粒子層の幅と、それらの微粒子層の間隔とを、基板の前記相対的変位の制御によって規則的に調整する、微粒子集積体の製造方法である。
(Configuration of the fourth invention)
The configuration of the fourth invention of the present application for solving the above-described problem is that the width of the fine fine particle layers and the interval between the fine particle layers according to the third invention are controlled by controlling the relative displacement of the substrate. This is a method for producing a fine particle aggregate that is regularly adjusted.

(第5発明の構成)
上記課題を解決するための本願第5発明の構成は、微粒子が単層又は多層で規則的に集積・配列した細線状の微粒子層が、基板上に平行に多数形成されている、粒子細線アレイである。
(Structure of the fifth invention)
In order to solve the above-mentioned problems, the fifth invention of the present application is a fine particle array in which a large number of fine fine particle layers in which fine particles are regularly collected and arranged in a single layer or multiple layers are formed in parallel on a substrate. It is.

(第6発明の構成)
上記課題を解決するための本願第6発明の構成は、前記第5発明に係る多数の細線状の微粒子層が、それぞれ同一幅で、かつ同一間隔で形成されている、粒子細線アレイである。
(Structure of the sixth invention)
The structure of the sixth invention of the present application for solving the above problem is a particle fine wire array in which a large number of fine wire fine particle layers according to the fifth invention are formed with the same width and at the same interval.

(第7発明の構成)
上記課題を解決するための本願第7発明の構成は、前記第5発明又は第6発明に係る細線状の微粒子層の幅が70μm以下であり、それらの微粒子層の間隔が250μm以下である、粒子細線アレイである。
(Structure of the seventh invention)
The configuration of the seventh invention of the present application for solving the above-mentioned problems is that the width of the fine particle-like fine particle layer according to the fifth invention or the sixth invention is 70 μm or less, and the interval between the fine particle layers is 250 μm or less. It is a fine particle array.

(第8発明の構成)
上記課題を解決するための本願第8発明の構成は、前記第5発明〜第7発明のいずれかに係る微粒子が、100nm〜10μmの範囲内で同一の粒径を有するBaTiO、TiO又はSiOの微粒子である、粒子細線アレイである。
(Configuration of the eighth invention)
The structure of the eighth invention of the present application for solving the above-described problem is that the fine particles according to any of the fifth to seventh inventions have BaTiO 3 , TiO 2 or the like having the same particle diameter within a range of 100 nm to 10 μm. It is a fine particle array which is a fine particle of SiO 2 .

(第1発明の効果)
第1発明に係る微粒子集積体の製造方法によれば、前記のコロイド液と基板とを準備し、コロイド液に対して基板を縦向きに浸漬しコロイド液の溶媒を蒸発させると言う極めて簡単な操作だけで、コロイド液の液面近傍の微粒子が順次基板の表面に供給(移流集積)され、多数の微粒子が面心立方構造(六方最密充填構造)に集積・配列した微粒子層が自己組織的に形成される。従って、このような微粒子集積体を簡易に、かつ低コストに製造することができる。
(Effect of the first invention)
According to the method for producing a fine particle assembly according to the first invention, the colloid liquid and the substrate are prepared, and the substrate is immersed vertically in the colloid liquid to evaporate the solvent of the colloid liquid. Just by the operation, fine particles near the surface of the colloidal liquid are sequentially supplied to the surface of the substrate (convection accumulation), and a fine particle layer in which many fine particles are collected and arranged in a face-centered cubic structure (hexagonal close-packed structure) is self-organized Formed. Therefore, such a fine particle assembly can be manufactured easily and at low cost.

又、コロイド液における微粒子の分散密度を調整することにより、微粒子層の厚さを調整できる。即ち、六方最密充填された単層の厚さの微粒子層を持つ微粒子集積体や、このような微粒子層が複数層に集積された厚さの微粒子集積体を製造することができる。   Moreover, the thickness of the fine particle layer can be adjusted by adjusting the dispersion density of the fine particles in the colloidal liquid. That is, it is possible to manufacture a fine particle aggregate having a single-layered fine particle layer packed in a hexagonal close-packed state, and a fine particle aggregate having a thickness in which such a fine particle layer is accumulated in a plurality of layers.

(第2発明の効果)
微粒子集積体の製造方法において、コロイド液中の微粒子を良好な分散状態に維持することは、第1発明のような一般的な微粒子集積体を製造する際にも、第3発明のような粒子細線アレイを製造する際にも、微粒子の沈降防止のために、あるいはノイズ粒子(規則的に集積・配列していない微粒子)を少なくするために、重要である。
(Effect of the second invention)
In the method for producing a fine particle assembly, maintaining the fine particles in the colloidal liquid in a good dispersion state is the same as that for producing the general fine particle aggregate as in the first invention. When manufacturing a thin wire array, it is important to prevent sedimentation of fine particles or to reduce noise particles (fine particles that are not regularly collected and arranged).

従って、もともとコロイド液中の微粒子の良分散を期待し難い場合、例えば、コロイド液の媒体と微粒子との比重差が大きく微粒子が沈降又は浮遊し易い場合や、微粒子のゼータ電位の絶対値が小さく、凝集し易い場合等には、第2発明の(1)〜(3)のいずれか1以上の手段により、コロイド液中の微粒子を良好な分散状態に維持することが好ましい。   Therefore, when it is difficult to expect good dispersion of the fine particles in the colloidal liquid, for example, when the specific gravity difference between the medium of the colloidal liquid and the fine particles is large and the fine particles are likely to settle or float, or the absolute value of the zeta potential of the fine particles is small. In the case where the particles tend to aggregate, it is preferable to maintain the fine particles in the colloidal liquid in a well dispersed state by any one or more of the means (1) to (3) of the second invention.

(第3発明の効果)
第3発明によれば、溶媒の蒸発によるコロイド液の液面低下速度を一定の程度以上に設定することにより、又は、コロイド液の液面に対する基板の相対位置を間欠的に所要の速度で上方へ変位させると言う簡易な操作により、微粒子が規則的に集積・配列した微粒子層を多数の平行な細線状に形成させることができる。即ち、「粒子細線アレイ」と呼ぶべき微粒子集積体を製造することができる。このような粒子細線アレイの製造方法は、本願発明者の発表によるものを除き、未だ報告されていない。
(Effect of the third invention)
According to the third aspect of the invention, the lowering speed of the colloidal liquid due to the evaporation of the solvent is set to a certain level or more, or the relative position of the substrate with respect to the liquid surface of the colloidal liquid is intermittently increased at a required speed. By a simple operation of displacing the fine particles, a fine particle layer in which fine particles are regularly accumulated and arranged can be formed in a number of parallel fine lines. That is, a fine particle aggregate to be called a “particle fine wire array” can be manufactured. Such a method for producing a fine particle array has not yet been reported except for the method disclosed by the present inventor.

なお、溶媒の蒸発によるコロイド液の液面低下速度を一定の程度以上に設定した場合に粒子細線アレイが形成される理由については、次のように考えられる。即ち、コロイド液の溶媒蒸発に伴う液面低下と微粒子層の形成過程が同時進行するに当たり、液面低下速度が大きいと、基板に対する微粒子の十分量の供給を維持し続けることが難しく、微粒子層が一定の幅まで形成された時点で微粒子層と液面との分離(液切れ)が定期的に起こり、その結果として微粒子層が平行な細線状に形成されるのである。   The reason why the fine particle array is formed when the liquid surface lowering rate of the colloidal liquid due to the evaporation of the solvent is set to a certain level or more is considered as follows. That is, when the liquid level lowering accompanying the solvent evaporation of the colloidal liquid and the formation process of the fine particle layer proceed simultaneously, if the liquid level lowering rate is large, it is difficult to keep supplying a sufficient amount of fine particles to the substrate. When the film is formed to a certain width, separation (liquid breakage) between the fine particle layer and the liquid surface occurs periodically, and as a result, the fine particle layer is formed in a parallel thin line shape.

(第4発明の効果)
前記の第3発明において、多数の細線状の微粒子層の幅と、それらの微粒子層の間隔とは、基板の前記相対的変位の制御によって規則的に調整することができる。そしてコロイド液の液面に対する基板の相対的変位は、コロイド液の液面に対して基板を引き上げることにより、及び/又は、基板に対してコロイド液の液面を下げる(例えば、コロイド液の容器を下方へ変位させる)ことにより、行うことができる。
(Effect of the fourth invention)
In the third aspect of the invention, the width of the fine fine particle layers and the interval between the fine particle layers can be regularly adjusted by controlling the relative displacement of the substrate. The relative displacement of the substrate relative to the liquid level of the colloidal liquid can be determined by raising the substrate relative to the liquid level of the colloidal liquid and / or lowering the liquid level of the colloidal liquid relative to the substrate (for example, a container for colloidal liquid). Can be carried out by displacing.

(第5発明の効果)
第5発明に記載したような粒子細線アレイは、本願発明者の発表によるものを除き、未だ報告されていない。
(Effect of the fifth invention)
The fine particle array as described in the fifth invention has not been reported yet, except for the one disclosed by the present inventor.

このような粒子細線アレイが提供されることにより、可視光領域、紫外光領域、マイクロ波領域を対象としたフォトニック結晶としての用途が期待される。ガスセンサーとしての使用も期待される。従来は多結晶セラミックスにより作製されていた電子材料や構造材料を、粒径の均一化、粒界の制御、空隙・密度・周期性制御により高効率化する等の用途も期待される。更に、微粒子集積体においては用途開発の研究が盛んに行われており、フォトニックペーパー等の新規デバイスコンセプトが次々に考案されているため、新規の応用例が一層拡がるものと予想される。   By providing such a fine particle array, it is expected to be used as a photonic crystal for the visible light region, the ultraviolet light region, and the microwave region. Use as a gas sensor is also expected. Applications such as increasing the efficiency of electronic materials and structural materials conventionally produced from polycrystalline ceramics by homogenizing the grain size, controlling grain boundaries, and controlling voids, density, and periodicity are also expected. Furthermore, research on application development has been actively conducted on fine particle assemblies, and new device concepts such as photonic paper have been devised one after another, and it is expected that new applications will be further expanded.

(第6発明の効果)
粒子細線アレイとしては、第6発明のように、多数の細線状の微粒子層が、それぞれ同一幅(幅A)を持ち、かつ同一間隔(間隔B)で形成されていることが、フォトニック結晶等への応用において、高い周期性を有すると言う理由から、特に好ましい。幅Aと間隔Bとが同一であることは特段に要求されないが、これらの幅Aと間隔Bとをそれぞれ任意に設計できる点は、粒子細線アレイの応用の幅を広げる上で有利である。
(Effect of the sixth invention)
As the fine particle array, as in the sixth invention, a large number of fine fine particle layers have the same width (width A) and are formed at the same interval (interval B). In application to the above, it is particularly preferable because it has high periodicity. Although it is not particularly required that the width A and the interval B are the same, the point that the width A and the interval B can be arbitrarily designed is advantageous in expanding the application range of the fine particle array.

(第7発明の効果)
又、粒子細線アレイにおける細線状の微粒子層の幅と、それらの相互間隔とは、それぞれ任意に設計することができるが、例えば第7発明のように、70μm以下の幅の細線状の微粒子層が250μm以下の間隔を以て多数並列しているものが、特に好ましい。なぜなら、フォトニック結晶は可視光波長程度の周期性構造体であるし、デバイスの小型化のためには微細な構造体の作製が必要だからである。
(Effect of the seventh invention)
The width of the fine particle layer in the fine particle array and the interval between them can be arbitrarily designed. For example, as in the seventh invention, the fine particle layer having a width of 70 μm or less. Are more preferably arranged in parallel at intervals of 250 μm or less. This is because the photonic crystal is a periodic structure having a wavelength of visible light, and it is necessary to produce a fine structure in order to reduce the size of the device.

(第8発明の効果)
微粒子層を構成する多数の微粒子の粒径は限定されないが、製造プロセス上は、100nm〜10μmの範囲内で同一の粒径であることが、特に好ましい。微粒子の粒径が余りに大きいものは、製造プロセスにおいてコロイド溶液中で沈降又は浮遊し易く、微粒子の粒径が余りに小さいものは、ファンデルワールス力が優勢になって凝集し易い。
(Effect of the eighth invention)
The particle size of a large number of fine particles constituting the fine particle layer is not limited, but it is particularly preferable that the particle size is the same within a range of 100 nm to 10 μm in the manufacturing process. If the particle size is too large, it tends to settle or float in the colloidal solution in the production process, and if the particle size is too small, the van der Waals force predominates and tends to aggregate.

一方、微粒子の構成材料は限定されないが、空気との屈折率の差が大きいと言う理由から、BaTiO、TiO又はSiOの微粒子であることが特に好ましい。 On the other hand, although the constituent material of the fine particles is not limited, BaTiO 3 , TiO 2, or SiO 2 fine particles are particularly preferable because the difference in refractive index from air is large.

次に、本願の第1発明〜第8発明を実施するための形態を、その最良の形態を含めて説明する。以下において、単に「本発明」と言う時は、本願の各発明を一括して指している。   Next, modes for carrying out the first to eighth inventions of the present application will be described including the best mode. In the following, the term “present invention” refers to each invention of the present application collectively.

〔微粒子集積体の製造方法〕
本発明に係る微粒子集積体の製造方法は、微粒子集積体の基板と、一定の粒径の微粒子が分散されたコロイド液とを用い、このコロイド液に含まれる多数の微粒子を基板上に自己組織的に集積・配列させることによって行われる。
[Method for producing fine particle assembly]
The method for producing a fine particle assembly according to the present invention uses a fine particle aggregate substrate and a colloid liquid in which fine particles having a certain particle diameter are dispersed, and a large number of fine particles contained in the colloid liquid are self-organized on the substrate. It is performed by accumulating and arranging automatically.

より具体的には、前記コロイド液に対して前記基板を縦向きに(即ち、コロイド液の液面に対して交差するように)浸漬し、加熱等の手段によってコロイド液の溶媒を蒸発させることにより、コロイド液の液面近傍の微粒子を順次基板の表面に供給して(移流集積させて)、集積・配列させる。この際、多数の微粒子は面心立方構造(六方最密充填構造)を以て自己組織的に集積・配列され、基板上に単層又は複数層の厚さの微粒子層を形成して、微粒子集積体を構成する。   More specifically, the substrate is immersed vertically in the colloidal liquid (that is, so as to cross the liquid surface of the colloidal liquid), and the solvent of the colloidal liquid is evaporated by means such as heating. Thus, the fine particles near the liquid surface of the colloidal liquid are sequentially supplied to the surface of the substrate (accumulated and accumulated), and accumulated and arranged. At this time, a large number of fine particles are self-organized and arranged in a face-centered cubic structure (hexagonal close-packed structure) to form a fine particle layer of a single layer or a plurality of layers on the substrate. Configure.

このようにして製造された微粒子集積体は、フォトニック結晶や光学素子等として利用することができ、例えば、レーザーや光の振動モードを人工的に制御する光学素子への応用、光導波路への応用等が可能である。   The fine particle assembly produced in this way can be used as a photonic crystal, an optical element, or the like. For example, it can be applied to an optical element that artificially controls the vibration mode of a laser or light, or applied to an optical waveguide. Application etc. are possible.

〔微粒子〕
微粒子集積体を構成するために用いる微粒子の種類、粒径等については限定されないが、同一の粒径の(あるいは、粒径分布の極めて狭い)微粒子群を用いることが望ましい。その粒径は任意に選択することができるが、前記の理由から、製造プロセス上は100nm〜10μmの範囲内、とりわけ100nm〜1μmの範囲内の一定の粒径が好ましい。
[Fine particles]
The type and particle size of the fine particles used for constituting the fine particle aggregate are not limited, but it is desirable to use fine particle groups having the same particle size (or having a very narrow particle size distribution). The particle size can be arbitrarily selected, but for the reasons described above, a certain particle size within the range of 100 nm to 10 μm, particularly within the range of 100 nm to 1 μm is preferable in the manufacturing process.

微粒子の形状は限定されず、好ましくは球形であるが、立方体、正8面体等の形状のものも利用できる。微粒子の材質としては、無機質又は有機質(例えばプラスチックス)の各種の材料からなる微粒子を使用できるが、前記した理由から、BaTiO、TiO又はSiOの微粒子が特に好ましい。 The shape of the fine particles is not limited and is preferably a spherical shape, but a shape such as a cube or a regular octahedron can also be used. As the material of the fine particles, fine particles made of various materials such as inorganic or organic (for example, plastics) can be used. For the reasons described above, BaTiO 3 , TiO 2, or SiO 2 fine particles are particularly preferable.

微粒子は、コロイド液中における良好な分散を確保するために、その表面に、例えばチオール系有機分子やシラン系カップリング剤等の適宜な修飾を行うことができる。   In order to ensure good dispersion of the fine particles in the colloidal solution, the surface thereof can be appropriately modified, for example, with a thiol organic molecule or a silane coupling agent.

〔微粒子が分散されたコロイド液〕
微粒子が分散されたコロイド液の溶媒(分散媒)は、水、エタノール等の有機溶媒、又はこれらの混合液等から任意に選択することができる。溶媒の選択に当たり、加熱等による蒸発又は揮発の速度を考慮することができる。溶媒の蒸発又は揮発の速度は、微粒子集積体の製造効率等に影響する。
[Colloidal liquid in which fine particles are dispersed]
The solvent (dispersion medium) of the colloidal liquid in which the fine particles are dispersed can be arbitrarily selected from water, an organic solvent such as ethanol, or a mixture thereof. In selecting the solvent, the rate of evaporation or volatilization due to heating or the like can be considered. The rate of evaporation or volatilization of the solvent affects the production efficiency of the fine particle aggregate.

コロイド液における微粒子の良好な分散状態の維持は、ノイズ粒子の少ない微粒子集積体の製造にとって重要なポイントであり、その確保のために、上記した微粒子表面の修飾の他、コロイド液に界面活性剤を含有させたり、コロイド液のpHを調整する(具体的には、pHを等電点から離れた値にする)等の対策を取ることができる。   Maintaining a good dispersion state of the fine particles in the colloidal liquid is an important point for the production of a fine particle aggregate with few noise particles. Or by adjusting the pH of the colloidal liquid (specifically, the pH is set to a value away from the isoelectric point).

コロイド液中における微粒子の分散密度は、微粒子集積体における微粒子層の厚さ(単層/2層以上)を規定する要因であり、目的に応じて微粒子の分散密度を設定することができる。。   The dispersion density of the fine particles in the colloidal liquid is a factor that defines the thickness of the fine particle layer (single layer / 2 layers or more) in the fine particle aggregate, and the fine particle dispersion density can be set according to the purpose. .

〔基板〕
基板の形状、サイズ、材質、表面性状等は限定されない。基板の形状に関しては、任意の平面形状を持つ平坦な板状体が一般的であるが、球面等の湾曲した表面を持つ形状であっても、使用することができる。基板の材質に関しては、例えば各種のセラミックス、プラスチックス、金属等の基板を使用できるが、微粒子集積体の用途を考慮した場合、シリコン基板が代表的に例示される。
〔substrate〕
The shape, size, material, surface properties, etc. of the substrate are not limited. Regarding the shape of the substrate, a flat plate-like body having an arbitrary planar shape is generally used, but even a shape having a curved surface such as a spherical surface can be used. As for the material of the substrate, for example, various ceramics, plastics, metals and the like can be used, but a silicon substrate is typically exemplified when considering the use of the fine particle assembly.

基板の表面性状は親水性であっても良いが、ノイズ粒子のより少ない微粒子集積体の製造上、疎水性である方が好ましい。そのために親水性基板の表面を疎水性処理することもできる。表面疎水性処理としては、基板表面に疎水性分子膜を形成させる等の周知又は公知の各種の手段を採用することができる。   The surface property of the substrate may be hydrophilic, but is preferably hydrophobic in terms of production of a fine particle aggregate having fewer noise particles. Therefore, the surface of the hydrophilic substrate can be subjected to a hydrophobic treatment. As the surface hydrophobic treatment, various known or publicly known means such as forming a hydrophobic molecular film on the substrate surface can be employed.

〔粒子細線アレイとその製造方法〕
本発明に係る粒子細線アレイにおいては、微粒子が単層又は多層で規則的に集積・配列した細線状の微粒子層が、基板上に平行に多数形成されている。これら多数の細線状の微粒子層の幅や相互間隔は、機能上の要求からは、それぞれ同一幅(幅A)で、かつ同一間隔(間隔B)で形成されていることが好ましい。幅Aや間隔Bは任意に設定できるが、例えばそれぞれ、幅Aを10〜70μm程度とし、間隔Bを50〜250μm程度とすることができる。
[Particle wire array and manufacturing method thereof]
In the fine particle array according to the present invention, a large number of fine fine particle layers in which fine particles are regularly collected and arranged in a single layer or multiple layers are formed in parallel on a substrate. The widths and intervals between the fine fine particle layers are preferably the same width (width A) and the same interval (interval B) from the functional requirements. The width A and the interval B can be arbitrarily set. For example, the width A can be set to about 10 to 70 μm, and the interval B can be set to about 50 to 250 μm.

このような粒子細線アレイは、上記の微粒子集積体の製造方法において、基板上に微粒子層を形成させるに当たり、コロイド液の液面に対する基板の位置を間欠的に所要の速度で上方へ相対的に変位させることにより製造できる。   In such a method of manufacturing a fine particle assembly, such a fine particle array is used to intermittently move the position of the substrate relative to the colloidal liquid surface upward at a required speed when forming a fine particle layer on the substrate. It can be manufactured by displacing.

又、溶媒の蒸発によるコロイド液の液面低下速度を一定の程度以上に設定することによっても製造できる。この場合、「一定の程度以上の液面低下速度」は、コロイド液中の微粒子の密度や微粒子の粒径等に応じて変化するため、一律に規定することは難しいが、例えば8時間当たり2cm以上(好ましくは、3cm以上)とすることができる。なお、液面低下速度が余りに大きい(例えば、1時間当たり1cm以上)と、そもそも基板上に微粒子が集積しない。   It can also be produced by setting the liquid level lowering rate of the colloidal liquid by evaporation of the solvent to a certain level or more. In this case, the “liquid level lowering rate of a certain level or more” varies depending on the density of the fine particles in the colloidal liquid, the particle size of the fine particles, and the like. It can be made above (preferably 3 cm or more). Note that if the liquid level lowering rate is too large (for example, 1 cm or more per hour), fine particles do not accumulate on the substrate in the first place.

コロイド液の液面に対する基板の相対位置の上方への間欠的な変位は、コロイド液の液面に対して基板を引き上げることにより、及び/又は、コロイド液の容器を下方へ変位させることにより、行うことができる。この間欠的な相対的変位を、比較的大きな速度(例えば、1時間当たり1cm以上)で行うと、その変位分の幅については基板上に微粒子が集積せず、上記の間隔Bが構成される。又、この相対的変位を休止期間は基板上に微粒子が集積し、その休止期間中の溶媒の蒸発量(コロイド溶液の液面の低下幅)が上記の幅Aを決定する。   Intermittent displacement of the relative position of the substrate relative to the colloidal liquid level can be achieved by pulling up the substrate relative to the colloidal liquid level and / or by displacing the colloidal liquid container downward. It can be carried out. When this intermittent relative displacement is performed at a relatively large speed (for example, 1 cm or more per hour), fine particles do not accumulate on the substrate with respect to the width of the displacement, and the interval B is configured. . Further, during the rest period, fine particles accumulate on the substrate during the rest period, and the amount A of evaporation of the solvent during the rest period (decrease width of the colloid solution) determines the width A.

なお、この休止期間中も、ある程度以下の速度(基板上に微粒子が集積し得る緩徐な速度)で、コロイド液の液面に対する基板の相対位置の上方への変位を行わせても良い。この場合、この緩徐な変位も上記の幅Aを決定する因子となり、更には細線状の微粒子層の厚さ(単層/2層以上)を規定する要因ともなる。   During the rest period, the relative position of the substrate relative to the liquid surface of the colloidal liquid may be displaced upward at a certain speed (slow speed at which fine particles can accumulate on the substrate). In this case, this gradual displacement is also a factor for determining the width A, and further a factor for defining the thickness of the fine particle layer (single layer / 2 layers or more).

以下の実施例1〜実施例3を行った。実施例1及び実施例2は本願第2発明の実施例であり、実施例3は本願第1発明の実施例である。但し、本願発明の技術的範囲がこれらの実施例により限定されないことは、もちろんである。   The following Examples 1 to 3 were performed. Example 1 and Example 2 are examples of the second invention of the present application, and Example 3 is an example of the first invention of the present application. However, it goes without saying that the technical scope of the present invention is not limited by these examples.

(実施例1)
1vol.%のオクタデシルトリクロロシランを含む無水トルエンに、窒素雰囲気下でシリコンプレートを5分間浸漬して表面を疎水化し、微粒子集積体用の基板を得た(以下、これを単に「基板」と言う)。この基板のエタノールに対する接触角は10〜20°であり、水に対する接触角は96°であった。
Example 1
A silicon plate was immersed in anhydrous toluene containing 1 vol.% Octadecyltrichlorosilane in a nitrogen atmosphere for 5 minutes to hydrophobize the surface to obtain a substrate for a fine particle assembly (hereinafter simply referred to as “substrate”). ). The contact angle with respect to ethanol of this board | substrate was 10-20 degrees, and the contact angle with respect to water was 96 degrees.

直径1000nmの球形SiO微粒子15mgをエタノール80ml中に分散させたコロイド液を容器に収容し、このエタノール中に上記の基板を縦向きに浸漬した。そして容器底部からの加熱によりエタノールを70°Cに加温した。なお、この際に、冷却管によりエタノール液の一部を冷却して対流を増進させても良い。 A colloidal solution in which 15 mg of spherical SiO 2 fine particles having a diameter of 1000 nm were dispersed in 80 ml of ethanol was placed in a container, and the substrate was immersed vertically in this ethanol. Then, ethanol was heated to 70 ° C. by heating from the bottom of the container. At this time, a part of the ethanol liquid may be cooled by a cooling pipe to enhance convection.

こうして、エタノールの底部と表層部との温度差によりエタノールが攪拌され、それによってSiO微粒子も移動するようにした。 In this way, ethanol was stirred by the temperature difference between the bottom portion and the surface layer portion of ethanol, so that the SiO 2 fine particles also moved.

加温に基づくエタノールの蒸発につれて、その表層部が基板の表面側へ移動し、かつ、エタノールの蒸発に基づく液面低下(およそ1cm/8時間の速度)につれて、SiO微粒子が図1の(a)〜(c)に示すように基板上に集積し、自己組織的に配列した。 As the ethanol evaporates due to heating, the surface layer portion moves to the surface side of the substrate, and as the liquid level decreases due to the evaporation of ethanol (rate of about 1 cm / 8 hours), the SiO 2 fine particles become as shown in FIG. As shown in a) to (c), they were accumulated on the substrate and arranged in a self-organizing manner.

次に、上記したエタノールの蒸発に基づく液面と基板との相対変位速度よりも有意に速い一定の速度(およそ1cm/1時間の速度)で基板を引き上げると、図1の(d)〜(e)に示すように、その間は微粒子の新たな集積・配列は起こらなかった。そのため、結果的に細線状の微粒子層が形成された。   Next, when the substrate is pulled up at a constant speed (speed of about 1 cm / 1 hour) significantly faster than the relative displacement speed between the liquid surface and the substrate based on the evaporation of ethanol described above, (d) to (d) in FIG. As shown in e), no new accumulation / arrangement of fine particles occurred during that time. Therefore, as a result, a fine-line fine particle layer was formed.

次に基板の引き上げを停止したところ、既に形成された細線状の微粒子層とは一定の間隔を以て平行に、次の微粒子層の形成が始まった。以上のサイクルの繰り返しにより、図1の(f)に示すような粒子細線アレイが形成された。   Next, when the pulling-up of the substrate was stopped, the formation of the next fine particle layer started in parallel with the fine wire-like fine particle layer already formed at a constant interval. By repeating the above cycle, a fine particle array as shown in FIG. 1 (f) was formed.

図2〜図5には、微粒子が複数層の厚さで規則的に集積・配列した微粒子層を持つ粒子細線アレイの形成例を、走査型電子顕微鏡像で示す。同一の粒子細線アレイについて、図2から図5へ順次拡大倍率を上げたものであり、図5には個々の微粒子が複数層で規則的に集積・配列している様子が明瞭に認められる。   FIGS. 2 to 5 show scanning electron microscope images of examples of the formation of a fine particle array having a fine particle layer in which fine particles are regularly accumulated and arranged in a thickness of a plurality of layers. The same fine particle wire array is obtained by sequentially increasing the magnification from FIG. 2 to FIG. 5. In FIG. 5, it can be clearly seen that individual fine particles are regularly accumulated and arranged in a plurality of layers.

図6には、微粒子が単層の厚さで規則的に集積・配列(六方最密充填構造)した微粒子層の形成例を、走査型電子顕微鏡像で示す。又、図7には、微粒子が単層の厚さで規則的に集積・配列した微粒子層であって、矢印で示す2ケ所に配列欠陥を持つ例を、走査型電子顕微鏡像で示す。この配列欠陥は、微粒子層における第1列目の粒子配列が形成される際に粒子の再配列(移動)が不十分であったことが原因で形成されたものである。   FIG. 6 shows a scanning electron microscope image of an example of forming a fine particle layer in which fine particles are regularly accumulated and arranged (hexagonal close-packed structure) with a single layer thickness. FIG. 7 shows a scanning electron microscopic image of an example of a fine particle layer in which fine particles are regularly collected and arranged in a single layer thickness and having arrangement defects at two locations indicated by arrows. This arrangement defect is formed because the rearrangement (movement) of particles is insufficient when the first row of particle arrangements in the fine particle layer is formed.

更に、図8の(a)〜(c)には、微粒子が単層の厚さで規則的に集積・配列した微粒子層が形成されて行く過程を経時的に撮像した走査型電子顕微鏡写真を示す。又、図9には基板上に形成された粒子細線アレイ全体の写真を示す。   Further, in FIGS. 8A to 8C, scanning electron micrographs are taken of the process of forming a fine particle layer in which fine particles are regularly accumulated and arranged with a single layer thickness. Show. Further, FIG. 9 shows a photograph of the entire fine particle array formed on the substrate.

(実施例2)
上記の実施例1に比較して、エタノールの蒸発に基づく液面低下の速度を、およそ3cm/8時間とし、それ以外の点は実施例1と全く同様にして、実施例2を行った。
(Example 2)
Compared to Example 1 above, Example 2 was performed in exactly the same manner as Example 1 except that the rate of liquid level reduction based on the evaporation of ethanol was about 3 cm / 8 hours.

この実施例2においては、実施例1で前記した基板の上方への引き上げによる相対変位操作を行わなくても、エタノールの蒸発に基づくコロイド液の液面の低下のみにより、前記図1における(d)〜(e)のプロセスが自律的に起こり、粒子細線アレイが形成された。その理由は、前記「第3発明の効果」の欄で説明した通りのものであると考えられる。   In the second embodiment, even if the relative displacement operation by the upward pulling of the substrate as described in the first embodiment is not performed, only the drop of the colloidal liquid based on the evaporation of ethanol (d) in FIG. ) To (e) autonomously occurred, and a fine particle array was formed. The reason is considered to be the same as described in the section “Effect of the third invention”.

(実施例3)
上記の実施例1に比較して、前記した基板の上方への引き上げによる相対変位操作を行わず、エタノールの蒸発に基づくコロイド液の液面の緩徐な低下(およそ1cm/8時間の速度)のみを起こさせ、それ以外の点は実施例1と全く同様にして実施例3を行った。
(Example 3)
Compared with Example 1 above, the relative displacement operation by pulling the substrate upward is not performed, but only a gradual decrease in the colloidal liquid level due to the evaporation of ethanol (rate of about 1 cm / 8 hours). Example 3 was carried out in the same manner as Example 1 except for the above.

この実施例においては、基板上に微粒子層が一様に形成され、粒子細線アレイとはならなかった。その理由は、コロイド液中のSiO微粒子の分散密度の関係で、微粒子層の形成に伴う実施例2のような微粒子層とコロイド液の液面との分離(液切れ)が起こらないためであると考えられる。 In this example, the fine particle layer was uniformly formed on the substrate, and the particle fine wire array was not formed. The reason is that the separation (liquid breakage) between the fine particle layer and the liquid surface of the colloid liquid as in Example 2 due to the formation of the fine particle layer does not occur because of the dispersion density of the SiO 2 fine particles in the colloid liquid. It is believed that there is.

本発明により、フォトニック結晶や光学素子等として利用できる微粒子集積体の新規で簡易な製造方法が提供される。更に、微粒子集積体の新たなカテゴリーである粒子細線アレイと、その簡易な製造方法が提供される。   The present invention provides a novel and simple method for producing a fine particle assembly that can be used as a photonic crystal, an optical element, or the like. Furthermore, a fine particle array, which is a new category of fine particle aggregates, and a simple manufacturing method thereof are provided.

実施例における粒子細線アレイの製造過程を簡略化して説明する図である。It is a figure which simplifies and demonstrates the manufacturing process of the particle wire array in an Example.

粒子細線アレイの形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of a particle wire array.

粒子細線アレイの形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of a particle wire array.

粒子細線アレイの形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of a particle wire array.

粒子細線アレイの形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of a particle wire array.

単層の微粒子層の形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of the fine particle layer of a single layer.

配列欠陥を持つ微粒子層の形成例を示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the example of formation of the fine particle layer which has an alignment defect.

単層の微粒子層の形成過程を経時的に示す走査型電子顕微鏡像である。It is a scanning electron microscope image which shows the formation process of the fine particle layer of a single layer with time.

基板上に形成された粒子細線アレイの撮像写真である。It is a picked-up photograph of the fine particle array formed on the substrate.

Claims (2)

一定の粒径の微粒子が分散されたコロイド液に対して、その液面に交差するように微粒子集積体の基板を縦向きに浸漬し、コロイド液の溶媒を蒸発させてコロイド液の液面近傍の微粒子を順次基板の表面に供給し、溶媒の蒸発によるコロイド液の液面低下速度を一定の程度以上に設定することにより、又は、コロイド液の液面に対する基板の位置を間欠的に所要の速度で上方へ相対的に変位させることにより、多数の前記液面に平行な細線状に微粒子が単層又は2層以上で規則的に集積・配列した微粒子層を基板上に自己組織的に形成させることを特徴とする微粒子集積体の製造方法。 In the colloidal liquid in which fine particles of a certain particle size are dispersed, the substrate of the fine particle aggregate is immersed vertically so as to intersect the liquid surface, and the solvent of the colloidal liquid is evaporated to near the liquid surface of the colloidal liquid. Are sequentially supplied to the surface of the substrate, and the lowering speed of the colloid liquid due to evaporation of the solvent is set to a certain level or more, or the position of the substrate relative to the liquid surface of the colloid liquid is intermittently required. By relatively displacing upward at a speed, a fine particle layer in which fine particles are regularly collected and arranged in a single layer or two or more layers in a thin line parallel to the liquid surface is formed on a substrate in a self-organized manner. A method for producing a fine particle assembly, wherein: 前記多数の細線状の微粒子層の幅と、それらの微粒子層の間隔とを、基板の前記相対的変位の制御によって規則的に調整することを特徴とする請求項1に記載の微粒子集積体の製造方法。 2. The fine particle assembly according to claim 1, wherein the width of the fine fine particle layers and the interval between the fine particle layers are regularly adjusted by controlling the relative displacement of the substrate. Production method.
JP2004114228A 2004-04-08 2004-04-08 Fine particle assembly manufacturing method and fine particle array Expired - Fee Related JP4679832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114228A JP4679832B2 (en) 2004-04-08 2004-04-08 Fine particle assembly manufacturing method and fine particle array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114228A JP4679832B2 (en) 2004-04-08 2004-04-08 Fine particle assembly manufacturing method and fine particle array

Publications (2)

Publication Number Publication Date
JP2005296747A JP2005296747A (en) 2005-10-27
JP4679832B2 true JP4679832B2 (en) 2011-05-11

Family

ID=35328945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114228A Expired - Fee Related JP4679832B2 (en) 2004-04-08 2004-04-08 Fine particle assembly manufacturing method and fine particle array

Country Status (1)

Country Link
JP (1) JP4679832B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019208B2 (en) * 2007-03-30 2012-09-05 国立大学法人東京工業大学 Coating film forming composition
JP5278666B2 (en) * 2008-07-29 2013-09-04 株式会社村田製作所 Manufacturing method of ultrafine particle thin film
FR2956991B1 (en) * 2010-03-02 2012-11-02 Commissariat Energie Atomique METHOD FOR DEPOSITING A LAYER OF PARTICLES ORGANIZED ON A SUBSTRATE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002687A (en) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol Method for forming inverse opal structure photonics crystal
JP2003095793A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Method and apparatus for forming fine artificial crystal particle
JP2003181275A (en) * 2001-12-18 2003-07-02 Ricoh Co Ltd Method of forming film having arrayal fine particles
JP2003290648A (en) * 2002-04-01 2003-10-14 Ricoh Co Ltd Fine particle structure formation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2828386B2 (en) * 1993-08-31 1998-11-25 科学技術振興事業団 Manufacturing method of fine particle thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002687A (en) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol Method for forming inverse opal structure photonics crystal
JP2003095793A (en) * 2001-09-19 2003-04-03 Ricoh Co Ltd Method and apparatus for forming fine artificial crystal particle
JP2003181275A (en) * 2001-12-18 2003-07-02 Ricoh Co Ltd Method of forming film having arrayal fine particles
JP2003290648A (en) * 2002-04-01 2003-10-14 Ricoh Co Ltd Fine particle structure formation method

Also Published As

Publication number Publication date
JP2005296747A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
García Núñez et al. Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating
JP5133871B2 (en) Method for producing colloidal photonic crystals using colloidal nanoparticles
US7752997B1 (en) Apparatus and method for nanoscale pattern generation
US7520933B2 (en) Method for manufacturing colloidal crystals via confined convective assembly
Wang et al. Template-directed colloidal self-assembly–the route to ‘top-down’nanochemical engineering
US6991847B2 (en) Light emitting photonic crystals
US7333264B2 (en) Photonic bandgap materials based on silicon
JP2000108100A (en) Quantum dot solid and patterning method for conventional type solid
JP4849375B2 (en) Fine particle array thin film, method for manufacturing the same, and fine particle array thin film manufacturing apparatus
Li et al. Large-scale and well-ordered assembly of microspheres in a small container
JP4679832B2 (en) Fine particle assembly manufacturing method and fine particle array
Cong et al. New colloidal lithographic nanopatterns fabricated by combining pre-heating and reactive ion etching
JP2005107148A (en) Three-dimensional periodic structure and its manufacturing method
JP4546129B2 (en) PRODUCTION METHOD FOR DIFFERENT SIZE PARTICLE ASSEMBLY, DIFFERENT SIZE PARTICLE ASSEMBLY, AND DIFFERENT SIZE PARTICLE ASSEMBLY LINE
JP2003181275A (en) Method of forming film having arrayal fine particles
JP4611583B2 (en) Artificial crystal forming device
KR100683942B1 (en) Fabrication method of colloidal crystals via confined convective assembly
CA2398632C (en) Photonic bandgap materials based on silicon
Landon et al. Self-assembly of spherical colloidal silica along the [100] direction of the FCC lattice and geometric control of crystallite formation
Xiao-Yong et al. Fabrication of high quality three-dimensional photonic crystals
CN101717994B (en) Method for preparing large-area single-domain two-dimensional colloidal crystal
JP2003192489A (en) Method of producing artificial crystal body and artificial crystal body produced by the method
JP2003201194A (en) Method of producing artificial crystal material and artificial crystal material produced by the same
Lee et al. Epitaxially grown colloidal crystals of silica microspheres on patterned substrate of triangular arrays
Chung et al. Effect of heating rate on the fabrication of tunable ordered macroporous structures mediated by colloidal crystal template

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4679832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees