JP2011036974A - Polishing method and polishing device - Google Patents

Polishing method and polishing device Download PDF

Info

Publication number
JP2011036974A
JP2011036974A JP2009188753A JP2009188753A JP2011036974A JP 2011036974 A JP2011036974 A JP 2011036974A JP 2009188753 A JP2009188753 A JP 2009188753A JP 2009188753 A JP2009188753 A JP 2009188753A JP 2011036974 A JP2011036974 A JP 2011036974A
Authority
JP
Japan
Prior art keywords
polishing
workpiece
tool
processing
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009188753A
Other languages
Japanese (ja)
Inventor
Harutaka Kondo
晴崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009188753A priority Critical patent/JP2011036974A/en
Publication of JP2011036974A publication Critical patent/JP2011036974A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method which can uniformly polish the whole of a workpiece in a stable and highly accurate manner even when the workpiece has such a polishing surface as to include a small concave having a small curvature radius in a part thereof. <P>SOLUTION: The polishing method uses a polishing tool 6 having a polishing action portion 6b formed of an annular elastic body 6a. Control is made so that a main spindle rotary shaft A of a workpiece 1 and a tool rotary shaft B of a polishing tool 6 have a polishing angle θ obtained by subtracting a predetermined angle β(x) from an inclination angle α(x) (a gradient of a tangential line) at a polishing point k of a polishing surface 1a in the workpiece 1 to allow the annular polishing action portion 6b to partially come into contact with the polishing surface 1a in a crescent region, whereby, even when the workpiece 1 has such a polishing surface 1a as to include a small concave having a small curvature radius in a part thereof the polishing surface 1a can be polished in a stable manner. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、研磨加工方法および研磨加工装置に関する。   The present invention relates to a polishing method and a polishing apparatus.

回転軸対称形状を呈するレンズ、プリズムなどの光学部品やその成形金型は、光学特性を劣化させないようにするため高精度な形状や面粗さが必要とされている。特に、面粗さやうねりは光学特性の劣化の一因となるため、所望の精度で除去されていることが望まれている。   Optical parts such as lenses and prisms having a rotationally symmetric shape, and molding dies thereof are required to have a highly accurate shape and surface roughness so as not to deteriorate optical characteristics. In particular, since surface roughness and waviness contribute to deterioration of optical characteristics, it is desired to be removed with a desired accuracy.

このような要求に対応する研磨方法が、特許文献1に開示されている。すなわち、図7に示すように、回転軸101の一端に回転軸101より大きな直径を有する円盤形状の弾性部材102を貼付け、更に前記弾性部材102のもう一方の面に固定砥粒フィルム103を貼付けたスムージング工具を用いて、被加工物105の加工面に固定砥粒フィルム103の表面の全体を接触させて加工することにより、うねりや前加工の挽き目を除去するスムージング方法が開示されている。   A polishing method corresponding to such a requirement is disclosed in Patent Document 1. That is, as shown in FIG. 7, a disk-shaped elastic member 102 having a diameter larger than that of the rotating shaft 101 is attached to one end of the rotating shaft 101, and a fixed abrasive film 103 is attached to the other surface of the elastic member 102. A smoothing method is disclosed in which the entire surface of the fixed abrasive film 103 is brought into contact with the processed surface of the workpiece 105 using a smoothing tool to remove undulations and pre-processing grinds. .

しかしながら、例えば研磨加工面の一部に曲率半径が小さな凹部を有する場合、上述の従来技術によるスムージング方法にて当該部位を研磨加工すると、スムージング工具の固定砥粒フィルム103の全面が均等に接触せず、スムージング工具の研磨作用面(固定砥粒フィルム103)の外周部が、被加工物105における前記凹部の周囲の研磨加工面に強く接触することとなる。   However, for example, when a part of the polished surface has a concave portion with a small radius of curvature, the entire surface of the fixed abrasive film 103 of the smoothing tool can be evenly contacted by polishing the part by the above-described conventional smoothing method. First, the outer peripheral portion of the polishing surface (fixed abrasive film 103) of the smoothing tool comes into strong contact with the polishing surface around the recess in the workpiece 105.

このため、被加工物105のスムージング工具が強く接触した部分は、大きく削れてしまうため所望の形状にならないといった技術的課題があった。   For this reason, the part which the smoothing tool of the to-be-processed object 105 contacted strongly cut | disconnected greatly, and there existed the technical subject that it did not become a desired shape.

特許第3942573号公報Japanese Patent No. 3492573

本発明の目的は、研磨加工面の一部に曲率半径が小さな凹部を有する被加工物でも、研磨加工面の全体を安定して精度良く均一に研磨加工することが可能な研磨加工技術を提供することにある。   An object of the present invention is to provide a polishing technique that can stably and accurately polish the entire polishing surface even with a workpiece having a concave portion with a small radius of curvature on a part of the polishing surface. There is to do.

本発明の第1の観点は、回転する回転軸対称形状の被加工物の子午線上を、研磨工具の円環形状を有する加工作用部の一部を当該被加工物に接触させつつ走査移動させる研磨加工方法を提供する。   A first aspect of the present invention is to scan and move a part of a working portion having an annular shape of a polishing tool in contact with the workpiece on the meridian of a rotating workpiece having a rotational axis symmetry. A polishing method is provided.

本発明の第2の観点は、円環形状を有する加工作用部を備えた研磨工具と、
前記研磨工具を保持して回転させる工具保持手段と、
回転軸対称形状の被加工物を保持して回転させる被加工物保持手段と、
前記工具保持手段および前記被加工物保持手段を制御して、回転する前記被加工物の子午線上を、前記研磨工具の円環形状を有する前記加工作用部の一部を当該被加工物に接触させつつ走査移動させる加工制御手段と、
を含む研磨加工装置を提供する。
A second aspect of the present invention is a polishing tool provided with a working portion having an annular shape,
Tool holding means for holding and rotating the polishing tool;
A workpiece holding means for holding and rotating a workpiece having a rotationally symmetric shape;
By controlling the tool holding means and the workpiece holding means, a part of the processing action part having an annular shape of the polishing tool is brought into contact with the workpiece on the meridian of the rotating workpiece. Processing control means for scanning and moving,
A polishing apparatus including:

本発明によれば、研磨加工面の一部に曲率半径が小さな凹部を有する被加工物でも、研磨加工面の全体を安定して均一に研磨加工することが可能な研磨加工技術を提供することができる。   According to the present invention, there is provided a polishing technique capable of stably and uniformly polishing an entire polishing surface even with a workpiece having a recess with a small curvature radius on a part of the polishing surface. Can do.

本発明の一実施の形態である研磨加工方法を実施する研磨加工装置の作用の一例を示す概念図である。It is a conceptual diagram which shows an example of an effect | action of the grinding | polishing processing apparatus which enforces the grinding | polishing processing method which is one embodiment of this invention. 本発明の一実施の形態である研磨加工方法における加工部位を拡大して例示した概念図である。It is the conceptual diagram which expanded and illustrated the process site | part in the grinding | polishing processing method which is one embodiment of this invention. 本発明の一実施の形態である研磨加工方法を実施する研磨加工装置の構成の一例を示す斜視図である。It is a perspective view which shows an example of a structure of the grinding | polishing processing apparatus which enforces the grinding | polishing processing method which is one embodiment of this invention. 本発明の一実施の形態である研磨加工方法を実施する研磨加工装置に備えられた研磨工具の一例を示す斜視図である。It is a perspective view which shows an example of the grinding | polishing tool with which the grinding | polishing processing apparatus which implements the grinding | polishing processing method which is one embodiment of this invention was equipped. 本発明の一実施の形態である研磨加工方法を実施する研磨加工装置に備えられた制御プログラムの作用の一例を示すフローチャートである。It is a flowchart which shows an example of an effect | action of the control program with which the grinding | polishing processing apparatus which implements the grinding | polishing processing method which is one embodiment of this invention was equipped. 本発明の他の実施の形態である研磨加工装置に備えられた研磨工具の構成例を示す斜視図である。It is a perspective view which shows the structural example of the grinding | polishing tool with which the grinding | polishing processing apparatus which is other embodiment of this invention was equipped. 従来技術のスムージング工具を示す斜視図である。It is a perspective view which shows the smoothing tool of a prior art.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
[実施の形態1]
図1は、本発明の一実施の形態である研磨加工方法を実施する研磨加工装置の作用の一例を示す概念図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Embodiment 1]
FIG. 1 is a conceptual diagram showing an example of the operation of a polishing apparatus that performs a polishing method according to an embodiment of the present invention.

図2は、本発明の一実施の形態である研磨加工方法における加工部位を拡大して例示した概念図である。
図3は、本発明の一実施の形態である研磨加工方法を実施する研磨加工装置の構成の一例を示す斜視図である。
FIG. 2 is a conceptual diagram illustrating an example of an enlarged processing site in the polishing method according to an embodiment of the present invention.
FIG. 3 is a perspective view showing an example of the configuration of a polishing apparatus that performs the polishing method according to one embodiment of the present invention.

図4は、本発明の一実施の形態である研磨加工方法を実施する研磨加工装置に備えられた研磨工具の一例を示す斜視図である。
[構成]
まず、図3を参照して、本実施の形態1の研磨加工装置Mの構成を説明する。
FIG. 4 is a perspective view showing an example of a polishing tool provided in a polishing apparatus for performing a polishing method according to an embodiment of the present invention.
[Constitution]
First, the configuration of the polishing apparatus M according to the first embodiment will be described with reference to FIG.

図3に例示された本実施の形態の研磨加工装置Mは、回転軸対称の被加工物1を加工するための研磨加工装置である。
本実施の形態の研磨加工装置Mには、鉛直方向に設けられた主軸回転軸A(被加工物の回転軸)に対し高精度に軸回転し、回転数を制御できる主軸スピンドル2と、上記主軸スピンドル2の先端に被加工物1を保持する被加工物保持機構3(被加工物保持手段)が備え付けられている。
The polishing apparatus M of this embodiment illustrated in FIG. 3 is a polishing apparatus for processing the workpiece 1 that is symmetrical about the rotational axis.
The polishing apparatus M of the present embodiment includes a spindle spindle 2 that can rotate with high accuracy and control the number of rotations with respect to a spindle rotation axis A (rotation axis of the workpiece) provided in the vertical direction, and the above-described spindle spindle 2. A workpiece holding mechanism 3 (workpiece holding means) for holding the workpiece 1 is provided at the tip of the main spindle 2.

研磨工具6の側には、工具回転軸B(研磨工具の回転軸)に対し高精度に軸回転し、回転数を制御できる工具スピンドル4が設けられ、この工具スピンドル4の先端には、研磨工具6を把持する工具保持機構5(工具保持手段)が備え付けられている。   On the polishing tool 6 side, there is provided a tool spindle 4 that can rotate with high accuracy relative to the tool rotation axis B (rotation axis of the polishing tool) and control the number of rotations. A tool holding mechanism 5 (tool holding means) for holding the tool 6 is provided.

研磨加工中の研磨工具6に一定荷重を掛けることができるように、工具保持機構5を支持する荷重装置8(工具保持手段)が設けられている。この荷重装置8は、工具保持機構5をZ方向の下方に付勢するエアスライド、エアシリンダー、スプリングなどで構成されている。   A load device 8 (tool holding means) for supporting the tool holding mechanism 5 is provided so that a constant load can be applied to the polishing tool 6 being polished. The load device 8 includes an air slide, an air cylinder, a spring, and the like that urge the tool holding mechanism 5 downward in the Z direction.

更に、研磨工具6の側には、被加工物1に対する研磨工具6の位置を調整する位置調整機構9(工具保持手段)が設けられている。
この位置調整機構9は、コラム9a、ベーステーブル9b、回転テーブル9c、スライドテーブル9d、支持アーム9eを備えている。
Further, a position adjusting mechanism 9 (tool holding means) for adjusting the position of the polishing tool 6 with respect to the workpiece 1 is provided on the polishing tool 6 side.
The position adjusting mechanism 9 includes a column 9a, a base table 9b, a rotary table 9c, a slide table 9d, and a support arm 9e.

すなわち、工具保持機構5は、荷重装置8を介して位置調整機構9の垂直な支持アーム9eに支持され、この支持アーム9eは、X−Y平面内で移動可能なスライドテーブル9dに搭載されている。   That is, the tool holding mechanism 5 is supported by a vertical support arm 9e of the position adjustment mechanism 9 via a load device 8, and this support arm 9e is mounted on a slide table 9d that can move in the XY plane. Yes.

さらに、スライドテーブル9dは、回転テーブル9cに搭載されて、Z軸の回りに回転される。
回転テーブル9cは、研磨加工装置Mの筐体の底板20に垂直に設けられたコラム9aの側面に突設されたベーステーブル9bの下面に下向きに搭載されている。
Further, the slide table 9d is mounted on the rotary table 9c and rotated around the Z axis.
The rotary table 9c is mounted downward on the lower surface of the base table 9b that projects from the side surface of the column 9a provided perpendicular to the bottom plate 20 of the casing of the polishing apparatus M.

また、研磨加工装置MはNC装置等からなる制御装置11(加工制御手段)によりX軸方向とZ軸方向に移動できるスライド移動機構10(被加工物保持手段)を備え、被加工物1と研磨工具6とを相対的に移動できるようにしている。   The polishing apparatus M includes a slide moving mechanism 10 (workpiece holding means) that can be moved in the X-axis direction and the Z-axis direction by a control device 11 (machining control means) including an NC apparatus. The polishing tool 6 can be moved relatively.

すなわち、スライド移動機構10は、Z方向移動テーブル10a、X方向移動テーブル10b、ベーステーブル10cを備えている。
被加工物保持機構3は、X方向移動テーブル10bに搭載されてZ方向に移動するZ方向移動テーブル10aに搭載されている。
That is, the slide movement mechanism 10 includes a Z-direction movement table 10a, an X-direction movement table 10b, and a base table 10c.
The workpiece holding mechanism 3 is mounted on a Z-direction moving table 10a that is mounted on the X-direction moving table 10b and moves in the Z direction.

X方向移動テーブル10bの全体は、ベーステーブル10cの上をX方向に移動する構成となっている。
このスライド移動機構10に搭載されることにより、被加工物1を保持した被加工物保持機構3は、Z−X平面内の任意の位置に移動される。
The entire X-direction moving table 10b is configured to move in the X direction on the base table 10c.
By being mounted on the slide moving mechanism 10, the workpiece holding mechanism 3 holding the workpiece 1 is moved to an arbitrary position in the ZX plane.

また、被加工物1の姿勢を、X軸―Z軸平面に垂直なY方向に平行な旋回軸Cの回りに回転でき、主軸回転軸Aと工具回転軸Bとの角度を相対的に変更できるよう、回転位置制御装置7(被加工物保持手段)を主軸側に設けている。   In addition, the posture of the workpiece 1 can be rotated around a turning axis C parallel to the Y direction perpendicular to the X-axis to Z-axis plane, and the angle between the spindle rotation axis A and the tool rotation axis B is relatively changed. A rotational position control device 7 (workpiece holding means) is provided on the main shaft side so as to be able to do so.

すなわち、上述のスライド移動機構10の全体は、回転位置制御装置7に搭載されて旋回軸Cの回りに回転される構成となっている。
回転位置制御装置7は、研磨加工装置Mの筐体の底板20に垂直に設けられたコラム7aの側面に、旋回軸CがY方向に水平になるように支持されている。
That is, the entire slide moving mechanism 10 described above is mounted on the rotational position control device 7 and rotated around the turning axis C.
The rotational position control device 7 is supported on the side surface of a column 7a provided perpendicularly to the bottom plate 20 of the housing of the polishing apparatus M so that the pivot axis C is horizontal in the Y direction.

図4に例示されるように、本実施の形態の研磨工具6は、先端部に、円環部の幅の中央における直径dの円環形状の加工作用部6bが設けられ、この加工作用部6bは、たとえば、ゴム、樹脂やスポンジなどからなる弾性体6aで構成されている。   As illustrated in FIG. 4, the polishing tool 6 of the present embodiment is provided with an annular processing portion 6 b having a diameter d at the center of the width of the annular portion at the tip portion. 6b is comprised with the elastic body 6a which consists of rubber | gum, resin, sponge etc., for example.

研磨工具6の加工作用部6bには、研磨加工できる状態にするため、たとえば、ダイヤモンド、立方晶窒化硼素焼結体(CBN)、グリーンカーボン(GC)、ホワイトアルミナ(WA)や酸化セリウム等からなる砥粒を固定した固定砥粒が貼り付けられている。   In order to make the processing portion 6b of the polishing tool 6 ready for polishing, for example, diamond, cubic boron nitride sintered body (CBN), green carbon (GC), white alumina (WA), cerium oxide or the like is used. The fixed abrasive grain which fixed the abrasive grain which becomes is affixed.

あるいは、同様に加工作用部6bに研磨作用を持たせるために上述の砥粒を遊離状態で塗布してもよい。
図1は、研磨加工時の被加工物1と研磨工具6の接触状態を示している。また、図2には、図1における被加工物1と研磨工具6の接触部が拡大して示されている。
Or you may apply | coat the above-mentioned abrasive grain in a free state in order to give the grinding | polishing effect | action to the processing action part 6b similarly.
FIG. 1 shows a contact state between the workpiece 1 and the polishing tool 6 during polishing. 2 is an enlarged view of a contact portion between the workpiece 1 and the polishing tool 6 in FIG.

研磨工具6の先端の加工作用部6bは、上述のように円環形状を呈し、ゴム、樹脂やスポンジなどからなる弾性体6aで構成されているため、被加工物1の研磨加工面1aにおける凹凸や加工抵抗に応じて適宜変形する。   The processing action portion 6b at the tip of the polishing tool 6 has an annular shape as described above, and is composed of the elastic body 6a made of rubber, resin, sponge, or the like. It is appropriately deformed according to the unevenness and processing resistance.

また、本実施の形態の場合には、後述のように研磨工具6の円環形状の加工作用部6bの全周の一部が、被加工物1の被加工面である研磨加工面1aに接するように制御される。   Further, in the case of the present embodiment, as will be described later, a part of the entire circumference of the ring-shaped processing action portion 6b of the polishing tool 6 is formed on the polishing processing surface 1a which is the processing surface of the workpiece 1. It is controlled to touch.

上述の被加工物保持機構3の側の主軸スピンドル2、回転位置制御装置7およびスライド移動機構10と、研磨工具6の側の工具スピンドル4、位置調整機構9の動作は、制御装置11によって統括して制御される。   Operations of the spindle spindle 2 on the workpiece holding mechanism 3 side, the rotational position control device 7 and the slide moving mechanism 10, and the tool spindle 4 on the polishing tool 6 side and the position adjustment mechanism 9 are controlled by the control device 11. To be controlled.

この制御装置11は、たとえば、同時多軸制御のNC装置で構成され、制御プログラム12(加工制御手段)によって動作する。
[作用]
本実施の形態1の研磨加工装置Mの作用を、図1乃至図4を用いて説明する。
The control device 11 is constituted by, for example, a simultaneous multi-axis control NC device, and operates by a control program 12 (machining control means).
[Action]
The operation of the polishing apparatus M according to the first embodiment will be described with reference to FIGS.

以下に本実施の形態1の作用を具体的に説明するが、これらは本発明を限定するものではない。
本実施の形態の場合、被加工物1は、図1に示すように、たとえば、凸形の非球面形状の研磨加工面1aを有するレンズである。
The operation of the first embodiment will be specifically described below, but these do not limit the present invention.
In the case of the present embodiment, the workpiece 1 is, for example, a lens having a convex aspherical polished surface 1a as shown in FIG.

初めに、被加工物1を被加工物保持機構3にて保持する。この時、被加工物1の主軸回転軸Aに対する回転偏心精度を50μm以下にするように予め調整を行っておく。
次に研磨工具6を工具保持機構5にて把持する。このとき、研磨工具6の回転偏心を工具回転軸Bに対し、50μm以下となるように保持させる。
First, the workpiece 1 is held by the workpiece holding mechanism 3. At this time, adjustment is performed in advance so that the rotational eccentricity accuracy of the workpiece 1 with respect to the spindle rotation axis A is 50 μm or less.
Next, the polishing tool 6 is gripped by the tool holding mechanism 5. At this time, the rotational eccentricity of the polishing tool 6 is held with respect to the tool rotation axis B so as to be 50 μm or less.

次に、位置調整機構9にて旋回軸Cと研磨工具6の工具回転軸Bが交わるように研磨工具6の位置を調整する。
その後、上記位置調整機構9もしくはスライド移動機構10のX軸方向の変位にて研磨工具6の円環形状の加工作用部6bの半径分(d/2)の距離を移動させ、X軸方向の原点として設定する。
Next, the position adjustment mechanism 9 adjusts the position of the polishing tool 6 so that the turning axis C and the tool rotation axis B of the polishing tool 6 intersect.
Thereafter, the position adjustment mechanism 9 or the slide movement mechanism 10 is moved in the X-axis direction by moving the distance (d / 2) by the radius of the annular working portion 6b of the polishing tool 6 by the displacement in the X-axis direction. Set as origin.

Z軸方向の原点は被加工物1の主軸回転軸Aと研磨加工面1aとの交点(すなわち頂点(面頂1b))が旋回軸C上にくる位置とし、回転位置制御装置7の原点座標は、主軸回転軸Aと工具回転軸Bとが平行となる位置に設定する。   The origin in the Z-axis direction is a position where the intersection (that is, the apex (surface apex 1b)) of the spindle rotation axis A of the workpiece 1 and the polishing surface 1a is on the turning axis C, and the origin coordinates of the rotational position control device 7 Is set at a position where the spindle rotation axis A and the tool rotation axis B are parallel to each other.

研磨加工では、主軸スピンドル2を回転させ被加工物1を主軸回転軸A回りに回転させる。また、工具スピンドル4によって研磨工具6を工具回転軸Bの回りに回転させる。
この状態で荷重装置8にて研磨工具6を被加工物1へ一定荷重で押圧することで研磨を行うことができる。
In the polishing process, the spindle spindle 2 is rotated to rotate the workpiece 1 around the spindle rotation axis A. Further, the polishing tool 6 is rotated around the tool rotation axis B by the tool spindle 4.
Polishing can be performed by pressing the polishing tool 6 against the workpiece 1 with a constant load by the load device 8 in this state.

また、制御装置11は、常に研磨加工点kが旋回軸C上に位置するように、X方向移動テーブル10bのX軸方向の変位、Z方向移動テーブル10aのZ軸方向の変位と、回転位置制御装置7の回転位置の変化を行わせるNC制御にて、一定もしくは被加工物1の形状と研磨加工条件に基づいた移動速度で、被加工物1の研磨加工面1aの子午線に沿って、研磨工具6を相対的に走査移動させる。   Further, the control device 11 always detects the displacement in the X-axis direction of the X-direction moving table 10b, the displacement in the Z-axis direction of the Z-direction moving table 10a, and the rotational position so that the polishing point k is always located on the turning axis C. With NC control to change the rotational position of the control device 7, along the meridian of the polishing surface 1a of the workpiece 1 at a constant or moving speed based on the shape of the workpiece 1 and the polishing conditions, The polishing tool 6 is relatively scanned and moved.

被加工物1の研磨加工面1aの形状が回転軸対称の非球面形状で、研磨加工面1aの面頂1bをX軸、Z軸の原点とした場合、研磨加工面1aの形状は次の数1の(イ)式で与えられる。   When the shape of the polished surface 1a of the workpiece 1 is an aspherical shape that is symmetrical about the rotational axis, and the top 1b of the polished surface 1a is the origin of the X and Z axes, the shape of the polished surface 1a is as follows: It is given by equation (a) in equation (1).

ここでf(x)は研磨加工面1aの非球面形状の子午線における輪郭形状を定義する設計式、xはX軸方向の座標点、Rは曲率半径係数、Pはコーニック係数、A2iは非球面係数を示している。 Here, f (x) is a design formula that defines the contour shape of the aspheric meridian of the polished surface 1a, x is a coordinate point in the X-axis direction, R is a radius of curvature coefficient, P is a conic coefficient, and A 2i is non- The spherical coefficient is shown.

また、本実施の形態では、制御装置11(制御プログラム12)は、回転位置制御装置7の回転により、主軸回転軸Aと工具回転軸Bのなす研磨角度θは、次式から求める。
θ=g(x)=α(x)−β(x) ………(ロ)
α(x)=f’(x) ………(ハ)
β(x)=sin−1{r(x)/(d/2)} ………(二)
ここで、α(x)は被加工物1の傾斜角度の正接、β(x)はX座標点での被加工物1の曲率半径と研磨工具6の円環部と被加工物1とが接触した円弧半径が一致する角度(特定角度)、f’(x)は非球面設計式f(x)の微分式(研磨加工点kで接線の傾き)、r(x)はX座標点での被加工物1の曲率半径、dは研磨工具6の直径を示している。
In the present embodiment, the control device 11 (control program 12) obtains the polishing angle θ between the spindle rotation axis A and the tool rotation axis B from the following equation by the rotation of the rotational position control device 7.
θ = g (x) = α (x) −β (x) (b)
α (x) = f ′ (x) (……)
β (x) = sin −1 {r (x) / (d / 2)} (2)
Here, α (x) is the tangent of the inclination angle of the workpiece 1, and β (x) is the radius of curvature of the workpiece 1 at the X coordinate point, the annular portion of the polishing tool 6, and the workpiece 1. The angle (specific angle) at which the contact arc radii coincide with each other, f ′ (x) is a differential expression of the aspherical design formula f (x) (the slope of the tangent at the polishing point k), and r (x) is the X coordinate point. The radius of curvature of the workpiece 1 and d indicates the diameter of the polishing tool 6.

尚、被加工物1の研磨加工面1aの子午線に対する研磨工具6の相対的な走査移動は、上記(イ)式、(ロ)式にて算出される、X、Z、θになるように、スライド移動機構10によるX軸方向およびZ軸方向の移動(X、Z)と、回転位置制御装置7による旋回軸Cの回りの回転(研磨角度θ)にて実現させる。   The relative scanning movement of the polishing tool 6 with respect to the meridian of the polishing surface 1a of the workpiece 1 is X, Z, and θ calculated by the above equations (a) and (b). This is realized by movement in the X-axis direction and Z-axis direction (X, Z) by the slide movement mechanism 10 and rotation (polishing angle θ) around the turning axis C by the rotational position control device 7.

これにより、研磨工具6の加工作用部6bの円環形状と被加工物1とが接触した円弧の半径と被加工物1の曲率半径r(x)とが一致するため、研磨工具6の加工作用部6bは被加工物1に対して三日月状に接触する。   Thereby, since the radius of the circular arc in which the annular shape of the processing action portion 6b of the polishing tool 6 and the workpiece 1 are in contact with the radius of curvature r (x) of the workpiece 1 matches, the processing of the polishing tool 6 is performed. The action part 6b contacts the workpiece 1 in a crescent shape.

更に、研磨工具6の弾性体6aの弾性により、円環形状を有する加工作用部6bが、研磨加工点kの内部でも被加工物1の研磨加工面1aの形状に倣うため、長い円弧の接触となる。これにより、研磨加工面1aに対する加工作用部6bの接触面積が大きくなり、単位時間当たりの研磨量も大きく稼ぐことができる。   Further, the elasticity of the elastic body 6a of the polishing tool 6 allows the processing portion 6b having an annular shape to follow the shape of the polishing surface 1a of the workpiece 1 even within the polishing point k. It becomes. Thereby, the contact area of the process action part 6b with respect to the grinding | polishing process surface 1a becomes large, and the grinding | polishing amount per unit time can also be earned large.

更に、この長い円弧をもった三日月状の加工作用部6bの接触が、研磨加工面1aにおける既存のうねりの複数の周期を跨ぐことで、うねりの面頂から研磨加工され、前工程で発生した研磨加工面1aのうねりを研磨加工装置Mにて除去することができる。   Furthermore, the contact of the crescent-shaped processing action part 6b having a long arc is polished from the top of the undulation by straddling a plurality of cycles of the existing undulation on the polishing surface 1a, and is generated in the previous step. The waviness of the polished surface 1a can be removed by the polishing apparatus M.

図5は、上述の制御動作を行う制御装置11の制御プログラム12の作用の一例を示すフローチャートである。
制御装置11(制御プログラム12)は、上述の各種の原点の設定を行う(ステップ201)。
FIG. 5 is a flowchart showing an example of the operation of the control program 12 of the control device 11 that performs the above-described control operation.
The control device 11 (control program 12) sets the various origins described above (step 201).

次に、制御プログラム12は、被加工物1と研磨工具6の回転を開始させる(ステップ202)。
その後、制御プログラム12は、研磨加工点kが子午線上の加工開始点となるようにx座標値Xを設定する(ステップ203)。
Next, the control program 12 starts rotation of the workpiece 1 and the polishing tool 6 (step 202).
Thereafter, the control program 12 sets the x coordinate value X so that the polishing processing point k becomes the processing start point on the meridian (step 203).

そして、制御プログラム12は、このXの値に基づいて、上述の(イ)式および(ロ)式によってθとZを決定し、このθとZが実現されるように、回転位置制御装置7、スライド移動機構10を制御して研磨加工を実行する(ステップ204)。   Then, the control program 12 determines θ and Z based on the value of X according to the above-described formulas (a) and (b), and the rotational position control device 7 so that θ and Z are realized. Then, polishing is performed by controlling the slide moving mechanism 10 (step 204).

そして、制御プログラム12は、x座標を、子午線上の加工終端点方向に向かって所定の大きさのΔxだけ増加させ(ステップ205)、加工終端点に到達したか判別する(ステップ206)。   Then, the control program 12 increases the x coordinate by Δx having a predetermined size toward the machining end point on the meridian (step 205), and determines whether the machining end point has been reached (step 206).

制御プログラム12は、更新後のx座標が加工終端点に到達していないと判定された場合には(ステップ207)、上述のステップ204に戻ってθ、Zの値を更新して子午線上の走査移動による研磨加工を継続する。   When it is determined that the updated x-coordinate has not reached the machining end point (step 207), the control program 12 returns to the above-mentioned step 204 to update the values of θ and Z and on the meridian Continue polishing by scanning movement.

制御プログラム12は、ステップ206で子午線上の加工終端点に到達したと判定された場合には、加工完了か判別し(ステップ207)、未完の場合には、上述のステップ203に戻って、子午線上の加工開始点から再度研磨加工を行う。   If it is determined in step 206 that the processing end point on the meridian has been reached, the control program 12 determines whether the processing is complete (step 207). If it is not complete, the control program 12 returns to step 203 described above to return to the meridian. Polishing is performed again from the upper processing start point.

なお、このとき、子午線上を、加工終端点から加工開始点に向かって逆行するように(x−Δx)として反復走査してもよい。
制御プログラム12は、ステップ207で研磨加工が完了したと判定された場合には、加工を終了する。
[効果]
本実施の形態1によれば、被加工物1の曲率半径に応じて研磨工具6と被加工物1の研磨角度θを変化させているので、被加工物1の研磨加工面1aに極小の曲率半径の凹部が存在していても、弾性体6aからなる加工作用部6bが、その曲率半径に応じた研磨角度θに設定されるので、凹部の周囲が過度に研磨される等の不具合を生じることなく、研磨加工面1aの全体を安定して研磨することが出来る。
At this time, the meridian may be repeatedly scanned as (x−Δx) so as to go backward from the processing end point toward the processing start point.
If it is determined in step 207 that the polishing process has been completed, the control program 12 ends the process.
[effect]
According to the first embodiment, the polishing angle 6 between the polishing tool 6 and the workpiece 1 is changed according to the radius of curvature of the workpiece 1, so that the polishing surface 1 a of the workpiece 1 is extremely small. Even if there is a concave portion with a radius of curvature, the processing action portion 6b made of the elastic body 6a is set to a polishing angle θ corresponding to the radius of curvature, so that there are problems such as excessive polishing around the concave portion. The entire polished surface 1a can be stably polished without being generated.

更に、研磨工具6の弾性体6aからなる加工作用部6bと被加工物1とが接触する面積を大きくとることができ、単位時間当たりの研磨量を大きく稼ぐことができ、加工所要時間を短縮できる。   Furthermore, it is possible to increase the contact area between the workpiece 1 and the workpiece 1 made of the elastic body 6a of the polishing tool 6 and to increase the amount of polishing per unit time, thereby shortening the time required for processing. it can.

[実施の形態2]
図6は、本発明の他の実施の形態である研磨加工装置に備えられた研磨工具の構成例を示す斜視図である。
[Embodiment 2]
FIG. 6 is a perspective view showing a configuration example of a polishing tool provided in a polishing apparatus according to another embodiment of the present invention.

[構成]
本実施の形態2では、研磨工具6の先端の加工作用部6bを円環形状とし、ゴム、樹脂やスポンジなどからなる弾性体6aで構成するとともに、この加工作用部6bの内部には、研磨作用を実現するため、たとえばダイヤモンド、CBN、GC、WAや酸化セリウム等の砥粒を埋め込んで構成した点、および先端の加工作用部6bに、円環形状の直径方向に多数の切込み6cを形成した点が、上述の実施の形態1と異なり、他の構成は同様である。
[Constitution]
In the second embodiment, the processing action portion 6b at the tip of the polishing tool 6 is formed into an annular shape and is constituted by an elastic body 6a made of rubber, resin, sponge, or the like. In order to realize the action, for example, a large number of notches 6c are formed in the diameter direction of the annular shape in the point formed by embedding abrasive grains such as diamond, CBN, GC, WA, cerium oxide, and the processing action part 6b at the tip. However, unlike the above-described first embodiment, the other configurations are the same.

また、加工作用部6bに切込み6cが形成されていることにより、加工作用部6bが研磨加工面1aの形状に沿って変形しやすくなり、研磨加工面1aの全体の更なる安定な加工を実現できる。   In addition, since the cut 6c is formed in the machining portion 6b, the machining portion 6b is easily deformed along the shape of the polishing surface 1a, and further stable processing of the entire polishing surface 1a is realized. it can.

[作用]
本実施の形態2によれば、上述の実施の形態1と同等の作用をなすとともに、研磨加工により研磨工具6の加工作用部6bが磨耗しても、加工作用部6bの内部に埋まっている新たな砥粒が加工作用部6bの表面に露出し、研磨能力が経時的に変化しにくいので、安定した研磨量で加工することができる。
[Action]
According to the second embodiment, the same action as that of the first embodiment described above is achieved, and even if the machining action portion 6b of the polishing tool 6 is worn by polishing, it is buried in the machining action portion 6b. Since new abrasive grains are exposed on the surface of the processing portion 6b and the polishing ability hardly changes with time, processing can be performed with a stable polishing amount.

[効果]
本実施の形態2によれば、上述の実施の形態1の場合と同様の効果がえられるとともに、さらに、研磨工具6の加工作用部6bが磨耗しても安定した研磨量で加工を行うため、一つの研磨工具6で多数の被加工物1を安定して研磨加工することができる。
[effect]
According to the second embodiment, the same effect as in the first embodiment described above can be obtained, and further, even if the processing action portion 6b of the polishing tool 6 is worn, the processing is performed with a stable polishing amount. A large number of workpieces 1 can be stably polished with one polishing tool 6.

以上説明したように、本発明の各実施の形態によれば、研磨加工中に、被加工物1の研磨加工面1aの曲率半径が部分的に変化する場合でも、研磨加工面1aの全面を均一に安定して研磨でき、更に単位時間当たりの研磨量の向上を実現できる。   As described above, according to each embodiment of the present invention, even when the radius of curvature of the polishing surface 1a of the workpiece 1 partially changes during polishing, the entire surface of the polishing surface 1a is covered. Polishing can be performed uniformly and stably, and an improvement in the polishing amount per unit time can be realized.

すなわち、研磨加工面の一部に曲率半径が小さな凹部を有する被加工物でも、研磨加工面の全体を安定して均一に研磨加工することが可能な研磨加工技術を提供することができる。   That is, it is possible to provide a polishing technique capable of stably and uniformly polishing the entire polishing surface even with a workpiece having a concave portion with a small curvature radius on a part of the polishing surface.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
[付記1]
回転軸対称形状の被加工物の子午線上を円環形状の研磨工具を走査移動させて行う回転軸対称物の研磨加工方法において、
研磨工具の加工作用点は円環の一部とし、加工作用点における被加工物の回転軸と研磨工具の回転軸とのなす角を被加工物の加工点における傾斜角度からある特定の角度を減算した角度に保ちながら加工することを特徴とする、回転軸対称物の研磨方法。
Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[Appendix 1]
In a polishing method for a rotationally symmetric object performed by scanning and moving an annular polishing tool on the meridian of a rotationally symmetrical object,
The processing action point of the polishing tool is a part of an annulus, and the angle formed by the rotation axis of the workpiece and the rotation axis of the polishing tool at the processing action point is a specific angle from the inclination angle at the processing point of the workpiece. A method for polishing a rotationally symmetrical object, characterized by processing while maintaining a subtracted angle.

[付記2]
付記1に記載する回転軸対称物の研磨方法において、
前記特定の角度とは、研磨工具の円環部の半径を、前記特定の角度の三角関数で除算した値と、研磨加工点における被加工物の曲率半径と、が一致するように求められることを特徴とする、回転軸対称物の研磨方法。
[Appendix 2]
In the method for polishing a rotationally symmetrical object described in appendix 1,
The specific angle is determined so that a value obtained by dividing the radius of the annular portion of the polishing tool by the trigonometric function of the specific angle matches the curvature radius of the workpiece at the polishing processing point. A method of polishing a rotationally symmetrical object characterized by the above.

[付記3]
付記1に記載する回転軸対称物の研磨方法において、
前記研磨工具の研磨作用点部は弾性体からなることを特徴とする、回転軸対称物の研磨方法。
[Appendix 3]
In the method for polishing a rotationally symmetrical object described in appendix 1,
A polishing method for a rotationally symmetrical object, wherein the polishing action point of the polishing tool is made of an elastic body.

[付記4]
付記1に記載する回転軸対称物の研磨方法において、
前記研磨工具の研磨作用点部は弾性体に砥粒を埋め込みした砥石からなることを特徴とする、回転軸対称物の研磨方法。
[Appendix 4]
In the method for polishing a rotationally symmetrical object described in appendix 1,
The method of polishing a rotationally symmetric object, wherein the polishing action point portion of the polishing tool comprises a grindstone in which abrasive grains are embedded in an elastic body.

1 被加工物
1a 研磨加工面
1b 面頂
2 主軸スピンドル
3 被加工物保持機構
4 工具スピンドル
5 工具保持機構
6 研磨工具
6a 弾性体
6b 加工作用部
6c 切込み
7 回転位置制御装置
7a コラム
8 荷重装置
9 位置調整機構
9a コラム
9b ベーステーブル
9c 回転テーブル
9d スライドテーブル
9e 支持アーム
10 スライド移動機構
10a Z方向移動テーブル
10b X方向移動テーブル
10c ベーステーブル
11 制御装置
12 制御プログラム
20 底板
A 主軸回転軸
B 工具回転軸
C 旋回軸
M 研磨加工装置
DESCRIPTION OF SYMBOLS 1 Workpiece 1a Polishing surface 1b Top 2 Spindle spindle 3 Workpiece holding mechanism 4 Tool spindle 5 Tool holding mechanism 6 Polishing tool 6a Elastic body 6b Cutting action part 6c Cutting 7 Rotation position control device 7a Column 8 Load device 9 Position adjustment mechanism 9a Column 9b Base table 9c Rotary table 9d Slide table 9e Support arm 10 Slide movement mechanism 10a Z direction movement table 10b X direction movement table 10c Base table 11 Controller 12 Control program 20 Bottom plate A Main axis rotation axis B Tool rotation axis C Rotating axis M Polishing device

Claims (10)

回転する回転軸対称形状の被加工物の子午線上を、研磨工具の円環形状を有する加工作用部の一部を当該被加工物に接触させつつ走査移動させることを特徴とする研磨加工方法。   A polishing method characterized by scanning and moving on a meridian of a rotating workpiece having a rotationally symmetric shape while bringing a part of a processing portion having an annular shape of a polishing tool into contact with the workpiece. 請求項1記載の研磨加工方法において、
前記被加工物の回転軸と前記研磨工具の回転軸とのなす研磨角度を、前記被加工物の前記加工作用部の一部が接する加工作用点における傾斜角度(接線の傾き)から特定角度を減算した角度に保ちながら加工することを特徴とする研磨加工方法。
The polishing method according to claim 1, wherein
The polishing angle formed by the rotation axis of the workpiece and the rotation axis of the polishing tool is set to a specific angle from an inclination angle (tangential inclination) at a machining action point where a part of the machining action portion of the workpiece contacts. A polishing method characterized by processing while maintaining a subtracted angle.
請求項2記載の研磨加工方法において、
前記特定角度は、前記研磨工具の前記加工作用部の半径で、前記加工作用点における前記被加工物の曲率半径を除した値の逆正弦関数値として求められることを特徴とする研磨加工方法。
The polishing method according to claim 2, wherein
The said specific angle is calculated | required as an inverse sine function value of the value which remove | divided the radius of curvature of the said workpiece in the said process action point by the radius of the said process action part of the said polishing tool.
請求項1から請求項3のいずれか1項に記載の研磨加工方法において、
前記研磨工具の前記加工作用部は弾性体からなることを特徴とする研磨加工方法。
In the polishing method according to any one of claims 1 to 3,
The polishing method, wherein the processing action part of the polishing tool is made of an elastic body.
請求項4記載の研磨加工方法において、
前記研磨工具の前記加工作用部には、放射状に複数の切込みが形成されていることを特徴とする研磨加工方法。
The polishing method according to claim 4, wherein
A polishing method, wherein a plurality of incisions are radially formed in the processing portion of the polishing tool.
円環形状を有する加工作用部を備えた研磨工具と、
前記研磨工具を保持して回転させる工具保持手段と、
回転軸対称形状の被加工物を保持して回転させる被加工物保持手段と、
前記工具保持手段および前記被加工物保持手段を制御して、回転する前記被加工物の子午線上を、前記研磨工具の円環形状を有する前記加工作用部の一部を当該被加工物に接触させつつ走査移動させる加工制御手段と、
を含むことを特徴とする研磨加工装置。
A polishing tool provided with a working portion having an annular shape;
Tool holding means for holding and rotating the polishing tool;
A workpiece holding means for holding and rotating a workpiece having a rotationally symmetric shape;
By controlling the tool holding means and the workpiece holding means, a part of the processing action part having an annular shape of the polishing tool is brought into contact with the workpiece on the meridian of the rotating workpiece. Processing control means for scanning and moving,
A polishing apparatus comprising:
請求項6記載の研磨加工装置において、
前記加工制御手段は、前記被加工物の回転軸と前記研磨工具の回転軸とのなす研磨角度を、前記被加工物の前記加工作用部の一部が接する加工作用点における傾斜角度(接線の傾き)から特定角度を減算した角度に保ちながら加工することを特徴とする研磨加工装置。
The polishing apparatus according to claim 6, wherein
The machining control means is configured to determine a polishing angle formed by a rotation axis of the workpiece and a rotation axis of the polishing tool at an inclination angle (tangential line) at a machining action point at which a part of the machining action portion of the workpiece contacts. A polishing apparatus that performs processing while maintaining an angle obtained by subtracting a specific angle from (tilt).
請求項7記載の研磨加工装置において、
前記加工制御手段は、前記特定角度を、前記研磨工具の前記加工作用部の半径で、前記加工作用点における前記被加工物の曲率半径を除した値の逆正弦関数値として決定することを特徴とする研磨加工装置。
The polishing apparatus according to claim 7, wherein
The machining control means determines the specific angle as an inverse sine function value of a value obtained by dividing a radius of curvature of the workpiece at the machining action point by a radius of the machining action portion of the polishing tool. Polishing processing equipment.
請求項6から請求項8のいずれか1項に記載の研磨加工装置において、
前記研磨工具の前記加工作用部は弾性体からなることを特徴とする研磨加工装置。
In the polishing apparatus according to any one of claims 6 to 8,
The polishing apparatus according to claim 1, wherein the processing portion of the polishing tool is made of an elastic body.
請求項9記載の研磨加工装置において、
前記研磨工具の前記加工作用部には、放射状に複数の切込みが形成されていることを特徴とする研磨加工装置。
The polishing apparatus according to claim 9, wherein
A polishing apparatus, wherein a plurality of cuts are formed radially in the processing portion of the polishing tool.
JP2009188753A 2009-08-17 2009-08-17 Polishing method and polishing device Withdrawn JP2011036974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188753A JP2011036974A (en) 2009-08-17 2009-08-17 Polishing method and polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188753A JP2011036974A (en) 2009-08-17 2009-08-17 Polishing method and polishing device

Publications (1)

Publication Number Publication Date
JP2011036974A true JP2011036974A (en) 2011-02-24

Family

ID=43765293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188753A Withdrawn JP2011036974A (en) 2009-08-17 2009-08-17 Polishing method and polishing device

Country Status (1)

Country Link
JP (1) JP2011036974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138962A (en) * 2013-01-21 2014-07-31 Nexsys Corp Grinding device and method
JP6421267B1 (en) * 2018-05-08 2018-11-07 株式会社ジーベックテクノロジー Polishing brush polishing method
JP2020183010A (en) * 2019-05-08 2020-11-12 オリンパス株式会社 Polishing method and manufacturing method for optical element
CN114473719A (en) * 2022-02-21 2022-05-13 南京理工大学 Microstructure polishing method based on local shear thickening

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138962A (en) * 2013-01-21 2014-07-31 Nexsys Corp Grinding device and method
JP6421267B1 (en) * 2018-05-08 2018-11-07 株式会社ジーベックテクノロジー Polishing brush polishing method
JP2019195860A (en) * 2018-05-08 2019-11-14 株式会社ジーベックテクノロジー Polishing method of polishing brush
WO2019215962A1 (en) * 2018-05-08 2019-11-14 株式会社ジーベックテクノロジー Polishing method using polishing brush
JP2020183010A (en) * 2019-05-08 2020-11-12 オリンパス株式会社 Polishing method and manufacturing method for optical element
CN114473719A (en) * 2022-02-21 2022-05-13 南京理工大学 Microstructure polishing method based on local shear thickening
CN114473719B (en) * 2022-02-21 2022-11-22 南京理工大学 Microstructure polishing method based on local shear thickening

Similar Documents

Publication Publication Date Title
TWI605908B (en) Method of obtaining a sliding distance distribution of a dresser on a polishing member, method of obtaining a sliding vector distribution of a dresser on a polishing member, and polishing apparatus
TWI359711B (en) Raster cutting technology for ophthalmic lenses
US11958165B2 (en) Methods and apparatus for shaping workpieces
JP2011036974A (en) Polishing method and polishing device
JP4668872B2 (en) Grinding method and grinding apparatus
JP4702765B2 (en) Vibration polishing method and apparatus
JP2013166202A (en) Automatic polishing device
JP2017124460A (en) Method and apparatus for continuously processing non-spherical shape of workpiece by cup shaped grind stone
JP4320644B2 (en) Grinding method
JPH10328995A (en) Curved surface grinding method
JP4519618B2 (en) Grinding wheel molding method and molding apparatus
Suzuki et al. Precision machining and measurement of micro aspheric molds
JP2009095973A (en) Grinding wheel molding device and method
JP2006192511A (en) Wave removal polishing method
JP2009018366A (en) Method of grinding convex surface
JP2006055961A (en) Method and apparatus for machining axially symmetric aspheric surface by surface grinding machine
JP2004255549A (en) Grinding/polishing tool of spherical surface, and grinding/polishing method of spherical surface
JPH07266211A (en) Grinding and polishing wheel
JP2005103668A (en) Free-form surface machining method and device
JP4027171B2 (en) Polishing method
JP5381123B2 (en) Hemispherical forming apparatus and forming tool
JP2010105127A (en) Machining device of lens mold, machining tool used for the machining device of the lens mold, machining method using the machining device of the lens mold, lens mold, and lens
JP2002254280A (en) Grinding method and its device for optical member
JP2002337052A (en) Polisher and polishing method using polisher
JP2002200548A (en) Polishing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106