JP4668872B2 - Grinding method and grinding apparatus - Google Patents

Grinding method and grinding apparatus Download PDF

Info

Publication number
JP4668872B2
JP4668872B2 JP2006247205A JP2006247205A JP4668872B2 JP 4668872 B2 JP4668872 B2 JP 4668872B2 JP 2006247205 A JP2006247205 A JP 2006247205A JP 2006247205 A JP2006247205 A JP 2006247205A JP 4668872 B2 JP4668872 B2 JP 4668872B2
Authority
JP
Japan
Prior art keywords
workpiece
grinding
axis
tool grindstone
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006247205A
Other languages
Japanese (ja)
Other versions
JP2008068337A (en
Inventor
晴崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006247205A priority Critical patent/JP4668872B2/en
Publication of JP2008068337A publication Critical patent/JP2008068337A/en
Application granted granted Critical
Publication of JP4668872B2 publication Critical patent/JP4668872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は研削加工技術に関し、特に、光学機器に使用される軸対称非球面レンズの高精度光学素子の製作や、このような光学素子の成形に用いる光学素子成形用金型の成形面部の製作に好適である、形状精度及び表面粗さ精度が非常に高い研削加工の技術に関する。   The present invention relates to grinding technology, and in particular, manufacture of a high-precision optical element of an axially symmetric aspherical lens used in optical equipment, and manufacture of a molding surface portion of an optical element molding die used for molding such an optical element. The present invention relates to a grinding technique that is suitable for, and has extremely high shape accuracy and surface roughness accuracy.

軸対称のレンズ、プリズムなどといった光学部品やこのような光学部品を成形加工する金型には、非常に高い形状精度と表面粗さ精度とが必要とされている。
このような高精度の光学部品を研削加工する技術として、例えば特許文献1に開示されている技術が知られている。この技術について、図7を用いて説明する。
An optical component such as an axially symmetric lens or a prism or a mold for molding such an optical component requires very high shape accuracy and surface roughness accuracy.
As a technique for grinding such a high-precision optical component, for example, a technique disclosed in Patent Document 1 is known. This technique will be described with reference to FIG.

図7に示す従来の研削加工装置は、軸対称な形状の被研削加工物101を回転軸中心に保持して回転するワークスピンドル102と、このワークスピンドル102と相対向して配設されワークスピンドル102と接離する方向に、ワークスピンドル102の回転軸の中心に対して所定の角度で形成された傾斜台103上に載置された研削スピンドル104とを備えている。そして、この研削スピンドル104は、被研削加工物101を研削加工する、円柱形状の工具砥石105を保持している。   The conventional grinding apparatus shown in FIG. 7 has a work spindle 102 that rotates while holding a workpiece 101 having an axisymmetric shape about the rotation axis, and a work spindle that is disposed opposite to the work spindle 102. A grinding spindle 104 mounted on an inclined table 103 formed at a predetermined angle with respect to the center of the rotation axis of the work spindle 102 is provided in a direction to come in contact with and away from the workpiece 102. The grinding spindle 104 holds a cylindrical tool grindstone 105 that grinds the workpiece 101.

この装置を用いて行われる研削加工では、例えば被研削加工物101の被加工面が凹面形状の場合には、工具砥石105の研削作用点における、X軸とZ軸との2軸からなる平面に投影される工具砥石105先端の円弧形状の曲率半径を、被研削加工物101の直径方向の最小曲率半径より小さいものとし且つ上記被研削加工物101の曲率半径になるべく近いものとする。こうすると被研削加工物101と工具砥石105とが内接するので、実際には三日月形状の線接触に近い状態で研削加工がされる。これにより、加工中の単位時間における工具砥石105の砥粒一つ一つに掛かる負荷が軽減するので、砥石磨耗が抑えられる。また、このことにより、切込み量の増加や加工送り速度の高速度化といった加工負荷を高めることができるので、加工時間の短縮にも寄与する。
特開平8−229792号公報
In the grinding process performed using this apparatus, for example, when the work surface of the workpiece 101 is a concave shape, a plane composed of two axes, the X axis and the Z axis, at the grinding action point of the tool grindstone 105. The curvature radius of the arc shape at the tip of the tool grindstone 105 projected onto the workpiece is assumed to be smaller than the minimum curvature radius in the diameter direction of the workpiece 101 and as close as possible to the curvature radius of the workpiece 101. In this way, since the workpiece 101 and the tool grindstone 105 are inscribed, the grinding is actually performed in a state close to a crescent-shaped line contact. As a result, the load applied to each abrasive grain of the tool grindstone 105 in a unit time during processing is reduced, so that grindstone wear can be suppressed. In addition, this makes it possible to increase a machining load such as an increase in the amount of cutting and an increase in the machining feed rate, which contributes to shortening the machining time.
Japanese Patent Laid-Open No. 8-229792

しかしながら、例えば被研削加工物101の被加工面が凸面形状の場合には、被研削加工物101と円柱形状した工具砥石105とは外接するため、実際には点接触に近い状態で研削加工がされることになる。従って、この場合には、加工中の単位時間における工具砥石の砥粒一つ一つに掛かる負荷は増大するため、砥石磨耗が大きく発生するので加工の安定性が小さくなる。従って高精度な加工面形状を得ることができない。   However, for example, when the workpiece surface of the workpiece 101 is convex, the workpiece 101 and the cylindrical tool grindstone 105 are circumscribed, so that the grinding process is actually performed in a state close to point contact. Will be. Therefore, in this case, since the load applied to each abrasive grain of the tool grindstone per unit time during machining increases, grinding wheel wear greatly occurs, so that the machining stability decreases. Therefore, a highly accurate machined surface shape cannot be obtained.

この場合において、工具砥石101の磨耗を抑えるためには、切込み量を少なくする、若しくは加工送り速度を下げるという方策が一般的である。しかし、このようにして加工負荷を下げると、加工時間が延びてしまう問題がある。   In this case, in order to suppress the wear of the tool grindstone 101, a general measure is to reduce the cutting depth or reduce the machining feed rate. However, when the processing load is reduced in this way, there is a problem that the processing time is extended.

本発明は上述した問題に鑑みてなされたものであり、その解決しようとする課題は、被研削加工物の被加工面が凹面凸面のいずれに係わらず任意形状をした軸対称の非球面形状の研削加工に際し、砥石の磨耗を抑えることで、加工効率を向上させて加工時間を短縮することである。   The present invention has been made in view of the above-mentioned problems, and the problem to be solved is an axisymmetric aspherical shape in which a work surface of a work piece to be ground has an arbitrary shape regardless of any concave convex surface. In the grinding process, the wear of the grinding wheel is suppressed to improve the processing efficiency and shorten the processing time.

本発明の態様のひとつである研削加工方法は、回転させている被研削加工物の被加工面に対し、先端の断面形状が円弧形状を呈している円筒形状の工具砥石を回転させながら相対的に移動させて軸対称非球面の研削を行う研削加工方法であって、上記被研削加工物の加工点位置の面に対する垂直軸と上記被研削加工物の回転軸とのなす第一の角度と、該垂直軸と上記工具砥石の回転軸とのなす第二の角度とを、該被研削加工物の加工点における直径方向の曲率半径に基づいて算出し、上記被研削加工物の回転軸と上記工具砥石の回転軸である上記円筒形状における中心の軸とからなる角度の制御を、上記第一の角度及び上記第二の角度と、上記被加工面の形状に基づく初期の角度とに基づいて行う、ことを特徴とするものであり、この特徴によって前述した課題を解決する。 A grinding method which is one aspect of the present invention is a method of rotating a cylindrical tool grindstone whose cross-sectional shape is a circular arc shape with respect to a work surface of a workpiece to be rotated. A grinding method for grinding an axisymmetric aspherical surface by moving to a first angle formed by a vertical axis with respect to a surface at a processing point position of the workpiece to be ground and a rotation axis of the workpiece to be ground. A second angle formed by the vertical axis and the rotation axis of the tool grindstone is calculated based on a radius of curvature in a diameter direction at a processing point of the workpiece to be ground, and the rotation axis of the workpiece to be ground is calculated. Control of the angle formed by the central axis of the cylindrical shape that is the rotation axis of the tool grindstone is based on the first angle and the second angle, and an initial angle based on the shape of the work surface. carried out, it is characterized in, in the feature To solve the problems described above me.

なお、このとき、上記第二の角度の算出を、上記曲率半径と、円筒形状である上記工具砥石の先端の円弧形状の中心を結ぶ径と、該工具砥石の先端の円弧形状における曲率半径と、に基づいて行うようにしてもよい。 At this time, the second angle is calculated by calculating the radius of curvature, the diameter connecting the center of the arc shape of the tip of the tool grindstone that is cylindrical, and the radius of curvature of the arc shape of the tip of the tool grindstone. , Based on the above.

また、前述した本発明に係る研削加工方法において、上記工具砥石は旋回可能であり、 上記研削を開始する前に、上記工具砥石の先端における円弧形状を呈している該工具砥石の先端と、該工具砥石の旋回軸とを予め一致させておく、ようにしてもよい。   Further, in the above-described grinding method according to the present invention, the tool grindstone can be swiveled, and before starting the grinding, the tip of the tool grindstone exhibiting an arc shape at the tip of the tool grindstone, The turning axis of the tool grindstone may be matched in advance.

また、前述した本発明に係る研削加工方法において、上記工具砥石は旋回可能であり、上記研削を開始する前に、上記工具砥石の先端における円弧形状の曲率中心と、円弧形状を呈している該工具砥石の先端とを予め一致させておく、ようにしてもよい。   Further, in the above-described grinding method according to the present invention, the tool grindstone is turnable, and before starting the grinding, the arc-shaped curvature center at the tip of the tool grindstone and the arc shape are exhibited. You may make it match | combine with the front-end | tip of a tool grindstone beforehand.

また、前述した本発明に係る研削加工方法において、上記角度の制御により、上記工具砥石の研削作用点が該工具砥石先端の円弧形状に沿って包絡しながら移動するようにしてもよい。   In the above-described grinding method according to the present invention, the grinding action point of the tool grindstone may move while enveloping along the arc shape of the tip of the tool grindstone by controlling the angle.

また、本発明の別の態様のひとつである研削加工装置は、回転させている被研削加工物の被加工面に対し、先端の断面形状が円弧形状を呈している円筒形状の工具砥石を回転させながら相対的に移動させて軸対称非球面の研削を行う研削加工装置であって、上記被研削加工物と該工具砥石とを相対的に移動させる移動手段と、上記被研削加工物の加工点位置の面に対する垂直軸と上記被研削加工物の回転軸とのなす第一の角度と、該垂直軸と上記工具砥石の回転軸とのなす第二の角度とを、該被研削加工物の加工点における直径方向の曲率半径に基づいて算出し、上記被研削加工物の回転軸と上記工具砥石の回転軸である上記円筒形状における中心の軸とからなる角度の制御を、上記第一の角度及び上記第二の角度と、上記被加工面の形状に基づく初期の角度とに基づいて行う制御手段と、を有することを特徴とするものであり、この特徴によって前述した課題を解決する。
In addition, a grinding apparatus according to another aspect of the present invention rotates a cylindrical tool grindstone whose cross-sectional shape of the tip is an arc shape with respect to the work surface of the workpiece to be rotated. a grinding apparatus for performing grinding axisymmetric aspherical surface is relatively moved while the moving means for relatively moving the said object to be ground workpiece and the tool grindstone, the processing of the object to be ground workpiece A first angle formed by a vertical axis with respect to the surface of the point position and the rotation axis of the workpiece to be ground, and a second angle formed by the vertical axis and the rotation axis of the tool grindstone are determined by the workpiece. of calculated based on the radius of curvature of the diameter direction at the processing point, the control of the angle composed of a center of the shaft in the cylindrical shape is a rotation axis of the rotating shaft and the tool grindstone of the grinding target workpiece, the first And the second angle and the shape of the work surface And control means for, based on the initial angle and the brute, which is characterized in that it has a, to solve the problems described above by this feature.

本発明によれば、以上のようにすることにより、被研削加工物の被加工面が凹面凸面のいずれに係わらず任意形状をした軸対称の非球面形状の研削加工に際し、砥石の磨耗が抑えられる結果、加工効率が向上するので加工時間が短縮されるという効果を奏する。   According to the present invention, it is possible to suppress the wear of the grindstone in the grinding process of the axisymmetric aspherical shape in which the work surface of the work piece is an arbitrary shape regardless of the concave convex surface. As a result, since the processing efficiency is improved, the processing time is shortened.

以下、本発明の実施の形態を図面に基づいて説明する。
まず図1について説明する。同図は、本発明に係る研削加工装置を実施する超精密加工装置の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 will be described. This figure shows the configuration of an ultra-precision machining apparatus that implements a grinding machine according to the present invention.

この超精密加工装置4は、Z軸ステージ1及びX軸ステージ2と、B軸テーブル3と、不図示の制御コントローラとを備えている。ここで、Z軸ステージ1はZ軸方向の移動制御を行うテーブルであり、X軸ステージ2はX軸方向の移動制御を行うテーブルである。また、B軸テーブル3は、Y軸を中心として回転する軸であるB軸方向に回転するテーブルであり、X軸ステージ2上における位置であってZ軸ステージ1と対向する位置に載置されている。なお、これらによるX軸方向、Z軸方向、及びB軸方向の各方向の移動は、不図示の制御コントローラで同期制御することができる。   The ultra-precision machining apparatus 4 includes a Z-axis stage 1 and an X-axis stage 2, a B-axis table 3, and a control controller (not shown). Here, the Z-axis stage 1 is a table that performs movement control in the Z-axis direction, and the X-axis stage 2 is a table that performs movement control in the X-axis direction. The B-axis table 3 is a table that rotates in the B-axis direction that is an axis that rotates about the Y-axis, and is placed at a position on the X-axis stage 2 that faces the Z-axis stage 1. ing. The movement in each direction in the X-axis direction, the Z-axis direction, and the B-axis direction can be synchronously controlled by a control controller (not shown).

超精密加工装置4のZ軸ステージ1上には、Z軸方向と平行な向きに主軸回転軸aを持ち、被研削加工物8を回転させる主軸回転装置5が備え付けられている。また、B軸テーブル3の上には、X軸とZ軸とからなる平面上に工具回転軸bを持ち、工具砥石7を回転させる工具回転装置6が配置されている。つまり、Z軸ステージ1、X軸ステージ2、及びB軸テーブル3は、被研削加工物8と工具砥石7とを相対的に移動させる移動手段としての機能を有している。   On the Z-axis stage 1 of the ultraprecision machining apparatus 4, there is provided a spindle rotation device 5 that has a spindle rotation axis a in a direction parallel to the Z-axis direction and rotates the workpiece 8 to be ground. On the B-axis table 3, a tool rotating device 6 that has a tool rotation axis b on a plane composed of the X axis and the Z axis and rotates the tool grindstone 7 is disposed. That is, the Z-axis stage 1, the X-axis stage 2, and the B-axis table 3 have a function as moving means for relatively moving the workpiece 8 and the tool grindstone 7.

工具回転装置6は、ACサーボモータ若しくはエアータービンスピンドルを用いて構成される。なお、工具回転装置6には、図示していないが、X軸方向の移動調整を行うX軸調整機構、Z軸方向の移動調整を行うZ軸調整機構、及びY軸方向の移動調整を行うY軸調整機構が備え付けられている。   The tool rotating device 6 is configured using an AC servo motor or an air turbine spindle. Although not shown, the tool rotating device 6 performs an X-axis adjustment mechanism for adjusting movement in the X-axis direction, a Z-axis adjustment mechanism for adjusting movement in the Z-axis direction, and a movement adjustment in the Y-axis direction. A Y-axis adjustment mechanism is provided.

工具回転装置6に円筒形状をしており、この円筒形状の先端に、ダイヤモンド砥粒またはCBN(Cubic Boron Nitride :立方晶窒化ホウ素)砥粒を含んでいる、レジンボンド素材、メタルボンド素材、及びビトリフアイドボンド素材のうちのいずれからなる工具砥石7が取り付けられている。この工具砥石7の形状の概観を図2に示す。   The tool rotating device 6 has a cylindrical shape, and includes a resin bond material, a metal bond material, and a diamond abrasive grain or CBN (Cubic Boron Nitride) abrasive grain at the end of the cylindrical shape. A tool grindstone 7 made of any of the vitrified eye bond materials is attached. An outline of the shape of the tool grindstone 7 is shown in FIG.

以下、図1に示した超精密加工装置4を用いて行う、本発明に係る被研削加工物の研削加工の実施例について説明する。   Hereinafter, an embodiment of grinding of a workpiece to be ground according to the present invention performed using the ultraprecision machining apparatus 4 shown in FIG. 1 will be described.

まず実施例1について説明する。この実施例は、被加工面が凹面形状である被研削加工物の研削加工を行うものである。
本実施例においては、図2に示されている工具砥石7の先端外面側の円弧形状部分が研削作用点7−1となる。この研削作用点7−1となる工具砥石7先端外面側の円弧形状部分は、断面形状が高精度な円弧を持ったトーリック形状(R面取り形状)に成形(ツルーイング)を行っておき、更に、研削加工の開始前には目立て(ドレッシング)を行い、高精度な研削加工が行える状態にしておく。なお、このツルーイングやドレッシングは、CG砥石、WA砥石、超砥粒砥石、単石や多石からなるダイヤモンドドレッサ、その他金属等を用いて行う。
First, Example 1 will be described. In this embodiment, the workpiece to be ground having a concave surface is ground.
In the present embodiment, the arc-shaped portion on the tip outer surface side of the tool grindstone 7 shown in FIG. The arc-shaped portion on the outer surface side of the tip of the tool whetstone 7 serving as the grinding action point 7-1 is formed (truing) into a toric shape (R chamfered shape) having a highly accurate cross-sectional shape, Before starting the grinding process, dressing is performed so that high-precision grinding can be performed. The truing and dressing are performed using a CG grindstone, a WA grindstone, a superabrasive grindstone, a diamond dresser made of single stone or multi-stone, and other metals.

また、本実施例では、被加工面が凹面形状を呈している被研削加工物8の研削加工を行うので、円筒形状の工具砥石7の外径を、被研削加工物8の被加工面の最小曲率半径の2倍未満(理想的には45%程度)に設定する。   In this embodiment, since the workpiece 8 having a concave surface is ground, the outer diameter of the cylindrical tool grindstone 7 is set to be equal to that of the workpiece 8 of the workpiece 8 to be ground. Set to less than twice the minimum radius of curvature (ideally about 45%).

なお、図2において工具砥石7の内面側の円弧形状に示されている研削作用点7−2は実施例2におけるものであり、本実施例には無関係である。
次に、本実施例に係る研削加工の手順を説明する。この研削加工は、被研削加工物8の被加工面が凹面形状を呈している場合に行うものであり、本実施例における被研削加工物8の加工状態図である図3に示すように、工具砥石7の先端外面側の円弧形状部分を研削加工作用点7−1として加工を行うものである。
In addition, the grinding action point 7-2 shown in the circular arc shape on the inner surface side of the tool grindstone 7 in FIG. 2 is in the second embodiment, and is not related to the present embodiment.
Next, the grinding procedure according to the present embodiment will be described. This grinding work is performed when the work surface of the work piece 8 has a concave shape, and as shown in FIG. 3 which is a work state diagram of the work piece 8 in this embodiment, Processing is performed with the arc-shaped portion on the outer surface side of the tool grindstone 7 as a grinding working point 7-1.

まず、前述したY軸調整機構を用いて工具砥石7の工具回転軸bのY軸方向の高さを調整し、主軸回転軸aに一致させる。次に、前述したX軸調整機構及びZ軸調整機構を用い、工具砥石7において研削作用点7−1になる先端の円弧形状の曲率中心若しくは該円弧形状の先端とB軸回転テーブル3のB軸旋回中心とを一致させる調整を行い、各軸方向の誤差を3μm以下にする。   First, the height in the Y-axis direction of the tool rotation axis b of the tool grindstone 7 is adjusted using the above-described Y-axis adjustment mechanism so as to coincide with the spindle rotation axis a. Next, using the X-axis adjustment mechanism and the Z-axis adjustment mechanism described above, the arc-shaped curvature center of the tip that becomes the grinding action point 7-1 in the tool grindstone 7 or the tip of the arc shape and B of the B-axis rotary table 3 are used. Adjustments are made to match the axis turning center so that the error in each axis direction is 3 μm or less.

以上の調整を終えたならば、被研削加工物8を主軸回転軸aに取付けて主軸回転軸a回りに軸回転させると共に、工具砥石7を工具回転軸b回りに高速に軸回転させる。
この状態で、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3の3軸移動を不図示の制御コントローラで同時制御しながら、工具砥石7を被研削加工物8に当接させて研削加工を行う。このとき、工具砥石7の研削作用点7−1は工具砥石7の先端外面側の円弧形状部分となる。
When the above adjustment is completed, the workpiece 8 is attached to the spindle rotation axis a and rotated about the spindle rotation axis a, and the tool grindstone 7 is rotated about the tool rotation axis b at high speed.
In this state, the tool grindstone 7 is brought into contact with the workpiece 8 to be ground while the three-axis movement of the X-axis stage 2, the Z-axis stage 1 and the B-axis stage 3 is simultaneously controlled by a controller (not shown). Processing. At this time, the grinding action point 7-1 of the tool grindstone 7 is an arc-shaped portion on the tip outer surface side of the tool grindstone 7.

制御コントローラによる上述した3軸の移動制御は、制御コントローラに予め格納しておいた加工NCプログラムに従って行われる。この加工NCプログラムの作成手順について説明する。   The above-described three-axis movement control by the control controller is performed according to a machining NC program stored in advance in the control controller. A procedure for creating the machining NC program will be described.

X軸方向とZ軸方向とに移動制御する加工NCプログラムは、X軸とZ軸との2軸の位置関係を表した下記の[数1]式(非球面式)より得られる点列に対し、各種の誤差、例えば、工具砥石7の磨耗や形状誤差、工具砥石7のB軸ステージ3のB軸旋回中心に対する調整誤差など、に基づいたオフセットを与えて作成する。   The machining NC program that controls movement in the X-axis direction and the Z-axis direction is a point sequence obtained from the following [Expression 1] (aspherical expression) that represents the positional relationship between the X-axis and the Z-axis. On the other hand, it is created by giving an offset based on various errors, for example, wear or shape error of the tool grindstone 7, an adjustment error of the tool grindstone 7 with respect to the B axis turning center of the B axis stage 3, and the like.

なお、上記[数1]式において、Z(x) はX位置におけるZ座標を示しており、f(x) は非球面式を示している。また、Rは曲率半径係数、Kは円錐定数、Ci は非球面係数である。 In the above [Expression 1], Z (x) indicates the Z coordinate at the X position, and f (x) indicates an aspherical expression. R is a radius of curvature coefficient, K is a conic constant, and C i is an aspheric coefficient.

一方、B軸方向の角度は、下記の[数2]式から得られる点列に設定される。   On the other hand, the angle in the B-axis direction is set to a point sequence obtained from the following [Equation 2].

なお、上記[数2]式において、B(x) はX位置におけるB軸角度を示している。また、f' (x)は上記[数1]式として示した非球面式f(x) の微分、dは円筒形状である工具砥石7の径(図3参照)、αは安全係数(本実施例においては0<α<1)、R(x) は被研削加工物8の加工点における直径方向の曲率半径(図3参照)、r0 は工具砥石7先端の円弧形状の曲率半径(図3参照)、そしてB0 は初期角度である。 In the above [Expression 2], B (x) represents the B-axis angle at the X position. Further, f ′ (x) is a derivative of the aspherical formula f (x) shown as the above [Equation 1], d is the diameter of the cylindrical tool whetstone 7 (see FIG. 3), and α is a safety factor (this In the embodiment, 0 <α <1), R (x) is the radius of curvature at the machining point of the workpiece 8 (see FIG. 3), and r 0 is the radius of curvature of the arc shape at the tip of the tool grindstone 7 (see FIG. 3). 3), and B 0 is the initial angle.

この[数2]式において、右辺の第一項は被研削加工物8の加工点位置の面に対する垂直軸と被研削加工物8の回転軸aとのなす角を示している。また、右辺の第二項は、被研削加工物8の加工点における直径方向の曲率半径R(x) に基づいて決定される、加工点の垂直軸と工具砥石7の回転軸bとのなす角を示している。また、右辺の第三項である初期角度B0 は、被研削加工物8の被加工面の形状によって設定されるが、B軸の初期角度の設定誤差等が存在するため、安全係数α(0<α<1)を被研削加工物8の曲率半径R(x) に予め乗じておくようにする。 In this [Equation 2], the first term on the right side represents the angle formed by the vertical axis with respect to the surface of the workpiece 8 on the workpiece 8 and the rotation axis a of the workpiece 8. The second term on the right side is formed by the vertical axis of the machining point and the rotation axis b of the tool grindstone 7 determined based on the radius of curvature R (x) at the machining point of the workpiece 8 to be ground. Shows corners. The initial angle B 0, which is the third term on the right side, is set according to the shape of the surface of the workpiece 8 to be processed. However, since there is an error in setting the initial angle of the B axis, the safety factor α ( The curvature radius R (x) of the workpiece 8 is preliminarily multiplied by 0 <α <1).

加工NCプログラムは、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3が上記の[数1]式及び[数2]式に従って移動する制御を制御コントローラが行うように作成される。従って、制御コントローラは、この加工NCプログラムを実行することにより、被研削加工物8の回転軸aと工具砥石7の回転軸bとからなる角度を、被研削加工物8の加工点における直径方向の曲率半径に基づいて制御しながら、被研削加工物8と工具砥石7との相対的な移動を、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3に行わせる制御手段として機能する。   The machining NC program is created so that the control controller controls the X axis stage 2, the Z axis stage 1, and the B axis stage 3 to move according to the above [Equation 1] and [Equation 2]. Therefore, the control controller executes the machining NC program, thereby changing the angle formed between the rotation axis a of the workpiece 8 and the rotation axis b of the tool grindstone 7 in the diameter direction at the machining point of the workpiece 8. The X-axis stage 2, the Z-axis stage 1, and the B-axis stage 3 function as a control unit that performs relative movement between the workpiece 8 and the tool grindstone 7 while controlling based on the curvature radius of the X-axis. .

こうして作成された加工NCプログラムに従って被研削加工物8の研削加工を開始させると、研削作用点7−1が工具砥石7先端の円弧形状を包絡しながら移動して、凹面形状をした軸対称非球面形状の加工が行われる。この加工においては、図4に示すように、工具砥石7と被研削加工物8とが内接するように、且つ、研削作用点7−1である工具砥石7の先端外面側の曲率半径と被研削加工物8の曲率半径R(x) とが常に近くなるように設定されている。従って、研削加工は三日月形の線接触の状態でなされることになる。   When the grinding of the workpiece 8 is started in accordance with the machining NC program created in this way, the grinding action point 7-1 moves while enveloping the arc shape of the tip of the tool grindstone 7, and has an axisymmetric non-symmetrical shape. A spherical shape is processed. In this processing, as shown in FIG. 4, the tool wheel 7 and the workpiece 8 are inscribed, and the radius of curvature of the tip outer surface side of the tool wheel 7 which is the grinding action point 7-1 and the object to be ground are set. The radius of curvature R (x) of the workpiece 8 is always set to be close. Therefore, the grinding process is performed in a crescent-shaped line contact state.

このように、本実施例によれば、被研削加工物8の被加工面が凹面形状である場合に、工具砥石7と被研削加工物8とが内接するように、且つ、研削作用点7−1である工具砥石7先端の外面側の曲率半径と被研削加工物8の曲率半径とが常に近くなるように、工具砥石7と被研削加工物8とを相対移動させるので、両者の接触の状態が三日月形の線接触で研削加工を行うことができる。このように線接触の状態で研削加工を行うと、単位時間当りに研削に作用する砥粒数が増加するので、高負荷の加工が可能となる。従って、加工時間の大幅な短縮が図られる。   As described above, according to this embodiment, when the work surface of the workpiece 8 is concave, the tool grindstone 7 and the workpiece 8 are inscribed, and the grinding point 7 is applied. The tool grindstone 7 and the workpiece 8 are relatively moved so that the curvature radius of the outer surface of the tool grindstone 7 at -1 and the radius of curvature of the workpiece 8 are always close to each other. Grinding can be performed with a crescent-shaped line contact. When the grinding process is performed in the state of line contact in this way, the number of abrasive grains acting on the grinding per unit time increases, so that a high-load process can be performed. Accordingly, the processing time can be greatly shortened.

また、副次的な効果として、単位時間当たりに研削加工に作用する砥粒の数が増加するので、面粗さの向上も図られる。また、工具砥石7の先端の研削作用点7−1は、円弧形状を包絡しながら加工するので、工具砥石7の作用面積が増加する。従って、工具砥石7の磨耗も抑えられる。   Further, as a secondary effect, the number of abrasive grains acting on the grinding process per unit time increases, so that the surface roughness can be improved. Moreover, since the grinding action point 7-1 at the tip of the tool grindstone 7 is processed while enclosing the arc shape, the working area of the tool grindstone 7 increases. Therefore, wear of the tool grindstone 7 can be suppressed.

次に、実施例2について説明する。この実施例は、被加工面が凸面形状である被研削加工物8の研削加工を行うものである。本実施例においては、図2に示されている工具砥石7の内面側の円弧形状部分が研削作用点7−2となる。   Next, Example 2 will be described. In this embodiment, the workpiece 8 having a convex surface is ground. In the present embodiment, the arc-shaped portion on the inner surface side of the tool grindstone 7 shown in FIG. 2 becomes the grinding action point 7-2.

本実施例の実施においても図1に示した超精密加工装置を使用する。但し、本実施例における被研削加工物8の加工状態図である図5において、研削作用点7−2である工具砥石7の先端内面側の円弧形状部分の断面形状は、高精度な円弧を持ったトーリック形状としておく。なお、本実施例においては工具砥石7の大きさは任意のものでよいが、工具砥石7の内径は、被研削加工物8の被加工面の最大曲率半径の55%程度に設定することが理想的には望ましい。   Also in the implementation of this embodiment, the ultraprecision machining apparatus shown in FIG. 1 is used. However, in FIG. 5, which is a processing state diagram of the workpiece 8 in the present embodiment, the cross-sectional shape of the arc-shaped portion on the tip inner surface side of the tool grindstone 7 that is the grinding action point 7-2 is a highly accurate arc. Use a toric shape. In the present embodiment, the size of the tool grindstone 7 may be arbitrary, but the inner diameter of the tool grindstone 7 may be set to about 55% of the maximum curvature radius of the work surface of the workpiece 8 to be ground. Ideally desirable.

次に、本実施例に係る研削加工の手順を説明する。この研削加工は、被研削加工物8の被加工面が凸面形状を呈している場合に行うものであり、図5に示すように、工具砥石7の先端内面側の円弧形状部分を研削加工作用点7−2として加工を行うものである。   Next, the grinding procedure according to the present embodiment will be described. This grinding is performed when the work surface of the work piece 8 has a convex shape, and as shown in FIG. 5, the arc-shaped portion on the tip inner surface side of the tool grindstone 7 is ground. Processing is performed as point 7-2.

まず、前述したX軸調整機構及びZ軸調整機構を用い、工具砥石7において研削作用点7−2になる先端の円弧の曲率中心若しくは該円弧形状の先端とB軸回転テーブル3のB軸旋回中心とを一致させる調整を行い、各軸方向の誤差を3μm以下にする。この調整は、例えば以下のように行う。   First, using the X-axis adjustment mechanism and the Z-axis adjustment mechanism described above, the center of curvature of the arc of the tip that becomes the grinding action point 7-2 or the tip of the arc shape and the B-axis rotation of the B-axis rotary table 3 in the tool grindstone 7. Adjustment is performed so that the center coincides with each other, and an error in each axial direction is set to 3 μm or less. This adjustment is performed as follows, for example.

まず、円筒形状の工具砥石7先端の砥石作用点7−2が半円形状になるようにツルーイングする。次に、工具砥石7の肉厚tを、マイクロメータやノギスなどで直接測定して求める。若しくは、外径が既知である棒と超精密加工装置4の位置座標とを利用し、工具砥石7の内面側と外面側にそれぞれ棒を接触させ、そのときの超精密加工装置4のX軸ステージ2の移動量から棒の外径を引くことで、この肉厚tを求めてもよい。   First, truing is performed so that the grindstone working point 7-2 at the tip of the cylindrical tool grindstone 7 has a semicircular shape. Next, the wall thickness t of the tool grindstone 7 is obtained by directly measuring it with a micrometer or a caliper. Alternatively, using the rod whose outer diameter is known and the position coordinates of the ultraprecision machining device 4, the rod is brought into contact with the inner surface side and the outer surface side of the tool grindstone 7, and the X axis of the ultraprecision machining device 4 at that time The wall thickness t may be obtained by subtracting the outer diameter of the rod from the moving amount of the stage 2.

次に、Y軸方向と平行に見ることができる不図示の工具顕微鏡を用い、工具砥石7の研削作用点7−2である円弧形状部分の面頂位置とB軸テーブル3のB軸旋回中心とを一致させる調整をX軸調整機構とZ軸調整機構とにより行う。この調整により、工具砥石7の工具作用点7−2である円弧形状の端部と、B軸旋回中心とが一致する。なお、ここで、更にZ軸調整機構で調整を行うことにより、上述したようにして求めた工具砥石7の肉厚tの半分だけ中心方向にオフセット移動させることで、工具砥石7の研削作用点7−2の円弧の曲率中心をB軸旋回中心に一致させることができる。   Next, using a tool microscope (not shown) that can be seen parallel to the Y-axis direction, the surface top position of the arc-shaped portion that is the grinding action point 7-2 of the tool grindstone 7 and the B-axis turning center of the B-axis table 3 Are adjusted by the X-axis adjustment mechanism and the Z-axis adjustment mechanism. By this adjustment, the arc-shaped end portion that is the tool action point 7-2 of the tool grindstone 7 coincides with the B-axis turning center. Here, by further adjusting with the Z-axis adjusting mechanism, the grinding action point of the tool grindstone 7 is moved by offsetting in the center direction by half the thickness t of the tool grindstone 7 obtained as described above. The center of curvature of the arc of 7-2 can be made coincident with the B-axis turning center.

以上の調整を終えたならば、被研削加工物8を主軸回転軸aに取付けて主軸回転軸a回りに軸回転させると共に、工具砥石7を工具回転軸b回りに高速に軸回転させる。
この状態で、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3の3軸移動を不図示の制御コントローラで同時制御しながら、工具砥石7で被研削加工物8の研削加工を行う。このとき、工具砥石7の研削作用点7−2は工具砥石7の先端内面側の円弧形状部分となる。
When the above adjustment is completed, the workpiece 8 is attached to the spindle rotation axis a and rotated about the spindle rotation axis a, and the tool grindstone 7 is rotated about the tool rotation axis b at high speed.
In this state, the workpiece 8 is ground with the tool grindstone 7 while simultaneously controlling the three-axis movement of the X-axis stage 2, the Z-axis stage 1, and the B-axis stage 3 with a controller (not shown). At this time, the grinding action point 7-2 of the tool grindstone 7 becomes an arc-shaped portion on the inner surface side of the tip of the tool grindstone 7.

制御コントローラによる上述した3軸の移動制御は、制御コントローラに予め格納しておいた加工NCプログラムに従って行われる。この加工NCプログラムの作成手順について説明する。   The above-described three-axis movement control by the control controller is performed according to a machining NC program stored in advance in the control controller. A procedure for creating the machining NC program will be described.

X軸方向とZ軸方向とに移動制御する加工NCプログラムは、X軸とZ軸との2軸の位置関係を表した下記の[数3]式(非球面式)より得られる点列に対し、各種の誤差、例えば、工具砥石7の磨耗や形状誤差、研削作用点7−2である工具砥石7の先端内面側の円弧形状部分のB軸旋回中心に対する調整誤差など、に基づいたオフセットを与えて作成する。   The machining NC program that controls movement in the X-axis direction and the Z-axis direction is a point sequence obtained from the following [Equation 3] expression (aspherical expression) representing the positional relationship between the X-axis and the Z-axis. On the other hand, offsets based on various errors such as wear and shape errors of the tool whetstone 7 and adjustment errors with respect to the B-axis turning center of the arc-shaped portion on the tip inner surface side of the tool whetstone 7 which is the grinding action point 7-2. To create.

なお、上記[数3]式において、Z(x) はX位置におけるZ座標を示しており、f(x) は非球面式を示している。また、Rは曲率半径係数、Kは円錐定数、Ci は非球面係数である。 In the above [Expression 3], Z (x) represents the Z coordinate at the X position, and f (x) represents an aspherical expression. R is a radius of curvature coefficient, K is a conic constant, and C i is an aspheric coefficient.

一方、B軸方向の角度は、下記の[数4]式から得られる点列に設定される。   On the other hand, the angle in the B-axis direction is set to a point sequence obtained from the following [Equation 4].

なお、上記[数4]式において、B(x) はX位置におけるB軸角度を示している。また、f' (x)は上記[数3]式として示した非球面式f(x) の微分、dは円筒形状である工具砥石7の径(図5参照)、αは安全係数(本実施例においてはα≧1)、R(x) は被研削加工物8の加工点における直径方向の曲率半径(図5参照)、r0 は工具砥石7先端の円弧形状の曲率半径(図5参照)、そしてB0 は初期角度である。ここで、初期角度B0 は、被研削加工物8の被加工面の形状によって設定されるが、B軸の初期角度の設定誤差や、工具砥石7のB軸旋回中心への合わせ込み誤差などの誤差が存在するため、安全係数α(α≧1)を被研削加工物8の曲率半径R(x) に予め乗じておくようにする。 In the above [Expression 4], B (x) represents the B-axis angle at the X position. Further, f ′ (x) is a derivative of the aspherical formula f (x) shown as the above [Equation 3], d is the diameter of the cylindrical tool grindstone 7 (see FIG. 5), and α is a safety factor (this In the embodiment, α ≧ 1), R (x) is the radius of curvature at the machining point of the workpiece 8 (see FIG. 5), r 0 is the radius of curvature of the arc shape at the tip of the tool grindstone 7 (FIG. 5). See B), and B 0 is the initial angle. Here, the initial angle B 0 is set depending on the shape of the surface of the workpiece 8 to be processed, but an error in setting the initial angle of the B axis, an alignment error of the tool grindstone 7 to the B axis turning center, and the like. Therefore, the safety coefficient α (α ≧ 1) is preliminarily multiplied by the curvature radius R (x) of the workpiece 8 to be ground.

加工NCプログラムは、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3が上記の[数3]式及び[数4]式に従って移動する制御を制御コントローラが行うように作成される。従って、制御コントローラは、この加工NCプログラムを実行することにより、被研削加工物8の回転軸aと工具砥石7の回転軸bとからなる角度を、被研削加工物8の加工点における直径方向の曲率半径に基づいて制御しながら、被研削加工物8と工具砥石7との相対的な移動を、X軸ステージ2、Z軸ステージ1、及びB軸ステージ3に行わせる制御手段として機能する。   The machining NC program is created so that the control controller controls the X axis stage 2, the Z axis stage 1, and the B axis stage 3 to move according to the above [Equation 3] and [Equation 4]. Therefore, the control controller executes the machining NC program, thereby changing the angle formed between the rotation axis a of the workpiece 8 and the rotation axis b of the tool grindstone 7 in the diameter direction at the machining point of the workpiece 8. The X-axis stage 2, the Z-axis stage 1, and the B-axis stage 3 function as a control unit that performs relative movement between the workpiece 8 and the tool grindstone 7 while controlling based on the curvature radius of the X-axis. .

こうして作成された加工NCプログラムに従って被研削加工物8の研削加工を開始させると、研削作用点7−2が先端の円弧形状を包絡しながら移動して、凸面形状をした軸対称非球面形状の加工が行われる。この加工においては、図6に示すように、工具砥石7と被研削加工物8とが内接するように、且つ、研削作用点7−2である工具砥石7の先端内面側の曲率半径と被研削加工物8の曲率半径R(x) とが常に近くなるように設定されている。従って、研削加工は三日月形の線接触の状態でなされることになる。   When the grinding of the workpiece 8 is started according to the machining NC program created in this way, the grinding action point 7-2 moves while enveloping the arc shape of the tip, and has an axisymmetric aspherical shape with a convex shape. Processing is performed. In this processing, as shown in FIG. 6, the tool wheel 7 and the workpiece 8 are inscribed, and the radius of curvature on the inner surface of the tip of the tool wheel 7 that is the grinding action point 7-2 and the object to be ground are set. The radius of curvature R (x) of the workpiece 8 is always set to be close. Therefore, the grinding process is performed in a crescent-shaped line contact state.

以上の点を除けば、本実施例に係る研削加工の手順は、実施例1におけるものと同様である。
このように、本実施例によれば、被研削加工物8の被加工面が凸面形状である場合に、工具砥石7と被研削加工物8とが内接するように、且つ、研削作用点7−2である工具砥石7の先端内面側の曲率半径と被研削加工物8の曲率半径とが常に近くなるように、工具砥石7と被研削加工物8とを相対移動させるので、両者の接触の状態が三日月形の線接触で研削加工を行うことができる。このように線接触の状態で研削加工を行うと、単位時間当りに研削に作用する砥粒数が増加するので、高負荷の加工が可能となる。従って、加工時間の大幅な短縮が図られる。
Except for the above points, the grinding procedure according to the present embodiment is the same as that in the first embodiment.
Thus, according to the present embodiment, when the work surface of the workpiece 8 is convex, the tool grindstone 7 and the workpiece 8 are inscribed, and the grinding point 7 is applied. The tool grindstone 7 and the workpiece 8 are moved relative to each other so that the radius of curvature of the inner surface of the tip of the tool grindstone 7 that is -2 and the radius of curvature of the workpiece 8 are always close to each other. Grinding can be performed with a crescent-shaped line contact. When the grinding process is performed in the state of line contact in this way, the number of abrasive grains acting on the grinding per unit time increases, so that high-load machining can be performed. Accordingly, the processing time can be greatly shortened.

また、副次的な効果として、単位時間当たりに研削加工に作用する砥粒の数が増加するので、面粗さの向上も図られる。また、工具砥石7の研削作用点7−2は、円弧形状を包絡しながら加工するので、工具砥石7の作用面積が増加する。従って、工具砥石7の磨耗も抑えられる。   Further, as a secondary effect, the number of abrasive grains acting on the grinding process per unit time increases, so that the surface roughness can be improved. Further, since the grinding action point 7-2 of the tool grindstone 7 is processed while enclosing the arc shape, the working area of the tool grindstone 7 increases. Therefore, wear of the tool grindstone 7 can be suppressed.

以上、本発明の実施形態を説明したが、本発明は、上述した各実施形態に限定されることなく、本発明の要旨を逸脱しない範囲内で種々の改良・変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to each embodiment mentioned above, A various improvement and change are possible within the range which does not deviate from the summary of this invention.

本発明に係る研削加工装置を実施する超精密加工装置の構成を示す図である。It is a figure which shows the structure of the ultraprecision processing apparatus which implements the grinding processing apparatus which concerns on this invention. 工具砥石の形状の概観を示す図である。It is a figure which shows the general appearance of the shape of a tool grindstone. 実施例1における被研削加工物の加工状態を示す図である。It is a figure which shows the processing state of the workpiece to be ground in Example 1. FIG. 実施例1における工具砥石と被研削加工物との接触状態を説明する図である。It is a figure explaining the contact state of the tool grindstone and workpiece to be ground in Example 1. FIG. 実施例2における被研削加工物の加工状態を示す図である。It is a figure which shows the processing state of the to-be-ground workpiece in Example 2. FIG. 実施例2における工具砥石と被研削加工物との接触状態を説明する図である。It is a figure explaining the contact state of the tool grindstone and workpiece to be ground in Example 2. 従来の研削加工装置の一例を示す図である。It is a figure which shows an example of the conventional grinding processing apparatus.

符号の説明Explanation of symbols

1 Z軸ステージ
2 X軸ステージ
3 B軸テーブル
4 超精密加工装置
5 主軸回転装置
6 工具回転装置
7、105 工具砥石
7−1、7−2 工具砥石7の作用点
8、101 被研削加工物
a 主軸回転軸
b 工具回転軸
102 ワークスピンドル
103 傾斜台
104 研削スピンドル
DESCRIPTION OF SYMBOLS 1 Z-axis stage 2 X-axis stage 3 B-axis table 4 Super precision processing apparatus 5 Spindle rotating apparatus 6 Tool rotating apparatus 7, 105 Tool grindstone 7-1, 7-2 Action point of tool grindstone 7, 101 Workpiece to be ground a Spindle axis b Tool rotation axis 102 Work spindle 103 Tilt base 104 Grinding spindle

Claims (6)

回転させている被研削加工物の被加工面に対し、先端の断面形状が円弧形状を呈している円筒形状の工具砥石を回転させながら相対的に移動させて軸対称非球面の研削を行う研削加工方法であって、
上記被研削加工物の加工点位置の面に対する垂直軸と上記被研削加工物の回転軸とのなす第一の角度と、該垂直軸と上記工具砥石の回転軸とのなす第二の角度とを、該被研削加工物の加工点における直径方向の曲率半径に基づいて算出し、
上記被研削加工物の回転軸と上記工具砥石の回転軸である上記円筒形状における中心の軸からなる角度の制御を、上記第一の角度及び上記第二の角度と、上記被加工面の形状に基づく初期の角度とに基づいて行う、
ことを特徴とする研削加工方法。
Grinding for axisymmetric aspherical surfaces by rotating a cylindrical tool grindstone whose cross-sectional shape is arcuate relative to the work surface of the work piece being rotated. A processing method,
A first angle formed by a vertical axis with respect to a surface at a processing point position of the workpiece to be ground and a rotation axis of the workpiece to be ground, and a second angle formed by the vertical axis and a rotation axis of the tool grindstone; Is calculated based on the radius of curvature in the diameter direction at the processing point of the workpiece to be ground ,
The control of the angle composed of a center of the shaft in the cylindrical shape is a rotation axis of the rotating shaft and the tool grindstone of the grinding target workpiece, and the first angle and the second angle, the surface to be processed Based on the initial angle based on the shape,
A grinding method characterized by that.
上記第二の角度の算出を、上記曲率半径と、円筒形状である上記工具砥石の先端の円弧形状の中心を結ぶ径と、該工具砥石の先端の円弧形状における曲率半径と、に基づいて行うことを特徴とする請求項に記載の研削加工方法。 The calculation of the second angle is performed based on the radius of curvature, the diameter connecting the center of the arc shape of the tip of the tool grindstone that is cylindrical, and the radius of curvature of the arc shape of the tip of the tool grindstone. The grinding method according to claim 1 . 上記工具砥石は旋回可能であり、
上記研削を開始する前に、上記工具砥石の先端における円弧形状の曲率中心と、該工具砥石の旋回軸とを予め一致させておく、
ことを特徴とする請求項1に記載の研削加工方法。
The tool grindstone is pivotable,
Before starting the grinding, the arc-shaped curvature center at the tip of the tool grindstone and the turning axis of the tool grindstone are matched in advance.
The grinding method according to claim 1.
上記工具砥石は旋回可能であり、
上記研削を開始する前に、上記工具砥石の先端における円弧形状を呈している該工具砥石の先端と、該工具砥石の旋回軸とを予め一致させておく、
ことを特徴とする請求項1に記載の研削加工方法。
The tool grindstone is pivotable,
Before starting the grinding, the tip of the tool grindstone that has an arc shape at the tip of the tool grindstone and the swivel axis of the tool grindstone are matched in advance.
The grinding method according to claim 1.
上記角度の制御により、上記工具砥石の研削作用点が該工具砥石先端の円弧形状に沿って包絡しながら移動することを特徴とする請求項1に記載の研削加工方法。   2. The grinding method according to claim 1, wherein the grinding action point of the tool grindstone moves while enveloping along the arc shape of the tip of the tool grindstone by controlling the angle. 回転させている被研削加工物の被加工面に対し、先端の断面形状が円弧形状を呈している円筒形状の工具砥石を回転させながら相対的に移動させて軸対称非球面の研削を行う研削加工装置であって、
上記被研削加工物と該工具砥石とを相対的に移動させる移動手段と、
上記被研削加工物の加工点位置の面に対する垂直軸と上記被研削加工物の回転軸とのなす第一の角度と、該垂直軸と上記工具砥石の回転軸とのなす第二の角度とを、該被研削加工物の加工点における直径方向の曲率半径に基づいて算出し、上記被研削加工物の回転軸と上記工具砥石の回転軸である上記円筒形状における中心の軸とからなる角度の制御を、上記第一の角度及び上記第二の角度と、上記被加工面の形状に基づく初期の角度とに基づいて行う制御手段と、
を有することを特徴とする研削加工装置。
Grinding for axisymmetric aspherical surfaces by rotating a cylindrical tool grindstone whose cross-sectional shape is arcuate relative to the work surface of the work piece being rotated. A processing device,
A moving means for moving the said object to be ground workpiece and the tool grindstone,
A first angle formed by a vertical axis with respect to a surface at a processing point position of the workpiece to be ground and a rotation axis of the workpiece to be ground, and a second angle formed by the vertical axis and a rotation axis of the tool grindstone; Is calculated based on the radius of curvature in the diameter direction at the processing point of the workpiece to be ground, and an angle formed by the rotation axis of the workpiece and the central axis of the cylindrical shape that is the rotation axis of the tool grindstone control, and the first angle and the second angle, and control means for, based on the initial angle based on the shape of the workpiece surface,
A grinding apparatus characterized by comprising:
JP2006247205A 2006-09-12 2006-09-12 Grinding method and grinding apparatus Active JP4668872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247205A JP4668872B2 (en) 2006-09-12 2006-09-12 Grinding method and grinding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247205A JP4668872B2 (en) 2006-09-12 2006-09-12 Grinding method and grinding apparatus

Publications (2)

Publication Number Publication Date
JP2008068337A JP2008068337A (en) 2008-03-27
JP4668872B2 true JP4668872B2 (en) 2011-04-13

Family

ID=39290390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247205A Active JP4668872B2 (en) 2006-09-12 2006-09-12 Grinding method and grinding apparatus

Country Status (1)

Country Link
JP (1) JP4668872B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112091778A (en) * 2020-09-07 2020-12-18 南京迈得特光学有限公司 Single-point grinding process for bullet type aspheric surface die

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116442A1 (en) 2008-03-17 2009-09-24 富士フイルム株式会社 Pigment-dispersed composition, colored photosensitive composition, photocurable composition, color filter, liquid crystal display element, and solid image pickup element
ES2406430T3 (en) * 2009-09-24 2013-06-07 Gleason Cutting Tools Corporation Machine tool for grinding
CN102059620A (en) * 2010-07-19 2011-05-18 长春理工大学 Numerical control aspherical processing method adopting tangent method and machine tool
JP2017124460A (en) * 2016-01-13 2017-07-20 共立精機株式会社 Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
CN113021175A (en) * 2019-12-09 2021-06-25 Dmg森精机株式会社 Machine tool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109258A (en) * 1996-10-01 1998-04-28 Asahi Optical Co Ltd Method for machining nonshperical surface of revolutional symmetry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109258A (en) * 1996-10-01 1998-04-28 Asahi Optical Co Ltd Method for machining nonshperical surface of revolutional symmetry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112091778A (en) * 2020-09-07 2020-12-18 南京迈得特光学有限公司 Single-point grinding process for bullet type aspheric surface die

Also Published As

Publication number Publication date
JP2008068337A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
TWI359711B (en) Raster cutting technology for ophthalmic lenses
JP4668872B2 (en) Grinding method and grinding apparatus
US20100280650A1 (en) Machining apparatus and machining method
Xie et al. Study on a 5-axis precision and mirror grinding of glass freeform surface without on-machine wheel-profile truing
JP4576255B2 (en) Tool whetstone shape creation method
Zhong et al. Generation of parabolic and toroidal surfaces on silicon and silicon-based compounds using diamond cup grinding wheels
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP4458235B2 (en) Concave end machining method and apparatus
JP2011036974A (en) Polishing method and polishing device
JP2009291887A (en) Grinding wheel and grinding plate
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
JP2017124460A (en) Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
Suzuki et al. Precision machining and measurement of micro aspheric molds
JP2009095973A (en) Grinding wheel molding device and method
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JPH10328995A (en) Curved surface grinding method
JP3989211B2 (en) High smooth grinding method
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
JPS62114866A (en) Nonspherical surface working machine
JP3255437B2 (en) Processing method and processing apparatus for workpiece having three-dimensional curved surface
JP2004255549A (en) Grinding/polishing tool of spherical surface, and grinding/polishing method of spherical surface
JP2000084815A (en) Manufacture of aspherical optical element
JPH0283152A (en) Polishing method for rotation symmetrical curved face
JP2003220544A (en) Method for grinding axially symmetrical aspheric surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4668872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250