JP4668636B2 - Gas turbine combustor - Google Patents

Gas turbine combustor Download PDF

Info

Publication number
JP4668636B2
JP4668636B2 JP2005029145A JP2005029145A JP4668636B2 JP 4668636 B2 JP4668636 B2 JP 4668636B2 JP 2005029145 A JP2005029145 A JP 2005029145A JP 2005029145 A JP2005029145 A JP 2005029145A JP 4668636 B2 JP4668636 B2 JP 4668636B2
Authority
JP
Japan
Prior art keywords
gas turbine
alloy
layer
wear
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005029145A
Other languages
Japanese (ja)
Other versions
JP2006214671A (en
Inventor
慶享 児島
国弘 市川
恭太 千代延
静馬 新谷
秀高 西田
泰孝 和田
勉 新田
堅也 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hitachi Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2005029145A priority Critical patent/JP4668636B2/en
Publication of JP2006214671A publication Critical patent/JP2006214671A/en
Application granted granted Critical
Publication of JP4668636B2 publication Critical patent/JP4668636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/003Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/57Leaf seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides

Description

本発明は、ガスタービン燃焼器に係り、特に、トランジションピースの燃焼器ライナやガスタービン静翼との連結部におけるシール効果を長期に亘って維持できるガスタービン燃焼器に関する。   The present invention relates to a gas turbine combustor, and more particularly to a gas turbine combustor capable of maintaining a sealing effect at a connection portion between a transition piece combustor liner and a gas turbine stationary blade for a long period of time.

一般に、ガスタービン燃焼器は、燃焼器ライナとトランジションピースとの連結部、及びトランジションピースとガスタービンの静翼との連結部に、夫々スプリングシール材及びフローティングシール材を設けている。そして、トランジションピースは500℃を超える高温と100Hz以上となる高周波数での振動とに同時に曝されるので、前記シール材に大きな摩耗損傷が発生する。   In general, in a gas turbine combustor, a spring seal material and a floating seal material are provided at a connection portion between a combustor liner and a transition piece, and a connection portion between a transition piece and a stationary blade of a gas turbine, respectively. Since the transition piece is simultaneously exposed to a high temperature exceeding 500 ° C. and a vibration at a high frequency of 100 Hz or more, a large wear damage occurs in the sealing material.

このようなシール材の摩耗損傷を抑え、シール効果を長期に亘って維持するために、シール材を、炭化物又は窒化物の皮膜を下地材とし、その最表面にAl酸化物の皮膜を設けた耐摩耗性を有するコバルト基合金で形成することが、例えば、特許文献1に示すように、既に提案されている。   In order to suppress such wear damage of the sealing material and maintain the sealing effect over a long period of time, the sealing material is a carbide or nitride film as a base material, and an Al oxide film is provided on the outermost surface thereof. For example, as shown in Patent Document 1, it has already been proposed to form a cobalt-based alloy having wear resistance.

特開2003−193866号公報JP 2003-193866 A

特許文献1に記載の技術によれば、耐摩耗性の優れたシール材を得ることができるが、さらにシール効果を長期に亘って維持できるように、Al酸化物の皮膜を厚くした場合、厚くした分だけAl酸化物の皮膜とコバルト基合金製のシール材との熱膨張差に起因する熱応力によって、Al酸化物の皮膜がシール材から剥離する問題がある。   According to the technique described in Patent Document 1, a seal material with excellent wear resistance can be obtained. However, when the Al oxide film is thickened so that the sealing effect can be maintained over a long period of time, the seal material is thick. Accordingly, there is a problem that the Al oxide film is peeled off from the sealing material due to the thermal stress caused by the difference in thermal expansion between the Al oxide film and the cobalt base alloy sealing material.

したがって、熱膨張差を考慮すると、Al酸化物の皮膜の厚さは、最大で6μm程度であり、この程度皮膜厚さでは、長期に亘ってシール効果を維持することは困難である。   Therefore, in consideration of the difference in thermal expansion, the thickness of the Al oxide film is about 6 μm at the maximum, and it is difficult to maintain the sealing effect for a long time with this film thickness.

本発明の目的は、耐摩耗性材の剥離や脱落がなく、長期に亘ってシール効果を維持することができるガスタービン燃焼器を提供することにある。   An object of the present invention is to provide a gas turbine combustor capable of maintaining a sealing effect over a long period of time without peeling or dropping off of the wear-resistant material.

本発明は上記目的を達成するために、本発明者等は、耐熱性を有する種々の化合物皮膜の高温での耐摩耗性について検討し、比較的短時間で厚膜が形成できる溶射膜において、耐摩耗性と高温での使用を考慮し、熱応力緩和機能を有する多層型セラミック溶射皮膜に着目した。   In order to achieve the above object, the present inventors examined the wear resistance of various compound films having heat resistance at high temperatures, and in a sprayed film that can form a thick film in a relatively short time, In consideration of wear resistance and high temperature use, we focused on multilayer ceramic sprayed coating with thermal stress relaxation function.

化合物皮膜成形法としては、溶射のほかに、PVD(Physical Vapor Deposition)法やCVD(Chemical Vapor Deposition)法等の種々な方法がある。   Compound film forming methods include various methods such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) in addition to thermal spraying.

耐摩耗性の観点から云えば、耐摩耗性に優れた材料からなる皮膜を厚く形成したほうが長期に亘って耐摩耗性を維持できる上で望ましい。この観点から、PVD法やCVD法では、皮膜の厚さが最大で10μm程度が限界であるが、溶射法では、数百μmmから数mmまでの厚膜の形成が比較的短時間に行えるので有利である。   From the viewpoint of wear resistance, it is desirable to form a thick film made of a material excellent in wear resistance in order to maintain the wear resistance over a long period of time. From this point of view, the maximum thickness of the coating is about 10 μm in the PVD method and the CVD method, but in the thermal spraying method, a thick film from several hundred μmm to several mm can be formed in a relatively short time. It is advantageous.

高温での耐摩耗性について種々の化合物皮膜成形法について検討した結果、高温での耐摩耗性の点で、Al酸化物が優れていることが判明した。しかし、Al酸化物は、線熱膨張係数が約5×10−6であり、コバルト基合金製材の線熱膨張係数の約18×10−6に比べて大きく異なり、高温での摩耗試験において熱応力差によりAl酸化物がコバルト基合金製材から剥離することが確認された。 As a result of examining various compound film forming methods for high temperature wear resistance, it was found that Al oxide is superior in terms of high temperature wear resistance. However, Al oxide has a linear thermal expansion coefficient of about 5 × 10 −6, which is significantly different from the linear thermal expansion coefficient of cobalt-based alloy lumber, which is about 18 × 10 −6. It was confirmed that the Al oxide peels from the cobalt-based alloy material due to the stress difference.

そこで、熱応力を緩和し、適度な耐摩耗性を有する化合物を検討したところ、ZrO2系材料が適していることが判明した。即ち、ZrO2系材料は、線熱膨張係数が約10×10−6であり、コバルト基合金製材とAl酸化物の中間に近い値である。 Therefore, investigations were made on compounds having moderate thermal resistance and moderate wear resistance, and it was found that ZrO 2 -based materials are suitable. That is, the ZrO 2 -based material has a linear thermal expansion coefficient of about 10 × 10 −6, which is a value close to the middle between the cobalt-based alloy material and the Al oxide.

さらに、ZrO2系材料とコバルト基合金製材との密着性を確保するために、高温耐酸化性に優れたNiCr合金あるいはMCrAlY(MはCo,Ni)合金の溶射皮膜を、ZrO2系材料とコバルト基合金製材との間に介在させることが有効であることが確認された。   Furthermore, in order to ensure the adhesion between the ZrO 2 -based material and the cobalt-based alloy material, a thermal sprayed coating of NiCr alloy or MCrAlY (M is Co, Ni) alloy having excellent high-temperature oxidation resistance is applied to the ZrO 2 -based material and the cobalt-based material. It was confirmed that it was effective to intervene with the alloy lumber.

上述した検討を考慮し、本発明は、燃焼器ライナと、この燃焼器ライナの下流側外周にスプリングシール材を介して嵌合されるトランジションピースと、このトランジションピースの下流側とガスタービンの静翼に跨って係合するフローティングシール材とを備えたガスタービン燃焼器において、前記各シール材とこれらシール材に対して摺動する相手側部材とをコバルト基合金材で形成すると共に、これらコバルト基合金材で形成された前記各シール材及び相手側部材との摺動面に、下地層としてZrO2系溶射皮膜を形成し、かつこの下地層の上の表面層としてAl酸化物の溶射皮膜を形成したのである。   In view of the above-described considerations, the present invention is directed to a combustor liner, a transition piece fitted to the outer periphery of the combustor liner via a spring seal material, a downstream side of the transition piece, and a static gas turbine. In a gas turbine combustor including a floating seal material engaged across a blade, each of the seal materials and a counterpart member that slides with respect to the seal material are formed of a cobalt base alloy material, and the cobalt A ZrO2-based thermal spray coating is formed as a base layer on the sliding surface of each sealing material and the counterpart member formed of a base alloy material, and an Al oxide thermal spray coating is formed as a surface layer on the base layer. It was formed.

さらに、前記各シール材及び相手側部材と前記下地層との間に、NiCr合金又はMCrAlY(MはCo,Ni)合金よりなる溶射皮膜を形成したのである。   Further, a sprayed coating made of NiCr alloy or MCrAlY (M is Co, Ni) alloy is formed between each of the sealing materials and the counterpart member and the base layer.

上記構成とすることで、コバルト基合金材で形成された各シール材や相手側部材に対して、Al酸化物の溶射皮膜を形成するに際し、ZrO2系溶射皮膜が熱応力緩和機能を発揮するので、Al酸化物の溶射皮膜の剥離や脱落がなく、したがって、Al酸化物の溶射皮膜の厚さを厚くして長期に亘って耐摩耗性を保つことができるので、シール効果を維持することができる。また、各シール材及び相手側部材とAl酸化物の溶射皮膜の間に、NiCr合金又はMCrAlY(MはCo,Ni)合金よりなる溶射皮膜を形成することで、ZrO2系材料とコバルト基合金製シール材及び相手側部材との密着性を確保でき、厚く形成したAl酸化物の溶射皮膜をより安定して被覆できるので、長期に亘って耐摩耗性を安定して維持することができる。   By adopting the above configuration, the ZrO2-based sprayed coating exhibits a thermal stress relaxation function when forming a sprayed coating of Al oxide on each sealing material or counterpart member formed of a cobalt-based alloy material. In addition, there is no peeling or falling off of the Al oxide sprayed coating. Therefore, the thickness of the Al oxide sprayed coating can be increased to maintain wear resistance over a long period of time, so that the sealing effect can be maintained. it can. Further, a ZrO2 material and a cobalt-based alloy are formed by forming a thermal spray coating made of NiCr alloy or MCrAlY (M is Co, Ni) alloy between each seal material and the counterpart member and the thermal spray coating of Al oxide. Adhesion between the sealing material and the counterpart member can be ensured, and the thickly formed Al oxide sprayed coating can be more stably coated, so that the wear resistance can be stably maintained over a long period of time.

以上説明したように本発明によれば、耐摩耗性材の剥離や脱落がなく、長期に亘り安定したシール効果を維持できるガスタービン燃焼器を得ることができる。   As described above, according to the present invention, it is possible to obtain a gas turbine combustor that can maintain a stable sealing effect over a long period of time without peeling or dropping off of the wear-resistant material.

以下本発明の一実施の形態を図1〜図7に示すガスタービン燃焼器に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described based on a gas turbine combustor shown in FIGS.

ガスタービン燃焼器は、燃焼器ライナ1とトランジションピース2とで構成されており、燃焼器ライナ1は円筒状をなし、その下流側3の外周に弾性機能を有するスプリングシール材4を設けており、このスプリングシール材4を設けた下流側3を前記トランジションピース2の上流側5に円形状に形成した開口に嵌合し前記スプリングシール材4を上流側5の内周面に押圧させている。   The gas turbine combustor includes a combustor liner 1 and a transition piece 2. The combustor liner 1 has a cylindrical shape, and a spring seal material 4 having an elastic function is provided on the outer periphery of the downstream side 3 thereof. The downstream side 3 provided with the spring seal material 4 is fitted into a circular opening formed on the upstream side 5 of the transition piece 2 to press the spring seal material 4 against the inner peripheral surface of the upstream side 5. .

前記トランジションピース2の下流側6は、ほぼ角形の額縁7が形成されており、この額縁7が後述するガスタービンの静翼11側に接続される。前記額縁7の外周には、シール溝8が形成され、シール溝8の上下には浮動するフローティングシール材9A,9Bが係合され、シール溝8の両側には側シール材10A,10Bが装着される。   A substantially square frame 7 is formed on the downstream side 6 of the transition piece 2, and this frame 7 is connected to a stationary blade 11 side of a gas turbine described later. Seal grooves 8 are formed on the outer periphery of the frame 7. Floating seal materials 9 A and 9 B are engaged with the upper and lower sides of the seal grooves 8, and side seal materials 10 A and 10 B are mounted on both sides of the seal grooves 8. Is done.

前記フローティングシール材9A,9Bは、U字状に形成された一方の脚13Aを前記シール溝8内に挿入して係合し、他方の脚13Bには外方に直角に延在する係合辺14を形成している。そして、この係合辺14は、トランジションピース2の下流側6の額縁7に対向して位置する静翼11に形成したシール溝12に挿入されて係合している。   The floating seal members 9A and 9B are engaged by inserting one leg 13A formed in a U-shape into the seal groove 8 and extending outwardly at a right angle to the other leg 13B. Side 14 is formed. The engagement side 14 is inserted into and engaged with a seal groove 12 formed in the stationary blade 11 that faces the frame 7 on the downstream side 6 of the transition piece 2.

ところで、上記構成のガスタービン燃焼器においては、燃焼ガスの燃焼や流動による振動によって、図3に示すスプリングシール材4と相手側部材であるトランジションピース2の上流側5の内周面との間、及び図7に示すフローティングシール材9A(9B)の脚13Bと相手側部材である額縁7の端面との間が摺動する。そのために、この間に耐摩耗性の優れた耐摩耗被覆層15を形成している。   By the way, in the gas turbine combustor having the above-described configuration, the spring seal material 4 shown in FIG. 3 and the inner peripheral surface on the upstream side 5 of the transition piece 2 that is the counterpart member are caused by vibration due to combustion or flow of the combustion gas. 7 and the leg 13B of the floating sealing material 9A (9B) shown in FIG. 7 and the end surface of the frame 7 which is the counterpart member slide. Therefore, the wear-resistant coating layer 15 having excellent wear resistance is formed during this period.

この耐摩耗被覆層15を形成するに際し、まずスプリングシール材4と相手側部材であるトランジションピース2の上流側5の内周面との摺動対向面においては、基材となるスプリングシール材4及びトランジションピース2の上流側5の内周面を、例えば、Cr:20重量%,Ni:10重量%,W:15重量%,Fe:1.5重量%,C:0.1重量%,Mn:1.5重量%,Si:1重量%以下からなるコバルト基合金材で形成し、その上に、耐摩耗被覆層15を形成した。   When forming the wear-resistant coating layer 15, first, the spring seal material 4 serving as a base material is formed on the sliding facing surface between the spring seal material 4 and the inner peripheral surface on the upstream side 5 of the transition piece 2 that is the counterpart member. And the inner peripheral surface of the upstream side 5 of the transition piece 2 is, for example, Cr: 20 wt%, Ni: 10 wt%, W: 15 wt%, Fe: 1.5 wt%, C: 0.1 wt%, A wear-resistant coating layer 15 was formed on the cobalt-based alloy material composed of Mn: 1.5 wt% and Si: 1 wt% or less.

耐摩耗被覆層15は、図1に示すように、コバルト基合金材で形成したスプリングシール材4及びトランジションピース2の上流側5との対向面に、プラズマ溶射によってNi−50%Crの被覆層17を50μm、その上にZrO2−8%Y2O3の下地層18を200μm、その上に表面層19として200μmのAl2O3を形成した。   As shown in FIG. 1, the wear-resistant coating layer 15 is formed by coating a Ni-50% Cr coating layer by plasma spraying on the spring seal material 4 formed of a cobalt-based alloy material and the upstream surface 5 of the transition piece 2. 17 was 50 μm, ZrO 2-8% Y 2 O 3 underlayer 18 was formed thereon 200 μm, and 200 μm Al 2 O 3 was formed thereon as surface layer 19.

一方、トランジションピース2の額縁7側は、フローティングシール材9A(9B)が静翼11側から額縁7側に押し付けられるような力が作用し、額縁7の端面とフローティングシール材9A(9B)の脚13Bで顕著な摩耗が発生する。そこで、フローティングシール材9A(9B)もコバルト基合金材で形成すると共に、その脚13Bと対向する額縁7の端面には、コバルト基合金材で形成した当て板16を溶接により固定し、これらフローティングシール材9A(9B)と当て板16との摺動面に、夫々プラズマ溶射によってNi−50%Crの被覆層17を50μm、その上にZrO2−8%Y2O3の下地層18を200μm、その上に表面層19として200μmのAl2O3を形成した。   On the other hand, the frame 7 side of the transition piece 2 is subjected to a force that the floating sealing material 9A (9B) is pressed against the frame 7 side from the stationary blade 11 side, and the end surface of the frame 7 and the floating sealing material 9A (9B) Significant wear occurs on the legs 13B. Therefore, the floating sealing material 9A (9B) is also formed of a cobalt base alloy material, and a contact plate 16 formed of a cobalt base alloy material is fixed to the end surface of the frame 7 facing the leg 13B by welding, and these floating seal materials 9A (9B) On the sliding surface between the sealing material 9A (9B) and the contact plate 16, a Ni-50% Cr coating layer 17 is formed by plasma spraying to 50 μm, and a ZrO 2-8% Y 2 O 3 base layer 18 is formed thereon by 200 μm. 200 μm of Al 2 O 3 was formed as the surface layer 19.

他方、額縁7のシール溝8や静翼11のシール溝12とフローティングシール材9A(9B)との接触部においては、摩耗損傷が比較的少ないことから、耐摩耗被覆層15は不要とした。   On the other hand, since the wear damage is relatively small at the contact portion between the seal groove 8 of the frame 7 and the seal groove 12 of the stationary blade 11 and the floating seal material 9A (9B), the wear-resistant coating layer 15 is unnecessary.

このように、耐摩耗被覆層15を形成したスプリングシール材4とフローティングシール材9A,9B及び相手側部材であるトランジションピース2の上流側5の内周面と当て板16とをガスタービン燃焼器に組み込み、これをガスタービンに適用して実機運転試験を行ったところ、本実施の形態による耐摩耗被覆層15を形成しないガスタービン燃焼器に比べて、各シール材や相手側部材共に摩耗損傷が大きく改善されたことを確認できた。
〔確認試験〕
各種耐熱合金を組合わせた場合の高温滑り摩耗試験を行い、その試験に摩耗損傷量の結果を表1に纏めた。
In this way, the spring seal material 4 formed with the wear-resistant coating layer 15, the floating seal materials 9 </ b> A and 9 </ b> B, the inner peripheral surface of the upstream side 5 of the transition piece 2 that is the counterpart member, and the contact plate 16 are connected to the gas turbine combustor. When this was applied to a gas turbine and an actual machine operation test was performed, both the sealing material and the counterpart member were worn and damaged compared to the gas turbine combustor in which the wear-resistant coating layer 15 was not formed according to the present embodiment. Was confirmed to be greatly improved.
[Confirmation test]
A high-temperature sliding wear test was conducted when various heat-resistant alloys were combined, and the results of wear damage amount are summarized in Table 1 for the test.

試験条件として、試験温度は700℃、振動条件は振幅1.0mmで周波数は100Hzとした。摩耗試験片は、全長40mmの蒲鉾型とし、これを2つ1組として蒲鉾型の凸曲面部を交差させて5kg及び10kgの荷重を加えて5時間及び30時間摺動させた。即ち、表1中の試験条件aが荷重10kgで5時間摺動させたもの、試験条件bが荷重10kgで30時間摺動させたもの、試験条件cが荷重5kgで30時間摺動させたものである。   As test conditions, the test temperature was 700 ° C., the vibration conditions were an amplitude of 1.0 mm, and the frequency was 100 Hz. The abrasion test piece was made into a saddle shape having a total length of 40 mm, and this was made into a pair, intersecting the raised curved surface portions of the saddle shape, applied with a load of 5 kg and 10 kg, and slid for 5 hours and 30 hours. That is, test condition a in Table 1 was slid for 5 hours at a load of 10 kg, test condition b was slid for 30 hours at a load of 10 kg, and test condition c was slid for 30 hours at a load of 5 kg It is.

Figure 0004668636
Figure 0004668636

摩耗量の数値は、試験片表面の摩耗部において、表面粗さ計を用いて凹凸のプロファイルを測定し、プロファイル中の最大摩耗深さを記録した場合の値を摩耗量とした。また、試験後の摩耗面の表面観察や磨耗部の断面観察も一部行った。   The numerical value of the amount of wear was a value obtained by measuring the profile of the unevenness using a surface roughness meter at the wear portion on the surface of the test piece and recording the maximum wear depth in the profile. In addition, the surface of the worn surface after the test and the cross-section of the worn portion were also partially observed.

試験基材として、固溶体型コバルト基合金HS25(10%Ni,20%Cr,15%W,1,5%Fe,1.5%Mn,1.0%Si,0.15%C,残量Co)及びCの含有量が0.02〜1.5%,Crが15〜35%,Niが5%以下の範囲である低Ni固溶体型コバルト基合金を用いた。   As a test substrate, solid solution type cobalt base alloy HS25 (10% Ni, 20% Cr, 15% W, 1,5% Fe, 1.5% Mn, 1.0% Si, 0.15% C, remaining amount A low Ni solid solution type cobalt base alloy having a content of Co) and C of 0.02 to 1.5%, Cr of 15 to 35%, and Ni of 5% or less was used.

そして、本実施形態による耐摩耗被覆層15として、低Ni固溶体型コバルト基合金を基材とし、夫々プラズマ溶射により厚さ0.05mmのNiCr合金層を形成し、その上に厚さ0.2mmのZrO2−Y2O3セラミック層(以下、YSZと略称する)を形成し、最表面に厚さ0.2mmのAl2O3層を形成した。尚、NiCr合金層の組成は50%Ni−50%Cr、ZrO2−Y2O3は8%Y2O3で残りはZrO2である。   Then, as the wear-resistant coating layer 15 according to the present embodiment, a NiCr alloy layer having a thickness of 0.05 mm is formed by plasma spraying using a low Ni solid solution type cobalt base alloy as a base material, and a thickness of 0.2 mm is formed thereon. A ZrO2-Y2O3 ceramic layer (hereinafter abbreviated as YSZ) was formed, and an Al2O3 layer having a thickness of 0.2 mm was formed on the outermost surface. The composition of the NiCr alloy layer is 50% Ni-50% Cr, ZrO2-Y2O3 is 8% Y2O3, and the rest is ZrO2.

本実施の形態によるプラズマ溶射は、何れの皮膜とも大気中溶射で、溶射条件はプラズマガスがAr−H2、プラズマ出力が35〜50Kw、溶射距離が75〜120mm、溶射時の基材温度が200℃以下で行った。   The plasma spraying according to the present embodiment is atmospheric spraying of any coating, and the spraying conditions are: plasma gas Ar-H2, plasma output 35-50 Kw, spraying distance 75-120 mm, substrate temperature during spraying 200 It was carried out at a temperature below ℃.

さらに、比較材として、固溶体型コバルト基合金HS25の基材に高速ガス溶射で厚さ0.2mmのクロム炭化物皮膜を形成した材料(CrC)と、固溶体型コバルト基合金HS25の基材にプラズマCVD法で厚さ4μmのTiC皮膜を下地層とし最表面層として厚さ5μmのAl2O3の皮膜を形成した材料(アルミナコート)を作成した。クロム炭化物皮膜形成においては、Cr粒子とバインダーとしてのNi―Cr合金を混合した粉末を原料とした。その際、Cr粒子の含有量は体積比で80%とした。比較材として、固溶体型コバルト基合金HS25,低Ni固溶体型コバルト基合金,ステライトNo.6を用いた。固溶体型コバルト基合金HS25は、炭素の添加量が0.1%と少ないために組織中の炭化物量が少なく、加工性に優れている。一方、低Ni固溶体型コバルト基合金は、Ni含有量を5%以下にすることで、高温での加工硬化を強化した材料である。また、ステライトNo.6は、耐摩耗性を高めるために炭素の添加量を1%以上に増加している。 Further, as a comparative material, a material (CrC) in which a chromium carbide film having a thickness of 0.2 mm is formed on a base material of a solid solution type cobalt base alloy HS25 by high-speed gas spraying, and a plasma CVD method on a base material of the solid solution type cobalt base alloy HS25. By using this method, a material (alumina coat) in which a 4 μm thick TiC film was used as an underlayer and a 5 μm thick Al 2 O 3 film was formed as the outermost surface layer was prepared. In forming the chromium carbide film, a raw material was a powder in which Cr 3 C 2 particles and a Ni—Cr alloy as a binder were mixed. At that time, the content of Cr 3 C 2 particles was 80% by volume. As comparative materials, solid solution type cobalt base alloy HS25, low Ni solid solution type cobalt base alloy, Stellite No. 6 was used. Since the solid solution type cobalt base alloy HS25 has a small amount of carbon added of 0.1%, the amount of carbide in the structure is small and the workability is excellent. On the other hand, the low Ni solid solution type cobalt-based alloy is a material whose work hardening at high temperature is enhanced by setting the Ni content to 5% or less. In addition, Stellite No. No. 6 increases the amount of carbon added to 1% or more in order to improve wear resistance.

摩耗試験は、試験片Aと試験片Bとを高さ摺動させた。試験No.1〜6の本発明材料では、試験時間が5時間の場合、摩耗量は約20μmで極めて少ないことが確認された。30時間の試験時間でも、摩耗量が50〜58μmと少なく、何れの試験条件a〜cでも試験後の表面観察、断面観察の結果で、各皮膜に損傷や剥離等は認められず、高温耐磨耗性に優れていることが確認された。   In the abrasion test, the test piece A and the test piece B were slid in height. Test No. In the inventive materials 1 to 6, it was confirmed that when the test time was 5 hours, the wear amount was about 20 μm and very small. Even in the test time of 30 hours, the wear amount is as small as 50 to 58 μm, and under any test conditions a to c, the surface observation and cross-sectional observation after the test showed no damage or peeling, and the high temperature resistance It was confirmed that it was excellent in abrasion.

試験No.7〜9の比較材では、5kgの低荷重での摩耗量は少ないが、10kgでは摩耗量が大きくなり、試験後の表面観察の結果、摩耗部のAl2O3の一部に剥離が認められた。このような剥離は、滑り摩耗の際の面圧(荷重)による固溶体型コバルト基合金HS25製基材の組成変形にCVD法で形成した緻密なAl2O3皮膜が追従できず皮膜に縦クラックが生じ、その後、部分的な剥離に至ったものと推測される。この傾向は、面圧が大きい場合、顕著になると予測され、その結果、荷重10kgの高面圧試験でAl2O3皮膜の部分剥離を招き、固溶体型コバルト基合金HS25製基材同士の摩耗が生じ、摩耗量が大きくなったものと推定できる。   Test No. In comparative materials 7 to 9, the wear amount at a low load of 5 kg was small, but the wear amount was large at 10 kg. As a result of surface observation after the test, peeling was observed on a part of the Al 2 O 3 at the wear part. Such peeling does not follow the dense Al2O3 film formed by the CVD method to the compositional deformation of the base material made of solid solution type cobalt base alloy HS25 due to the surface pressure (load) at the time of sliding wear, resulting in vertical cracks in the film, Then, it is estimated that partial peeling was reached. This tendency is expected to become significant when the surface pressure is large, and as a result, the Al2O3 film is partially peeled in a high surface pressure test with a load of 10 kg, and wear of the solid solution type cobalt base alloy HS25 base material occurs. It can be estimated that the amount of wear has increased.

一方、本実施の形態によるAl2O3溶射皮膜は、溶融粒子の積層構造であり、緻密さで若干劣る。その結果、緻密な皮膜に比べ、見かけ上の塑性変形能を有しており、さらに、本実施の形態による溶射皮膜では厚さが約10倍以上で、基材の塑性変形も生じ難い。その結果、試験後の観察でも、何等損傷が認められなかった。このような本実施の形態による耐摩耗被覆層15の特徴は、長時間高温環境下で摩耗を受ける燃焼器部品の耐摩耗性を維持する上で有効である。   On the other hand, the Al2O3 sprayed coating according to the present embodiment has a laminated structure of molten particles and is slightly inferior in denseness. As a result, it has an apparent plastic deformability compared to a dense coating, and the thermal spray coating according to the present embodiment has a thickness of about 10 times or more and hardly causes plastic deformation of the substrate. As a result, even after observation after the test, no damage was observed. Such a feature of the wear-resistant coating layer 15 according to the present embodiment is effective in maintaining the wear resistance of the combustor component that is worn in a high temperature environment for a long time.

試験No.10〜12のAl2O3/NiCrの2層構造の溶射皮膜では、摩耗量は試験No.1〜6の本発明材とほぼ同程度であるが、試験後の断面観察の結果、Al2O3皮膜内に横クラックが生じ、一部、剥離も認められた。このような剥離形態はAl2O3とコバルト基合金(低NI化HS25)との熱膨張の相違によるのものであり、摩耗試験時の摺動部での摩擦熱による局部的温度上昇の寄与していると考えられる。したがって、Al2O3/NiCrの2層構造では、熱応力の緩和機能が無いため、高温での耐摩耗性を十分に発揮できないことが明確になった。一方、ZrO2系皮膜を熱応力緩和層とした本発明材の3層構造(試験No.1〜6)では、試験後の断面観察ではいずれの皮膜内にも、剥離の原因となるクラックは認められず、長時間にわたって高温での耐摩耗性を維持できることが確認された。   Test No. In the case of a sprayed coating having a two-layer structure of Al2O3 / NiCr of 10 to 12, the amount of wear was determined as Test No. Although it was almost the same as 1-6 of this invention material, as a result of cross-sectional observation after a test, a lateral crack arose in Al2O3 membrane | film | coat, and one part was also recognized. Such a peeling form is due to a difference in thermal expansion between Al2O3 and a cobalt-based alloy (low NI HS25), and contributes to a local temperature increase due to frictional heat at the sliding portion during the wear test. it is conceivable that. Therefore, it became clear that the two-layer structure of Al 2 O 3 / NiCr does not have a thermal stress relaxation function and therefore cannot fully exhibit wear resistance at high temperatures. On the other hand, in the three-layer structure (test Nos. 1 to 6) of the material of the present invention in which the ZrO2 film is a thermal stress relaxation layer, cracks that cause peeling are recognized in any film in the cross-sectional observation after the test. It was confirmed that the wear resistance at high temperature can be maintained for a long time.

試験No.13〜16の比較材では、本発明材による試験片Aの摩耗量は比較的少ないが、相手側部材である試験片Bの摩耗量が大きく、摩耗部での摺動面はAl2O3皮膜同士が有効であることが判る。また、これらの試験結果で、本発明材の相手側部材が低Ni化HS25材、ZrO2−Y2O3の場合、比較的摩耗量が少なくい。即ち、比較的剛体構造のトランジションピースの当て板16と比較的柔構造のフローティングシール材9A,9Bの両方にAl2O3/ZrO2−Y2O3/NiCrの3層構造の本発明材を設けた場合、機械的な問題等で比較的柔構造であるシール材の最表面層のAl2O3が損傷し、下部層、或いは、基材との組合わせとなっても、摩耗量が比較的少なくなると予想される。   Test No. In the comparative materials 13 to 16, the wear amount of the test piece A by the material of the present invention is relatively small, but the wear amount of the test piece B which is the counterpart member is large, and the sliding surface at the wear portion is composed of Al2O3 coatings. It turns out that it is effective. Further, in these test results, when the counterpart member of the material of the present invention is a low Ni HS25 material, ZrO2-Y2O3, the wear amount is relatively small. That is, when the present invention material having a three-layer structure of Al2O3 / ZrO2-Y2O3 / NiCr is provided on both the relatively rigid transition piece base plate 16 and the relatively flexible floating sealing materials 9A and 9B, Due to such problems, the Al2O3 of the outermost surface layer of the sealing material having a relatively flexible structure is damaged, and even when combined with the lower layer or the base material, the amount of wear is expected to be relatively small.

試験No.17〜19の比較材は、いずれも摩耗量が大きく、逆に本発明材の有効性が立証された結果となった。   Test No. The comparative materials 17 to 19 all had a large amount of wear, and conversely, the effectiveness of the material of the present invention was proved.

尚、上記確認試験において、表面層19のAl酸化物皮膜の厚さは、0.1mm以下では耐摩耗性の効果が長時間にわたって十分発揮できず、0.5mm以上では下地層18のZrO2系合金の熱応力緩和効果が十分に効かず表面層19が剥離し易くなることが確認された。したがって、表面層19のAl酸化物皮膜の厚さは、0.1mm〜0.5mmが好ましい。一方、下地層18のZrO2系合金の厚さは、0.1mm以下では表面層19のAl酸化物皮膜に対する熱応力緩和の効果が十分発揮できず、0.5mm以上では、ZrO2系合金層と基材であるCo基合金との熱膨張差による熱応力が大きくなりZrO2系合金層の損傷剥離し易くなることが確認された。したがって、下地層18のZrO2系合金層の厚さは、0.1mm〜0.5mmが好ましい。しかしながら、表面層19のAl酸化物皮膜の厚さと下地層18のZrO2系合金の厚さとの関連に、特に制限はないので、上記各層の厚さの範囲内において、耐摩耗性の確保と熱応力を緩和する目的を達成できる厚さの組合わせればよい。   In the above confirmation test, when the thickness of the Al oxide film of the surface layer 19 is 0.1 mm or less, the effect of wear resistance cannot be sufficiently exerted for a long time, and when the thickness is 0.5 mm or more, the ZrO2 system of the underlayer 18 is used. It was confirmed that the thermal stress relaxation effect of the alloy was not sufficiently effective and the surface layer 19 was easily peeled off. Therefore, the thickness of the Al oxide film on the surface layer 19 is preferably 0.1 mm to 0.5 mm. On the other hand, when the thickness of the ZrO2 alloy of the underlayer 18 is 0.1 mm or less, the effect of thermal stress relaxation on the Al oxide film of the surface layer 19 cannot be sufficiently exerted, and when the thickness is 0.5 mm or more, the ZrO2 alloy layer It was confirmed that the thermal stress due to the difference in thermal expansion from the Co-based alloy as the base material was increased and the ZrO 2 -based alloy layer was easily damaged and separated. Therefore, the thickness of the ZrO2 alloy layer of the underlayer 18 is preferably 0.1 mm to 0.5 mm. However, since there is no particular limitation on the relationship between the thickness of the Al oxide film of the surface layer 19 and the thickness of the ZrO 2 alloy of the underlayer 18, within the range of the thickness of each of the above layers, it is possible to ensure wear resistance and heat. A combination of thicknesses that can achieve the purpose of relaxing the stress may be used.

また、本発明材の実施例として、熱応力緩和機能の皮膜として、ZrO2−8%Y2O3を用いたが、ZrO2−Y2O3,ZrO2−CaO,ZrO2−MgOのいずれを用いても同様の結果が得られることが確認された。また、密着力向上機能の皮膜として、50%Ni−50%Cr合金を用いたが、Ni−Cr,MCrAlY(MはNi,Co)のいずれの合金を用いても同様の結果が得られることも確認された。   Further, as an example of the present invention material, ZrO2-8% Y2O3 was used as a film having a thermal stress relaxation function, but the same result was obtained by using any of ZrO2-Y2O3, ZrO2-CaO and ZrO2-MgO. It was confirmed that In addition, a 50% Ni-50% Cr alloy was used as the film for improving adhesion, but the same result can be obtained by using any alloy of Ni-Cr and MCrAlY (M is Ni, Co). Was also confirmed.

さらに、各皮膜の厚さについても、本発明の範囲内であれば、同様の結果が得られることが判った。   Furthermore, it has been found that the same results can be obtained with respect to the thickness of each film as long as it is within the scope of the present invention.

本発明によるガスタービン燃焼器に用いられる耐摩耗被覆層を示す断面図。Sectional drawing which shows the abrasion-resistant coating layer used for the gas turbine combustor by this invention. 本発明によるガスタービン燃焼器に用いられる燃焼器ライナを示す斜視図。The perspective view which shows the combustor liner used for the gas turbine combustor by this invention. 本発明によるガスタービン燃焼器に用いられる燃焼器ライナとトランジションピースとの連結部を示す断面図。Sectional drawing which shows the connection part of the combustor liner and transition piece used for the gas turbine combustor by this invention. 本発明によるガスタービン燃焼器に用いられるトランジションピースを示す斜視図。The perspective view which shows the transition piece used for the gas turbine combustor by this invention. 図4のトランジションピースの額縁部を示す拡大斜視図。The expansion perspective view which shows the frame part of the transition piece of FIG. 図4のトランジションピースの額縁部とシール材との係合状態を示す図5相当図。FIG. 5 is a view corresponding to FIG. 5, illustrating an engaged state between a frame portion of the transition piece of FIG. 4 and a sealing material. 図6のA−A線に沿う拡大断面図。The expanded sectional view which follows the AA line of FIG.

符号の説明Explanation of symbols

1…燃焼器ライナ、2…トランジションピース、3…下流側、4…スプリングシール材、5…上流側、6…下流側、7…額縁、8…シール溝、9A,9B…フローティングシール材、11…静翼、13A,13B…脚、15…耐摩耗被覆層、16…当て板、17…被覆層、18…下地層、19…表面層。   DESCRIPTION OF SYMBOLS 1 ... Combustor liner, 2 ... Transition piece, 3 ... Downstream side, 4 ... Spring seal material, 5 ... Upstream side, 6 ... Downstream side, 7 ... Frame, 8 ... Seal groove, 9A, 9B ... Floating seal material, 11 ... stationary blades, 13A, 13B ... legs, 15 ... wear-resistant coating layer, 16 ... backing plate, 17 ... coating layer, 18 ... base layer, 19 ... surface layer.

Claims (4)

燃焼器ライナと、この燃焼器ライナの下流側外周にスプリングシール材を介して嵌合されるトランジションピースと、このトランジションピースの下流側とガスタービンの静翼に跨って係合するフローティングシール材とを備えたガスタービン燃焼器において、前記各シール材とこれらシール材に対して摺動する相手側部材とをコバルト基合金材で形成すると共に、これらコバルト基合金材で形成された前記シール材及び相手側部材との摺動面に、下地層としてZrO2系溶射皮膜を形成し、かつこの下地層の上の表面層としてAl酸化物の溶射皮膜を形成したことを特徴とするガスタービン燃焼器。   A combustor liner, a transition piece fitted to the downstream outer periphery of the combustor liner via a spring seal material, and a floating seal material engaged across the downstream side of the transition piece and the stationary blades of the gas turbine In the gas turbine combustor provided with the above-described sealing material and a mating member that slides with respect to the sealing material are formed of a cobalt-based alloy material, and the sealing material formed of the cobalt-based alloy material and A gas turbine combustor, wherein a ZrO2-based sprayed coating is formed as a base layer on a sliding surface with a counterpart member, and an Al oxide sprayed coating is formed as a surface layer on the base layer. 燃焼器ライナと、この燃焼器ライナの下流側外周にスプリングシール材を介して嵌合されるトランジションピースと、このトランジションピースの下流側とガスタービンの静翼に跨って係合するフローティングシール材とを備えたガスタービン燃焼器において、前記各シール材とこれらシール材に対して摺動する相手側部材とをコバルト基合金材で形成し、これらコバルト基合金材で形成された前記シール材及び相手側部材との摺動面に、下地層としてZrO2系合金の溶射皮膜を形成し、かつこの下地層の表面に表面層としてAl酸化物の溶射皮膜を形成すると共に、前記下地層と前記シール材及び相手側部材の摺動面との間に、NiCr合金又はMCrAlY(MはCo,Ni)合金よりなる溶射皮膜の被覆層を形成したことを特徴とするガスタービン燃焼器。   A combustor liner, a transition piece fitted to the downstream outer periphery of the combustor liner via a spring seal material, and a floating seal material engaged across the downstream side of the transition piece and the stationary blades of the gas turbine In the gas turbine combustor provided with the above-mentioned, each of the sealing materials and a mating member that slides with respect to the sealing materials are formed of a cobalt-based alloy material, and the sealing material and the mating member that are formed of these cobalt-based alloy materials. A spray coating of ZrO2 alloy is formed as a base layer on the sliding surface with the side member, and an Al oxide spray coating is formed as a surface layer on the surface of the base layer, and the base layer and the sealing material And a coating layer of a thermal spray coating made of NiCr alloy or MCrAlY (M is Co, Ni) alloy is formed between the sliding surface of the counterpart member. Gas turbine combustor. 前記下地層は、ZrO2系合金を主成分とし、安定化材としてCaO,MgO又はY2O3を含む請求項1又は2記載のガスタービン燃焼器。   The gas turbine combustor according to claim 1 or 2, wherein the underlayer includes a ZrO2 based alloy as a main component and CaO, MgO, or Y2O3 as a stabilizing material. 前記下地層の厚さが0.1〜0.5mmで、前記表面層の厚さが0.1〜0.5mmであることを特徴とする請求項1又は2記載のガスタービン燃焼器。   The gas turbine combustor according to claim 1 or 2, wherein the thickness of the underlayer is 0.1 to 0.5 mm, and the thickness of the surface layer is 0.1 to 0.5 mm.
JP2005029145A 2005-02-04 2005-02-04 Gas turbine combustor Expired - Fee Related JP4668636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029145A JP4668636B2 (en) 2005-02-04 2005-02-04 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029145A JP4668636B2 (en) 2005-02-04 2005-02-04 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2006214671A JP2006214671A (en) 2006-08-17
JP4668636B2 true JP4668636B2 (en) 2011-04-13

Family

ID=36978050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029145A Expired - Fee Related JP4668636B2 (en) 2005-02-04 2005-02-04 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JP4668636B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619081C (en) * 2005-08-23 2011-03-22 Mitsubishi Heavy Industries, Ltd. Seal structure of gas turbine combustor
JP5074123B2 (en) * 2007-08-08 2012-11-14 株式会社日立製作所 High temperature wear resistant member and method for producing high temperature wear resistant member
US8092159B2 (en) * 2009-03-31 2012-01-10 General Electric Company Feeding film cooling holes from seal slots
US8052074B2 (en) * 2009-08-27 2011-11-08 General Electric Company Apparatus and process for depositing coatings
CN104481701B (en) * 2014-10-28 2016-09-07 北京华清燃气轮机与煤气化联合循环工程技术有限公司 Structure is sealed after changeover portion
JP6650849B2 (en) * 2016-08-25 2020-02-19 三菱日立パワーシステムズ株式会社 gas turbine
KR102094179B1 (en) * 2017-12-08 2020-03-27 두산중공업 주식회사 Burner Having Sealing With N-Shaped Section, And Gas Turbine Having The Same
JP6966354B2 (en) 2018-02-28 2021-11-17 三菱パワー株式会社 Gas turbine combustor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323544A (en) * 1993-05-11 1994-11-25 Toshiba Corp Transition piece of gas turbine combustor
JPH0711416A (en) * 1993-06-23 1995-01-13 Sumitomo Metal Ind Ltd Surface coated structure excellent in high temperature erosion resistance
JPH09209114A (en) * 1996-02-02 1997-08-12 Praxair St Technol Inc Bearing for roll in hot-dip metal plating bath
JPH09329337A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Liner for gas turbine combustor
JP2001349544A (en) * 2000-06-06 2001-12-21 Hitachi Ltd Gas turbine equipment and casing structure of transition piece of its combustor
JP2002003962A (en) * 2000-06-26 2002-01-09 Aisan Ind Co Ltd Sliding friction member
JP2002089203A (en) * 2000-09-14 2002-03-27 Toshiba Corp Rotor of steam turbine
JP2003185140A (en) * 2001-12-25 2003-07-03 Hitachi Ltd Gas turbine combustor
JP2003193866A (en) * 2001-12-25 2003-07-09 Hitachi Ltd Gas turbine combustor
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323544A (en) * 1993-05-11 1994-11-25 Toshiba Corp Transition piece of gas turbine combustor
JPH0711416A (en) * 1993-06-23 1995-01-13 Sumitomo Metal Ind Ltd Surface coated structure excellent in high temperature erosion resistance
JPH09209114A (en) * 1996-02-02 1997-08-12 Praxair St Technol Inc Bearing for roll in hot-dip metal plating bath
JPH09329337A (en) * 1996-06-11 1997-12-22 Hitachi Ltd Liner for gas turbine combustor
JP2001349544A (en) * 2000-06-06 2001-12-21 Hitachi Ltd Gas turbine equipment and casing structure of transition piece of its combustor
JP2002003962A (en) * 2000-06-26 2002-01-09 Aisan Ind Co Ltd Sliding friction member
JP2002089203A (en) * 2000-09-14 2002-03-27 Toshiba Corp Rotor of steam turbine
JP2003185140A (en) * 2001-12-25 2003-07-03 Hitachi Ltd Gas turbine combustor
JP2003193866A (en) * 2001-12-25 2003-07-09 Hitachi Ltd Gas turbine combustor
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel

Also Published As

Publication number Publication date
JP2006214671A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4668636B2 (en) Gas turbine combustor
KR102630007B1 (en) Turbine gap control coatings and methods
US9511436B2 (en) Composite composition for turbine blade tips, related articles, and methods
US8192850B2 (en) Combustion turbine component having bond coating and associated methods
KR101519131B1 (en) Metal alloy compositions and articles comprising the same
JP2008082331A (en) Abradable seal
CN105443165B (en) Abradable seal and method for forming an abradable seal
JP5074123B2 (en) High temperature wear resistant member and method for producing high temperature wear resistant member
EP1980634A1 (en) Metal alloy compositions and articles comprising the same
JP7232295B2 (en) Adhesion-promoting layer for bonding high-temperature protective layer onto substrate, and method for producing same
Das et al. Glass–ceramics as oxidation resistant bond coat in thermal barrier coating system
JP2008144272A (en) Environmentally friendly wear resistant carbide coating
US20150118060A1 (en) Turbine engine blades, related articles, and methods
US20140017511A1 (en) Thermal barrier coating for industrial gas turbine blade, and industrial gas turbine using the same
JP3848155B2 (en) Gas turbine combustor
JP4226669B2 (en) Heat resistant material
WO2012029540A1 (en) Heat-masking coating film, process for production thereof, and heat-resistant alloy members using the same
JP6501983B1 (en) Method of producing in-bath roll and in-bath roll
JP2006328499A (en) Thermal barrier coating, gas turbine high-temperature component, and gas turbine
JP4229508B2 (en) High temperature hearth roller
JP2007239101A (en) Bond coating process for thermal barrier coating
JP5675087B2 (en) Thermal barrier coating, turbine member, gas turbine, and method of manufacturing thermal barrier coating
JP4122984B2 (en) Molded copper plate for continuous casting and manufacturing method thereof
JPH07331456A (en) Heat insulating coating film and its production
EP1217096B1 (en) Interlayer between HR-120 and aluminium-containing oxidation resistant metallic coatings

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4668636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees