JP4670841B2 - 車両用走行制御装置 - Google Patents

車両用走行制御装置 Download PDF

Info

Publication number
JP4670841B2
JP4670841B2 JP2007172404A JP2007172404A JP4670841B2 JP 4670841 B2 JP4670841 B2 JP 4670841B2 JP 2007172404 A JP2007172404 A JP 2007172404A JP 2007172404 A JP2007172404 A JP 2007172404A JP 4670841 B2 JP4670841 B2 JP 4670841B2
Authority
JP
Japan
Prior art keywords
vehicle
optical axis
control
sensor
axis deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007172404A
Other languages
English (en)
Other versions
JP2007290708A (ja
Inventor
陽治 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007172404A priority Critical patent/JP4670841B2/ja
Publication of JP2007290708A publication Critical patent/JP2007290708A/ja
Application granted granted Critical
Publication of JP4670841B2 publication Critical patent/JP4670841B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、自車両前方の物体との相対位置関係に応じて走行制御を行うようにした車両用走行制御装置に関する。
従来の車両用走行制御装置としては、自車両前方の物体を認識するセンサで停止物(前方路側のデリニエータ)を検出した場合に、その移動軌跡を統計的に処理することにより、センサの光軸ずれ量(車両の前後軸線方向からのずれ量)を検出し、光軸ずれ量に基づいて前方物体との相対位置情報を補正するというものが知られている(例えば、特許文献1参照)。
特開平10−132939号公報
しかしながら、上記従来の車両用走行制御装置にあっては、停止物の移動軌跡を統計的に処理することでセンサの光軸ずれを検出するため、実際に光軸ずれが発生してから、かなり時間が経過しないと検出することができない。そのため、軽衝突等により光軸ずれが発生した場合には、光軸ずれが検出されるまでは、光軸がずれたままシステムが作動してしまうという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、自車両前方の物体を認識するためのセンサの検出範囲にずれが発生した場合に、直ちにそれを検出することが可能な車両用走行制御装置を提供することを目的としている。
上記目的を達成するために、本発明に係る車両用走行制御装置は、衝突回避判断手段が衝突回避不可能と判断し、且つ所定の作動条件が満たされた場合に自車両を自動制動制御する自動制動制御の終了後であって、前記衝突回避判断手段が衝突回避不可能と判断した衝突により前記前方物体検出手段の検出範囲が変化した場合に、自動制動制御手段による自動制動制御、又は走行制御手段による走行制御が作動され難くなるように作動条件を変更する。
本発明によれば、衝突回避判断手段が衝突回避不可能と判断した衝突により前方物体検出手段の検出範囲が変化した場合に、自動制動制御手段による自動制動制御、又は走行制御手段による走行制御が作動され難くなるように作動条件を変更するので、衝突による前方物体検出手段の検出範囲の変化により前方物体の位置を正確に認識することができないまま自動制動制御又は走行制御を行うことを確実に防止できると共に、安全走行を確保することができるという効果が得られる。
以下、本発明の実施の形態を図面に基づいて説明する。
まず、第1の実施形態を説明する。
図1は本発明を、衝突速度低減装置を搭載した後輪駆動車に適用した場合の実施形態を示す概略構成図であり、図中、1FL,1FRは従動輪としての前輪、1RL,1RRは駆動輪としての後輪であって、後輪1RL,1RRは、エンジン2の駆動力が自動変速機3、プロペラシャフト4、最終減速装置5及び車軸6を介して伝達されて回転駆動される。
前輪1FL,1FR及び後輪1RL,1RRには、夫々制動力を発生する例えばディスクブレーキで構成されるブレーキアクチュエータ7が設けられていると共に、これらブレーキアクチュエータ7の制動油圧が制動制御装置8によって制御される。
ここで、制動制御装置8は、図示しないブレーキペダルの踏込みに応じて制動油圧を発生すると共に、走行制御コントローラ20からの制動圧指令値PBRに応じて制動油圧を発生し、これをブレーキアクチュエータ7に出力するように構成されている。また、自動変速機3の出力側に配設された出力軸の回転速度を検出することにより、自車速Vsを検出する車速センサ13が配設されている。
一方、車両の前方側の車体下部には、前方物体検出手段としての前方物体センサ14が設けられており、スキャニング式のレーザレーダにより、一定角度ずつ水平方向にずれながら周期的に車両の前方方向に所定の照射範囲(例えば、水平方向で12°〜24°、上下方向で4°)内で細かいレーザ光を照射し、前方物体から反射して戻ってくる反射光を受光して、出射タイミングから反射光の受光タイミングまでの時間差に基づいて、図2に示すように、各角度における自車両MCと前方物体PCとの間の相対距離drを検出する。検出された前方物体までの相対距離drの時間的変化から前方物体と自車両との相対速度Vrを算出し、前方物体センサ14の検出信号及びそのスキャニング角度に基づいて、自車両の進行方向を基準とし、これに対する前方物体の左右エッジの角度範囲θR及びθLを検出する。
この前方物体センサ14は、通常、その光軸方向が自車両の前後軸線から許容誤差範囲内(例えば、±0.5°)の高精度で締結具等により取り付けられているが、車両に何らかの衝撃が加わること等により、センサの光軸方向が自車両の前後軸線方向から許容誤差範囲内を超えて左右にずれると、斜め前方の物体を自車両前方の物体と誤認識し、上下にずれると前方物体を認識できないなど、前方物体との相対位置関係を正確に検出することができない。
また、この車両には、自車両に発生する前後加速度Xgを検出する加速度センサ15、自車両に発生するヨーレートφを検出するヨーレートセンサ16が設けられている。さらに、車室内には光軸ずれ表示装置17が設けられており、前方物体センサ14の光軸ずれを検出して走行制御コントローラ20から光軸ずれ報知指令が入力されると、運転者に光軸ずれ状態を提示する。
そして、車速センサ13から出力される自車速Vs、前方物体センサ14から出力される相対距離dr、相対速度Vr、角度範囲θR、θL、加速度センサ15から出力される加速度Xg、及びヨーレートセンサ16から出力されるヨーレートφが走行制御コントローラ20に入力され、この走行制御コントローラ20によって、車速センサ13、前方物体センサ14、加速度センサ15、及びヨーレートセンサ16の何れか一つのセンサから入力される信号をもとに前方物体センサ14に検出範囲が変化する衝撃が加わったか否かを判断し、前方物体センサ14の光軸ずれ量Δθを推定する。また、この走行制御コントローラ20は、前方物体センサ14で検出した前方物体との相対距離drが、光軸ずれ量Δθに基づいて設定される制動制御作動距離dSET以下のときに、制動圧指令値PBRを制動制御装置8に出力して自車両の制動制御を行うことを許可する。
次に、第1の実施形態の動作を走行制御コントローラ20で実行する制動制御作動判断処理手順を示す図3を伴って説明する。
この制動制御作動判断処理は、所定時間(例えば10msec)毎のタイマ割込処理として実行され、先ず、ステップS1で、前方物体センサ14で検出した相対距離dr、相対速度Vr、角度範囲θR、θLを読込む。
次いで、ステップS2に移行して、後述する衝撃判断処理で前方物体センサ14への検出範囲が変化する衝撃を検知して、制動制御の禁止判断及び制動制御作動距離dSETの設定を行い、ステップS3に移行する。
このステップS3では、前記ステップS2で設定した制動制御禁止フラグFCAが制御禁止を表す“1”にセットされており、且つ自動制動が非作動中であるか否かを判定し、FCA=1且つ自動制動非作動中であるときには、ステップS4に移行して制動制御の作動を禁止してからタイマ割込処理を終了して所定のメインプログラムに復帰する。
ステップS3の判定結果が、FCA=0又は自動制動作動中であるときには、ステップS5に移行して、自車両が制動制御許可領域内を走行しているか否かを判定する。この判定は、前方物体との相対距離drが前記ステップS2で設定した制動制御作動距離dSETを超えているか否かによって行い、FCA=0且つdr>dSETであるときには、自車両が制動制御禁止領域内を走行していると判断して前記ステップS4に移行する。一方、それ以外の場合にはステップS6に移行し、ドライバの制動操作によって前方物体との衝突が回避可能か否かを判断する。
ステップS6では、前記ステップS1で読込んだ相対距離drと相対速度Vrが下記(1)式のような関係にあるか否かを判定する。下記(1)式が不成立の場合には、制動による衝突回避が可能であると判断してステップS7に移行し、制動衝突回避フラグFBを“1”にセットする。一方、下記(1)式が成立する場合には、制動による衝突回避は不可能であると判断してステップS8に移行し、制動衝突回避フラグFBを“0”にリセットする。
dr<−Vr・Td+Vr2/2a ………(1)
ここで、Tdはドライバのブレーキ操作時に減速度が発生するまでの無駄時間、aはドライバのブレーキ操作により発生する減速度である。
次に、ドライバの操舵操作によって前方物体との衝突が回避可能か否かを判断する。先ず、ステップS9で操舵回避に必要な横移動量を算出する。自車両MCと前方物体PCとが図4に示すような関係にあるとき、右側に操舵回避する場合に必要な横移動量YRと、左側に操舵回避する場合に必要な横移動量YLはそれぞれ下記(2)及び(3)式のようになる。
R=dr・tanθR−dr・tan{1/2・sin-1(φ/Vs)}
+Wb/2+WS ………(2)
L=−dr・tanθL+dr・tan{1/2・sin-1(φ/Vs)}
+Wb/2−WS ………(3)
ここで、図2に示すように、θRは前方物体センサ14が検出している前方物体の右端の角度範囲、θLは前方物体センサ14が検出している前方物体の左端の角度範囲、Wbは自車両の幅、WSはセンサ取り付け位置の自車両センタからのオフセット量である。
操舵回避に必要な横移動量Yは、右側に操舵回避する場合に必要な横移動量YRと左側に操舵回避する場合に必要な横移動量YLの小さい方を選択して設定する。
Y=min(YR,YL) ……… (4)
ここで、min( )は、括弧内の小さい方を選択する関数である。
次いでステップS10に移行して、前記ステップS9で算出した操舵回避に必要な横移動量Yより、図5に示す横移動量Yと横移動にかかる時間Tyとの関係に基づいて操舵回避にかかる時間Tyを算出し、ステップS11に移行する。なお、図5において、横軸は操舵回避に必要な横移動量Y、縦軸は横移動にかかる時間Tyであり、操作回避に必要な横移動量Yが増加するほど、横移動にかかる時間Tyも増加するように設定される。
ステップS11では、下記(5)式が成立するか否かを判定する。下記(5)式が不成立の場合には、操舵による衝突回避が可能であると判断してステップS12に移行し、操舵衝突回避フラグFSを“1”にセットする。一方、下記(5)式が成立する場合には、操舵による衝突回避が不可能であると判断してステップS13に移行し、操舵衝突回避フラグFSを“0”にリセットする。
dr<Vr・Ty ………(5)
次いでステップS14で、制動による衝突回避が不可能且つ操舵による衝突回避が不可能であるか否かを判定し、制動衝突回避フラグFBが衝突回避不可能を示す“0”で、且つ操舵衝突回避フラグFSが衝突回避不可能を示す“0”である場合には、ステップS15に移行して自動制動を所定時間、所定の大きさで作動させる。一方、ステップS14の判定結果がFB=1又はFS=1である場合には、ステップS16に移行して自動制動を解除する。
また、ステップS2の衝撃判断処理は、図6に示すように、先ずステップS201で、前方物体センサ14に検出範囲の変化が発生するような衝撃が発生したか否かを判定する。衝撃発生の判断は、加速度センサ15で検出した加速度信号Xgによって行い、加速度センサ15が所定値以上の減速度を検出した場合、光軸ずれが発生する大きさの衝撃が発生したと判断する。また、その減速度が負の方向に大きいほど光軸ずれが大きいと判断し、図7に示すようなマップを参照して加速度センサ15で検出した減速度に基づいた光軸ずれ量Δθを推定し、その光軸ずれ量Δθを記憶する。なお、図7において、横軸は減速度の絶対値、縦軸は光軸ずれ量Δθであり、光軸ずれ量Δθは減速度に対して線形に変化するように設定される。
次にステップS202に移行して、前方物体センサ14の光軸調整実施の有無を判定する。整備工場や販売店等で光軸調整が実施されていない場合には、ステップS203に移行して、記憶されている光軸ずれ量Δθを保持してから後述するステップS205に移行する。一方、ステップS202の判定結果が、光軸調整を実施されている場合には、ステップS204に移行して記憶されている光軸ずれ量Δθを“0”にリセットすると共に、光軸ずれ表示装置17の光軸ずれ表示を非表示としてからステップS205に移行する。
このステップS205では、光軸ずれ量Δθが光軸ずれ表示閾値ΔθSET以上であるか否かを判定し、Δθ≧ΔθSETであるときにはステップS206に移行して光軸ずれ表示装置17に光軸ずれ状態を表示してからステップS207に移行し、Δθ<ΔθSETであるときには以前の表示状態を保持するものとして、そのままステップS207に移行する。
ステップS207では、光軸ずれ量Δθが所定値ΔθTH2以下であるか否かを判定し、Δθ≦ΔθTH2であるときにはステップS208に移行して制動制御禁止フラグFCAを、制御許可を表す“0”にリセットすると共に、図8に示すように光軸ずれ量Δθに応じて制動制御作動距離dSETを設定する。制動制御作動距離dSETは、光軸ずれ量Δθが所定値ΔθTH1以下であるときには、光軸ずれがない状態と同じ距離範囲d1に固定され、ΔθTH1<Δθ≦ΔθTH2であるときには、光軸ずれが大きいほど短く設定されてΔθ=ΔθTH2で距離範囲d2に設定される。
一方、ステップS207の判定結果が、Δθ>ΔθTH2であるときにはステップS209に移行して、制動制御禁止フラグFCAを、制御禁止を表す“1”にセットする。
この図3の処理において、ステップS6〜S13の処理が衝突回避判断手段に対応し、ステップS14〜S16の処理が自動制動制御手段に対応している。また、図6の処理において、ステップS207〜S209の処理が作動条件変更手段に対応している。
したがって、今、自車両が、自動制動を非作動状態として走行中であるとする。この状態で、自車両に何らかの衝撃が加わって前方物体センサ14に所定値ΔθTH2より大きい光軸ずれが発生した場合には、図6の衝撃判断処理において、ステップS201で加速度センサ15にて減速度方向に所定値以上の値が検出されて、所定値ΔθTH2より大きい光軸ずれ量Δθを推定する。整備工場や販売店等で光軸調整を施していないため、ステップS202からステップS203に移行して記憶された光軸ずれ量Δθを保持し、光軸ずれ量Δθは光軸ずれ表示閾値ΔθSET以上であるので、ステップS205の判定によりステップS206に移行して、光軸ずれ表示装置17に光軸ずれ表示を行う。そして、Δθ>ΔθTH2であるので、ステップS207からステップS208に移行して制動制御禁止フラグFCAを、制御禁止を表す“1”にセットする。FCA=1で、且つ自車両は自動制動中でないため、図3の制動制御作動判断処理において、ステップS3からステップS4に移行して自動制動を禁止し、運転者のアクセル及びブレーキ操作に応じた走行を継続する。
また、自車両が自動制動を作動状態として走行している場合で、自車両に何らかの衝撃が加わって前方物体センサ14に所定値ΔθTH2より大きい光軸ずれが発生した場合には、図6の衝撃判断処理において、ステップS207からステップS208に移行して制動制御禁止フラグFCAを、制御禁止を表す“1”にセットする。自車両は自動制動中であるため、図3の制動制御作動判断処理において、ステップS3からステップS5に移行する。FCA=1であるので、ステップS5の判定によりステップS6に移行してドライバによる制動回避の可否を判断し、次いでドライバによる操舵回避の可否を判断する。制動回避及び操舵回避の何れかにおいて回避可能であると判断された場合には、ステップS14からステップS16に移行し、自動制動を解除して運転者のアクセル及びブレーキ操作に応じた走行に移行する。したがって、その後は光軸調整を行うまでΔθ>ΔθTH2の状態が継続され、FCA=1且つ自動制動非作動状態となるため、ステップS3からステップS4に移行して自動制動を禁止し、運転者のアクセル及びブレーキ操作に応じた走行を継続する。つまり、前方物体センサ14が、制動制御作動距離dSET以下となる相対距離drを検出し、自車両が制動制御許可領域内を走行している場合であっても、自動制動は禁止され、運転者のアクセル及びブレーキ操作に応じた走行が継続されることになる。
このように、光軸ずれが発生するような衝撃が発生したと判断した場合には、光軸ずれ量Δθを推定し、この光軸ずれ量Δθが所定値ΔθTH2より大きい場合に自動制動を禁止するので、光軸ずれにより前方物体との相対位置関係を正確に認識できない状態のまま走行制御を行うことを確実に防止することができる。
一方、所定値ΔθTH2以下のわずかな光軸ずれが発生している状態で、自車両が、前方物体との相対距離drが制動制御作動距離dSETを超える制動制御禁止領域を走行中であるとする。この場合には、先ず、図6の衝撃判断処理において、ステップS201でΔθ≦ΔθTH2となる光軸ずれ量Δθが推定される。整備工場や販売店等で光軸調整を施していないため、ステップS202からステップS203に移行して記憶された光軸ずれ量Δθを保持し、光軸ずれ量Δθが光軸ずれ表示閾値ΔθSET以上である場合には、ステップS205の判定によりステップS206に移行して、光軸ずれ表示装置17に光軸ずれ表示を行う。そして、ステップS207からステップS209に移行して、制動制御禁止フラグFCAを、制御許可を表す“0”にリセットすると共に、図8に示すように光軸ずれ量Δθに応じた距離範囲が制動制御作動距離dSETとして設定される。FCA=0且つdr>dSETであるので、図3の制動制御作動判断処理において、ステップS5からステップS4に移行して自動制動を禁止し、運転者のアクセル及びブレーキ操作に応じた走行を行う。
その後、前方物体との相対距離drが制動制御作動距離dSET以下となり、制動制御許可領域内を走行している状態となると、自車両が前方物体へ接近することを抑制するように制動制御可能となる。FCA=0且つdr≦dSETであるので、ステップS5からステップS6に移行して、ドライバによる制動回避の可否を判断し、次いでドライバによる操舵回避の可否を判断する。制動回避及び操舵回避の何れかにおいて回避可能であると判断された場合には、ステップS14からステップS16に移行し、運転者のアクセル及びブレーキ操作に応じた走行を継続する。
一方、制動回避及び操舵回避が不可能であると判断されたときには、ステップS14からステップS15に移行して、所定の大きさの制動油圧が発生するような制動圧指令値PBRを制動制御装置8に出力し、自車両の制動制御に移行する。
ここで、制動制御作動距離dSETは光軸ずれ量Δθが大きいほど小さい値に設定されるので、ΔθTH1<Δθ≦ΔθTH2であるときには、光軸ずれがない場合と比較して、前方物体との相対位置関係がより近いものに対してのみ制動制御を行うことになる。
このように、上記第1の実施形態では、自車両に何らかの衝撃が加わって自車両前方の物体を認識するためのセンサの取り付け位置がずれるなどにより、センサの検出範囲に変化が生じた場合に、直ちにそれを検出し、自車両が自動制動中でないときに制動制御の作動を禁止するので、センサの検出範囲が変化したまま走行制御が作動してしまうことを確実に防止できると共に、自動制動中であるときには、ドライバによる制動回避及び操舵回避の可否を判定し、衝突回避可能であると判断された場合にのみ制動制御の作動を解除するので、安全走行を確保することができる。
さらに、自車両前方の物体を認識するためのセンサの検出範囲変化量が大きいほど、検出した前方物体との相対位置関係が近いものに対してのみ制動制御を行い、変化量が小さいほど、変化量が大きい場合と比較して検出した前方物体との相対位置関係が遠いものに対しても制動制御を行うので、前方物***置の正確性を悪化させずに前方物体の位置を検出できると共に、検出範囲の変化の状態に応じて最適な制動制御を行うことができる。
また、広く普及しているエアバック等に使用されている加速度センサの加速度信号を用いて、前方物体センサに加わった衝撃の大きさを検出するので、新たに衝撃を検出するためのセンサを設置する必要がなく、コストアップを削減することができる。
なお、上記第1の実施形態においては、加速度検出手段として加速度センサを適用する場合について説明したが、これに限定されるものではなく、車速センサで検出した自車両の車速から加速度を算出するようにしてもよい。
次に、本発明の第2の実施形態について説明する。
この第2の実施形態は、前述した第1の実施形態において、前方物体センサ14の検出範囲が変化する衝撃の判断を、ヨーレートセンサ16の信号を用いて行うようにしたものである。
図9は、第2の実施形態において、走行制御コントローラ20において実行される衝撃判断処理の処理手順を示すフローチャートであって、図6に示す第1の実施形態における衝撃判断処理において、ステップS201の処理が、ヨーレートセンサ16で検出したヨーレートφの変化率により、光軸ずれが発生する大きさの衝撃を検出して光軸ずれ量Δθを推定するステップS221の処理に置換されていることを除いては図6と同様の処理を行い、図6と同一部には同一符号を付与しその詳細な説明は省略する。
この第2の実施形態によると、ステップS221で、ヨーレートセンサ16で検出したヨーレートφの変化率を演算し、その演算値の絶対値が所定値以上である場合には、前方物体センサ14に光軸ずれが発生するような衝撃が発生したと判断する。また、その演算値の絶対値が大きいほど光軸ずれが大きいと判断し、図7に示すようなマップを参照してヨーレートφの変化率に基づいた光軸ずれ量Δθを推定し、その光軸ずれ量Δθを記憶してから前述したステップS202に移行する。なお、図7において、横軸はヨーレートφの変化率の絶対値、縦軸は光軸ずれ量Δθであり、光軸ずれ量Δθはヨーレートφの変化率の絶対値に対して線形に変化するように設定される。
このように、上記第2の実施形態では、前方物体を認識するためのセンサにも使用されているヨーレートセンサのヨーレート信号を用いて、前方物体センサに加わった衝撃の大きさを検出するので、新たに衝撃を検出するためのセンサを設置する必要がなく、コストアップを削減することができる。
次に、本発明の第3の実施形態について説明する。
この第3の実施形態は、前述した第1の実施形態において、前方物体センサ14の検出範囲が変化する衝撃の判断を、車速センサ13の信号を用いて行うようにしたものである。
図10は、第3の実施形態において、走行制御コントローラ20において実行される衝撃判断処理の処理手順を示すフローチャートであって、図6に示す第1の実施形態における衝撃判断処理において、ステップS201の処理が、車速センサ13で検出した自車速Vsの変化率により、光軸ずれが発生する大きさの衝撃を検出して光軸ずれ量Δθを推定するステップS231の処理に置換されていることを除いては図6と同様の処理を行い、図6と同一部には同一符号を付与しその詳細な説明は省略する。
この第3の実施形態によると、ステップS231で車速センサ13の自車速Vsの変化率を演算し、その演算値が減速方向に所定値以上である場合には、前方物体センサ14に光軸ずれが発生するような衝撃が発生したと判断する。また、その演算値が減速方向に大きいほど光軸ずれが大きいと判断し、図7に示すようなマップを参照して自車速の変化率に基づいた光軸ずれ量Δθを推定し、その光軸ずれ量Δθを記憶してから前述したステップS202に移行する。なお、図7において、横軸は自車速Vsの変化率の絶対値、縦軸は光軸ずれ量Δθであり、光軸ずれ量Δθは自車速Vsの変化率の絶対値に対して線形に変化するように設定される。
このように、上記第3の実施形態では、ほとんどの車両に使用されている車速センサの自車速変化率を用いて、前方物体センサに加わった衝撃の大きさを検出するので、新たに衝撃を検出するためのセンサを設置する必要がなく、コストアップを削減することができる。
次に、本発明の第4の実施形態について説明する。
この第4の実施形態は、前述した第1の実施形態において、前方物体センサ14の検出範囲が変化する衝撃の判断を、前方物体センサ14の信号を用いて行うようにしたものである。
図11は、第4の実施形態において、走行制御コントローラ20において実行される衝撃判断処理の処理手順を示すフローチャートであって、図6に示す第1の実施形態における衝撃判断処理において、ステップS201の処理が、前方物体センサ14で検出した相対距離dr及び相対速度Vrにより、光軸ずれが発生する大きさの衝撃を検出して光軸ずれ量Δθを推定するステップS241の処理に置換されていることを除いては図6と同様の処理を行い、図6と同一部には同一符号を付与しその詳細な説明は省略する。
この第4の実施形態によると、ステップS241で前方物体センサ14で検出した相対距離drが所定値以下である場合には、前方物体センサ14に光軸ずれが発生するような衝突が発生したと判断する。また、そのときの接近方向の相対速度Vrが大きいほど光軸ずれが大きいと判断し、図7に示すようなマップを参照して接近方向の相対速度に基づいた光軸ずれ量Δθを推定し、その光軸ずれ量Δθを記憶してから前述したステップS202に移行する。なお、図7において、横軸は接近方向の相対速度Vr、縦軸は光軸ずれ量Δθであり、光軸ずれ量Δθは接近方向の相対速度Vrに対して線形に変化するように設定される。
このように、上記第4の実施形態では、前方物体センサの検出値を用いて、前方物体センサに加わった衝撃の大きさを検出するので、新たに衝撃を検出するためのセンサを設置する必要がなく、コストアップを大幅に削減することができる。
なお、上記第4の実施形態においては、前方物体との相対距離が所定値以下であるときに、光軸ずれが発生するような衝撃が発生したと判断する場合について説明したが、これに限定されるものではなく、ステップS14で制動による衝突回避及び操舵による衝突回避が不可能、且つ自動制動中であるときに、自動制動終了後に前方物体を認識するためのセンサに衝撃が発生したと判断するようにしてもよい。この場合には、相対速度が接近方向に所定値以上であるときに、光軸ずれが発生するような衝撃が発生したと判断し、接近方向の相対速度が大きいほど光軸ずれが大きいと判断すればよい。これにより、衝突回避が不可能な状態を検出した後に、前方物体を検出できない状態となった場合であっても、衝突が発生したことを推定可能であるため、光軸ずれが発生するような衝撃の発生をより確実に検出することができる。
次に、本発明の第5の実施形態について説明する。
この第5の実施形態は、本発明を、車間距離制御装置を搭載した後輪駆動車に適用したものである。
すなわち、第5の実施形態における概略構成を図12に示すように、エンジン出力を制御するエンジン出力制御装置11を設け、前述した第1の実施形態におけるスキャニング式の構成を有する前方物体センサ14の代わりに、レーダ方式の構成を有する前方物体センサ18を設け、走行制御コントローラ20の代わりに、自車両前方の車両を捕捉しているときに車間距離が目標車間距離となるように目標車速を設定して自車速を制御し、自車両前方の車両を捕捉していないときに自車速Vsを運転者が設定した設定車速VSET に制御する追従制御コントローラ30を設けたことを除いては、図1と同様の構成を有するため、図1との対応部分には同一符号を付与し、その詳細な説明は省略する。
前方物体センサ18は、所定の照射範囲(例えば、水平方向で9°、上下方向で3°)でレーザ光を掃射して先行車両からの反射光を受光するレーダ方式の構成を有し、自車両と先行車両との間の車間距離Dを検出する。そして、この車間距離Dの時間的変化から先行車両と自車両との相対速度ΔVが算出される。
この前方物体センサ18は、通常、その光軸方向が自車両の前後軸線から許容誤差範囲内(例えば、±0.5°)の高精度で締結具等により車両前部に取り付けられているが、車両に何らかの衝撃が加わること等により、センサの光軸方向が自車両の前後軸線方向から許容誤差範囲を超えて左右にずれると、隣接車線を走行している斜め前方の車両を自車走行車線前方の車両と誤認識し、上下にずれると先行車両を認識できないなど、先行車両との相対位置関係を正確に検出することができない。
車速センサ13から出力される自車速Vs、前方物体センサ18から出力される車間距離D、相対速度ΔV、加速度センサ15から出力される加速度Xg、及びヨーレートセンサ16から出力されるヨーレートφが追従制御コントローラ30に入力され、この追従制御コントローラ30によって、車速センサ13、前方物体センサ18、加速度センサ15、及びヨーレートセンサ16の何れか一つのセンサから入力される信号をもとに前方物体センサ18に検出範囲が変化する衝撃が加わったか否かを判断し、前方物体センサ18の光軸ずれ量Δθを推定する。また、この追従制御コントローラ30では、自車両の走行車線前方の車両を捕捉しているときに車間距離が目標車間距離となるように目標車速を設定して自車速を制御し、自車両の走行車線前方の車両を捕捉していないときに自車速VS を運転者が設定した設定車速VSET に制御する制動圧指令値PBR及び目標スロットル開度θ* を制動制御装置8及びエンジン出力制御装置11に出力する。
この追従制御コントローラ30は、マイクロコンピュータとその周辺機器を備え、マイクロコンピュータのソフトウェア形態により、図13に示す制御ブロックを構成している。
この制御ブロックは、前方物体センサ18でレーザ光を掃射してから先行車両の反射光を受光するまでの時間を計測し、先行車両との車間距離Dを演算する測距信号処理部21と、測距信号処理部21で演算された車間距離D、自車速Vs及び相対速度ΔVに基づいて車間距離Dを目標車間距離D* に維持する目標車速VL *を演算する車間距離制御部40と、この車間距離制御部40で演算した目標車速VL *に基づいて目標駆動軸トルクTW *を演算する車速制御部50と、この車速制御部50で演算した目標駆動軸トルクTW *に基づいてスロットルアクチュエータ12及びブレーキアクチュエータ7に対するスロットル開度指令値θR及び制動圧指令値PBRを演算し、これらをスロットルアクチュエータ12及びブレーキアクチュエータ7に出力する駆動軸トルク制御部60とを備えている。
車間距離制御部40は、自車速Vsと相対速度ΔVから算出される先行車速Vtに基づいて先行車両と自車両との間の目標車間距離D* を算出する目標車間距離設定部42と、この目標車間距離設定部42で算出された目標車間距離D* と、測距信号処理部21から入力される車間距離Dと、自車速Vsとに基づいて車間距離Dを目標車間距離D* に一致させるための目標車速VL *を演算する車間距離制御演算部43とを備えている。
ここで、目標車間距離設定部42は、先行車両に一定車速、一定車間距離で追従走行中の目標車間距離、つまり先行車両と自車両との間の定常目標車間距離D*を算出する。本実施形態では、車間時間を一定とするために、下記(6)式により定常目標車間距離D*を算出する。
* =Vt×Th ………(6)
ここで、Vtは先行車速、Thは車間時間である。
また、車間距離制御演算部43は、車間距離Dと相対速度ΔVとに基づいて、車間距離Dを目標車間距離D*に保ちながら先行車両に追従走行するための目標車速VL *を、次式をもとに算出する。
L *=KL(D−D*)+KV(ΔV−ΔV*)+Vt ………(7)
ここで、KLは車間距離制御ゲイン、KVは相対速度制御ゲインである。
車速制御部50は、追従制御状態であるときには、前方物体センサ18で先行車両を捕捉しているときには車間距離制御部40から入力される目標車速VL *と運転者が設定した設定車速VSET との何れか小さい値を目標車速V* として設定し、先行車両を捕捉していないときには運転者が設定した設定車速VSET を目標車速V* として設定する目標車速設定部51と、この目標車速設定部51で設定された目標車速V* に自車速Vsを一致させるための目標駆動軸トルクTW *を演算する目標駆動軸トルク演算部53とを備えている。
また、駆動軸トルク制御部60は、目標駆動トルクTW *を実現するためのスロットル開度指令値θR とブレーキ液圧指令値PBRとを演算し、スロットル開度指令値θR をエンジン出力制御装置11に出力すると共に、ブレーキ液圧指令値PBRを制動制御装置8に出力する。
なお、上述した車間距離制御部40、車速制御部50及び駆動軸トルク制御部60で走行制御手段を構成している。
また、目標車速設定部51では、図14に示す目標車速設定処理を実行する。
この目標車速設定処理は、所定時間(例えば10msec)毎のタイマ割込処理として実行され、先ず、ステップS101で、車速センサ13で検出した自車速Vs、前方物体センサ18で検出した先行車両との車間距離Dを読込み、次いでステップS102に移行して、後述する衝撃判断処理で前方物体センサ18への検出範囲が変化する衝撃を検知して車間距離制御の禁止判断及び車間距離検出限界DMAXの設定を行う。
ステップS103では、追従走行制御中か否かを判定する。この判定は、前方物体センサ18で先行車両を検出しており、且つステップS102で設定した車間制御禁止フラグFCAが制御許可を表す“0”にリセットされているか否かによって行い、前方物体センサ18で検出した車間距離DがステップS102で設定された車間距離検出限界DMAX以下であるか否かを判定し、FCA=0且つD≦DMAXであるときには、先行車両を検出しており追従走行制御中であると判断してステップS104に移行する。
ステップS104では、車間距離制御演算部43で前記(7)式により算出した目標車速VL *と運転者が設定した設定車速VSET との大きさを比較して、小さい方の値を目標車速V*として設定してからステップS105に移行し、目標車速V*を目標駆動軸トルク演算部53へ入力してからタイマ割込処理を終了して所定のメインプログラムに復帰する。
*=min(VL *,VSET) ………(8)
ここで、min( )は、括弧内の小さい方を選択する関数である。
一方、ステップS103の判定結果が、FCA=1又はD>DMAXであるときには、車間距離制御禁止状態であるか先行車両を検出していないと判断してステップS106に移行し、予め運転者が設定した設定車速VSET を目標車速V*として設定してから前記ステップS105に移行する。
また、図15はステップS102の光軸ずれ判断処理手順を示すフローチャートであって、図6に示す第1の実施形態における衝撃判断処理において、ステップS208、S209の処理が、車間距離検出限界DMAXを設定するステップS251、車間距離制御を禁止するS252の処理に置換されていることを除いては図6と同様の処理を行い、図6と同一部には同一符号を付与しその詳細な説明は省略する。
ステップS207で、光軸ずれ量Δθが所定値ΔθTH2以下であるか否かを判定し、Δθ≦ΔθTH2であるときにはステップS251に移行して、車間制御禁止フラグFCAを、制御許可を表す“0”にリセットすると共に、図16に示すように光軸ずれΔθに応じて車間距離検出限界DMAXを設定する。一方、ステップS207の判定結果が、Δθ>ΔθTH2であるときにはステップS252に移行して、車間制御禁止フラグFCAを、制御禁止を表す“1”にセットして車間距離制御を作動させないようにする。
したがって、今、自車両が、整備工場や販売店等で光軸調整を施して前方物体センサ18に光軸ずれが発生していない状態で走行中であるとする。この場合には、図15の衝撃判断処理において、ステップS202からステップS204に移行して、記憶された光軸ずれ量Δθを“0”にリセットすると共に、光軸ずれ表示装置17の光軸ずれ表示を非表示とする。光軸ずれ量Δθ=0であるので、ステップS207からステップS251に移行して、車間制御禁止フラグFCAが制御許可を表す“0”にリセットされると共に、図16に示すように車間距離D1が車間距離検出限界DMAXとして設定される。自車両が先行車両を検出していない場合には、前方物体センサ18が車間距離検出限界DMAXより大きい車間距離Dを検出するので、図14の目標車速設定処理において、ステップS103からステップS106に移行して、運転者が設定した設定車速VSET を目標車速V*として設定してからステップS105に移行し、目標車速V*を目標駆動軸トルク演算部53へ入力することにより、自車速Vsを運転者が設定した設定車速VSET に一致させるような走行制御を行う。
この状態から、自車両に何らかの衝撃が加わって前方物体センサ18に所定値ΔθTH2より大きい光軸ずれが発生した場合には、図15の衝撃判断処理において、ステップS201で減速度方向に所定値以上の値を検出して、所定値ΔθTH2より大きい光軸ずれ量Δθを推定する。次いで、ステップS202からステップS203に移行して記憶された光軸ずれ量Δθを保持し、光軸ずれ量Δθは光軸ずれ表示閾値ΔθSET以上であるので、ステップS205の判定によりステップS206に移行して、光軸ずれ表示装置17に光軸ずれ表示を行う。そして、Δθ>ΔθTH2であるので、ステップS207からステップS208に移行して車間制御禁止フラグFCAを、制御禁止を表す“1”にセットする。FCA=1であるため、図14の目標車速設定処理において、ステップS103からステップS106に移行して運転者が設定した設定車速VSET を目標車速V*として設定してからステップS105に移行し、目標車速V*を目標駆動軸トルク演算部53へ入力することにより、車間距離Dが車間距離検出限界DMAX以下となっている場合であっても、追従走行制御は作動せず、自車速Vsを運転者が設定した設定車速VSET に一致させるような走行制御を継続する。
このように、光軸ずれが発生するような衝撃が発生したと判断した場合には、光軸ずれ量Δθを推定し、この光軸ずれ量Δθが所定値ΔθTH2より大きい場合に車間距離制御を禁止するので、大幅な光軸ずれにより先行車両との車間距離を正確に認識できない状態のまま追従走行制御を行うことを確実に防止することができる。
一方、前方物体センサ18に所定値ΔθTH2以下のわずかな光軸ずれが発生している状態で走行中であるとする。この場合には、図15の衝撃判断処理において、ステップS201でΔθ≦ΔθTH2となる光軸ずれ量Δθが推定される。整備工場や販売店等で光軸調整を施していないため、ステップS202からステップS203に移行して記憶された光軸ずれ量Δθを保持し、光軸ずれ量Δθが光軸ずれ表示閾値ΔθSET以上であるときには、ステップS205の判定によりステップS206に移行して、光軸ずれ表示装置17に光軸ずれ表示を行う。そして、ステップS207からステップS209に移行して、図16に示すように光軸ずれ量Δθに応じた車間距離が車間距離検出限界DMAXとして設定される。
前方物体センサ18で車間距離検出限界DMAX以下の車間距離Dを検出し、自車両が先行車両を検出しているときには、図14の目標車速設定処理において、ステップS103からステップS104に移行して車間距離Dを目標車間距離D* に保ちながら追従走行するための目標車速V*を設定し、次いでステップS105に移行して目標車速V*を目標駆動軸トルク演算部53へ入力することにより追従走行制御を行う。
ここで、車間距離検出限界DMAXは光軸ずれ量Δθが大きいほど小さい値に設定されるので、ΔθTH1<Δθ≦ΔθTH2であるときには、光軸ずれがない場合と比較して、先行車両との相対位置関係がより近いものに対してのみ追従走行制御を行うことになる。
このように、上記第5の実施形態では、自車両に何らかの衝撃が加わって先行車両を認識するためのセンサの取り付け位置がずれるなどにより、センサに検出範囲の変化が生じた場合には、直ちにそれを検出して車間距離制御を禁止するので、センサの検出範囲が変化したまま追従走行制御が作動してしまうことを確実に防止できると共に、検出範囲の変化が発生していない場合には、通常通りの追従走行制御を行うので、運転者に違和感のない走行制御を行うことができる。
さらに、先行車両を認識するためのセンサの検出範囲変化量が大きいほど、検出した先行車両との相対位置関係が近いものに対してのみ車間距離制御を行い、変化量が小さいほど、変化量が大きい場合と比較して検出した先行車両との相対位置関係が遠いものに対しても車間距離制御を行うので、先行車両位置の正確性を悪化させずに先行車両の位置を検出できると共に、検出範囲の変化の状態に応じて最適な車間距離制御を行うことができる。
また、広く普及しているエアバック等に使用されている加速度センサの加速度信号を用いて、先行車両を認識するためのセンサに加わった衝撃の大きさを検出するので、新たに衝撃検出センサを設置する必要がなく、コストアップを削減することができる。
なお、上記第5の実施形態においては、加速度検出手段として加速度センサを適用する場合について説明したが、これに限定されるものではなく、車速センサで検出した自車両の車速から加速度を算出するようにしてもよい。
また、上記第5の実施形態においては、図15の衝撃判断処理において、ステップS201で加速度センサの加速度信号を用いる場合について説明したが、これに限定されるものではなく、ステップS201で図9に示す第2の実施形態におけるステップS221と同様にヨーレートセンサで検出したヨーレートの変化率を用いるようにしてもよく、ステップS201で図10に示す第3の実施形態におけるステップS231と同様に車速センサで検出した自車速の変化率を用いるようにしてもよく、さらにステップS201で図11に示す第4の実施形態におけるステップS241と同様に前方物体センサで検出した先行車両との車間距離及び相対速度を用いるようにしてもよい。
なお、上記各実施形態においては、図6、図9〜図11及び図15の衝撃判断処理において、ステップS202で光軸調整を実施したと判断されたときに、ステップS204で光軸ずれ量Δθを“0”にリセットする場合について説明したが、これに限定されるものではなく、衝突等により検出範囲が変化したと判断された後に、従来からある停止物(前方路側のデリニエータ)の検出軌跡に基づく検出範囲変化判断処理に必要な距離だけ走行し、検出範囲の変化が検出されなかった場合に、記憶された光軸ずれ量Δθを“0”にリセットするようにしてもよい。
また、上記各実施形態においては、光軸ずれ量Δθが光軸ずれ表示閾値ΔθSET以上であるときに、車室内に設置されている光軸ずれ表示装置に光軸ずれ状態であることを直ちに表示する場合について説明したが、これに限定されるものではなく、光軸ずれ表示装置に光軸ずれ状態であることを記憶しておき、整備工場や販売店等で診断装置を接続したときに、その診断装置に光軸ずれ状態であることを表示するようにしてもよい。また、光軸ずれ状態をモニタに表示するのではなく、音声やブザー等によって報知するようにしてもよい。
さらに、上記各実施形態においては、前方物体センサ14としてレーザレーダを使用する場合について説明したが、これに限定されるものではなく、ミリ波レーダ等の他の測距装置を適用してもよい。
また、上記各実施形態においては、後輪駆動車に本発明を適用した場合について説明したが、前輪駆動車に本発明を適用することもでき、また回転駆動源としてエンジン2を適用した場合について説明したが、これに限定されるものではなく、電動モータを適用することもでき、さらには、エンジンと電動モータとを使用するハイブリッド仕様車にも本発明を適用することができる。
本発明の実施形態を示す概略構成図である。 前方物体センサの説明図である。 本発明の実施形態における走行制御コントローラ20で実行する制動制御作動判断処理を示すフローチャートである。 操舵回避に必要な横移動量の説明図である。 横移動量と横移動にかかる時間との関係図である。 第1の実施の形態における衝撃判断処理を示すフローチャートである。 光軸ずれ量の算出マップである。 光軸ずれ量と制動制御作動距離との関係図である。 第2の実施の形態における衝撃判断処理を示すフローチャートである。 第3の実施の形態における衝撃判断処理を示すフローチャートである。 第4の実施の形態における衝撃判断処理を示すフローチャートである。 本発明の第5の実施形態を示す概略構成図である。 図12の追従制御コントローラの具体例を示すブロック図である。 第5の実施の形態における図13の目標車速設定部の目標車速設定処理を示すフローチャートである。 第5の実施の形態における衝撃判断処理を示すフローチャートである。 光軸ずれ量と車間距離検出限界との関係図である。
符号の説明
2 エンジン
3 自動変速機
7 ディスクブレーキ
8 制動制御装置
11 エンジン出力制御装置
13 車速センサ
14 前方物体センサ
15 加速度センサ
16 ヨーレートセンサ
17 光軸ずれ表示装置
20 走行制御コントローラ
30 追従制御コントローラ
50 車速制御部
51 目標車速設定部
53 目標駆動軸トルク演算部
60 駆動軸トルク制御部

Claims (4)

  1. 自車両前方の物体を検出する前方物体検出手段と、該前方物体検出手段で検出した前方物体と自車両との相対位置関係に基づいて、前方物体への衝突回避が不可能であることを判断する衝突回避判断手段と、該衝突回避判断手段が衝突回避不可能と判断し、且つ所定の作動条件が満たされた場合に自車両を自動制動制御する自動制動制御手段と、該自動制動制御の終了後であって、前記衝突回避判断手段が衝突回避不可能と判断した衝突により前記前方物体検出手段の検出範囲が変化した場合に、前記自動制動制御手段による自動制動制御が作動され難くなるように当該自動制動制御の前記作動条件を変更する作動条件変更手段と、を備えていることを特徴とする車両用走行制御装置。
  2. 前記作動条件変更手段は、前記自動制動制御手段による自動制動制御の作動を禁止することを特徴とする請求項1に記載の車両用走行制御装置。
  3. 自車両前方の物体を検出する前方物体検出手段と、該前方物体検出手段で検出した前方物体と自車両との相対位置関係に基づいて、前記相対位置関係が所定の関係となるように自車両の走行を制御する走行制御手段と、前記前方物体検出手段で検出した前方物体と自車両との相対位置関係に基づいて、前方物体への衝突回避が不可能であることを判断する衝突回避判断手段と、該衝突回避判断手段が衝突回避不可能と判断し、且つ所定の作動条件が満たされた場合に自車両を自動制動制御する自動制動制御手段と、該自動制動制御の終了後であって、前記衝突回避判断手段が衝突回避不可能と判断した衝突により前記前方物体検出手段の検出範囲が変化した場合に、前記走行制御手段による走行制御が作動され難くなるように当該走行制御の前記作動条件を変更する作動条件変更手段と、を備えていることを特徴とする車両用走行制御装置。
  4. 前記作動条件変更手段は、前記走行制御手段による走行制御の作動を禁止することを特徴とする請求項3に記載の車両用走行制御装置。
JP2007172404A 2007-06-29 2007-06-29 車両用走行制御装置 Expired - Lifetime JP4670841B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172404A JP4670841B2 (ja) 2007-06-29 2007-06-29 車両用走行制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007172404A JP4670841B2 (ja) 2007-06-29 2007-06-29 車両用走行制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003145202A Division JP4013825B2 (ja) 2003-05-22 2003-05-22 車両用走行制御装置

Publications (2)

Publication Number Publication Date
JP2007290708A JP2007290708A (ja) 2007-11-08
JP4670841B2 true JP4670841B2 (ja) 2011-04-13

Family

ID=38761729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172404A Expired - Lifetime JP4670841B2 (ja) 2007-06-29 2007-06-29 車両用走行制御装置

Country Status (1)

Country Link
JP (1) JP4670841B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475543B2 (ja) 2015-03-31 2019-02-27 株式会社デンソー 車両制御装置、及び車両制御方法
JP6527369B2 (ja) 2015-03-31 2019-06-05 株式会社デンソー 車両制御装置、及び車両制御方法
JP6363549B2 (ja) 2015-03-31 2018-07-25 株式会社デンソー 車両制御装置、及び車両制御方法
JP6321576B2 (ja) * 2015-05-12 2018-05-09 トヨタ自動車株式会社 制限装置及び車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481330A (ja) * 1990-07-25 1992-03-16 Hitachi Ltd 定速走行制御方法
JPH0911870A (ja) * 1995-07-03 1997-01-14 Toyota Motor Corp 車両走行制御装置
JP2001138880A (ja) * 1999-11-11 2001-05-22 Nissan Motor Co Ltd 車両用制動制御装置
JP2002036908A (ja) * 2000-07-28 2002-02-06 Denso Corp クルーズ制御装置、車間警報装置及び記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481330A (ja) * 1990-07-25 1992-03-16 Hitachi Ltd 定速走行制御方法
JPH0911870A (ja) * 1995-07-03 1997-01-14 Toyota Motor Corp 車両走行制御装置
JP2001138880A (ja) * 1999-11-11 2001-05-22 Nissan Motor Co Ltd 車両用制動制御装置
JP2002036908A (ja) * 2000-07-28 2002-02-06 Denso Corp クルーズ制御装置、車間警報装置及び記録媒体

Also Published As

Publication number Publication date
JP2007290708A (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4013825B2 (ja) 車両用走行制御装置
US11186278B2 (en) Driving control apparatus for vehicle
JP7189509B2 (ja) 車両の走行制御装置
US10996672B2 (en) Driving control apparatus for vehicle
JP7205773B2 (ja) 車両の走行制御装置
EP3611069B1 (en) Vehicle control device
US11161513B2 (en) Driving control apparatus for vehicle
JP3783562B2 (ja) 車両の走行制御装置
US9406230B2 (en) Drive control apparatus
US20090143951A1 (en) Forward Collision Avoidance Assistance System
JP2020144789A (ja) 車両の走行制御装置
US11407427B2 (en) Driving control apparatus for vehicle
US11370430B2 (en) Driving control apparatus for vehicle
KR20100106570A (ko) 차량, 특히 유틸리티 차량의 충돌을 피하거나, 충돌의 피해를 줄이기 위한 장치, 방법, 컴퓨터 프로그램
US8548709B2 (en) Drive assisting device
JP2007186141A (ja) 車両の走行制御装置
JP2008516851A (ja) 関連物体の確認方法
EP3096992B1 (en) Road departure protection system
JP2022024322A (ja) 衝突回避支援装置
US20200255012A1 (en) Driving Control Apparatus for Vehicle
US11364952B2 (en) System for recognizing trailer of vehicle and method thereof
JP4670841B2 (ja) 車両用走行制御装置
JP7222343B2 (ja) 運転支援装置
KR101511860B1 (ko) 운전보조시스템 및 그 제어방법
JP7140092B2 (ja) 運転支援装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

EXPY Cancellation because of completion of term