JP4665391B2 - THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM - Google Patents

THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JP4665391B2
JP4665391B2 JP2003388219A JP2003388219A JP4665391B2 JP 4665391 B2 JP4665391 B2 JP 4665391B2 JP 2003388219 A JP2003388219 A JP 2003388219A JP 2003388219 A JP2003388219 A JP 2003388219A JP 4665391 B2 JP4665391 B2 JP 4665391B2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric semiconductor
composition
performance
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003388219A
Other languages
Japanese (ja)
Other versions
JP2005150534A (en
Inventor
稔智 太田
浩一 藤田
廣喜 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003388219A priority Critical patent/JP4665391B2/en
Publication of JP2005150534A publication Critical patent/JP2005150534A/en
Application granted granted Critical
Publication of JP4665391B2 publication Critical patent/JP4665391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は熱電発電等に適用する熱電半導体素子、該熱電半導体素子の製造に用いる熱電半導体材料、上記熱電半導体素子を用いた熱電モジュール、並びに、これらの製造方法に関するものである。   The present invention relates to a thermoelectric semiconductor element applied to thermoelectric power generation and the like, a thermoelectric semiconductor material used for manufacturing the thermoelectric semiconductor element, a thermoelectric module using the thermoelectric semiconductor element, and a manufacturing method thereof.

熱電半導体の熱電特性を利用して熱電冷却、熱電加熱及び熱電発電を行わせる装置は、いずれもその基本構成として、図23にその一例の概略を示す如く、P型の熱電半導体素子2と、N型の熱電半導体素子3とを金属電極4を介し接合してPN素子対を形成してなる熱電モジュール1を、複数個直列に配列して接続した構成を備えている。   The devices that perform thermoelectric cooling, thermoelectric heating, and thermoelectric power generation using the thermoelectric characteristics of the thermoelectric semiconductor are all configured as a basic structure, as shown in FIG. A plurality of thermoelectric modules 1 formed by joining N-type thermoelectric semiconductor elements 3 via metal electrodes 4 to form PN element pairs are connected in series.

上記のような熱電半導体素子2及び3を形成させる熱電半導体の1種としては、5B族であるビスマス(Bi)及びアンチモン(Sb)から選択される1種又は2種の元素と、6B族であるテルル(Te)及びセレン(Se)から選択される1種又は2種の元素とからなる複合化合物を用いた熱電半導体があり、これは主に5B族(Bi及びSb)の原子数と、6B族(Te及びSe)の原子数の比がおよそ2:3になる組成、すなわち、(Bi−Sb)(Te−Se)系の組成の合金を材料としている。 One type of thermoelectric semiconductor for forming the thermoelectric semiconductor elements 2 and 3 as described above is one or two elements selected from bismuth (Bi) and antimony (Sb), which are 5B groups, and 6B group. There is a thermoelectric semiconductor using a composite compound composed of one or two elements selected from certain tellurium (Te) and selenium (Se), which mainly includes the number of atoms of Group 5B (Bi and Sb), The composition is a composition in which the ratio of the number of atoms of the group 6B (Te and Se) is about 2: 3, that is, an alloy of a (Bi—Sb) 2 (Te—Se) 3 composition.

上述した如き熱電半導体材料とする(Bi−Sb)(Te−Se)系の組成を有する合金は、六方晶系の構造を有しており、この結晶構造に起因して、電気的、熱的に異方性を有し、上記結晶構造の〈110〉方向、すなわち、六方晶構造のC面の方向に沿って電気又は熱を作用させることにより、C軸方向に電気や熱を作用させる場合に比して良好な熱電性能が得られることが知られている。 An alloy having a (Bi-Sb) 2 (Te-Se) 3- based composition as a thermoelectric semiconductor material as described above has a hexagonal structure, and due to this crystal structure, It has thermal anisotropy and acts on electricity or heat in the C-axis direction by acting electricity or heat along the <110> direction of the crystal structure, that is, the direction of the C plane of the hexagonal crystal structure. It is known that better thermoelectric performance can be obtained as compared with the case where the above is performed.

又、一般に、熱電半導体の製造に用いる材料の熱電性能は、以下の式で表される性能指数Zにより評価される。
Z = α・σ/κ = α/(ρ・κ)
上記において、α:ゼーベック係数、σ:電気伝導率、κ:熱伝導率、ρ:比抵抗、である。
In general, the thermoelectric performance of a material used for manufacturing a thermoelectric semiconductor is evaluated by a figure of merit Z expressed by the following equation.
Z = α 2 · σ / κ = α 2 / (ρ · κ)
In the above, α: Seebeck coefficient, σ: electrical conductivity, κ: thermal conductivity, and ρ: specific resistance.

したがって、上記熱電半導体材料の熱電性能(性能指数:Z)の向上を図るためには、上記ゼーベック係数(α)の絶対値又は電気伝導率(σ)の値を増加させるか、熱伝導率(κ)を低減させればよいことがわかる。   Therefore, in order to improve the thermoelectric performance (performance index: Z) of the thermoelectric semiconductor material, the absolute value of the Seebeck coefficient (α) or the value of electrical conductivity (σ) is increased, or the thermal conductivity ( It can be seen that (κ) should be reduced.

そのため、上記熱電半導体材料の熱電性能の向上を図るための手法の一つとしては、(Bi−Sb)(Te−Se)系の熱電半導体の原料組成におけるBiとSb、TeとSeの比をそれぞれ変化させたり、添加するドーパントの種類やその添加量等を変化させることにより、熱電半導体の材料の組成を変化させて、上記ゼーベック係数(α)の絶対値又は電気伝導率(σ)の値の増加を図ったり、或いは、熱伝導率(κ)の低減を図ることが従来広く行なわれてきている。 Therefore, as one of the methods for improving the thermoelectric performance of the thermoelectric semiconductor material, Bi and Sb, Te and Se in the raw material composition of the (Bi—Sb) 2 (Te—Se) 3 series thermoelectric semiconductor are used. The ratio of the Seebeck coefficient (α) or the electrical conductivity (σ) can be changed by changing the ratio, changing the composition of the thermoelectric semiconductor material by changing the kind of dopant added, the amount of addition, etc. Conventionally, it has been widely practiced to increase the value of or to reduce the thermal conductivity (κ).

ところで、上記熱電モジュール1を用いて熱電冷却、熱電加熱或いは熱電発電を行わせる場合には、P型及びN型の各熱電半導体素子2,3に対して、通電方向又は熱流の作用する方向に沿って温度勾配が形成される。しかし、均一な組成の熱電半導体材料は、温度により熱電性能が変化し、ある温度域で高い熱電性能を発揮するよう組成を設定したとしても、その温度域以外の温度条件では別の組成の熱電半導体材料よりも熱電性能が低下してしまうことがある。   By the way, when thermoelectric cooling, thermoelectric heating, or thermoelectric power generation is performed using the thermoelectric module 1, the P-type and N-type thermoelectric semiconductor elements 2 and 3 are energized or in the direction in which heat flows. A temperature gradient is formed along. However, even if the thermoelectric semiconductor material has a uniform composition, the thermoelectric performance changes depending on the temperature, and even if the composition is set so as to exhibit high thermoelectric performance in a certain temperature range, the thermoelectric material having a different composition can be used under temperature conditions other than that temperature range. Thermoelectric performance may be lower than that of semiconductor materials.

そこで、熱電モジュール1の構成要素であるP型熱電半導体素子2及びN型熱電半導体素子3を、それぞれ放熱側(高温側)と冷却側(低温側)の温度勾配の生じる方向に、該温度勾配方向に並んで形成される複数の温度域にて、それぞれ優れた熱電性能を発揮できるよう組成を変えた複数の熱電半導体材料による層を形成させて、所謂傾斜機能材料とさせることにより、高温側と低温側でそれぞれ良好な熱電性能を発揮できるようにすることが従来提案されている(たとえば、特許文献1参照)。   Therefore, the P-type thermoelectric semiconductor element 2 and the N-type thermoelectric semiconductor element 3 which are the constituent elements of the thermoelectric module 1 are each moved in the direction in which the temperature gradient occurs on the heat radiation side (high temperature side) and the cooling side (low temperature side). By forming a layer of a plurality of thermoelectric semiconductor materials having different compositions so as to exhibit excellent thermoelectric performance at a plurality of temperature ranges formed side by side in the direction, so as to be a so-called functionally gradient material, the high temperature side Conventionally, it has been proposed to exhibit good thermoelectric performance on the low temperature side (see, for example, Patent Document 1).

かかる考えに基づいた熱電モジュール1は、図24にその一例の概略を示す如く、上記P型熱電半導体素子2を製造する際、先ず、高温側領域にて優れた熱電性能を示す組成としたP型熱電半導体の原料合金と、低温側領域にて優れた熱電性能を示す組成としたP型熱電半導体の合金原料を、個別に溶融合金とさせた後、急冷凝固による一方向凝固材をそれぞれ形成させる。次に、上記各組成の一方向凝固材を、そのまま或いは粉砕した状態として、該各組成の凝固材がそれぞれ所要厚みの層を形成するように順に積層させ、次いで、該積層物を、上記各一方向凝固材の積層方向から一軸加圧することにより、高温側領域にて優れた熱電性能を示す組成の層2Hと、低温側領域にて優れた熱電性能を示す組成の層2Lを積層してなる構造のP型熱電半導体素子2を製造するようにしてある。   The thermoelectric module 1 based on such an idea, as shown in FIG. 24 schematically shows an example thereof, when manufacturing the P-type thermoelectric semiconductor element 2, first, a P having a composition exhibiting excellent thermoelectric performance in the high temperature region. -Type thermoelectric semiconductor raw material alloy and P-type thermoelectric semiconductor alloy raw material with a composition showing excellent thermoelectric performance in the low-temperature region are individually made into molten alloys, and then each directionally solidified material is formed by rapid solidification Let Next, the unidirectionally solidified material of each composition is laminated as it is or in a crushed state so that the solidified material of each composition forms a layer having a required thickness. By uniaxially pressing from the stacking direction of the unidirectional solidified material, a layer 2H having a composition exhibiting excellent thermoelectric performance in the high temperature region and a layer 2L having a composition exhibiting excellent thermoelectric performance in the low temperature region are laminated. A P-type thermoelectric semiconductor element 2 having the following structure is manufactured.

又、N型熱電半導体素子3を製造する場合も上記P型熱電半導体素子を製造する場合と同様に、先ず、高温側領域にて優れた熱電性能を示す組成としたN型熱電半導体の原料合金と、低温側領域にて優れた熱電性能を示す組成としたN型熱電半導体の合金原料を、個別に溶融合金とさせた後、急冷凝固による一方向凝固材をそれぞれ形成させる。次に、上記各組成の一方向凝固材を、そのまま或いは粉砕した状態として、該各組成の凝固材がそれぞれ所要厚みの層を形成するように順に積層させ、次いで、該積層物を、上記各一方向凝固材の積層方向から一軸加圧することにより、高温側領域にて優れた熱電性能を示す組成の層3Hと、低温側領域にて優れた熱電性能を示す組成の層3Lを積層してなる構造のN型熱電半導体素子3を製造するようにしてある。   Further, when the N-type thermoelectric semiconductor element 3 is manufactured, as in the case of manufacturing the P-type thermoelectric semiconductor element, first, a raw material alloy of the N-type thermoelectric semiconductor having a composition exhibiting excellent thermoelectric performance in the high temperature side region. Then, the N-type thermoelectric semiconductor alloy raw material having a composition exhibiting excellent thermoelectric performance in the low temperature region is individually made into a molten alloy, and then a unidirectional solidified material is formed by rapid solidification. Next, the unidirectionally solidified material of each composition is laminated as it is or in a crushed state so that the solidified material of each composition forms a layer having a required thickness. By uniaxially pressing from the laminating direction of the unidirectional solidified material, a layer 3H having a composition exhibiting excellent thermoelectric performance in the high temperature region and a layer 3L having a composition exhibiting excellent thermoelectric performance in the low temperature region are laminated. An N-type thermoelectric semiconductor element 3 having the following structure is manufactured.

しかる後、上記温度適性の異なる組成の層2Hと2L又は3Hと3Lを各々備えてなるP型熱電半導体素子2とN型熱電半導体素子3を、それぞれ高温側及び低温側に温度適性を有する層2Hと3H及び2Lと3L同士が揃うよう配置して、該各P型及びN型熱電半導体素子2及び3を、金属電極4を介し接合してPN素子対を形成させるようにしてある。   After that, the P-type thermoelectric semiconductor element 2 and the N-type thermoelectric semiconductor element 3 each having the layers 2H and 2L or 3H and 3L having compositions having different temperature suitability are respectively provided with temperature suitability on the high temperature side and the low temperature side, respectively. Arranged so that 2H and 3H and 2L and 3L are aligned, the P-type and N-type thermoelectric semiconductor elements 2 and 3 are joined via the metal electrode 4 to form a PN element pair.

又、熱電半導体材料の熱電性能(性能指数:Z)を向上させるための別の手法としては、上記六方晶系の結晶構造をなす熱電半導体材料中における結晶粒の配向性を高めることにより、比抵抗(ρ)を小さくさせるようにすることも考えられる。   Further, as another method for improving the thermoelectric performance (performance index: Z) of the thermoelectric semiconductor material, by increasing the orientation of crystal grains in the thermoelectric semiconductor material having the above hexagonal crystal structure, It is also conceivable to reduce the resistance (ρ).

このことに鑑みて、本特許出願人等は、先の出願(特願2003−130618号)において、均一な組成の熱電半導体材料を製造するときに、先ず、所要の熱電半導体の組成としてある原料合金を溶融させた後、該溶融合金を冷却部材表面に接触させて冷却(徐冷)することにより板状の熱電半導体素材とし、次に、該熱電半導体素材をほぼ層状に積層させて固化成形して成形体を形成し、次いで、該成形体を、上記熱電半導体素材の主な積層方向にほぼ直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の主な積層方向にほぼ平行な一軸方向に剪断力を作用させて塑性加工して熱電半導体材料を形成させることを提案している。   In view of this, when manufacturing a thermoelectric semiconductor material having a uniform composition in the previous application (Japanese Patent Application No. 2003-130618), the applicants of the present patent application, first, a raw material as a required thermoelectric semiconductor composition. After melting the alloy, the molten alloy is brought into contact with the surface of the cooling member and cooled (slowly cooled) to form a plate-like thermoelectric semiconductor material, and then the thermoelectric semiconductor material is laminated almost into a layer and solidified. Forming a molded body, and then constraining the molded body to be deformed in one of the two axial directions intersecting in a plane substantially perpendicular to the main lamination direction of the thermoelectric semiconductor material. The thermoelectric semiconductor material is formed by pressing from the other axial direction and applying a shearing force in a uniaxial direction substantially parallel to the main laminating direction of the thermoelectric semiconductor material.

これは、熱電半導体材料の原料合金の溶融合金を冷却部材表面に接触させることで、結晶粒の六方晶構造のC面が板厚方向にほぼ平行に延びるよう配向される熱電半導体素材が得られ、この熱電半導体素材を板厚方向にほぼ層状に積層して固化成形させることにより、形成される成形体中でも結晶粒のC面の延びる方向は積層方向に配向されたまま保持させる。更に、上記成形体を、上記結晶粒のC面の延びる方向とほぼ一致する上記熱電半導体の主な積層方向にほぼ平行な一軸方向に剪断力が掛かるように押圧して塑性変形させることにより、上記結晶粒を剪断力の作用する方向に扁平化させ、これにより、上記板厚方向にほぼ層状に積層して固化させた熱電半導体素材同士の積層界面を破壊させ、更に、結晶粒のC面の延びる方向を上記塑性変形時の剪断力の作用する方向に揃えられたまま保持させると同時に、結晶粒のC軸方向を上記塑性変形させるための押圧方向とほぼ平行に配向させるようにしてある。したがって、得られる熱電半導体材料は、組織中にて結晶粒の六方晶構造のC面の延びる方向及びC軸方向が共に揃えられた状態となるため、結晶組織の配向性を高めることができて、上記C面の延びる方向に電流や熱を作用させるよう設定することにより高い熱電性能を得ることができるものである。   This is because, by bringing a molten alloy of a raw material alloy of the thermoelectric semiconductor material into contact with the surface of the cooling member, a thermoelectric semiconductor material that is oriented so that the C-plane of the hexagonal crystal structure extends substantially parallel to the plate thickness direction is obtained. The thermoelectric semiconductor material is laminated in a substantially layered manner in the plate thickness direction and solidified and molded, so that the extending direction of the C-plane of the crystal grains is held in the lamination direction in the formed body. Further, the molded body is plastically deformed by pressing so as to apply a shearing force in a uniaxial direction substantially parallel to the main lamination direction of the thermoelectric semiconductor, which substantially coincides with the extending direction of the C-plane of the crystal grains, The crystal grains are flattened in the direction in which the shearing force acts, thereby breaking the laminated interface between the thermoelectric semiconductor materials laminated and solidified substantially in the plate thickness direction, and further, the C plane of the crystal grains The direction in which the crystal extends is kept aligned with the direction in which the shearing force is applied during the plastic deformation, and at the same time the C-axis direction of the crystal grains is oriented substantially parallel to the pressing direction for plastic deformation. . Therefore, since the obtained thermoelectric semiconductor material is in a state in which the C-plane extending direction and the C-axis direction of the hexagonal crystal structure are aligned in the structure, the orientation of the crystal structure can be improved. High thermoelectric performance can be obtained by setting so that current and heat are applied in the direction in which the C-plane extends.

ところで、熱電発電を行う場合には、熱電モジュールが10mm厚程度と厚くなることがあり、このため上記熱電モジュールを構成するP型及びN型の各熱電半導体素子は、それぞれ比較的大型のものとなる。又、熱電発電では、熱電モジュールの低温側が常温付近、又、高温側が200〜300℃程度と温度差が非常に大きくなることがある。   By the way, when performing thermoelectric power generation, the thermoelectric module may be as thick as about 10 mm. Therefore, each of the P-type and N-type thermoelectric semiconductor elements constituting the thermoelectric module is relatively large. Become. In thermoelectric power generation, the temperature difference may be very large, with the low temperature side of the thermoelectric module near room temperature and the high temperature side of about 200 to 300 ° C.

なお、熱電半導体の材料を熱電発電に適用する場合、取り出せる起電力の大小は、ゼーベック係数(α)と電気伝導率(σ)を用いた以下の式で表されるパワーファクターPにより評価できることが知られている。
P = α×σ
このため、上記パワーファクター(P)を大きくするためには、ゼーベック係数(α)の絶対値を大きくするか、電気伝導率を増加させればよいことがわかる。
When the thermoelectric semiconductor material is applied to thermoelectric power generation, the magnitude of the electromotive force that can be extracted can be evaluated by the power factor P represented by the following formula using the Seebeck coefficient (α) and the electrical conductivity (σ). Are known.
P = α 2 × σ
For this reason, in order to enlarge the said power factor (P), it turns out that what is necessary is just to enlarge the absolute value of Seebeck coefficient ((alpha)) or to increase electrical conductivity.

特開2003−92432号公報JP 2003-92432 A

ところが、上記特許文献1に示された如き温度勾配の作用する方向に沿って温度適性の異なる組成の熱電半導体の層を設けるようにしてある熱電半導体素子は、高温側と低温側にそれぞれ温度適性を有する組成とした熱電半導体の原料合金の一方向凝固材を、それぞれ層をなすよう積層させた後、積層方向に一軸加圧して焼結するようにしてあるので、上記積層方向に一軸加圧するときに、積層された凝固材の積層界面部分の結晶配向性が乱れるという問題があると共に、上記一方向凝固材中に形成されている結晶粒は、一方向凝固によりその六方晶構造の結晶粒のC面の延びる方向は揃えられていても、C軸の向きは揃っておらずランダムなため、結晶配向性をあまり高いものとすることができないという問題がある。更に、温度勾配の作用する方向に、組成の異なる熱電半導体の層を形成しているため、この組成の異なる熱電半導体の層同士、すなわち、組成の異なる一方向凝固材同士が重なる積層界面では、たとえば、組成が異なることに伴って各組成の熱電半導体の材料同士で電気伝導率が相違する場合に、上記異なる組成の熱電半導体の層同士の積層界面で電気伝導が阻害される虞も懸念される。   However, the thermoelectric semiconductor element in which the thermoelectric semiconductor layers having compositions having different temperature suitability are provided along the direction in which the temperature gradient acts as described in the above-mentioned Patent Document 1 has temperature suitability on the high temperature side and the low temperature side, respectively. The unidirectionally solidified material of the thermoelectric semiconductor raw material alloy having the composition is laminated so as to form layers, and then uniaxially pressed in the laminating direction and sintered, so the uniaxial pressure is applied in the laminating direction. Sometimes, there is a problem that the crystal orientation of the laminated interface portion of the laminated solidified material is disturbed, and the crystal grains formed in the unidirectional solidified material are crystal grains of the hexagonal structure by unidirectional solidification. Even if the C-plane extending direction is aligned, there is a problem that the orientation of the C-axis is not aligned and is random, so that the crystal orientation cannot be made very high. Furthermore, since the thermoelectric semiconductor layers having different compositions are formed in the direction in which the temperature gradient acts, the thermoelectric semiconductor layers having different compositions, that is, at the laminated interface where the unidirectional solidified materials having different compositions overlap with each other, For example, if the electrical conductivity differs between thermoelectric semiconductor materials of different compositions due to different compositions, there is a concern that electrical conduction may be hindered at the laminated interface between the thermoelectric semiconductor layers of the different compositions. The

更に又、上記特許文献1に記載されたものでは、組成の異なる熱電半導体の熱電性能の評価に関しては、性能指数(Z)のみしか考慮されておらず、熱電発電に適用する熱電半導体の性能評価により有効なパワーファクターPに関する記載は全くない。   Furthermore, in the above-described Patent Document 1, only the figure of merit (Z) is considered for the evaluation of thermoelectric performance of thermoelectric semiconductors having different compositions, and the performance evaluation of thermoelectric semiconductors applied to thermoelectric power generation is considered. There is no description regarding the power factor P more effective.

そこで、本発明は、熱電発電を行なう場合のように、低温側から高温側までに大きな温度勾配が作用しても、素子全体の熱電性能を高めることができると共に、温度勾配が作用する方向に沿って結晶配向性を高めることができ、更に、温度勾配が作用する方向に積層界面が形成されることを防止して電気伝導が阻害される虞を防止できる熱電半導体素子、及び、該熱電半導体素子の製造に用いる熱電半導体材料、及び、上記熱電半導体素子を用いた熱電モジュール、並びに、これらの製造方法を提供しようとするものである。   Therefore, the present invention can improve the thermoelectric performance of the entire element even if a large temperature gradient acts from the low temperature side to the high temperature side as in the case of performing thermoelectric power generation, and in the direction in which the temperature gradient acts. A thermoelectric semiconductor element capable of improving the crystal orientation along the direction, and further preventing the formation of a laminated interface in the direction in which the temperature gradient acts to prevent electric conduction from being disturbed, and the thermoelectric semiconductor It is intended to provide a thermoelectric semiconductor material used for manufacturing an element, a thermoelectric module using the thermoelectric semiconductor element, and a manufacturing method thereof.

本発明は、上記課題を解決するために、組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して、該選定した組成の異なる熱電半導体の素材を低温側から高温側の順に層状に積層充填し固化成形して成形体とし、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直角一軸方向より押圧して上記組成の異なる熱電半導体素材の積層方向に平行な一軸方向に剪断力が掛かるように塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料とする。 In order to solve the above problems, the present invention provides a Seebeck coefficient as a parameter for evaluating thermoelectric performance in different temperature ranges in a temperature range from a low temperature side to a high temperature side for a plurality of thermoelectric semiconductor materials having different compositions. The composition of thermoelectric semiconductors that can exhibit superior thermoelectric performance compared to the thermoelectric performance that can exhibit the composition of each of the above different thermoelectric semiconductors on the low temperature side Compare the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors, and select the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance, or the thermoelectric performance that can exhibit the composition of each different thermoelectric semiconductor on the low temperature side. Comparing the composition of thermoelectric semiconductors that can exhibit superior thermoelectric performance in comparison with the thermoelectric performance that can exhibit the composition of each of the above different thermoelectric semiconductors on the high temperature side The composition of a thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance by comparing the composition of the thermoelectric semiconductor capable of exhibiting the thermoelectric performance and the thermoelectric performance capable of exhibiting the composition of each of the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side. and selecting, the selection was different thermoelectric semiconductor material compositions from the low temperature side and stacked filled solidifying and molding a layer in the order of the high temperature side and the molded body, the molded article, the product of different thermoelectric semiconductor material having the composition and pressed from perpendicular uniaxial in the layer direction and plastically deformed such that different thermoelectric semiconductor shear on a flat line uniaxial direction to the product layer direction of the material of the composition is applied, along the stacking direction of the thermoelectric semiconductor material The crystal grain in the structure of the thermoelectric semiconductor material has a hexagonal C-plane extending in the tilt direction of the composition, and the C-axis direction is also aligned to enhance crystal orientation. What is being done It is a thermoelectric semiconductor material is.

又、熱電半導体の原料合金を溶融固化させて箔状、板状とするか、あるいはこれらの粉砕物とさせてなる熱電半導体の素材を、組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して用意し、該用意した複数の組成の熱電半導体素材を、低温側から高温側の順に層状に積層させて固化成形して成形体を形成し、次に、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の積層方向に平行な一軸方向に剪断力を作用させて塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料の製造方法とする。 In addition, thermoelectric semiconductor materials made by melting and solidifying the thermoelectric semiconductor raw material alloy into foils , plates, or pulverized products of these thermoelectric semiconductor materials with different compositions can be cooled at low temperatures. The composition of each of the different thermoelectric semiconductors on the low temperature side based on the thermoelectric performance data on the change with temperature obtained with the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges within the temperature range from the high temperature side to the high temperature side Thermoelectric semiconductors that can exhibit superior thermoelectric performance by comparing the composition of thermoelectric semiconductors that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can be exhibited by the thermoelectric performance that can exhibit the composition of each of the above different thermoelectric semiconductors on the high temperature side Of thermoelectric semiconductors that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors on the low temperature side. The composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can be exhibited by the composition of each of the above different thermoelectric semiconductors on the high temperature side, and each of the above differences in the temperature range from the low temperature side to the high temperature side Compare the thermoelectric performance that can exhibit the composition of the thermoelectric semiconductor, select and prepare the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance , and prepare the thermoelectric semiconductor materials of the prepared multiple compositions in order from the low temperature side to the high temperature side and solidifying and molding by laminating in layers to form a molded body, then, the molded article, one of the two axial directions to intersect at a straight intersects plane to the product layer the direction of different thermoelectric semiconductor material having the composition and pressed from the other axial deformation in the axial direction at constrained state by the action of shear forces on the flat line uniaxial direction to the product layer direction of the thermoelectric semiconductor material by plastically deforming, the thermoelectric semiconductor material Inclination of composition along the stacking direction The crystal grains in the structure of the thermoelectric semiconductor material have a C-plane of the hexagonal structure extending in the tilt direction of the composition, and the C-axis direction is also aligned to enhance crystal orientation. It is set as the manufacturing method of the thermoelectric semiconductor material which becomes .

更に、上記における熱電性能にを評価するパラメータを、ゼーベック係数、電気伝導率、パワーファクター、性能指数のいずれかとする熱電半導体材料及びその製造方法とする。 Further, a thermoelectric semiconductor material and a method for manufacturing the thermoelectric semiconductor material in which the parameters for evaluating the thermoelectric performance in the above are any of Seebeck coefficient, electrical conductivity, power factor, and performance index.

同じく、熱電半導体の素材を、複数の熱電半導体の組成の原料合金を個別に溶融した後、徐冷して形成させてなる板状の熱電半導体素材とする熱電半導体材料及びその製造方法とする。   Similarly, the thermoelectric semiconductor material is a plate-like thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then slowly cooling them, and a manufacturing method thereof.

更に又、原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させるようにする熱電半導体材料の製造方法とする。   Furthermore, when the molten alloy of the raw material alloy is brought into contact with the surface of the cooling member to form a plate-shaped thermoelectric semiconductor material, a speed at which 90% or more of the thickness of the formed plate-shaped thermoelectric semiconductor material is not rapidly cooled. The method for producing a thermoelectric semiconductor material in which the molten alloy is cooled and solidified.

更に、上記において、複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとする熱電半導体材料及びその製造方法とする。 Further, in the above, the thermoelectric semiconductor material of a plurality of compositions, both (Bi-Sb) thermoelectric semiconductor material and a manufacturing method thereof that alter the Ingredient based on the composition of 2 Te 3 system and having composition comprising And

同じく、上記において、複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に所要の成分を変化させてなる組成のものとする熱電半導体材料及びその製造方法とする。 Similarly, in the above, the thermoelectric semiconductor material having a composition in which the required components are changed based on the Bi 2 (Te-Se) 3 -based composition are used as the thermoelectric semiconductor materials having a plurality of compositions. The method.

更に、上記した如く、積層界面を生じることなく連続した傾斜組成を有し、且つ結晶粒の六方晶構造のC面の延びる方向が、上記組成の傾斜方向に揃い、更に、C軸方向も揃った結晶配向性がよくて高い熱電性能を備えた熱電半導体材料を、該熱電半導体材料を形成すべく成形体を塑性変形加工するときに剪断力を作用させた一軸方向の両端部を電極と接合できるように切り出し加工してなる熱電半導体素子とする。   Furthermore, as described above, the composition has a continuous gradient composition without causing a lamination interface, and the direction in which the C-plane of the hexagonal crystal structure extends is aligned with the gradient direction of the composition, and also the C-axis direction is aligned. A thermoelectric semiconductor material with good crystal orientation and high thermoelectric performance is joined to the electrode at both ends in the uniaxial direction where a shearing force is applied when the molded body is plastically deformed to form the thermoelectric semiconductor material. The thermoelectric semiconductor element is cut out so as to be able to be made.

又、上述した如き熱電半導体材料を、該熱電半導体材料を形成すべく成形体を塑性変形加工するときに剪断力を作用させた一軸方向の両端部を電極と接合できるように切り出し加工して熱電半導体素子を形成する熱電半導体素子の製造方法とする。   Further, the thermoelectric semiconductor material as described above is cut and processed so that both ends in the uniaxial direction to which a shearing force is applied when the molded body is plastically deformed to form the thermoelectric semiconductor material can be joined to the electrode. A method of manufacturing a thermoelectric semiconductor element for forming a semiconductor element is provided.

更に、上記において、熱電半導体材料における成形体の組成変形加工時に剪断力の作用する一軸方向の一端側と他端側の断面積を相違させて切り出し加工する熱電半導体素子及びその製造方法とする。   Furthermore, in the above, a thermoelectric semiconductor element and a method of manufacturing the thermoelectric semiconductor element are obtained by cutting the uniaxial direction one end side and the other end side where shearing force is applied at the time of composition deformation processing of the molded body of the thermoelectric semiconductor material.

更に又、上記した如き積層界面を生じることなく連続した傾斜組成を有し、且つ熱電半導体の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっているP型及びN型の熱電半導体材料とし、該P型とN型の各熱電半導体材料より、上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してそれぞれ形成してなるP型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力の作用した一軸方向に共に直交する方向に並べて配置すると共に、該P型とN型の各熱電半導体素子を電極を介し接合して形成してなるPN素子対を備えた構成を形成してなるPN素子対を備えた構成を有する熱電モジュールとする。 Further, the crystal grains in the structure of the thermoelectric semiconductor have a continuous gradient composition without causing the laminated interface as described above, and the C plane of the hexagonal structure extends in the gradient direction of the composition, P-type and N-type thermoelectric semiconductor materials that are aligned in the axial direction and have improved crystal orientation , and from the P-type and N-type thermoelectric semiconductor materials, plastic deformation of the molded body is performed. sometimes a uniaxial direction both end portions of the Eject and switching power sale by can be bonded with electrode processing and P-type obtained by forming each the N-type each thermoelectric semiconductor elements of the action of shear forces, the at respective thermoelectric a semiconductor element Based on the thermoelectric performance data about the change with respect to the temperature obtained with the Seebeck coefficient as a parameter for evaluating the thermoelectric performance, the thermoelectric semiconductor compositions that can exhibit excellent thermoelectric performance on the low temperature side, and the high temperature excellent on the side Align electric performance thermoelectric semiconductor composition which can exhibit distribution by side with each other, respectively, and a uniaxial direction by applying a pressing force at the time of plastic deformation of the shaped body, co uniaxially that shear force by the pressing pressure to thereby arranged in a straight direction orthogonal includes a PN element pair constituted by forming a structure with the P-type and N-type PN element pair formed by formed by bonding via the electrodes of each thermoelectric semiconductor elements A thermoelectric module having the above configuration.

又、上述した如き熱電半導体素子としてP型とN型の各熱電半導体素子を用意して、該P型とN型の各熱電半導体素子を、該P型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力を作用させた一軸方向に共に直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を電極を介し接合してPN素子対を形成する熱電モジュールの製造方法とする。 Also, P-type and N-type thermoelectric semiconductor elements are prepared as the thermoelectric semiconductor elements as described above, and the P-type and N-type thermoelectric semiconductor elements are replaced with the P-type and N-type thermoelectric semiconductor elements. Based on the thermoelectric performance data about the change with respect to the temperature obtained by the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in each thermoelectric semiconductor element, the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance on the low temperature side Uniaxial directions in which the arranged sides and the arranged sides of the thermoelectric semiconductor composition capable of exhibiting excellent thermoelectric performance on the high temperature side are aligned, and a pressing force is applied during plastic deformation processing of the molded body. , as well as arranged in a straight direction orthogonal to the co uniaxially which has a shearing force by pressing pressure, thermoelectric forming a PN element pairs are joined via the electrodes of each thermoelectric semiconductor elements of the P-type and N-type Mod The method of production.

本発明によれば、以下の如き優れた効果を発揮する。
(1)組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して、該選定した組成の異なる熱電半導体の素材を低温側から高温側の順に層状に積層充填し固化成形して成形体とし、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直角一軸方向より押圧して上記組成の異なる熱電半導体素材の積層方向に平行な一軸方向に剪断力が掛かるように塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料としてあるので、上記成形体を形成させるときには、該成形体内に、複数の組成の熱電半導体の素材を積層した方向に沿って組成の傾斜を設けることができる。又、上記成形体を、上記複数の組成の熱電半導体素材の積層方向に平行な一軸方向へ剪断力が作用するように更に押圧して塑性変形させることで、上記積層方向の複数の組成の熱電半導体素材同士の界面領域を消失させることができる。よって、積層界面を生じることなく上記複数の組成の連続した傾斜組成を有する熱電半導体材料とすることができる。更に、上記組成変形加工により、組織中の結晶粒を、上記組成の傾斜方向にその六方晶構造のC面が延びるものとし、更に、C軸方向をも揃えることができて、結晶配向性の非常に高いものとすることができる。このために、上記組成の傾斜方向に電流又は熱の作用する方向を設定すると共に、該電流又は熱の作用時に、上記組成を傾斜させるために用いた複数の組成の熱電半導体素材の熱電性能に評価するパラメータがそれぞれ優位となる温度域に対応するように温度勾配を生じさせることにより、熱電性能の向上を図ることができる。
(2)したがって、熱電半導体の原料合金を溶融固化させて箔状、板状とするか、あるいはこれらの粉砕物とさせてなる熱電半導体の素材を、組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して用意し、該用意した複数の組成の熱電半導体素材を、低温側から高温側の順に層状に積層させて固化成形して成形体を形成し、次に、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の積層方向に平行な一軸方向に剪断力を作用させて塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料を形成する熱電半導体材料の製造方法とすることにより、上記傾斜した組成を有すると共に、該組成の傾斜方向に電流又は熱を作用させることにより高い熱電性能を発揮させることができ、且つ組成の傾斜方向に電気伝導の阻害が生じる虞のない熱電半導体材料を得ることができる。
(3)又、上記における熱電性能を評価するパラメータとしてのゼーベック係数に代えて、電気伝導率、パワーファクター、性能指数のいずれかとすることにより、組成傾斜方向に電流又は熱が作用して熱電半導体材料に対して上記組成傾斜方向に温度勾配が生じるときに、上記組成傾斜方向の全体に亘り上記対応するパラメータの優れたものとすることができるため、熱電半導体材料の熱電性能を向上させることができる。
(4)更に、熱電半導体の素材を、複数の熱電半導体の組成の原料合金を個別に溶融した後、徐冷して形成させてなる板状の熱電半導体素材とすることにより、複数の組成の熱電半導体の素材を、それぞれ組織中の結晶粒が板厚方向に延びるものとして、結晶粒の六方晶構造のC面が延びる方向を揃ったものとすることができる。このため、上記各熱電半導体の素材を積層して形成する成形体中においても結晶粒のC面の配向性を高いものとすることができ、該成形体より製造される熱電半導体材料中におけるC面の配向性を更に向上させることができることから、熱電性能をより向上させることができる。
(5)更に又、原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させるようにすると、熱電半導体の素材における配向性を更に高めることができるため、製造される熱電半導体材料の熱電性能の更なる向上を図ることができる。
(6)上記において、複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとすることにより、上述したような積層界面を生じることなく連続した傾斜組成を有して高い熱電性能を備えたP型の熱電半導体材料を得ることができる。
(7)一方、上記において、複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に成分を変化させてなる組成のものとすることにより、上述したような積層界面を生じることなく連続した傾斜組成を有して高い熱電性能を備えたN型の熱電半導体材料を得ることができる。
(8)上記した如く、積層界面を生じることなく連続した傾斜組成を有し、且つ熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料とし、該熱電半導体材料における上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してなる熱電半導体素子とすることにより、電流や熱を上記組成傾斜方向である結晶粒のC面の延びる方向に平行に作用させて、傾斜させた組成の温度特性に応じた温度傾斜を形成させることにより、該熱電半導体素子の全体を熱電性能の高いものとすることができる。
(9)したがって、上述した如き熱電半導体材料を、該熱電半導体材料を形成すべく成形体を塑性変形加工するときに剪断力を作用させた一軸方向の両端部を電極と接合できるように切り出し加工して熱電半導体素子を形成する熱電半導体素子の製造方法とすることにより、電流や熱を組成傾斜方向である結晶粒のC面の延びる方向に平行に作用させて、傾斜させた組成の温度特性に応じた温度傾斜を形成させることにより、全体に亘り高い熱電性能を発揮させることが可能な熱電半導体素子を得ることができる。
(10)上記において、熱電半導体材料における成形体の組成変形加工時に剪断力の作用する一軸方向の一端側と他端側の断面積を相違させて切り出し加工するようにすると、断面積の相違に応じて、上記成形体の塑性加工時に剪断力の作用する一軸方向の通電抵抗を調整できるため、組成を傾斜させることに伴って製造される熱電半導体素子の一端側と他端側における電気伝導率が異なる場合、該電気伝導率の大小に反比例するように断面積を設定することで、一端側から他端側にかけての電気抵抗を熱電半導体素子全体に亘って均一にすることが可能となる。
(11)上記した如き積層界面を生じることなく連続した傾斜組成を有し、且つ熱電半導体の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっているP型及びN型の熱電半導体材料とし、該P型とN型の各熱電半導体材料より、上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してそれぞれ形成してなるP型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力の作用した一軸方向に共に直交する方向に並べて配置すると共に、該P型とN型の各熱電半導体素子を電極を介し接合して形成してなるPN素子対を備えた構成を有する熱電モジュールとすると、上記P型及びN型の各熱電半導体素子にて低温側に温度適性を有する側に取り付けられた電極が低温側に、又、上記各熱電半導体素子の高温側に温度適性を有する側に取り付けられた電極が高温側となるように、該モジュールに対し電流又は熱を作用させることで、熱電性能の高い熱電モジュールとさせることができ、更に、使用時に温度変化に伴って生じる上記金属電極の伸長、収縮変形による応力を、上記P型及びN型の各熱電半導体素子に対し、それぞれの結晶粒の六方晶構造のC面に平行な方向に作用させることができるため、上記金属電極が伸長、収縮変形しても上記各熱電半導体素子の組織中にて結晶の層間剥離が生じる虞を防止できて、上記熱電モジュールの強度、耐久性を向上させることができる。
(12)したがって、上述した如き熱電半導体素子としてP型とN型の各熱電半導体素子を用意して、該P型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能にを評価するパラメータで得られたデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力を作用させた一軸方向に共に直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を電極を介し接合してPN素子対を形成する熱電モジュールの製造方法とすることにより、上記熱電性能がよく、しかも、耐久性や強度の高められた熱電モジュールを得ることができる。
According to the present invention, the following excellent effects are exhibited.
(1) About the change with respect to the temperature obtained by the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side for a plurality of thermoelectric semiconductor materials having different compositions Based on the thermoelectric performance data, the composition of the thermoelectric semiconductor that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each different thermoelectric semiconductor on the low temperature side, and the composition of each thermoelectric semiconductor that differs on the high temperature side Compare the thermoelectric performance that can be exhibited, select the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance, or compare the thermoelectric performance that can exhibit the composition of each of the above different thermoelectric semiconductors on the low temperature side and demonstrate excellent thermoelectric performance Thermoelectric semiconductor that can exhibit excellent thermoelectric performance by comparing the composition of thermoelectric semiconductor that can be produced and the thermoelectric performance that can be exhibited by the different thermoelectric semiconductor compositions on the high temperature side The composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance is selected by comparing the composition of the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side, and the selection was laminated filled solidified molded in layers and molded body in the order of the high-temperature side different thermoelectric semiconductor material from a low temperature side of the composition, a molded article, the uniaxial direction perpendicular to the product layer the direction of different thermoelectric semiconductor material having the composition and more pressed plastically deformed differently thermoelectric semiconductor shear on a flat line uniaxial direction to the product layer direction of the material of the composition is applied, the slope of the composition is provided along the stacking direction of the thermoelectric semiconductor material The crystal grains in the structure of the thermoelectric semiconductor material have their crystal orientation improved by extending the C-plane of the hexagonal structure in the direction of inclination of the composition and further aligning the C-axis direction. a thermoelectric semiconductor material are Is because, when forming the molded body can be the molding body, providing a gradient in composition along the direction laminated thermoelectric semiconductor material of a plurality of compositions. Further, the molded body is further pressed and plastically deformed so that a shearing force acts in a uniaxial direction parallel to the stacking direction of the thermoelectric semiconductor materials having the plurality of compositions. The interface region between the semiconductor materials can be eliminated. Therefore, a thermoelectric semiconductor material having a continuous gradient composition of the plurality of compositions can be obtained without generating a laminated interface. Further, the composition deformation process allows the crystal grains in the structure to have the hexagonal structure C-plane extending in the direction of inclination of the composition, and the C-axis direction can be evenly aligned. It can be very expensive. For this purpose, the direction in which the current or heat acts is set in the inclination direction of the composition, and the thermoelectric performance of the thermoelectric semiconductor materials having a plurality of compositions used to incline the composition during the action of the current or heat. The thermoelectric performance can be improved by generating a temperature gradient so that the parameters to be evaluated correspond to temperature ranges where the parameters are dominant.
(2) Accordingly, a plurality of thermoelectric semiconductor materials having different compositions from the thermoelectric semiconductor materials obtained by melting and solidifying a thermoelectric semiconductor raw material alloy into a foil shape, a plate shape, or a pulverized product thereof. On the basis of the thermoelectric performance data on the change with respect to the temperature obtained with the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side, Comparing the thermoelectric performance that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of the semiconductor, and excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors on the high temperature side The composition of thermoelectric semiconductors that can be used can be selected, or excellent thermoelectric performance can be demonstrated by comparing the thermoelectric performance that can be exhibited by the different thermoelectric semiconductor compositions on the low temperature side. Comparing the composition of the thermoelectric semiconductor and the thermoelectric performance capable of exhibiting the above different thermoelectric semiconductor compositions on the high temperature side, the composition of the thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance, and the temperature range from the low temperature side to the high temperature side Compare the thermoelectric performance that can be exhibited by the different thermoelectric semiconductor compositions, select and prepare the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance , and prepare the thermoelectric semiconductor materials of the prepared multiple compositions from the low temperature side to the high temperature and solidifying and molding by laminating in layers in this order on the side to form a molded body, then, the molded article, biaxial direction intersecting with the straight intersects plane to the product layer the direction of different thermoelectric semiconductor material having the composition among the modifications to the one axial direction at constrained state by pressing than other axial cause a shearing force to the flat line uniaxial direction to the product layer direction of the thermoelectric semiconductor material by plastically deforming, the In the stacking direction of thermoelectric semiconductor materials The crystal grain in the structure of the thermoelectric semiconductor material has a hexagonal C-plane extending in the tilt direction of the composition, and the C-axis direction is also aligned to provide crystal orientation. A thermoelectric semiconductor material manufacturing method for forming a thermoelectric semiconductor material that has been enhanced has the above-described tilted composition and a high thermoelectric power by applying current or heat in the tilt direction of the composition. It is possible to obtain a thermoelectric semiconductor material capable of exhibiting performance and having no risk of impeding electrical conduction in the gradient direction of the composition.
(3) Further, in place of the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in the electrical conductivity, power factor, by either of the performance index, the thermoelectric semiconductor current or heat to composition gradient direction acts When a temperature gradient occurs in the composition gradient direction with respect to the material, the corresponding parameters can be excellent over the entire composition gradient direction, so that the thermoelectric performance of the thermoelectric semiconductor material can be improved. it can.
(4) Furthermore, by making the thermoelectric semiconductor material into a plate-like thermoelectric semiconductor material formed by melting the raw material alloys having a plurality of thermoelectric semiconductor compositions individually and then slowly cooling them, a plurality of compositional compositions are obtained. As the thermoelectric semiconductor material, the crystal grains in the structure extend in the plate thickness direction, and the direction in which the C-plane of the hexagonal crystal structure of the crystal grains extends can be aligned. For this reason, the orientation of the C-plane of the crystal grains can be increased even in a molded body formed by laminating the above thermoelectric semiconductor materials, and C in the thermoelectric semiconductor material produced from the molded body. Since the orientation of the surface can be further improved, the thermoelectric performance can be further improved.
(5) Furthermore, when the plate-shaped thermoelectric semiconductor material is formed by bringing the molten alloy of the raw material alloy into contact with the surface of the cooling member, 90% or more of the thickness of the formed plate-shaped thermoelectric semiconductor material is rapidly cooled. If the molten alloy is cooled and solidified at a rate that does not become a problem, the orientation of the thermoelectric semiconductor material can be further improved, and therefore the thermoelectric performance of the manufactured thermoelectric semiconductor material can be further improved. .
(6) In the above, the thermoelectric semiconductor material of a plurality of compositions, either by the (Bi-Sb) of 2 Te 3 system composition comprising by changing the Ingredient based on the composition as, as described above It is possible to obtain a P-type thermoelectric semiconductor material having a continuous gradient composition and having high thermoelectric performance without generating a laminated interface.
(7) On the other hand, in the above, the thermoelectric semiconductor material of a plurality of compositions, either by those of Bi 2 (Te-Se) the composition of the 3 system by changing the Ingredient based comprising composition, above Thus, an N-type thermoelectric semiconductor material having a continuous gradient composition and high thermoelectric performance can be obtained without causing such a laminated interface.
(8) As described above , the crystal grains in the structure of the thermoelectric semiconductor material have a continuous gradient composition without causing a laminated interface, and the C-plane of the hexagonal structure extends in the gradient direction of the composition. , A thermoelectric semiconductor material in which the C-axis direction is aligned and the crystal orientation is enhanced , and both end portions in the uniaxial direction on which shearing force acts during plastic deformation processing of the molded body in the thermoelectric semiconductor material with Eject and switching power sale by can be bonded with the electrodes processed comprising thermoelectric semiconductor elements, with the current and heat is applied to the flat row in the extending direction of C face of the crystal grains is the above composition gradient direction, are inclined By forming a temperature gradient according to the temperature characteristics of the composition, the entire thermoelectric semiconductor element can have high thermoelectric performance.
(9) Therefore, the thermoelectric semiconductor material as described above is cut out so that both ends in the uniaxial direction to which a shearing force is applied when the molded body is plastically deformed to form the thermoelectric semiconductor material can be joined to the electrode. and by a method for manufacturing a thermoelectric semiconductor elements forming a thermoelectric semiconductor element, is allowed to act on the flat row in the extending direction of C face of the crystal grains having a composition gradient direction current and heat, the composition obtained by gradient temperature By forming a temperature gradient according to the characteristics, a thermoelectric semiconductor element capable of exhibiting high thermoelectric performance throughout can be obtained.
(10) In the above, if the cross-sectional area of the one end side and the other end side in the uniaxial direction in which the shearing force acts during the composition deformation processing of the molded body in the thermoelectric semiconductor material is cut out and processed, the difference in cross-sectional area Accordingly, the electric conductivity in one end side and the other end side of the thermoelectric semiconductor element manufactured by inclining the composition can be adjusted because the uniaxial energization resistance in which a shearing force acts during plastic processing of the molded body can be adjusted. Are different from each other, the cross-sectional area is set so as to be inversely proportional to the magnitude of the electric conductivity, whereby the electric resistance from one end side to the other end side can be made uniform over the entire thermoelectric semiconductor element.
(11) The crystal grains in the structure of the thermoelectric semiconductor have a continuous gradient composition without causing the laminated interface as described above, and the C-plane of the hexagonal structure extends in the gradient direction of the composition. P-type and N-type thermoelectric semiconductor materials that are aligned in the axial direction and have improved crystal orientation , and from the P-type and N-type thermoelectric semiconductor materials, plastic deformation of the molded body is performed. sometimes a uniaxial direction both end portions of the Eject and switching power sale by can be bonded with electrode processing and P-type obtained by forming each the N-type each thermoelectric semiconductor elements of the action of shear forces, the at respective thermoelectric a semiconductor element Based on the thermoelectric performance data about the change with respect to the temperature obtained with the Seebeck coefficient as a parameter for evaluating the thermoelectric performance, the thermoelectric semiconductor compositions that can exhibit excellent thermoelectric performance on the low temperature side, and the high temperature excellent on the side Align electric performance thermoelectric semiconductor composition which can exhibit distribution by side with each other, respectively, and a uniaxial direction by applying a pressing force at the time of plastic deformation of the shaped body, co uniaxially that shear force by the pressing pressure while arranged in a straight direction orthogonal to, when a thermoelectric module having a configuration with the P-type and N-type each thermoelectric semiconductor elements PN element pair formed by formed by bonding via the electrode of the P-type In addition, an electrode attached to the low temperature side of the thermoelectric semiconductor element of each of the N-type thermoelectric semiconductor elements is attached to the low temperature side, and an electrode attached to the high temperature side of each of the thermoelectric semiconductor elements is attached to the temperature appropriate side. By applying current or heat to the module so as to be on the high temperature side, it can be made a thermoelectric module with high thermoelectric performance, and further, the elongation of the metal electrode that occurs with temperature change during use, Since the stress due to the contraction can be applied to the P-type and N-type thermoelectric semiconductor elements in the direction parallel to the C-plane of the hexagonal crystal structure of each crystal grain, the metal electrode expands and contracts. Even if it is deformed, it is possible to prevent the occurrence of crystal delamination in the structure of each thermoelectric semiconductor element, and to improve the strength and durability of the thermoelectric module.
(12) Therefore, P-type and N-type thermoelectric semiconductor elements are prepared as the thermoelectric semiconductor elements as described above, and the P-type and N-type thermoelectric semiconductor elements are connected to the thermoelectric semiconductor elements in the thermoelectric semiconductor elements. Based on the data obtained with the parameters that evaluate performance, the thermoelectric semiconductor compositions that can exhibit excellent thermoelectric performance on the low temperature side, and the thermoelectric semiconductor that can exhibit excellent thermoelectric performance on the high temperature side align the composition distribution by side with each other, respectively, and a uniaxial direction by applying a pressing force at the time of plastic deformation of the shaped body, side by side in a straight direction orthogonal to the co uniaxially which has a shearing force by pressing pressure The thermoelectric module has a good thermoelectric performance as well as durability and strength by arranging the P-type and N-type thermoelectric semiconductor elements through electrodes and forming a PN element pair. High It can be obtained thermoelectric modules that are.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1乃至図9は本発明の熱電半導体材料の製造方法の実施の一形態を示すもので、図1にフローを示す如く、基本的には、製造すべき熱電半導体素子に作用すると想定される低温側から高温側までの温度範囲内における異なる温度域にて熱電性能に関与する所要のパラメータがそれぞれ優れた値をとる複数の組成の熱電半導体の原料合金を用意し、該各組成の原料合金を、それぞれ溶融して溶融合金とした後、各々の溶融合金を、後述する冷却法により、形成される熱電半導体素材の厚さの90%以上が急冷にならない速度でゆっくり冷却(徐冷)し、凝固させて熱電半導体素材となる薄い板状の箔(徐冷箔)を上記各組成ごとに別々に製造する。次に、モールド内に、別々に製造してある上記各組成ごとの熱電半導体素材としての徐冷箔を、優れた熱電性能を発揮できる温度の順に並ぶようにして板厚方向にほぼ平行に積層充填する。次いで、上記モールド内に充填された熱電半導体素材を、後述する所要の加圧条件で固化成形して、異なる温度適性の組成としてある上記複数の熱電半導体素材の積層方向の分布に応じて該熱電半導体素材の積層方向に温度適正に関する傾斜組成を有する成形体を形成する。しかる後、上記成形体を、上記熱電半導体素材の積層方向にほぼ平行な一軸方向に剪断応力が掛かるように荷重を加えて押圧することにより塑性変形させて熱電半導体材料を製造するようにする。   FIG. 1 to FIG. 9 show an embodiment of a method for producing a thermoelectric semiconductor material according to the present invention. As shown in the flow in FIG. Prepare raw material alloys of thermoelectric semiconductors having a plurality of compositions, each of which has excellent values related to thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side, and the raw material alloys of the respective compositions Are melted to form molten alloys, and then each molten alloy is slowly cooled (slowly cooled) at a speed at which 90% or more of the thickness of the thermoelectric semiconductor material to be formed is not rapidly cooled by a cooling method described later. Then, a thin plate-like foil (annealed foil) that is solidified to become a thermoelectric semiconductor material is separately manufactured for each of the above compositions. Next, in the mold, the slow cooling foils as thermoelectric semiconductor materials for each of the above-mentioned components that are separately manufactured are laminated in parallel in the thickness direction so that they are arranged in the order of the temperature at which excellent thermoelectric performance can be exhibited. Fill. Next, the thermoelectric semiconductor material filled in the mold is solidified and molded under the required pressing conditions described later, and the thermoelectric semiconductor material is distributed according to the distribution in the stacking direction of the plurality of thermoelectric semiconductor materials having different temperature suitability. A molded body having a gradient composition related to temperature appropriateness in the stacking direction of the semiconductor material is formed. Thereafter, the molded body is plastically deformed by applying a load so that a shear stress is applied in a uniaxial direction substantially parallel to the lamination direction of the thermoelectric semiconductor material, thereby producing a thermoelectric semiconductor material.

具体的に、N型の熱電半導体材料の製造方法について述べると、先ず、該熱電半導体材料より製造する熱電半導体素子の使用時に作用すると想定される温度範囲、たとえば、熱電発電をおこなう場合に熱電モジュールの熱電半導体素子に作用すると想定される温度範囲が常温付近から300℃付近までの場合には、予め、Bi(Te−Se)となるN型の熱電半導体の化学量論組成を基本として、上記各元素の成分比を変化させたり、ドーパントの種類や添加量を変化させた各種の組成にて形成させたN型の熱電半導体の材料について、常温付近から300℃付近までの温度範囲における熱電性能に関する各種のパラメータ、たとえば、パワーファクター(P)、ゼーベック係数(α)、電気伝導率(σ)のデータを収集し、この収集されたデータに基づいて、常温付近の低温側で優れた熱電性能を発揮できるN型の熱電半導体の組成と、300℃付近の高温側で優れた熱電性能を発揮できるN型の熱電半導体の組成、更に、必要に応じて常温から300℃までの間の温度領域で優れた熱電性能を発揮できるN型の熱電半導体の組成を選定しておく。 Specifically, a method for producing an N-type thermoelectric semiconductor material will be described. First, a thermoelectric module is assumed to be used when a thermoelectric semiconductor element produced from the thermoelectric semiconductor material is used, for example, when performing thermoelectric power generation. In the case where the temperature range assumed to act on the thermoelectric semiconductor element is from about room temperature to about 300 ° C., the stoichiometric composition of the N-type thermoelectric semiconductor that is Bi 2 (Te-Se) 3 in advance is basically used. The N-type thermoelectric semiconductor material formed with various compositions in which the component ratio of each element is changed or the kind and addition amount of the dopant is changed, in a temperature range from around room temperature to around 300 ° C. Various parameters related to thermoelectric performance, such as power factor (P), Seebeck coefficient (α), and electrical conductivity (σ), are collected and collected. Based on the obtained data, the composition of an N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance on the low temperature side near room temperature, and the composition of the N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance on the high temperature side near 300 ° C. Furthermore, the composition of an N-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance in a temperature range from room temperature to 300 ° C. is selected as necessary.

すなわち、たとえば、Bi:40原子%、Te:54原子%、Se:6原子%のN型の熱電半導体の化学量論組成(組成A)を基準として、Bi:40原子%、Te:51原子%、Se:9原子%としてSe濃度を増加させた組成(組成B)、Bi:40原子%、Te:48原子%、Se:12原子%としてSe濃度を更に増加させた組成(組成C)、上記組成Aにドーパントとして硫黄(S)を3原子%添加した組成(組成D)、上記組成Aに対して全体に対する重量比でTeを0.05%過剰に加えて非化学量論組成となるようにした組成(組成E)の5種類の組成について、それぞれ図2に示す如きゼーベック係数(α)の温度に対する変化、図3に示す如き電気伝導率(σ)の温度に対する変化、及び、図4に示す如きパワーファクター(P)の温度に対する変化についてのデータが得られたとする。この場合、熱電性能を評価するためのパラメータの一例として、図2に示されたゼーベック係数(α)の温度適性に着目する場合は、常温付近の低温側にてゼーベック係数(α)の絶対値が大きくなる組成Bを低温側に適した熱電半導体の材料組成として選定し、一方、300℃付近の高温側でゼーベック係数(α)の絶対値が大きくなる組成Cを高温側に適した熱電半導体の材料組成として選定しておく。なお、図2より明らかなように、組成A、組成D、組成Eのものでは、いずれも常温から300℃までの中間温度領域にて上記組成B及び組成Cよりもゼーベック係数(α)の絶対値が大きな値をとることはない。よって、このような場合は、中間温度領域に温度適性を有する組成は選定しなくてよい。   That is, for example, Bi: 40 atomic%, Te: 51 atoms based on the stoichiometric composition (composition A) of an N-type thermoelectric semiconductor of Bi: 40 atomic%, Te: 54 atomic%, Se: 6 atomic% %, Se: 9 atomic%, composition with increased Se concentration (composition B), Bi: 40 atomic%, Te: 48 atomic%, Se: 12 atomic%, composition with further increased Se concentration (composition C) A composition (composition D) obtained by adding 3 atomic% of sulfur (S) as a dopant to the composition A, and a non-stoichiometric composition by adding Te in a weight ratio with respect to the composition A in an excess of 0.05%. Regarding the five types of compositions (composition E), the change in Seebeck coefficient (α) as shown in FIG. 2 with respect to temperature, the change in electrical conductivity (σ) as shown in FIG. 3 with respect to temperature, and Power factor as shown in FIG. -Assume that data on change in temperature of (P) is obtained. In this case, as an example of a parameter for evaluating the thermoelectric performance, when paying attention to the temperature suitability of the Seebeck coefficient (α) shown in FIG. 2, the absolute value of the Seebeck coefficient (α) at the low temperature side near room temperature. Is selected as a material composition of a thermoelectric semiconductor suitable for the low temperature side, while a composition C whose absolute value of the Seebeck coefficient (α) increases on the high temperature side near 300 ° C. is suitable for the high temperature side. The material composition is selected in advance. As is clear from FIG. 2, the compositions A, D, and E all have an absolute Seebeck coefficient (α) higher than that of the composition B and the composition C in the intermediate temperature range from room temperature to 300 ° C. The value never takes a large value. Therefore, in such a case, it is not necessary to select a composition having temperature suitability in the intermediate temperature range.

上記熱電半導体の材料組成を選択する際、熱電半導体材料の熱電性能を評価するためのパラメータとしてゼーベック係数(α)に着目したのは、ドーパントの種類やその添加量を調整することにより電気伝導率(σ)は比較的容易に増加させることができるが、同様にドーパントの種類や添加量を調整してもゼーベック係数(α)は変化させ難いため、熱電半導体の熱電性能に電気伝導率よりもより大きく影響していると考えられるためである。   When selecting the material composition of the above thermoelectric semiconductor, we focused on the Seebeck coefficient (α) as a parameter for evaluating the thermoelectric performance of the thermoelectric semiconductor material because the electrical conductivity was adjusted by adjusting the type of dopant and its addition amount. (Σ) can be increased relatively easily, but similarly, the Seebeck coefficient (α) is difficult to change even if the dopant type and amount added are adjusted, so the thermoelectric performance of the thermoelectric semiconductor is more than the electrical conductivity. This is because it is considered to have a greater influence.

次に、成分調整工程Iとして、上記組成Bとなる熱電半導体の原料合金と、組成Cとなる熱電半導体の原料合金を別々に合金仕込みをする。   Next, as the component adjustment step I, the alloy of the thermoelectric semiconductor material alloy having the composition B and the thermoelectric semiconductor material alloy having the composition C are separately charged.

次いで、徐冷箔製造工程IIとして、図5に示す如く、上記成分調製工程Iにて別々に仕込んだ組成Bと組成Cごとに、原料合金の金属混合物を、還元ガス雰囲気、不活性ガス雰囲気又は真空等の低酸素濃度雰囲気を保持できるようにした容器5内に設置してある石英製の溶融るつぼ6内に入れ、加熱コイル7で加熱することにより溶融させて溶融合金8とした後、該溶融合金8を、冷却部材としての水冷ロール等の回転ロール9の表面に供給して凝固させ、これにより、上記組成Bと組成Cの原料合金について、それぞれ図6に示す如き薄い板状の熱電半導体素材10b,10cとしての徐冷箔を別々に製造する。この際、回転ロール9の周速を適宜調整、たとえば、5m/秒以下に設定することにより、回転ロール9の表面にて溶融合金8を凝固させて組成Bと組成Cの熱電半導体素材10b、10cを各々形成させるときに、該形成される熱電半導体素材10b,10cの厚さの90%以上が急冷にならないようにする。上記熱電半導体素材10b,10cにおいて、符号に付してある小文字のアルファベットは、該各熱電半導体素材10b及び10cが、それぞれ対応する大文字のアルファベットで示した組成、すなわち、それぞれ組成B及び組成Cに示した組成を有することを示すものである。以降の実施の形態でも同様とする。   Next, as a slow cooling foil manufacturing process II, as shown in FIG. 5, a metal mixture of raw material alloys is reduced into a reducing gas atmosphere and an inert gas atmosphere for each of the compositions B and C separately charged in the component preparation process I. Alternatively, after being put in a quartz melting crucible 6 installed in a container 5 that can maintain a low oxygen concentration atmosphere such as a vacuum, the molten alloy 8 is melted by heating with a heating coil 7, The molten alloy 8 is supplied to the surface of a rotating roll 9 such as a water-cooled roll as a cooling member to be solidified. As a result, the raw material alloys of the composition B and the composition C are thin plate-like as shown in FIG. The slow cooling foils as the thermoelectric semiconductor materials 10b and 10c are manufactured separately. At this time, by adjusting the peripheral speed of the rotating roll 9 as appropriate, for example, by setting it to 5 m / second or less, the molten alloy 8 is solidified on the surface of the rotating roll 9 so that the thermoelectric semiconductor material 10b having the composition B and the composition C is obtained. When each of the 10c is formed, 90% or more of the thickness of the formed thermoelectric semiconductor material 10b, 10c is prevented from being rapidly cooled. In the thermoelectric semiconductor materials 10b and 10c, the lower case alphabets attached to the reference numerals are the compositions indicated by the corresponding upper case alphabets of the thermoelectric semiconductor materials 10b and 10c, that is, the compositions B and C, respectively. It shows that it has the composition shown. The same applies to the following embodiments.

これにより、上記組成B及び組成Cの原料合金の溶融合金8は、いずれも回転ロール9上に供給されて徐冷されることによって回転ロール9との接触面側よりロール外周方向へ溶融合金8の厚み方向にゆっくりと順次冷却され、このため図6に示す如く、結晶粒11の六方晶構造C面の延びる方向の大部分が板厚方向(図中矢印tで示す方向)に揃えられながら、熱電半導体素材10b,10cとしての厚さの厚い徐冷箔が形成される。   Thereby, the molten alloy 8 of the raw material alloy of the composition B and the composition C is supplied onto the rotating roll 9 and gradually cooled, whereby the molten alloy 8 is moved from the contact surface side with the rotating roll 9 toward the outer periphery of the roll. Thus, as shown in FIG. 6, most of the extending direction of the hexagonal crystal structure C surface of the crystal grains 11 is aligned in the plate thickness direction (the direction indicated by the arrow t in the figure). Then, a thick slow cooling foil as the thermoelectric semiconductor materials 10b and 10c is formed.

なお、図6では熱電半導体素材10b,10cの組織中における結晶粒11を模式的に六角形で示してあるが、この六角形は、上記結晶粒11の六方晶構造の実際の結晶格子を示すものではなく、説明の便宜上、該六角形の面により結晶粒11の六方晶構造のC面の向きを概略的に示すと共に、又、上記六角形の扁平する方向により結晶粒11の扁平する方向、すなわち、結晶粒11の配向する方向性を概略的に示すようにしたものである。以降の図でも同様とする。   In FIG. 6, the crystal grains 11 in the structure of the thermoelectric semiconductor materials 10 b and 10 c are schematically shown as hexagons. The hexagons indicate the actual crystal lattice of the hexagonal crystal structure of the crystal grains 11. For convenience of explanation, the direction of the C-plane of the hexagonal crystal structure of the crystal grain 11 is schematically shown by the hexagonal face, and the direction in which the crystal grain 11 is flattened by the flattening direction of the hexagon. That is, the orientation of the crystal grains 11 is schematically shown. The same applies to the following figures.

又、上記徐冷箔製造工程IIにて製造される組成Bと組成Cのそれぞれの熱電半導体素材10b,10cは、以下に述べる固化成形工程IIIに送る前に、混入している粒径の小さ
い粉末を篩にかけて予め除去するようにしておいてもかまわない。
Further, the thermoelectric semiconductor materials 10b and 10c of the composition B and the composition C manufactured in the slow cooling foil manufacturing process II have small particle diameters mixed before being sent to the solidification molding process III described below. The powder may be removed in advance by sieving.

その後、固化成形工程IIIとして、還元ガス雰囲気、不活性ガス雰囲気又は10Pa以
下の真空等の低酸素濃度雰囲気を保持できるようにした容器(図示せず)内にて、上記徐冷箔製造工程IIにて別々に製造された組成Bの熱電半導体素材10b徐冷箔と、組成Cの熱電半導体素材10cの徐冷箔を、積層方向の一端部には上記組成Bの熱電半導体素材10bの徐冷箔のみが存在すると共に、積層方向の他端部には組成Cの熱電半導体素材10cの徐冷箔のみが存在し、且つ積層方向の中間部では一端側から他端側へ向けて組成Bの熱電半導体素材10bの割合が徐々に少なくなると同時に組成Cの熱電半導体素材10cの割合が徐々に多くなるよう両者の混合比を漸次変化させた上記熱電半導体素材10bと10cの徐冷箔の混合物が配置されるようにして、図示しないモールド内に、ほぼ平行に板厚方向(矢印t方向)に積層配置するよう充填する。
Thereafter, as the solidification molding step III, the above slow cooling foil production step II is performed in a reducing gas atmosphere, an inert gas atmosphere, or a container (not shown) capable of maintaining a low oxygen concentration atmosphere such as a vacuum of 10 Pa or less. The thermoelectric semiconductor material 10b annealed foil of composition B and the annealed foil of thermoelectric semiconductor material 10c of composition C, which are separately manufactured in the above, are annealed at one end in the stacking direction. While only the foil is present, only the slow cooling foil of the thermoelectric semiconductor material 10c having the composition C is present at the other end portion in the stacking direction, and the composition B is formed from the one end side toward the other end side in the intermediate portion in the stacking direction. A mixture of the gradually cooled foils of the thermoelectric semiconductor materials 10b and 10c, in which the mixing ratio of the two is gradually changed so that the ratio of the thermoelectric semiconductor material 10b gradually decreases and the ratio of the thermoelectric semiconductor material 10c having the composition C gradually increases, is obtained. Arranged In the so that, in the not-shown mold is filled to stacked in the thickness direction (direction of arrow t) substantially parallel.

すなわち、具体的には、上記モールド内の徐冷箔を積層して充填すべき高さ寸法を、複数の層、たとえば、5つの層に分け、最下層となる第1層目に組成Bの熱電半導体素材10bのみを充填し、次に、第2層目には上記熱電半導体素材10bと組成Cの熱電半導体素材10cを3対1の割合で混合してなる徐冷箔を充填し、次いで、第3層目と第4層目には熱電半導体素材10bと熱電半導体素材10cとの混合比をそれぞれ2対2、1対3と順次変えて混合してなる徐冷箔を充填し、最上層となる第5層目には組成Cの熱電半導体素材10cの徐冷箔のみを充填するようにする。   Specifically, the height dimension to be filled by laminating the slow cooling foil in the mold is divided into a plurality of layers, for example, five layers, and the composition B is formed in the first layer which is the lowest layer. Only the thermoelectric semiconductor material 10b is filled, and then the second layer is filled with a slow cooling foil obtained by mixing the thermoelectric semiconductor material 10b and the thermoelectric semiconductor material 10c having the composition C in a ratio of 3: 1, The third layer and the fourth layer are filled with slow cooling foils obtained by mixing the thermoelectric semiconductor material 10b and the thermoelectric semiconductor material 10c with a mixing ratio of 2 to 2, and 1 to 3, respectively. The fifth layer, which is the upper layer, is filled with only the slow cooling foil of the thermoelectric semiconductor material 10c having the composition C.

しかる後、上記モールドに充填された熱電半導体素材10b及び10cの徐冷箔を、焼結すると共に加圧することにより一体に固化成形して所要形状、たとえば、図7(イ)(ロ)(ハ)に示す如く、後述する塑性変形工程IVにて使用する塑性加工装置13における拘束部材15間の幅と対応する所要の幅寸法を有する直方体状の成形体12を製造する。   Thereafter, the slow cooling foils of the thermoelectric semiconductor materials 10b and 10c filled in the mold are sintered and pressed to be integrally solidified and molded into a desired shape, for example, FIG. ), A rectangular parallelepiped shaped body 12 having a required width dimension corresponding to the width between the restraining members 15 in the plastic working device 13 used in the plastic deformation step IV described later is manufactured.

これにより、上記成形体12は、上記熱電半導体素材の積層方向の一端部が組成Bとなると共に、他端部が組成Cとなり、且つ中間部が一端側より他端側へ向けて組成Bより組成Cへと徐々に組成が変化するように傾斜した組成を備えた材料となる。なお、図7(ロ)は、成形体12の構造の基本構成である熱電半導体素材10b、10cとしての徐冷箔の積層構造を模式的に示すものであり、図7(ハ)は上記図7(ロ)の熱電半導体素材10b、10cの積層構造の一部を拡大して示すものである。   Thereby, the molded body 12 has the composition B at one end in the stacking direction of the thermoelectric semiconductor material, the composition C at the other end, and the composition B from the one end side toward the other end. The material has a composition that is inclined so that the composition gradually changes to composition C. FIG. 7B schematically shows a laminated structure of slow cooling foils as the thermoelectric semiconductor materials 10b and 10c, which is the basic structure of the structure of the molded body 12, and FIG. 7 (b) is an enlarged view of a part of the laminated structure of the thermoelectric semiconductor materials 10b and 10c.

上記焼結のときの反応条件としては、所要の圧力、たとえば、14.7MPa以上の圧力を付与しながら、500℃以下となる温度条件、好ましくは、420℃以上450℃以下の温度まで加熱して、該温度にて、短時間、たとえば、5秒から5分程度保持することにより焼結を行わせるようにする。なお、この焼結の際の温度条件範囲の下限は380℃以上とする。これは、焼結温度が380℃未満の場合には、成形体12の密度が上がらないためである。   As the reaction conditions at the time of the sintering, while applying a required pressure, for example, a pressure of 14.7 MPa or more, a temperature condition of 500 ° C. or lower, preferably 420 ° C. or higher and 450 ° C. or lower is applied. Thus, the sintering is performed at the temperature for a short time, for example, for about 5 seconds to 5 minutes. The lower limit of the temperature condition range during the sintering is 380 ° C. or higher. This is because when the sintering temperature is less than 380 ° C., the density of the molded body 12 does not increase.

更に、上記焼結の際は、焼結対象物に温度分布の偏りを生じさせることなく焼結対象物を全体に亘りほぼ均一に上記所要の焼結温度条件に到達させることができるように、多段加熱を行うようにするとよい。ここで、多段加熱とは、焼結対象物を図示しない所要の加熱源を用いて上記所要の焼結温度条件まで昇温させるときに、途中で1回以上、所要期間、たとえば、10秒以上に亘り上記加熱源による加熱を一時停止させたり、加熱源による加熱量を低下させて焼結対象物の昇温速度を一時遅くなるよう変化させることにより、上記加熱停止期間あるいは昇温速度低下期間に焼結対象物自体の熱伝導を利用して該焼結対象物全体の温度の均一化を図り、このようにして昇温途中の温度で全体の温度を均一化させた後、焼結対象物を更に加熱するようにすることにより、焼結対象物をほぼ均一に最終到達温度である上記焼結温度条件まで昇温させるようにする手法である。したがって、途中で焼結対象の温度の均一化を図ることにより、加熱源による加熱個所に偏りがあったとしても焼結温度到達時における温度分布の偏在化を抑制できるようにしてある。この場合の焼結に用いる加熱装置(加熱炉)としては、通常のホットプレスや通電ホットプレス、パルス通電ホットプレス等を用いるようにしてもよい。又、上記加熱停止期間や、昇温速度低下期間は、10秒以上に限定されるものではなく、加熱源の加熱能力や、焼結対象物の大きさ等に応じて任意に設定すればよい。   Furthermore, at the time of the above-mentioned sintering, the sintering object can be made to reach the required sintering temperature condition almost uniformly throughout the whole without causing the temperature distribution to be uneven in the sintering object. It is preferable to perform multistage heating. Here, the multi-stage heating means that the temperature of the sintering object is raised to the required sintering temperature condition using a required heating source (not shown) at least once during the required period, for example, 10 seconds or longer. The heating stop period or the temperature rising rate lowering period can be temporarily stopped by temporarily stopping heating by the heating source or changing the heating rate by the heating source so as to temporarily slow the temperature rising rate of the object to be sintered. The temperature of the entire sintered object is made uniform by utilizing the heat conduction of the sintered object itself, and the entire temperature is made uniform at the temperature in the middle of the temperature rise in this way. In this method, the object is further heated to raise the temperature of the object to be sintered to the above sintering temperature condition, which is the final temperature. Therefore, by making the temperature of the object to be sintered uniform in the middle, even if the heating location by the heating source is uneven, it is possible to suppress uneven distribution of the temperature distribution when the sintering temperature is reached. As a heating device (heating furnace) used for sintering in this case, a normal hot press, energizing hot press, pulse energizing hot press, or the like may be used. Further, the heating stop period and the temperature increase rate decrease period are not limited to 10 seconds or more, and may be arbitrarily set according to the heating capacity of the heating source, the size of the sintering object, and the like. .

上記徐冷箔製造工程IIにて形成される組成Bと組成Cの熱電半導体素材10b,10cとしての徐冷箔は、厚さが大きく、そのまま積層すると嵩が増えて積層物中には隙間が多く存在するようになるが、固化成形工程IIIにおいて上記熱電半導体素材10b,10c
を積層した後、加圧しながら焼結すると、上記各熱電半導体素材10b,10c間の隙間を埋めるようにそれぞれの熱電半導体素材10b,10cの原子が動き、この原子の動きに伴って、熱電半導体素材10b,10c同士の隙間が埋められるよう各熱電半導体素材10b,10c同士が接触するよう塑性変形され、この塑性変形されて接触された熱電半導体素材10b,10cの界面同士が接合される。この際、熱電半導体素材10b,10cの変形に伴い該熱電半導体素材10b,10cの板厚方向にほぼ揃うように配向されていた結晶粒11のC面の配向性が多少乱れるが、図7(ロ)に示すように、上記成形体12を構成する各熱電半導体素材10b,10cの徐冷箔の内部では、結晶粒11の配向性が、図3に示した熱電半導体素材10b,10cの単体の場合とほぼ同様な配向性(矢印t方向)として保持される。
The slow cooling foils as the thermoelectric semiconductor materials 10b and 10c of the composition B and the composition C formed in the slow cooling foil manufacturing process II have a large thickness, and when they are laminated as they are, the bulk increases and there are gaps in the laminate. Although there are many, the thermoelectric semiconductor materials 10b, 10c in the solidification molding process III
When the layers are stacked and then sintered under pressure, the atoms of the thermoelectric semiconductor materials 10b and 10c move so as to fill the gaps between the thermoelectric semiconductor materials 10b and 10c. The thermoelectric semiconductor materials 10b and 10c are plastically deformed so that the gaps between the materials 10b and 10c are filled, and the interfaces of the thermoelectric semiconductor materials 10b and 10c that are in contact with the plastic deformation are joined. At this time, with the deformation of the thermoelectric semiconductor materials 10b and 10c, the orientation of the C-plane of the crystal grains 11 aligned so as to be substantially aligned in the plate thickness direction of the thermoelectric semiconductor materials 10b and 10c is somewhat disturbed. As shown in FIG. 3B, the orientation of the crystal grains 11 within the slow cooling foils of the thermoelectric semiconductor materials 10b and 10c constituting the molded body 12 is such that the thermoelectric semiconductor materials 10b and 10c shown in FIG. In this case, the orientation is substantially the same as in the case of (in the direction of arrow t).

又、上記成形体12は、熱電半導体素材10b,10cとしての厚さが厚い徐冷箔を、板厚方向にほぼ平行に積層した後、固化成形しているため、熱電半導体素材10a,10b同士の隙間を容易に低減させることができて、形成される成形体12の密度を、同様の組成の複合化合物半導体を理想的な結晶構造とした場合の密度に比して99%程度以上まで向上させることが可能になる。   Further, since the molded body 12 is formed by solidifying and molding the slow cooling foils as the thermoelectric semiconductor materials 10b and 10c which are thick in parallel to the plate thickness direction, the thermoelectric semiconductor materials 10a and 10b are Can be easily reduced, and the density of the formed body 12 is improved to about 99% or more compared to the density when a composite compound semiconductor having the same composition is formed into an ideal crystal structure. It becomes possible to make it.

その後、塑性変形工程IVとして、各材料の酸化を防止できるよう還元ガス雰囲気、不活性ガス雰囲気又は真空等の低酸素濃度、たとえば、酸素分圧0.2Pa以下の雰囲気を保持できるようにしてある図示しない密封容器内にて、図8(イ)(ロ)(ハ)に示す如く、ベース14上の左右位置に、ほぼ平行な対向面部を備えた一対の板状の拘束部材15を、上記成形体12の幅方向の寸法(成形体12を構成する熱電半導体素材10b,10cの主な積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向の寸法)と対応する所要間隔を隔てて立設し、且つ該左右の拘束部材15の内側に、パンチ16を上下方向スライド自在に配置する。該パンチ16を図示しない昇降駆動装置により上記左右の拘束部材15の上方位置から各拘束部材15の内側における下部位置まで荷重を付加しながら下降させることができるようにする。更に、上記ベース14、拘束部材15、パンチ16の所要位置に図示しない加熱装置を備えてなる構成の塑性加工装置13を用意しておき、図8(イ)に示す如く、上記パンチ16を、拘束部材15の上部位置に引き上げた状態にて、該各拘束部材15同士の内側における中央部に、上記固化成形工程IIIにて形成さ
れる成形体12を、該成形体12を構成する熱電半導体素材10b,10cの積層方向(熱電半導体素材10b,10cの板厚方向に同じ矢印t方向)が左右の拘束部材15と平行な配置となるようにし、且つ該成形体12の幅方向両側面を上記左右の拘束部材15の内側面に接触させるよう配置する。次に、加熱装置により上記成形体12を470℃以下、好ましくは450℃以下の温度条件に加熱した状態にて、図8(イ)に二点鎖線で示す如く、昇降駆動装置により上記パンチ16を下降させて上記成形体12に対し上方より所要荷重の押圧力を作用させる。これにより、該成形体12を、熱電半導体素材10b,10cの積層方向に平行な一軸方向に展延させるよう塑性変形させて、図8(ハ)に示す如く、直方体状の熱電半導体材料17を製造するようにする。
Thereafter, as a plastic deformation step IV, a low oxygen concentration such as a reducing gas atmosphere, an inert gas atmosphere, or a vacuum, for example, an oxygen partial pressure of 0.2 Pa or less can be maintained so as to prevent oxidation of each material. In a sealed container (not shown), as shown in FIGS. 8 (a), (b), and (c), a pair of plate-like restraining members 15 each having a substantially parallel facing surface portion are provided at the left and right positions on the base 14. Requirement corresponding to the dimension in the width direction of the molded body 12 (the dimension in one of the two axial directions intersecting in a plane orthogonal to the main stacking direction of the thermoelectric semiconductor materials 10b and 10c constituting the molded body 12). The punch 16 is disposed so as to be slidable in the vertical direction inside the left and right restraining members 15 while standing upright. The punch 16 can be lowered while applying a load from an upper position of the left and right restraining members 15 to a lower position inside each restraining member 15 by an elevator drive device (not shown). Furthermore, a plastic working device 13 having a heating device (not shown) is prepared at required positions of the base 14, the restraining member 15, and the punch 16, and the punch 16 is moved as shown in FIG. In a state where the restraint member 15 is pulled up to the upper position, the molded body 12 formed in the solidification molding step III is formed at the center inside the restraint members 15. The stacking direction of the materials 10b and 10c (the direction of the arrow t which is the same as the thickness direction of the thermoelectric semiconductor materials 10b and 10c) is arranged parallel to the left and right restraining members 15, and both side surfaces in the width direction of the molded body 12 are It arrange | positions so that the inner surface of the said right and left restraint member 15 may be contacted. Next, in a state where the molded body 12 is heated to a temperature condition of 470 ° C. or less, preferably 450 ° C. or less by a heating device, the punch 16 is moved by an elevating drive device as shown by a two-dot chain line in FIG. And a pressing force of a required load is applied to the molded body 12 from above. Thus, the compact 12 is plastically deformed so as to extend in a uniaxial direction parallel to the stacking direction of the thermoelectric semiconductor materials 10b and 10c, and a rectangular parallelepiped thermoelectric semiconductor material 17 is obtained as shown in FIG. Try to manufacture.

上記塑性加工装置13にて、パンチ16による押圧力を成形体12に対し上方より作用させると、該成形体12は、幅方向への変形が左右の拘束部材15により拘束されているため、拘束部材15と平行な方向、すなわち、成形体12における熱電半導体素材10b,10cの積層方向(矢印t方向)への変形のみが許容され、このため該積層方向に平行な一軸方向に剪断力が作用させられる。これにより、上記塑性変形前の成形体12を構成していた組成B及び組成Cの熱電半導体素材10b及び10cの徐冷箔は、積層界面が破壊されて隣接するもの同士が互いに一体化されるよう再結合されると共に、上記成形体12における熱電半導体素材10b,10cの板厚方向と平行な方向に六方晶構造のC面が延びるよう配向されていた結晶粒11は、上記剪断力が作用する方向に扁平に塑性変形されつつ、劈開面が押圧方向に垂直になるよう配向されてゆく。したがって、図9(イ)に示す如き上記成形体12の塑性変形加工後に形成される熱電半導体材料17の組織中では、図9(ロ)に結晶配向性を模式的に示すように各結晶粒11は、その六方晶構造のC面が、成形体12の展延方向、すなわち、変形前の成形体12における熱電半導体素材10b,10cの積層方向(矢印t方向)に平行に延びるよう変形され、同時に大部分の結晶粒11は、そのC軸方向が上記塑性加工時における押圧方向(図中矢印pで示す方向)に揃うように配向させられる。なお図9(ロ)における六角形は結晶粒11の配向性を示しているに過ぎず、実際の結晶粒11の大きさを反映するものではない。更に、上述したように、熱電半導体素材10b,10cとしての徐冷箔は、積層界面が破壊されて隣接するもの同士が一体化されるため、形成される上記熱電半導体材料17中では、組成Bの熱電半導体素材10bとしての徐冷箔と組成Cの熱電半導体素材10cとしての徐冷箔は互いに一体化され、このため、上記熱電半導体材料17は、熱電半導体素材10b,10cを積層させた方向(図中t方向)の一端側から他端側へ向けて、組成Bから組成Cへ組成が連続的に変化するものとされる。   When the pressing force applied by the punch 16 is applied to the molded body 12 from above by the plastic working device 13, the molded body 12 is restrained by deformation in the width direction by the right and left restraining members 15. Only deformation in the direction parallel to the member 15, that is, the thermoelectric semiconductor materials 10 b and 10 c in the stacking direction (arrow t direction) in the molded body 12 is allowed, and therefore, shear force acts in a uniaxial direction parallel to the stacking direction. Be made. Thereby, the slow cooling foils of the thermoelectric semiconductor materials 10b and 10c of the composition B and the composition C constituting the molded body 12 before the plastic deformation are destroyed and the adjacent ones are integrated with each other. In addition, the shearing force acts on the crystal grains 11 that are oriented so that the C plane of the hexagonal crystal structure extends in a direction parallel to the plate thickness direction of the thermoelectric semiconductor materials 10b and 10c in the molded body 12. The cleaved surface is oriented so as to be perpendicular to the pressing direction while being plastically deformed flat in the direction to be pressed. Therefore, in the structure of the thermoelectric semiconductor material 17 formed after plastic deformation of the molded body 12 as shown in FIG. 9 (a), each crystal grain is schematically shown in FIG. 9 (b). 11, the C-plane of the hexagonal crystal structure is deformed so as to extend in parallel to the extending direction of the molded body 12, that is, the stacking direction (the arrow t direction) of the thermoelectric semiconductor materials 10b and 10c in the molded body 12 before deformation. At the same time, most of the crystal grains 11 are oriented so that their C-axis directions are aligned with the pressing direction (the direction indicated by the arrow p in the figure) during the plastic working. Note that the hexagonal shape in FIG. 9B only indicates the orientation of the crystal grains 11 and does not reflect the actual size of the crystal grains 11. Furthermore, as described above, since the slow cooling foils as the thermoelectric semiconductor materials 10b and 10c are destroyed and the adjacent ones are integrated, in the thermoelectric semiconductor material 17 to be formed, the composition B The slow cooling foil as the thermoelectric semiconductor material 10b and the slow cooling foil as the thermoelectric semiconductor material 10c of the composition C are integrated with each other. For this reason, the thermoelectric semiconductor material 17 has a direction in which the thermoelectric semiconductor materials 10b and 10c are laminated. It is assumed that the composition continuously changes from the composition B to the composition C from one end side to the other end side (t direction in the figure).

なお、上記塑性加工装置13は、成形体12の塑性変形加工時には左右の各拘束部材15に外向きの大きな応力が作用するようになるため、図8(ニ)に示す如く、上記左右の拘束部材15の外周側を取り囲むように、一連の位置固定用リング15aを設けた構成として、上記左右の拘束部材15に作用する応力を、上記位置固定用リング15aに受けさせるようにしてもよい。   In the plastic working device 13, since a large outward stress is applied to the left and right restraining members 15 during plastic deformation of the molded body 12, as shown in FIG. As a configuration in which a series of position fixing rings 15a is provided so as to surround the outer peripheral side of the member 15, stress acting on the left and right restraining members 15 may be received by the position fixing ring 15a.

このように、上記本発明のN型の熱電半導体材料17は、組成Bと組成Cの原料合金の溶融合金8を、個別に回転ロール9を用いて徐冷、凝固させることにより、結晶粒11を板厚方向に配向させると共に、ほぼ板厚方向の全長に亘る長いものとさせて結晶配向性が向上された構造を有してなる組成Bと組成Cのそれぞれの熱電半導体素材10b,10cとし、この熱電半導体素材10b,10cを、結晶配向性を維持させたままでそれぞれの存在比を100%対0%から0%対100%まで徐々に変化させながら積層して加圧焼結することにより成形体12を形成する。更に、該成形体12を、熱電半導体素材10b,10cの積層方向となる該熱電半導体素材10b,10cの板厚方向にほぼ平行な一軸方向にのみ展延させてなる構造を有するものとしているので、熱電半導体材料17の一端部の組成を組成Bとして常温付近にてゼーベック係数の絶対値が大きくなる領域とすると共に、他端部の組成を組成Cとして300℃付近でゼーベック係数の絶対値が大きくなる領域とさせることができ、且つ中間部を、一端側から他端側へ向けて組成Bから組成Cへ連続的に変化する傾斜組成とさせることができる。したがって、上記熱電半導体材料17を、一端部を常温付近の温度に保ち、且つ他端部を300℃付近の高温に曝すようにして、該熱電半導体材料17の一端側から他端側に、常温付近から300℃付近までの温度勾配を形成させると、上記熱電半導体材料17は、一端側から他端側の全体に亘って絶対値の大きなゼーベック係数を得ることができるものとなる。更に、上記熱電半導体材料17製造時に成形体12を、該成形体12製造時における熱電半導体素材10b、10cの積層方向へ塑性変形させることで積層界面の破壊と同時に再結合を行わせて界面領域を消失させることができるため、組成Bから組成Cへの組成の変化は連続的に行なわせることができる。したがって、特許文献1に記載された如き従来の傾斜機能材料化した熱電半導体の材料のように、組成の異なる層同士の間で生じていた電気伝導の阻害をなくすことができる。   As described above, the N-type thermoelectric semiconductor material 17 of the present invention is obtained by slowly cooling and solidifying the molten alloy 8 of the raw material alloy having the composition B and the composition C by using the rotating roll 9 individually. The thermoelectric semiconductor materials 10b and 10c of the composition B and the composition C each having a structure in which the crystal orientation is improved by orienting in the plate thickness direction and having a length substantially extending over the entire length in the plate thickness direction. The thermoelectric semiconductor materials 10b and 10c are stacked and pressure-sintered while gradually changing the abundance ratio from 100% to 0% to 0% to 100% while maintaining the crystal orientation. Formed body 12 is formed. Further, the molded body 12 has a structure in which the molded body 12 is expanded only in a uniaxial direction substantially parallel to the plate thickness direction of the thermoelectric semiconductor materials 10b and 10c, which is the stacking direction of the thermoelectric semiconductor materials 10b and 10c. The composition of one end portion of the thermoelectric semiconductor material 17 is a region where the absolute value of the Seebeck coefficient is large near room temperature with the composition B, and the composition of the other end portion is the composition C and the absolute value of the Seebeck coefficient is near 300 ° C. The intermediate region can be a gradient composition that continuously changes from composition B to composition C from one end side to the other end side. Therefore, the thermoelectric semiconductor material 17 is heated from one end side to the other end side of the thermoelectric semiconductor material 17 so that one end thereof is kept at a temperature around room temperature and the other end is exposed to a high temperature around 300 ° C. When a temperature gradient is formed from near to 300 ° C., the thermoelectric semiconductor material 17 can obtain a Seebeck coefficient having a large absolute value from one end side to the other end side. Further, when the thermoelectric semiconductor material 17 is manufactured, the molded body 12 is plastically deformed in the stacking direction of the thermoelectric semiconductor materials 10b and 10c at the time of manufacturing the molded body 12, thereby causing recombination at the same time as the destruction of the stacked interface. Therefore, the composition change from the composition B to the composition C can be performed continuously. Therefore, like the conventional thermoelectric semiconductor material made into a functionally graded material as described in Patent Document 1, it is possible to eliminate the inhibition of electrical conduction that has occurred between layers having different compositions.

更に、上記熱電半導体材料17は、全体に亘り、結晶粒11を、その六方晶構造のC面の延びる方向及びC軸方向をほぼ揃えることができることから、上記各結晶粒11のC面の延びる方向、すなわち、上記組成Bから組成Cへ組成を連続的に傾斜する方向と同方向に電流又は熱の作用する方向を設定することにより、電気抵抗(ρ)を低減させることができる。   Further, since the thermoelectric semiconductor material 17 can substantially align the crystal grains 11 in the hexagonal C-plane extending direction and the C-axis direction, the thermoelectric semiconductor material 17 extends in the C-plane of each of the crystal grains 11. The electric resistance (ρ) can be reduced by setting the direction, that is, the direction in which the current or heat acts in the same direction as the direction in which the composition is continuously inclined from the composition B to the composition C.

又、図10は本発明の熱電半導体材料の製造方法の実施の他の形態を示すもので、上述した実施の形態の場合と同様の熱電半導体材料の製造手順における塑性変形工程IVにおいて、成形体12を押圧して熱電半導体素材10b,10cの徐冷箔の積層方向と平行な一軸方向に剪断力を作用させて所要形状まで塑性変形させるときに、該塑性変形自体を行わせる一軸剪断力作用工程IV−1の途中、たとえば、低変形率のとき等に、一回以上の全方位静水圧工程IV−2を行うようにして、上記組成変形を複数回に分けて行うようにしてもよい。ここで、全方位静水圧工程IV−2とは、成形体12の塑性変形時に、変形方向にある面に、上記変形途中の成形体12を接触させて一時変形を拘束した状態で、一定時間圧力をかけ続ける工程のことをいう。   FIG. 10 shows another embodiment of the method for manufacturing a thermoelectric semiconductor material of the present invention. In the plastic deformation step IV in the same procedure for manufacturing a thermoelectric semiconductor material as in the above-described embodiment, a molded body is formed. The uniaxial shearing force action that causes the plastic deformation itself to be performed when pressing 12 to apply a shearing force in a uniaxial direction parallel to the laminating direction of the slow cooling foils of the thermoelectric semiconductor materials 10b and 10c to plastic deformation to a required shape. During the process IV-1, for example, at a low deformation rate, the composition deformation may be performed in a plurality of times by performing one or more omnidirectional hydrostatic pressure processes IV-2. . Here, the omnidirectional hydrostatic pressure step IV-2 is a state in which, during plastic deformation of the molded body 12, the molded body 12 in the middle of the deformation is brought into contact with a surface in the deformation direction to restrain temporary deformation for a certain period of time. A process that continues to apply pressure.

なお、上記全方位静水圧工程IV−2は、図11(イ)(ロ)(ハ)に概要を示す如く、2回以上行ってもよく、この場合には、前後方向の拘束部材18同士の間隔が段階的に広くなる複数の塑性加工装置13aを用意して、前後方向の拘束部材18の間隔が狭いものから順に使用して、上記と同様にパンチ16aの下降させることにより固化成形工程III
にて形成した成形物12に対し押圧力を上方より作用させて熱電半導体素材10の積層方向にほぼ平行な一軸方向に剪断力を作用させて、初期状態からの変形量が順次大きくなるように塑性変形させた後、前後の拘束部材18により変形を拘束した状態で全方位静水圧を作用させるようにし、最終的に前後方向の拘束部材18のない塑性加工装置13により前後方向へ展延させるよう塑性変形させるようにすればよい。
Note that the omnidirectional hydrostatic pressure step IV-2 may be performed twice or more as shown in FIGS. 11 (a), (b), and (c). Preparing a plurality of plastic working devices 13a in which the intervals between the front and rear directions are narrowed and using them in order from the narrowest spacing between the restraining members 18 in the front-rear direction, and lowering the punch 16a in the same manner as described above, thereby solidifying and forming the step. III
A pressing force is applied to the molded product 12 formed from above to apply a shearing force in a uniaxial direction substantially parallel to the stacking direction of the thermoelectric semiconductor material 10 so that the amount of deformation from the initial state sequentially increases. After the plastic deformation, the omnidirectional hydrostatic pressure is applied in a state where the deformation is restrained by the front and rear restraining members 18, and finally, the plastic working device 13 without the front and rear restraining members 18 is expanded in the front-rear direction. What is necessary is just to make it plastically deform.

この場合、一軸剪断力作用工程IV−1にて塑性変形途中の成形体12に対し、上記全方位静水圧工程IV−2を行うことで、上記塑性変形途中の成形体12を稠密化できるため、塑性加工装置13にて最終的に塑性変形加工される成形体12に座屈が生じる虞を防止することができると共に、塑性変形方向の先端部となる前後方向両端部を前後の拘束部材18に押し付けることにより、該成形体12を、塑性変形途中の段階でその前後両端部の形状を整えることができることから、成形体12の変形する変形速度を均一化することができ、このため製造される熱電半導体材料17の組織の均一性を向上させることが可能になる。更に、上記全方位静水圧工程IV−2を行うと、前後の拘束部材18に成形体12の前後両端部が突き当たることで該成形体12の前後両端部では、結晶粒11のC面配向性が多少乱れる虞があるが、最終的に塑性加工装置13にて、前後方向を拘束することなく成形体12を構成する熱電半導体素材10の積層方向とほぼ平行な一軸方向へ剪断力を作用させながら展延させるようにしてあるので、製造される熱電半導体材料17は、前後方向両端部においても結晶粒11のC面方向及びC軸方向をほぼ揃えることが可能となる。   In this case, the molded body 12 in the middle of plastic deformation can be densified by performing the omnidirectional hydrostatic pressure process IV-2 on the molded body 12 in the middle of plastic deformation in the uniaxial shear force action step IV-1. In addition, it is possible to prevent the molded body 12 that is finally plastically deformed by the plastic working device 13 from being buckled, and the front and rear restraining members 18 are provided at both ends in the front-rear direction, which are front ends in the plastic deformation direction. Since the shape of both the front and rear ends of the molded body 12 can be adjusted in the middle of plastic deformation, the deformation speed of the molded body 12 to be deformed can be made uniform. Therefore, the uniformity of the structure of the thermoelectric semiconductor material 17 can be improved. Further, when the omnidirectional hydrostatic pressure step IV-2 is performed, the front and rear ends of the molded body 12 abut against the front and rear restraining members 18, so that the C-plane orientation of the crystal grains 11 is obtained at both the front and rear ends of the molded body 12. However, the plastic working device 13 finally applies a shearing force in a uniaxial direction substantially parallel to the lamination direction of the thermoelectric semiconductor material 10 constituting the molded body 12 without restricting the front-rear direction. However, since the thermoelectric semiconductor material 17 to be produced can be substantially aligned in the C-plane direction and the C-axis direction of the crystal grains 11 at both ends in the front-rear direction.

次に、本発明の熱電半導体素子の製造方法として、図1乃至図9(イ)(ロ)の実施の形態にて製造されたN型の熱電半導体材料17を用いてN型熱電半導体素子3aを製造する場合について説明する。   Next, as a method for manufacturing a thermoelectric semiconductor element of the present invention, an N-type thermoelectric semiconductor element 3a using the N-type thermoelectric semiconductor material 17 manufactured in the embodiment shown in FIGS. The case of manufacturing will be described.

この場合、上記N型熱電半導体材料17は、一端部を、常温付近で絶対値の大きなゼーベック係数を得ることができるよう低温側に温度適性を有する組成Bの領域とし、他端部を300℃付近で絶対値の大きなゼーベック係数を得ることができる高温側に温度適性を有する組成Cの領域とし、且つ中間部を一端側から他端側へ組成Bより組成Cへ連続的に組成が変化する傾斜機能材料としてあり、しかも、結晶粒11の六方晶構造のC面の延びる方向が上記組成の傾斜方向に沿って揃い、更に、C軸の方向も組成変形加工時における押圧方向に揃ったものとしてある。したがって、図12(イ)(ロ)に示す如く、上記組成の傾斜方向及び配向性の整った結晶粒11の配向性を考慮して、組成の傾斜方向で、且つ結晶粒11の六方晶構造のC面の延びる方向に電流及び熱の流通方向を設定することができるように切り出し加工してN型熱電半導体素子3aを形成するようにする。   In this case, one end of the N-type thermoelectric semiconductor material 17 is a region of composition B having temperature suitability on the low temperature side so that a large Seebeck coefficient having a large absolute value can be obtained near room temperature, and the other end is 300 ° C. A region of composition C having temperature suitability on the high temperature side where a large Seebeck coefficient having a large absolute value can be obtained in the vicinity, and the composition continuously changes from composition B to composition C from one end side to the other end side in the intermediate portion. As a functionally gradient material, the direction in which the C plane of the hexagonal crystal structure of the crystal grains 11 extends is aligned along the tilt direction of the composition, and the direction of the C axis is also aligned with the pressing direction during composition deformation processing. It is as. Therefore, as shown in FIGS. 12A and 12B, the hexagonal structure of the crystal grains 11 in the direction of the composition and in the direction of the composition in consideration of the direction of the inclination of the composition and the orientation of the crystal grains 11 with a good orientation. The N-type thermoelectric semiconductor element 3a is formed by cutting so that the current and heat flow directions can be set in the direction in which the C-plane extends.

具体的には、上記N型の熱電半導体材料17は、図9(ロ)に示した如く、組成の傾斜方向、及び、各結晶粒の六方晶構造のC面の延びる方向が、成形体12の塑性変形時の展延方向(矢印t方向)に沿い、且つ各結晶粒の六方晶構造のC軸が上記塑性変形時の押圧方向(矢印p方向)にほぼ揃った状態とされているものであるため、図12(イ)に示す如く、上記組成傾斜方向の両端面を導電材処理して電極接合用の導電材処理面19とさせた後、上記熱電半導体材料17を、上記熱電半導体材料17製造時の成形体12の押圧方向(矢印p方向)に垂直な面と、上記押圧方向(矢印p方向)及び熱電半導体材料17製造時における展延方向(矢印t方向)の二軸で規定される面にて切断し、図12(ロ)に示す如き直方体形状に切り出す(ダイシングする)ことによりN型熱電半導体素子3aを製造する。   Specifically, as shown in FIG. 9B, the N-type thermoelectric semiconductor material 17 is such that the direction of composition gradient and the direction in which the C-plane of the hexagonal crystal structure of each crystal grain extends is the compact 12. Along the extending direction at the time of plastic deformation (arrow t direction), and the C axis of the hexagonal crystal structure of each crystal grain is substantially aligned with the pressing direction at the time of plastic deformation (arrow p direction) Therefore, as shown in FIG. 12 (a), both end surfaces in the composition gradient direction are treated with a conductive material to form a conductive material-treated surface 19 for electrode bonding, and then the thermoelectric semiconductor material 17 is replaced with the thermoelectric semiconductor. A plane perpendicular to the pressing direction (arrow p direction) of the molded body 12 at the time of manufacturing the material 17 and two axes of the pressing direction (arrow p direction) and the extending direction at the time of manufacturing the thermoelectric semiconductor material 17 (arrow t direction). Cut along the specified surface and cut into a rectangular parallelepiped shape as shown in FIG. Diced) to produce a N-type thermoelectric semiconductor element 3a by.

これにより、上記N型熱電半導体素子3aは、図12(ロ)に示す如く、上記導電材処理面19の方向(図中矢印tで示す熱電半導体材料17製造時の展延方向と同じ方向)沿って組成Bから組成Cへ連続的に傾斜する組成を有すると共に、同方向に結晶粒11の六方晶構造のC面が長く延び、且つ結晶粒11のC軸が上記導電材処理面20と直角な二軸方向のうち、上記熱電半導体材料17製造時の押圧方向(図中矢印p方向)に揃った結晶構造とされる。   Thereby, as shown in FIG. 12B, the N-type thermoelectric semiconductor element 3a is oriented in the direction of the conductive material processing surface 19 (the same direction as the extending direction during the manufacture of the thermoelectric semiconductor material 17 indicated by the arrow t in the figure). Along the composition B to the composition C, the C-plane of the hexagonal crystal structure of the crystal grains 11 extends in the same direction, and the C-axis of the crystal grains 11 is connected to the conductive material treated surface 20. The crystal structure is aligned in the pressing direction (arrow p direction in the figure) at the time of manufacturing the thermoelectric semiconductor material 17 out of the two perpendicular axes.

したがって、一端側から他端側へ常温付近から300℃付近までの温度勾配を形成させるときに、該形成される温度勾配に対応した個所でそれぞれ絶対値の大きなゼーベック係数を得ることができるような傾斜した組成を有する素子とすることができる。更に、上記組成の傾斜方向に沿って結晶粒の六方晶構造のC面方向を揃えることができ、しかも、C軸方向にも配向性の整った結晶粒11を備えた組織構造とすることができる。これにより、上記組成Bとなる一端部を常温付近に保持させ、且つ組成Cとなる他端部を300℃付近の高温に加熱して、上記組成の傾斜方向で且つ結晶粒の六方晶構造のC面に沿う方向に熱流を作用させることにより、全体的に効率よく熱電発電を行なうことが可能な熱電性能のよい(熱電変換効率の高い)N型熱電半導体素子3aを得ることができる。   Therefore, when a temperature gradient from near room temperature to near 300 ° C. is formed from one end side to the other end side, a Seebeck coefficient having a large absolute value can be obtained at a location corresponding to the formed temperature gradient. An element having an inclined composition can be obtained. Furthermore, the C-plane direction of the hexagonal crystal structure can be aligned along the inclination direction of the above composition, and a texture structure including crystal grains 11 with a well-oriented orientation in the C-axis direction is obtained. it can. Thereby, the one end part which becomes the composition B is kept near room temperature, and the other end part which becomes the composition C is heated to a high temperature around 300 ° C., and the hexagonal structure of the crystal grains is in the gradient direction of the composition. By applying a heat flow in the direction along the C-plane, it is possible to obtain an N-type thermoelectric semiconductor element 3a with good thermoelectric performance (high thermoelectric conversion efficiency) capable of performing thermoelectric power generation as a whole.

なお、上記においては、N型の熱電半導体材料17からN型熱電半導体素子3aを切り出すときに、組成を傾斜させた方向、すなわち、一軸剪断力を作用させる方向に垂直な面での切り出しは行わないため、上記N型の熱電半導体材料17を製造する塑性変形工程IVにて成形体12の塑性加工を行なうときに、塑性加工後に得られる熱電半導体材料17の一軸剪断力を作用させて延展させる方向の寸法が、最終的に所望されるN型熱電半導体素子3aの熱流を作用させる方向に所望される寸法とほぼ一致するようにすればよい。したがって、固化成形工程IIIにて上記成形体12を製造するために使用するモールドへ熱電
半導体素材10b,10cを積層するよう充填するときの積層(充填)すべき厚みは、上記塑性変形工程IVにて成形体12を上記熱電半導体素材10b,10cの主な積層方向への塑性変形させるべき変形量から逆算して決定するようにすればよい。(後述するP型熱電半導体素子2aの場合も同様である。)
次いで、図13(イ)(ロ)(ハ)は本発明の熱電半導体素子の製造方法の実施の他の形態ついて示すもので、上記図12(イ)(ロ)に示したと同様に、図1乃至9(イ)(ロ)に示した実施の形態にて製造されたN型の熱電半導体材料17を用いてN型熱電半導体素子3aを製造する場合において、上記N型の熱電半導体材料17を製造するために選定した組成Bの熱電半導体素材10bと組成Cの熱電半導体素材10cに、組成の相違に伴う電気伝導率(σ)の差が生じていても、最終的に製造されるN型熱電半導体素子3aにて組成Bから組成Cへ組成を傾斜させる方向に沿う方向の電気抵抗を、素子全体に亘って均一にできるようにしたものである。
In the above description, when the N-type thermoelectric semiconductor element 3a is cut out from the N-type thermoelectric semiconductor material 17, cutting is performed on a plane perpendicular to the direction in which the composition is inclined, that is, the direction in which the uniaxial shear force is applied. Therefore, when plastic forming of the molded body 12 is performed in the plastic deformation step IV for manufacturing the N-type thermoelectric semiconductor material 17, the uniaxial shear force of the thermoelectric semiconductor material 17 obtained after the plastic processing is applied and extended. The dimension in the direction may be made to substantially match the dimension desired in the direction in which the final desired heat flow of the N-type thermoelectric semiconductor element 3a acts. Therefore, the thickness to be stacked (filled) when the thermoelectric semiconductor materials 10b and 10c are stacked so as to be stacked in the mold used for manufacturing the molded body 12 in the solidification molding process III is the same as that in the plastic deformation process IV. Thus, the molded body 12 may be determined by calculating back from the deformation amount to be plastically deformed in the main lamination direction of the thermoelectric semiconductor materials 10b and 10c. (The same applies to a P-type thermoelectric semiconductor element 2a described later.)
Next, FIGS. 13 (a), (b), and (c) show other embodiments of the method of manufacturing a thermoelectric semiconductor element of the present invention. As shown in FIGS. In the case where the N-type thermoelectric semiconductor element 3a is manufactured using the N-type thermoelectric semiconductor material 17 manufactured in the embodiment shown in 1 to 9 (A) and (B), the N-type thermoelectric semiconductor material 17 is used. Even if there is a difference in electrical conductivity (σ) due to the difference in composition between the thermoelectric semiconductor material 10b having the composition B and the thermoelectric semiconductor material 10c having the composition C selected for manufacturing the N The electric resistance in the direction along the direction in which the composition is inclined from the composition B to the composition C in the type thermoelectric semiconductor element 3a can be made uniform over the entire element.

すなわち、電気抵抗を一定にするには、電気伝導率(σ)と素子の通電方向の断面積との積が一定となるように、上記電気伝導率(σ)の値に応じて通電方向の断面積を設定すればよい。具体的には、一端側から他端側へ向けて組成Bから組成Cへ傾斜する組成を有してなるN型熱電半導体素子3aを、その使用が想定される温度条件である一端側を常温付近の温度条件とし且つ他端側を300℃付近の温度条件とした場合、上記N型熱電半導体素子3aにおける一端側と他端側における電気伝導率は、図3に示された組成Bを有する熱電半導体の材料を常温付近の温度条件とした場合の電気伝導率の値と、図3に示された組成Cを有する熱電半導体の材料を300℃付近の温度条件とした場合の電気伝導率の値から明らかなように、上記常温付近の温度条件とした一端側の電気伝導率の方が、300℃付近の温度条件とした他端側の電気伝導率よりも大きな値となる。したがって、上記一端側と他端側の電気伝導率の差を考慮して、組成Bとなる一端側の方の断面積が、組成Cとなる他端側の断面積よりも小さくなるように、図9(イ)(ロ)に示した如き熱電半導体材料17より、該熱電半導体材料17製造時の成形体12の押圧方向(矢印p方向)に垂直な面に平行な図13(イ)に示す如き台形状に切り出しを行なうか、或いは、上記熱電半導体材料17製造時の成形体12の押圧方向(矢印p方向)及び熱電半導体材料17製造時における展延方向(矢印t方向)の二軸で規定される面に平行な図13(ロ)に示す如き台形状に切り出しを行なうか、更には、図13(ハ)に示す如く角錐台状に切り出しを行なうことによりN型熱電半導体素子3aを形成させるようにしてある。   That is, in order to make the electrical resistance constant, the product in the energization direction depends on the value of the electrical conductivity (σ) so that the product of the electrical conductivity (σ) and the cross-sectional area in the energization direction of the element is constant. What is necessary is just to set a cross-sectional area. Specifically, the N-type thermoelectric semiconductor element 3a having a composition that inclines from the composition B to the composition C from one end side to the other end side, the one end side, which is a temperature condition assumed to be used, at room temperature. When the temperature condition is in the vicinity and the other end side is in the vicinity of 300 ° C., the electrical conductivity on one end side and the other end side in the N-type thermoelectric semiconductor element 3a has the composition B shown in FIG. The value of the electric conductivity when the thermoelectric semiconductor material is set to a temperature condition near room temperature and the electric conductivity when the thermoelectric semiconductor material having the composition C shown in FIG. As is apparent from the values, the electric conductivity on one end under the temperature condition near the normal temperature is larger than the electric conductivity on the other end under the temperature condition near 300 ° C. Therefore, in consideration of the difference in electrical conductivity between the one end side and the other end side, the cross-sectional area on the one end side that becomes the composition B is smaller than the cross-sectional area on the other end side that becomes the composition C. From the thermoelectric semiconductor material 17 as shown in FIGS. 9 (a) and 9 (b), FIG. 13 (a) is parallel to a plane perpendicular to the pressing direction (arrow p direction) of the molded body 12 when the thermoelectric semiconductor material 17 is manufactured. It cuts out in the trapezoid shape as shown, or the biaxial of the pressing direction (arrow p direction) of the molded object 12 at the time of manufacture of the thermoelectric semiconductor material 17 and the extending direction (arrow t direction) at the time of manufacture of the thermoelectric semiconductor material 17 N-type thermoelectric semiconductor element 3a by cutting out into a trapezoidal shape as shown in FIG. 13 (b) parallel to the plane defined in FIG. 13 or by cutting out into a truncated pyramid shape as shown in FIG. 13 (c). Are formed.

なお、図13(イ)(ロ)(ハ)において、図9(イ)(ロ)に示したものと同一のものには同一符号が付してある。   13 (a), (b), and (c), the same components as those shown in FIGS. 9 (a) and (b) are denoted by the same reference numerals.

次に、P型の熱電半導体材料を製造する場合について説明する。この場合は、先ず、上記N型の熱電半導体材料の製造方法と同様に、製造すべき熱電半導体素子の使用時に作用すると想定される温度範囲、たとえば、熱電発電をおこなう場合に熱電モジュールの各熱電半導体素子に作用すると想定される温度範囲が常温付近から300℃付近までの場合には、予め、(Bi−Sb)TeとなるN型の熱電半導体の化学量論組成を基本として、上記各元素の成分比を変化させたり、ドーパントの種類や添加量を変化させた各種の組成にて形成させた熱電半導体の材料について、常温付近から300℃付近までの温度範囲における熱電性能に関する各種のパラメータ、たとえば、パワーファクター(P)、ゼーベック係数(α)、電気伝導率(σ)のデータを収集し、この収集されたデータに基づいて、常温付近の低温側で優れた熱電性能を発揮できるP型の熱電半導体の組成と、300℃付近の高温側で優れた熱電性能を発揮できるP型の熱電半導体の組成、更に、必要に応じて常温から300℃までの中間の温度領域で優れた熱電性能を発揮できるP型の熱電半導体の組成を選定しておく。 Next, a case where a P-type thermoelectric semiconductor material is manufactured will be described. In this case, first, in the same manner as the method for manufacturing the N-type thermoelectric semiconductor material, a temperature range that is assumed to act when the thermoelectric semiconductor element to be manufactured is used, for example, each thermoelectric module of the thermoelectric module when performing thermoelectric power generation. When the temperature range assumed to act on the semiconductor element is from about room temperature to about 300 ° C., based on the stoichiometric composition of the N-type thermoelectric semiconductor that is (Bi—Sb) 2 Te 3 in advance, Various thermoelectric performance materials in the temperature range from around room temperature to around 300 ° C. with respect to thermoelectric semiconductor materials formed with various compositions in which the component ratio of each element is changed or the kind and addition amount of the dopant are changed. Parameters such as power factor (P), Seebeck coefficient (α), and electrical conductivity (σ) are collected, and based on the collected data, Composition of P-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance on the low temperature side near the temperature, composition of P-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance on the high temperature side near 300 ° C., and if necessary A composition of a P-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance in an intermediate temperature range from room temperature to 300 ° C. is selected.

すなわち、たとえば、Bi:10原子%、Sb:30原子%、Te:60原子%のP型の熱電半導体の化学量論組成(組成F)と、Bi:9原子%、Sb:31原子%、Te:60原子%としてSb濃度を増加させた組成(組成G)、Bi:8原子%、Sb:32原紙%、Te:60原子%としてSb濃度を更に増加させた組成(組成H)の3種類の組成について、それぞれ図14に示す如きゼーベック係数(α)の温度に対する変化、図15に示す如き電気伝導率(σ)の温度に対する変化、及び、図16に示す如きパワーファクター(P)の温度に対する変化についてのデータが得られたとする。この場合、熱電性能を評価するためのパラメータとして、たとえば、図14に示されたゼーベック係数(α)の温度適性に着目する場合は、常温付近の低温側にてゼーベック係数(α)の絶対値が大きくなる組成Fを低温側に適した熱電半導体の材料組成として選定し、一方、300℃付近の高温側でゼーベック係数(α)の絶対値が大きくなる組成Hを高温側に適した熱電半導体の材料組成として選定し、更に、常温と300℃の間のほぼ中間の温度領域にて上記組成F及び組成Hよりもゼーベック係数(α)の絶対値が大きな値をとる組成Gを、中間温度領域に温度適性を有する組成として選定しておく。   That is, for example, the stoichiometric composition (composition F) of a P-type thermoelectric semiconductor of Bi: 10 atomic%, Sb: 30 atomic%, Te: 60 atomic%, Bi: 9 atomic%, Sb: 31 atomic%, 3: a composition in which the Sb concentration was increased with Te: 60 atomic% (composition G), Bi: 8 atomic%, Sb: 32 base paper%, and a composition in which the Sb concentration was further increased with Te: 60 atomic% (composition H). For each type of composition, change in Seebeck coefficient (α) with respect to temperature as shown in FIG. 14, change in electrical conductivity (σ) with respect to temperature as shown in FIG. 15, and power factor (P) as shown in FIG. Suppose data about changes with temperature is obtained. In this case, as a parameter for evaluating the thermoelectric performance, for example, when attention is paid to the temperature suitability of the Seebeck coefficient (α) shown in FIG. 14, the absolute value of the Seebeck coefficient (α) on the low temperature side near room temperature. Is selected as the material composition of the thermoelectric semiconductor suitable for the low temperature side, while the composition H that increases the absolute value of the Seebeck coefficient (α) on the high temperature side near 300 ° C. is suitable for the high temperature side. In addition, the composition G having a larger absolute value of the Seebeck coefficient (α) than the composition F and the composition H in the substantially intermediate temperature range between normal temperature and 300 ° C. is selected as the intermediate temperature. A composition having temperature suitability in the region is selected.

次に、成分調整工程Iとして、上記組成Fとなる熱電半導体の原料合金と、組成Gとなる熱電半導体の原料合金と、組成Hとなる熱電半導体の原料合金を別々に合金仕込みをする。   Next, as the component adjustment step I, the alloy of the thermoelectric semiconductor material alloy having the composition F, the thermoelectric semiconductor material alloy having the composition G, and the thermoelectric semiconductor material alloy having the composition H are separately charged.

次いで、上記N型の熱電半導体材料17を製造する場合と同様に、徐冷箔製造工程IIにて、図5に示した装置を用いて、上記成分調整工程Iにて混合した組成Fと組成Gと組成Hの各原料合金の金属混合物ごとに、溶融るつぼ6内にて溶融させて溶融合金8とした後、該溶融合金を、周速が5m/秒以下で低速回転させた回転ロール9の表面に供給して、徐冷して凝固させることにより図6に示した熱電半導体素材10b、10cと同様の薄い板状の熱電半導体素材10f,10g,10h(徐冷箔)をそれぞれ別々に製造する。ここで回転ロール9の周速を5m/秒以下に設定するのは、上記N型の熱電半導体素材10b,10cを形成させる場合と同様に、生成する徐冷箔の厚さを厚くさせると共に、結晶配向性がよく且つ板厚方向のほぼ全長に亘るよう結晶粒11を大きくした熱電半導体素材10f,10g,10hを得ることができるようにするためである。   Next, as in the case of manufacturing the N-type thermoelectric semiconductor material 17, the composition F and the composition mixed in the component adjustment step I using the apparatus shown in FIG. For each metal mixture of the raw material alloys of G and composition H, a rotating roll 9 in which the molten alloy is melted in a melting crucible 6 to form a molten alloy 8 and then the molten alloy is rotated at a low peripheral speed of 5 m / sec or less. The thin plate-like thermoelectric semiconductor materials 10f, 10g, and 10h (gradual cooling foils) similar to the thermoelectric semiconductor materials 10b and 10c shown in FIG. To manufacture. Here, the peripheral speed of the rotating roll 9 is set to 5 m / second or less, as in the case of forming the N-type thermoelectric semiconductor materials 10b and 10c, the thickness of the gradually cooled foil to be generated is increased, This is to make it possible to obtain thermoelectric semiconductor materials 10f, 10g, and 10h having good crystal orientation and large crystal grains 11 extending over almost the entire length in the plate thickness direction.

これにより、上記P型の熱電半導体の材料組成である組成F、組成G、組成Hの各熱電半導体素材10f,10g,10hは、いずれも、上述したN型の熱電半導体素材10b,10cと同様に、回転ロール9上にて冷却されるときに、板厚方向に結晶配向性が揃えられながら固化されるため、図6に示したものと同様に、結晶粒11がほぼ板厚方向に板厚の寸法に達するように長く延びた状態とされる。なお、上記熱電半導体素材10f,10g,10hは、後述する固化成形工程IIIの前に予め篩にかけて粉末を除去するように
してもよい。
Accordingly, the thermoelectric semiconductor materials 10f, 10g, and 10h having the composition F, the composition G, and the composition H, which are the material compositions of the P-type thermoelectric semiconductor, are all the same as the N-type thermoelectric semiconductor materials 10b and 10c described above. Further, when cooled on the rotary roll 9, it is solidified while the crystal orientation is aligned in the plate thickness direction, so that the crystal grains 11 are substantially in the plate thickness direction as shown in FIG. It is in the state extended long so that the dimension of thickness may be reached. The thermoelectric semiconductor materials 10f, 10g, and 10h may be sieved in advance to remove the powder before the solidification molding step III described later.

次いで、固化成形工程IIIとして、上記徐冷箔製造工程IIにて別々に製造された組成F
と組成Gと組成HのそれぞれのP型の熱電半導体素材10fと10gと10hの徐冷箔を、積層方向の一端部には上記組成Fの熱電半導体素材10fの徐冷箔のみが存在し、積層方向の中央部には組成Gの熱電半導体素材10gの徐冷箔のみが存在し、積層方向の他端部には組成Hの熱電半導体10hの徐冷箔のみが存在し、且つ積層方向の一端側から中央部にかけての領域では、組成Fの熱電半導体10fの徐冷箔の割合が徐々に減少すると同時に組成Gの熱電半導体10gの徐冷箔の割合が徐々に増加するよう両者の混合比が漸次変化するようにすると共に、積層方向の中央部から他端側にかけての領域では、組成Gの熱電半導体素材10gの徐冷箔の割合が徐々に減少すると同時に組成Hの熱電半導体10hの徐冷箔の割合が徐々に増加するよう両者の混合比が漸次変化させるようにして、図示しないモールド内に、上記熱電半導体素材10fと10gと10hの徐冷箔を、板厚方向にほぼ平行に積層配置する。
Next, as the solidification molding process III, the composition F manufactured separately in the slow cooling foil manufacturing process II.
P-type thermoelectric semiconductor materials 10f, 10g, and 10h of each of the composition G and composition H, and only the slow-cooling foil of the thermoelectric semiconductor material 10f of the composition F is present at one end in the stacking direction, Only the slow cooling foil of the thermoelectric semiconductor material 10g having the composition G is present in the central portion in the stacking direction, and only the slow cooling foil of the thermoelectric semiconductor 10h having the composition H is present in the other end in the stacking direction. In the region from one end to the center, the ratio of the slow cooling foil of the thermoelectric semiconductor 10f having the composition F is gradually decreased, and at the same time, the mixing ratio of the two is so that the ratio of the slow cooling foil of the thermoelectric semiconductor 10g having the composition G is gradually increased. Is gradually changed, and in the region from the central portion to the other end in the stacking direction, the rate of the gradually cooled foil of the thermoelectric semiconductor material 10g having the composition G is gradually decreased and the thermoelectric semiconductor 10h having the composition H is gradually decreased. The proportion of cold foil gradually increases To such as mixing ratio of both is gradually changed, in a mold (not shown), Xu Hiyahaku of the thermoelectric semiconductor material 10f and 10g and 10h, substantially parallel to stacked in a thickness direction.

具体的には、上記モールド内の徐冷箔を積層して充填すべき高さ寸法を、たとえば、5層に分け、最下層となる第1層目には、組成Fの熱電半導体素材10fの徐冷箔のみを充填し、次に、第2層目には、組成Fの熱電半導体素材10fの徐冷箔と組成Gの熱電半導体素材10gの徐冷箔を1対1で混合した徐冷箔を充填し、第3層目には、組成Gの熱電半導体素材10gの徐冷箔のみを充填し、第4層目には、組成Gの熱電半導体素材10gの徐冷箔と組成Hの熱電半導体素材10hとの1対1で混合してなる徐冷箔を充填し、最上層となる第5層目には、組成Hの熱電半導体素材10hの徐冷箔のみを充填するようにすればよい。   Specifically, the height dimension to be stacked and filled with the slow cooling foil in the mold is divided into, for example, five layers, and the first layer which is the lowest layer is formed of the thermoelectric semiconductor material 10f having the composition F. Filled only with slow cooling foil, and then in the second layer, the slow cooling foil of composition F of thermoelectric semiconductor material 10f and the slow cooling foil of thermoelectric semiconductor material 10g of composition G were mixed one-on-one. The foil is filled, and the third layer is filled only with a slow cooling foil of 10 g of the thermoelectric semiconductor material of composition G, and the fourth layer of the slow cooling foil of the thermoelectric semiconductor material 10 g of composition G and the composition H. Fill the 5th layer, which is a one-to-one mixture with the thermoelectric semiconductor material 10h, and fill only the slow cooling foil of the thermoelectric semiconductor material 10h of composition H in the fifth layer which is the uppermost layer. That's fine.

次いで、上記モールドに充填された熱電半導体素材10f,10g,10hの徐冷箔同士を、上記N型の組成を有する成形体12製造時と同様の圧力条件、温度条件、及び、多段加熱法を用いて焼結することにより、積層された各熱電半導体素材10f,10g,10hを、該各熱電半導体素材10f,10g,10h同士の隙間を埋めて互いに接するよう塑性加工しながら固化成形して、図17(イ)(ロ)(ハ)に示す如く、図7(イ)(ロ)(ハ)に示したものと同様の直方体状の成形体12を製造する。   Next, the thermoelectric semiconductor materials 10f, 10g, 10h filled in the mold are subjected to the same pressure conditions, temperature conditions, and multistage heating method as in the production of the molded body 12 having the N-type composition. By using and sintering, the laminated thermoelectric semiconductor materials 10f, 10g, and 10h are solidified while being plastically processed so as to be in contact with each other by filling the gaps between the thermoelectric semiconductor materials 10f, 10g, and 10h, As shown in FIGS. 17 (a), (b), and (c), a rectangular parallelepiped shaped body 12 similar to that shown in FIGS. 7 (a), (b), and (c) is manufactured.

これにより、上記P型の熱電半導体素材10f,10g,10h同士の隙間を低減させて、形成される成形体12の密度を、同様の組成の複合化合物半導体を理想的な結晶構造とした場合の密度に比して99%程度以上まで向上させることができるようになる。   As a result, the gaps between the P-type thermoelectric semiconductor materials 10f, 10g, and 10h are reduced, and the density of the formed body 12 is the same when the composite compound semiconductor having the same composition has an ideal crystal structure. The density can be improved to about 99% or more as compared with the density.

その後、塑性変形工程IVとして、上記N型の熱電半導体材料17を製造する場合と同様に、図8(イ)(ロ)(ハ)(ニ)に示した如き塑性加工装置13により、上記成形体12を、500℃以下、好ましくは350℃以下に加熱した状態にて、上記熱電半導体素材10f,10g,10hの積層方向にほぼ平行な一軸方向にのみ展延させるように塑性変形させて直方体状のP型の熱電半導体材料17を製造するようにする。   Thereafter, as the plastic deformation step IV, as in the case of manufacturing the N-type thermoelectric semiconductor material 17, the above-described forming is performed by the plastic working device 13 as shown in FIGS. 8 (a), (b), (c), and (d). The body 12 is plastically deformed so as to be expanded only in a uniaxial direction substantially parallel to the lamination direction of the thermoelectric semiconductor materials 10f, 10g, and 10h in a state heated to 500 ° C. or less, preferably 350 ° C. or less. P-shaped thermoelectric semiconductor material 17 is manufactured.

これにより、熱電半導体素材10f、10g、10hの積層方向にのみ剪断力が作用させられることによって、図18(イ)(ロ)に示す如く、図9(イ)(ロ)に示したものと同様に成形体12の内部にて、各熱電半導体素材10f,10g,10hの板厚方向に配向されていた結晶粒11は、上記剪断力が作用する一軸方向へ扁平に塑性変形されつつ、劈開面が押圧方向にほぼ垂直になるよう配向されて、各結晶粒11の六方晶構造のC面が展延方向(図18(イ)(ロ)における矢印t方向)に延びるよう変形され、同時に大部分の結晶粒11のC軸が上記塑性変形時における圧縮方向(図18(イ)(ロ)における矢印p方向)に配向した状態のP型の熱電半導体材料17が形成される。更に、上記塑性変形の際、熱電半導体素材10f,10g,10hのそれぞれ積層されている徐冷箔は、積層界面が破壊されて隣接するもの同士が互いに一体化されるため、上記形成されるP型の熱電半導体材料17は、徐冷箔の積層方向の一端側から他端側へ向けて、組成Fから組成Gを経て組成Hへと連続的に変化する組成、すなわち、傾斜組成を備えたものとされる。   As a result, the shearing force is applied only in the stacking direction of the thermoelectric semiconductor materials 10f, 10g, and 10h, as shown in FIGS. 18 (a) and (b). Similarly, the crystal grains 11 oriented in the thickness direction of the thermoelectric semiconductor materials 10f, 10g, and 10h inside the compact 12 are cleaved while being flatly plastically deformed in the uniaxial direction where the shearing force acts. The plane is oriented so as to be substantially perpendicular to the pressing direction, and the C-plane of the hexagonal crystal structure of each crystal grain 11 is deformed so as to extend in the extending direction (the direction of the arrow t in FIGS. 18A and 18B). P-type thermoelectric semiconductor material 17 is formed in a state in which the C-axis of most crystal grains 11 is oriented in the compression direction at the time of plastic deformation (the direction of arrow p in FIGS. 18A and 18B). Further, during the plastic deformation, the slow cooling foils laminated with the thermoelectric semiconductor materials 10f, 10g, and 10h are laminated together because the laminated interface is destroyed and the adjacent ones are integrated with each other. The thermoelectric semiconductor material 17 of the mold was provided with a composition that continuously changed from composition F to composition H from one end side to the other end side in the laminating direction of the slow cooling foil, that is, a gradient composition. It is supposed to be.

したがって、上記P型の熱電半導体材料17においても、熱電半導体素材10f,10g,10hの積層方向の一端側を、組成Fからなる領域として常温付近にてゼーベック係数の絶対値が大きくなる領域とすることができ、積層方向のほぼ中央部を、組成Gからなる領域として常温と300℃の中間温度にてゼーベック係数の絶対値が大きくなる領域とすることができ、積層方向の他端側を、組成Hからなる領域として、300℃付近にてゼーベック係数の絶対値が大きくなる領域とすることができ、更に、一端側から中間部及び中間部から他端側にかけての領域を、組成Fから組成G及び組成Gから組成Hへそれぞれ積層界面を有することなく連続的に組成が変化する領域とすることができる。   Therefore, also in the P-type thermoelectric semiconductor material 17, one end side in the stacking direction of the thermoelectric semiconductor materials 10 f, 10 g, and 10 h is defined as a region in which the absolute value of the Seebeck coefficient increases near room temperature as a region composed of the composition F. The central portion in the stacking direction can be a region in which the absolute value of the Seebeck coefficient is large at an intermediate temperature between room temperature and 300 ° C. as the region made of the composition G, and the other end side in the stacking direction is The region composed of the composition H can be a region where the absolute value of the Seebeck coefficient becomes large at around 300 ° C. Further, the region from one end side to the intermediate portion and from the intermediate portion to the other end side is composed of the composition F to the composition. It can be set as the area | region where a composition changes continuously, without having a lamination | stacking interface from G and the composition G to the composition H, respectively.

したがって、上記P型の熱電半導体材料17を、熱電半導体素材の積層方向の一端部を常温付近の温度に保ち、且つ他端部を300℃付近の高温に曝すことで、上記P型の熱電半導体材料17の一端側から他端側へ常温付近から300℃付近までの温度勾配を生じさせるときに、上記熱電半導体材料の一端側から他端側までの全体に亘り、絶対値の大きなゼーベック係数を得ることができるものとなる。   Therefore, the P-type thermoelectric semiconductor material 17 is exposed to a high temperature around 300 ° C. while one end in the stacking direction of the thermoelectric semiconductor material is kept at a temperature near room temperature and the other end is exposed to a high temperature around 300 ° C. When a temperature gradient from near normal temperature to near 300 ° C. is generated from one end side of the material 17 to the other end side, a Seebeck coefficient having a large absolute value is obtained over the entire range from one end side to the other end side of the thermoelectric semiconductor material. It can be obtained.

更に、上記熱電半導体材料17製造時に成形体12を、該成形体12製造時における熱電半導体素材10f,10g,10hの積層方向へ塑性変形させることで積層界面の破壊と同時に再結合を行わせて界面領域を消失させることができるため、組成Fから組成Gを経て組成Hへの組成の変化を連続的に行なわせることができる。したがって、上記N型熱電半導体材料17と同様に、組成の異なる層同士の間で電気伝導の阻害が生じる虞をなくすことができる。   Further, the molded body 12 is plastically deformed in the stacking direction of the thermoelectric semiconductor materials 10f, 10g, and 10h at the time of manufacturing the molded body 12 at the time of manufacturing the thermoelectric semiconductor material 17, thereby causing recombination at the same time as the destruction of the stacked interface. Since the interface region can be eliminated, the composition can be continuously changed from the composition F to the composition H through the composition G. Therefore, similarly to the N-type thermoelectric semiconductor material 17, it is possible to eliminate the possibility that electric conduction is inhibited between layers having different compositions.

更に又、上記P型の熱電半導体材料17は、熱電半導体素材の積層方向、すなわち、上記組成の傾斜が形成される方向に沿って、各結晶粒11の六方晶構造のC面の延びる方向が揃えられ、しかも、C軸方向もほぼ揃えることができることから、上記組成の傾斜方向に温度勾配を生じさせるように電流及び熱の作用する方向を設定することにより、電気抵抗(比抵抗:ρ)を低減させることができる。   Further, the P-type thermoelectric semiconductor material 17 has a direction in which the C plane of the hexagonal crystal structure of each crystal grain 11 extends along the stacking direction of the thermoelectric semiconductor materials, that is, the direction in which the gradient of the composition is formed. In addition, since the C-axis direction can be substantially aligned, the electric resistance (specific resistance: ρ) is set by setting the direction in which the current and heat act so as to generate a temperature gradient in the gradient direction of the composition. Can be reduced.

なお、上記P型の熱電半導体材料17を製造するときに、図10に示した塑性変形工程IVにおける全方位静水圧工程IV−2を実施するようにしてもよい。   When the P-type thermoelectric semiconductor material 17 is manufactured, the omnidirectional hydrostatic pressure step IV-2 in the plastic deformation step IV shown in FIG. 10 may be performed.

次に、上記方法により製造されるP型の熱電半導体材料17を用いてP型熱電半導体素子2aを製造する場合について説明する。   Next, the case where the P-type thermoelectric semiconductor element 2a is manufactured using the P-type thermoelectric semiconductor material 17 manufactured by the above method will be described.

この場合、上記P型の熱電半導体材料17においても、図18(イ)(ロ)に示した如く、図9(イ)(ロ)に示したN型の熱電半導体材料17と同様に、熱電半導体材料17の製造時における熱電半導体素材10f,10g,10hの積層方向の一端側から他端側へ組成の傾斜を設けて、一端側から他端側へ常温付近から300℃付近までの温度勾配を生じさせることで全体に亘りゼーベック係数の絶対値が大きくなるようにしてあると共に、組織構造の全体に亘り大部分の結晶粒11の六方晶構造のC面が、成形体12の塑性変形時の展延方向(図18(イ)(ロ)における矢印t方向)と同方向の上記組成の傾斜方向に延び、且つC軸が上記塑性変形時の押圧方向(図18(イ)(ロ)における矢印p方向)にほぼ揃った状態とされて形成されていることから、図12(イ)(ロ)に示したN型熱電半導体素子3aの製造方法と同様に、先ず、上記P型の熱電半導体材料17を、図19(イ)に示す如く、成形体12の塑性変形時の展延方向(矢印t方向)の両端面に導電材処理を行って導電材処理面19を形成させ、次に、上記P型の熱電半導体材料17を、該熱電半導体材料17製造時の成形体12の押圧方向に垂直な面と、上記押圧方向及び熱電半導体材料17製造時における展延方向(矢印t方向)の二軸で規定される面にて切断して切り出し加工することにより、図19(ロ)に示す如く、図12(ロ)に示したN型熱電半導体素子3aと同様の直方体形状のP型熱電半導体素子2aを製造する。   In this case, also in the P-type thermoelectric semiconductor material 17, as shown in FIGS. 18A and 18B, as in the N-type thermoelectric semiconductor material 17 shown in FIGS. A gradient of composition is provided from one end side to the other end side in the stacking direction of the thermoelectric semiconductor materials 10f, 10g, and 10h when the semiconductor material 17 is manufactured, and a temperature gradient from near normal temperature to near 300 ° C. from one end side to the other end side. As a result, the absolute value of the Seebeck coefficient is increased over the entire structure, and the C-plane of the hexagonal crystal structure of most of the crystal grains 11 over the entire structure is in the plastic deformation state of the compact 12. Extending in the inclination direction of the composition in the same direction as the spreading direction (direction of arrow t in FIGS. 18A and 18B), and the C-axis is the pressing direction during the plastic deformation (FIGS. 18A and 18B). In the direction of arrow p in FIG. Thus, the P-type thermoelectric semiconductor material 17 is first shown in FIG. 19A, similarly to the method for manufacturing the N-type thermoelectric semiconductor element 3a shown in FIGS. Thus, the conductive material treatment is performed on both end faces in the extending direction (arrow t direction) at the time of plastic deformation of the molded body 12 to form a conductive material treatment surface 19, and then the P-type thermoelectric semiconductor material 17 is Cutting is performed by a plane defined by two axes, that is, a plane perpendicular to the pressing direction of the molded body 12 when the thermoelectric semiconductor material 17 is manufactured and the extending direction (arrow t direction) when the thermoelectric semiconductor material 17 is manufactured. By cutting out, a rectangular parallelepiped P-type thermoelectric semiconductor element 2a similar to the N-type thermoelectric semiconductor element 3a shown in FIG. 12B is manufactured as shown in FIG.

これにより、上記P型熱電半導体素子2aは、上述したN型熱電半導体素子3aと同様に、導電材処理の行われた一組の対向面(導電材処理面19)の方向に、組成Fから組成Gを経て組成Hへ連続的に傾斜する組成を有すると共に、同方向に結晶粒11の六方晶構造のC面が長く延び、且つ結晶粒11のC軸が上記導電材処理面19と直角な二軸方向のうち、上記熱電半導体材料17製造時の押圧方向(矢印p方向)に揃った結晶構造とされる。   As a result, the P-type thermoelectric semiconductor element 2a is formed from the composition F in the direction of the pair of opposing surfaces (conductive material-treated surface 19) where the conductive material treatment has been performed, like the N-type thermoelectric semiconductor element 3a described above. The composition has a composition that continuously slopes to composition H via composition G, the C-plane of the hexagonal crystal structure of crystal grains 11 extends long in the same direction, and the C-axis of crystal grains 11 is perpendicular to the conductive material-treated surface 19. Among the two biaxial directions, the crystal structure is aligned in the pressing direction (arrow p direction) when the thermoelectric semiconductor material 17 is manufactured.

したがって、上記P型熱電半導体素子2aにおいても、上述した本発明のN型熱電半導体素子3aと同様に、組成Fとなる一端側から組成Hとなる他端側へ、常温付近から300℃付近までの温度勾配を形成させるときに、該形成される温度勾配に対応した個所でそれぞれ絶対値の大きなゼーベック係数を得ることができるような、傾斜組成を備えた素子とすることができる。更に、上記組成の傾斜方向に沿って結晶粒の六方晶構造のC面方向を揃えることができ、しかも、C軸方向にも配向性の整った結晶粒11を備えた組織構造とすることができる。これにより、上記組成Fとなる一端部を常温付近に保持させ、且つ組成Hとなる他端部を300℃付近の高温に加熱して、上記組成の傾斜方向で且つ結晶粒の六方晶構造のC面に沿う方向に熱流を作用させることにより、全体的に効率よく熱電発電を行なうことが可能な熱電性能のよい(熱電変換効率の高い)P型熱電半導体素子2aを得ることができる。   Therefore, also in the P-type thermoelectric semiconductor element 2a, as in the N-type thermoelectric semiconductor element 3a of the present invention described above, from one end side that is the composition F to the other end side that is the composition H, from around normal temperature to around 300 ° C. When the temperature gradient is formed, an element having a gradient composition can be obtained so that a Seebeck coefficient having a large absolute value can be obtained at a location corresponding to the formed temperature gradient. Furthermore, the C-plane direction of the hexagonal crystal structure can be aligned along the inclination direction of the above composition, and a texture structure including crystal grains 11 with a well-oriented orientation in the C-axis direction is obtained. it can. Thereby, the one end part that becomes the composition F is held at around room temperature, and the other end part that becomes the composition H is heated to a high temperature around 300 ° C., so that the hexagonal structure of the crystal grains is in the tilt direction of the composition. By causing the heat flow to act in the direction along the C-plane, it is possible to obtain a P-type thermoelectric semiconductor element 2a with good thermoelectric performance (high thermoelectric conversion efficiency) that can efficiently perform thermoelectric power generation as a whole.

なお、上記P型熱電半導体素子2aをP型の熱電半導体材料17より切り出して形成する際、組成Fと組成Gと組成Hのそれぞれの熱電半導体の材料同士にて、組成の相違により互いに電気伝導率が相違する場合には、図15に示した上記各組成の電気伝導率と温度条件との関係を考慮して、図13(イ)(ロ)(ハ)に示したと同様に台形状、若しくは、角錐台状に切り出し加工を行なってP型熱電半導体素子2aを形成させることにより、通電方向となる上記組成を傾斜させた方向に沿う素子全体の電気抵抗の均一化を図るようにしてもよい。   When the P-type thermoelectric semiconductor element 2a is cut out from the P-type thermoelectric semiconductor material 17, the thermoelectric semiconductor materials of the composition F, the composition G, and the composition H are electrically conductive with each other due to the difference in composition. When the rates are different, the relationship between the electrical conductivity of each composition shown in FIG. 15 and the temperature condition is taken into account, and the trapezoidal shape, as shown in FIGS. 13 (a), (b), and (c), Alternatively, the P-type thermoelectric semiconductor element 2a is formed by cutting into a truncated pyramid shape so that the electrical resistance of the entire element along the direction in which the above-described composition that is the energization direction is inclined is made uniform. Good.

更に、本発明の実施の更に他の形態として、上記本発明の方法により製造したP型及びN型熱電半導体素子2a及び3aを用いた熱電モジュール及びその製造方法について説明する。   Furthermore, as still another embodiment of the present invention, a thermoelectric module using the P-type and N-type thermoelectric semiconductor elements 2a and 3a manufactured by the method of the present invention and a manufacturing method thereof will be described.

図20は本発明の熱電モジュール1aを示すもので、図23に示した従来の熱電モジュール1と同様にPN素子対を形成するときに、上記本発明の製造方法によりそれぞれ製造された上記P型熱電半導体素子2aとN型熱電半導体素子3aを、それぞれの組成に傾斜を設けることにより低温側に温度適性を有するようにした側(P型熱電半導体素子2aにおける組成F側及びN型熱電半導体素子3aにおける組成B側)の端部同士、及び、高温側に温度適性を有するようにした側(P型熱電半導体素子2aにおける組成H側及びN型熱電半導体素子3aにおける組成C側)の端部同士をそれぞれ同じ側に揃えると共に、上記組成の傾斜方向となる結晶粒11の六方晶構造のC面の延びる方向、及び、C軸方向に共に直交する方向に並べて配置する。更に、該各熱電半導体素子2a,3aにて組成を傾斜させることにより低温側に温度適性を有する側の端部に形成されている導電材処理面19同士を、低温側の金属電極4aを介し接合すると共に、高温側に温度適性を有する側の端部に形成されている導電材処理面同士を、高温側の金属電極4bを介し接合するようにする。   FIG. 20 shows the thermoelectric module 1a of the present invention. When forming a PN element pair as in the conventional thermoelectric module 1 shown in FIG. 23, the P-type manufactured by the manufacturing method of the present invention is used. The thermoelectric semiconductor element 2a and the N-type thermoelectric semiconductor element 3a are provided with a temperature suitability on the low temperature side by providing an inclination to each composition (the composition F side in the P-type thermoelectric semiconductor element 2a and the N-type thermoelectric semiconductor element) 3a) at the ends and the ends on the high temperature side (the composition H side in the P-type thermoelectric semiconductor element 2a and the composition C side in the N-type thermoelectric semiconductor element 3a). They are aligned on the same side and arranged side by side in the direction in which the C plane of the hexagonal crystal structure of the crystal grains 11 in the tilt direction of the composition extends and in the direction perpendicular to the C-axis direction. That. Further, by inclining the composition in each of the thermoelectric semiconductor elements 2a and 3a, the conductive material processing surfaces 19 formed at the end portion on the side having temperature suitability on the low temperature side are connected to each other via the metal electrode 4a on the low temperature side. In addition to bonding, the conductive material treated surfaces formed at the end portions having temperature suitability on the high temperature side are bonded via the metal electrode 4b on the high temperature side.

これにより、上記本発明の熱電モジュール1aでは、上記低温側金属電極4aを常温付近に保持させると共に、高温側金属電極4bを300℃付近の高温に曝して、上記P型及びN型の各熱電半導体素子2a及び3aに対して組成の傾斜方向に常温付近から300℃付近の温度勾配を生じさせることにより、上記各熱電半導体素子2a及び3aを、全体に亘り絶対値の大きなゼーベック係数をとることができる素子とさせることができる。このため上記温度条件を作用させることにより効率よく熱電発電を行なわせることが可能になる。更に、上記P型熱電半導体素子2aとN型熱電半導体素子3aは、いずれも、結晶粒11のC面の延びる方向が、組成の傾斜方向と同方向、すなわち、上記対向する金属電極4a,4b間にて電流及び熱を作用させる方向としてあり、しかも、C軸方向もほぼ揃えられていることからも、熱電性能のよい熱電モジュール1aを得ることができる。   As a result, in the thermoelectric module 1a of the present invention, the low-temperature side metal electrode 4a is held near room temperature, and the high-temperature side metal electrode 4b is exposed to a high temperature around 300 ° C. The thermoelectric semiconductor elements 2a and 3a have a large Seebeck coefficient with a large absolute value as a whole by generating a temperature gradient from near room temperature to about 300 ° C. in the composition inclination direction with respect to the semiconductor elements 2a and 3a. It can be set as the element which can do. For this reason, it becomes possible to perform thermoelectric power generation efficiently by applying the above temperature condition. Further, in both the P-type thermoelectric semiconductor element 2a and the N-type thermoelectric semiconductor element 3a, the extending direction of the C plane of the crystal grain 11 is the same as the inclination direction of the composition, that is, the opposing metal electrodes 4a and 4b. Since the electric current and the heat are applied in between, and the C-axis direction is substantially aligned, the thermoelectric module 1a with good thermoelectric performance can be obtained.

なお、上記熱電モジュール1aを用いて熱電冷却、熱電加熱、熱電発電等を行うときには、上記金属電極4a,4bが温度変化に伴って伸長、収縮するため、一つの金属電極4a又は4bで接合された隣接するP型とN型の各熱伝半導体素子2aと3aの間には、近接、離反する方向の応力が作用するようになるが、上記本発明の熱電モジュール1aでは、PN素子対を形成するときに、図20に示した如く、一つの金属電極4a又は4bで接合される隣り合う熱電半導体素子2aと3aを、結晶粒11のC面方向の同一面内に配置するようにしてあるため、上記金属電極4a又は4bの伸長、収縮に伴う応力を、各結晶粒11に対してC面と平行な方向にのみ作用させることができる。したがって、上記応力が作用したとしても、該各熱電半導体素子2a及び3aの組織内にて、六方晶構造の結晶粒11の層間が剥離される虞を防止できるため、上記熱電半導体素子2a及び3aの劈開による損傷を防止できて、熱電モジュール1aの強度及び耐久性を向上させることが可能になる。すなわち、比較例として図21に示す如く、上記P型とN型の各熱電半導体素子2aと3aを、結晶粒11の六方晶構造のC軸方向に並べて配置した状態にて、該各熱電半導体素子2aと3aを金属電極4を介し接合してPN素子対を形成させた場合には、上記金属電極4の温度変化に伴う伸長、収縮変形による応力は、上記各熱伝半導体素子2aと3aに対して結晶粒11のC軸方向に沿って作用する。したがって、該結晶粒11の六方晶構造の層間を剥離させるように作用するため、この場合には、熱電半導体素子2a及び3aに容易に劈開による損傷が発生してしまうものと考えられるが、上記本発明の熱電モジュール1aでは、このような損傷の発生を防止できる。   When thermoelectric cooling, thermoelectric heating, thermoelectric power generation or the like is performed using the thermoelectric module 1a, the metal electrodes 4a and 4b expand and contract with temperature change, so that the metal electrodes 4a or 4b are joined together. The adjacent P-type and N-type heat transfer semiconductor elements 2a and 3a are subjected to stress in the approaching and separating directions. In the thermoelectric module 1a of the present invention, the PN element pair is When forming, adjacent thermoelectric semiconductor elements 2a and 3a joined by one metal electrode 4a or 4b are arranged in the same plane in the C-plane direction of crystal grains 11 as shown in FIG. Therefore, the stress accompanying the expansion and contraction of the metal electrode 4a or 4b can be applied to each crystal grain 11 only in the direction parallel to the C plane. Therefore, even if the stress is applied, the possibility of delamination of the hexagonal crystal grains 11 in the structure of the thermoelectric semiconductor elements 2a and 3a can be prevented. Therefore, the thermoelectric semiconductor elements 2a and 3a can be prevented. Can be prevented from being cleaved, and the strength and durability of the thermoelectric module 1a can be improved. That is, as shown in FIG. 21 as a comparative example, the P-type and N-type thermoelectric semiconductor elements 2 a and 3 a are arranged side by side in the C-axis direction of the hexagonal crystal structure of the crystal grains 11. When the elements 2a and 3a are joined via the metal electrode 4 to form a PN element pair, the stress due to the expansion and contraction deformation caused by the temperature change of the metal electrode 4 is caused by the stress generated in each of the heat transfer semiconductor elements 2a and 3a. In contrast, it acts along the C-axis direction of the crystal grains 11. Therefore, since it acts to peel off the hexagonal crystal structure of the crystal grains 11, in this case, it is considered that the thermoelectric semiconductor elements 2a and 3a are easily damaged by cleavage. In the thermoelectric module 1a of the present invention, occurrence of such damage can be prevented.

なお、本発明は上記実施の形態のみに限定されるものではなく、熱電半導体材料の製造方法の固化成形工程IIIにおける熱電半導体素材10の固化成形(焼結)するときの処理
条件は、380℃以上500℃以下、好ましくは、420℃以上450℃以下に5秒から5分保持するものとして示したが、400℃以下で時間をかけながら焼結することも可能であり、更に、プレス、圧延、押出しにより塑性変形を加えて成形体12を形成させるようにすることも可能である。塑性変形工程IVで用いる塑性加工装置13としては、左右の拘束部材15の内側にてパンチ16を昇降可能に備えてなる構造として、上記左右の拘束部材15の内側の中央部に成形体12を配置して、該成形体12をパンチ16にて上方から押圧することにより、上記成形体12を、熱電半導体素材10の積層方向に平行な一軸方向となる前後両側へ展延させるものとして示したが、図22(イ)(ロ)に示す如く、塑性加工装置13を、ベース14上における左右の拘束部材15の間の一端側位置に、成形体12の前後方向の一方への変形(展延)を拘束できるようにした拘束部材15bを更に設けてなる構成として、成形体12を塑性変形させるときに、最初に上記左右の拘束部材15と上記拘束部材15bに接するように成形体12を配置し、その後、図22(イ)に二点鎖線で示す如く、パンチ16にて上記成形体12を上方より押圧することで、該成形体12を反拘束部材15b側となる一方向へのみ展延させるようにしてもよい。図11(イ)(ロ)(ハ)に示した全方位静水圧工程IV−2で用いる塑性加工装置13aは、左右方向の拘束部材15と前後方向の拘束部材18の外周側に、図8(ニ)に示したと同様の位置固定用リング15aを設けて、成形体12の塑性変形加工時に上記各拘束部材15,18に対して外向きに作用する応力を受けさせるようにしてもよい。又、全方位静水圧工程IV−2を二回以上実施する場合、前後方向の拘束部材18の間隔の異なる複数基の塑性加工装置13aを用意することに代えて、前後方向の拘束部材18を任意の間隔に調整可能な形式の塑性加工装置13aを用いるようにしてもよい。
In addition, this invention is not limited only to the said embodiment, The process conditions at the time of solidification shaping | molding (sintering) of the thermoelectric semiconductor raw material 10 in the solidification shaping | molding process III of the manufacturing method of a thermoelectric semiconductor material are 380 degreeC. Above 500 ° C., preferably 420 ° C. to 450 ° C. for 5 seconds to 5 minutes, but it is possible to sinter at 400 ° C. or less over time, and press, rolling It is also possible to form the molded body 12 by applying plastic deformation by extrusion. The plastic working device 13 used in the plastic deformation step IV has a structure in which the punch 16 can be moved up and down inside the left and right restraining members 15, and the molded body 12 is placed at the center inside the left and right restraining members 15. Arranged and pressed the molded body 12 from above with a punch 16 so that the molded body 12 is expanded to both front and rear sides in a uniaxial direction parallel to the lamination direction of the thermoelectric semiconductor material 10. However, as shown in FIGS. 22 (a) and 22 (b), the plastic working device 13 is deformed (expanded) in the front-rear direction of the molded body 12 at a position on one end side between the left and right restraining members 15 on the base 14. When the molded body 12 is plastically deformed, the molded body 12 is first brought into contact with the left and right restraint members 15 and the restraint member 15b. Then, as shown by a two-dot chain line in FIG. 22 (a), the molded body 12 is pressed from above by the punch 16 so that the molded body 12 is only in one direction on the anti-restraining member 15b side. You may make it extend. The plastic working device 13a used in the omnidirectional hydrostatic pressure process IV-2 shown in FIGS. 11 (a), 11 (b) and 11 (c) is arranged on the outer peripheral side of the restraining member 15 in the left-right direction and the restraining member 18 in the front-rear direction. A position fixing ring 15a similar to that shown in (d) may be provided so as to receive an outwardly acting stress on the restraining members 15 and 18 when the molded body 12 is plastically deformed. When the omnidirectional hydrostatic pressure step IV-2 is performed twice or more, instead of preparing a plurality of plastic working devices 13a having different intervals between the front and rear direction restraining members 18, the front and rear direction restraining members 18 are provided. You may make it use the plastic processing apparatus 13a of the form which can be adjusted to arbitrary intervals.

熱電半導体の原料合金の組成としては、P型、N型のいずれの場合も熱電半導体の材料のゼーベック係数の温度特性に基づいて選択するものとして示したが、電気伝導率(σ)やパワーファクター(P)、性能指数(Z)等の熱電性能に関与する別のパラメータの温度特性に基づいて、それぞれ組成を決定するようにしてもよい。N型の熱電半導体材料17は低温側の組成Bと高温側の組成Cの2つの組成を連続的に傾斜させてなるものとして示し、P型の熱電半導体材料17は低温側から高温側へ組成F、組成G、組成Hの3つの異なる組成を連続的に傾斜させてなるものとして示したが、製造すべき熱電モジュールの熱電半導体素子に作用すると想定される温度範囲や、所望する熱電性能に関するパラメータの温度特性に応じて、低温側から高温側へ傾斜させる組成の数は任意に設定してよい。
又、組成の傾斜はSeやSb以外の任意の成分の濃度や添加量を変化させることで行わせるようにしてもよく、低温側から高温側へ至る間に3つ以上の組成の変化を行わせようとする場合、ある組成から別の組成へ変化させる場合と、該別の組成から更に別の組成へ変化させる場合とで、異なる成分の濃度や添加量を変化させるようにしてもよい。製造すべき熱電モジュールの熱電半導体素子に作用すると想定される温度傾斜は、常温付近から300℃付近として説明したが、熱電モジュールの使用目的や使用場所等に応じて低温側及び高温側の温度はそれぞれ任意に設定してよい。図13(イ)(ロ)(ハ)の実施の形態では、熱電半導体素子3aを、低温側に温度適性を有する組成B側の断面積が、高温側に温度適性を有する組成C側の断面積よりも小さくなる台形状もしくは角錐台状に切り出すものとして示したが、高温側に温度適性を有する組成の部分を高温条件下に配したときの電気伝導率が、低温側に温度適性を有する組成の部分を低温条件下に配したときの電気伝導率よりも高くなる場合には、上記高温側に温度適性を有する組成とした部分の断面積が、低温側に温度適性を有する組成とした部分の断面積よりも狭くなるように切り出してもよい。本発明の熱電半導体素子、該熱電半導体の製造に用いる熱電半導体材料、上記熱電半導体素子を用いた熱電モジュールは、熱電発電以外にも、熱電冷却や熱電加熱を行うためのものにも適用できること、その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
The composition of the thermoelectric semiconductor raw material alloy was selected based on the temperature characteristics of the Seebeck coefficient of the thermoelectric semiconductor material in both cases of P-type and N-type, but the electrical conductivity (σ) and power factor The composition may be determined based on the temperature characteristics of other parameters related to thermoelectric performance such as (P) and figure of merit (Z). The N-type thermoelectric semiconductor material 17 is shown as a composition in which two compositions of a low-temperature side composition B and a high-temperature side composition C are continuously inclined, and the P-type thermoelectric semiconductor material 17 is composed from the low-temperature side to the high-temperature side. The three different compositions of F, composition G, and composition H have been shown as being continuously graded, but it relates to the temperature range expected to act on the thermoelectric semiconductor element of the thermoelectric module to be manufactured and the desired thermoelectric performance. Depending on the temperature characteristics of the parameters, the number of compositions to be inclined from the low temperature side to the high temperature side may be arbitrarily set.
In addition, the composition gradient may be changed by changing the concentration or addition amount of any component other than Se or Sb, and three or more composition changes are performed from the low temperature side to the high temperature side. When trying to make it change, you may make it change the density | concentration and addition amount of a different component by the case where it changes from one composition to another composition, and the case where it changes from this another composition to another composition. The temperature gradient assumed to act on the thermoelectric semiconductor element of the thermoelectric module to be manufactured has been described as being from around room temperature to around 300 ° C., but the temperature on the low temperature side and the high temperature side depends on the purpose and place of use of the thermoelectric module. Each may be set arbitrarily. In the embodiment shown in FIGS. 13A, 13B, and 13C, the thermoelectric semiconductor element 3a has a cross-sectional area on the composition B side having temperature suitability on the low temperature side, and on the composition C side having temperature suitability on the high temperature side. Although shown as a trapezoidal or pyramidal trapezoidal shape that is smaller than the area, the electrical conductivity when a portion of the composition having temperature suitability on the high temperature side is placed under high temperature conditions has temperature suitability on the low temperature side In the case where the electrical conductivity becomes higher when the portion of the composition is placed under a low temperature condition, the cross-sectional area of the portion having the temperature suitability on the high temperature side is the composition having the temperature suitability on the low temperature side. You may cut out so that it may become narrower than the cross-sectional area of a part. The thermoelectric semiconductor element of the present invention, the thermoelectric semiconductor material used for manufacturing the thermoelectric semiconductor, and the thermoelectric module using the thermoelectric semiconductor element can be applied to thermoelectric cooling and thermoelectric heating in addition to thermoelectric power generation, Of course, various changes can be made without departing from the scope of the present invention.

本発明の熱電半導体材料の製造方法の実施の一形態におけるフローを示す図である。It is a figure which shows the flow in one Embodiment of the manufacturing method of the thermoelectric-semiconductor material of this invention. 複数の異なる組成のN型の熱電半導体の材料について、ゼーベック係数の温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of Seebeck coefficient about the material of the N-type thermoelectric semiconductor of a several different composition. 複数の異なる組成のN型の熱電半導体の材料について、電気伝導率の温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of an electrical conductivity about the material of the N type thermoelectric semiconductor of a several different composition. 複数の異なる組成のN型の熱電半導体の材料について、パワーファクターの温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of the power factor about the material of the N type thermoelectric semiconductor of a several different composition. 図1の徐冷箔製造工程で用いる装置の概要を示す図である。It is a figure which shows the outline | summary of the apparatus used at the slow cooling foil manufacturing process of FIG. 図1の徐冷箔製造工程にて形成される熱電半導体素材を示す概略斜視図である。It is a schematic perspective view which shows the thermoelectric semiconductor raw material formed in the slow cooling foil manufacturing process of FIG. 図1の固化成形工程にてN型の熱電半導体素材から形成される成形体を示すもので、(イ)は概略斜視図、(ロ)は熱電半導体素材の積層構造を模式的に示す斜視図、(ハ)は(ロ)の一部を切断して示す拡大斜視図である。FIGS. 1A and 1B show a molded body formed from an N-type thermoelectric semiconductor material in the solidification molding step of FIG. 1. FIG. 1A is a schematic perspective view, and FIG. 1B is a perspective view schematically showing a laminated structure of thermoelectric semiconductor materials. (C) is an expansion perspective view which cuts and shows a part of (b). 図1の塑性変形工程で用いる塑性加工装置を示すもので、(イ)は成形体の塑性変形前の初期状態を示す概略切断側面図、(ロ)は(イ)のA−A方向矢視図、(ハ)は成形体の塑性変形による熱電半導体材料を形成した状態を示す概略切断側面図、(ニ)は、位置固定用リングを備えた形式のものを示す(ロ)に対応する図である。FIG. 2 shows a plastic working apparatus used in the plastic deformation step of FIG. 1, (A) is a schematic cut side view showing an initial state of the molded body before plastic deformation, and (B) is a view in the AA direction of (A). Fig. (C) is a schematic cut side view showing a state in which a thermoelectric semiconductor material is formed by plastic deformation of a molded body. (D) is a diagram corresponding to (b) showing a type having a position fixing ring. It is. 図1の塑性変形工程で形成されるN型の熱電半導体材料を示すもので、(イ)は概略斜視図、(ロ)は結晶粒の配向性を模式的に示す斜視図である。FIGS. 2A and 2B show an N-type thermoelectric semiconductor material formed in the plastic deformation step of FIG. 1. FIG. 1A is a schematic perspective view, and FIG. 2B is a perspective view schematically showing crystal grain orientation. 本発明の熱電半導体材料の製造方法の実施の他の形態におけるフローを示す図である。It is a figure which shows the flow in other form of implementation of the manufacturing method of the thermoelectric-semiconductor material of this invention. 図10の全方位静水圧工程の実施に用いる塑性加工装置を示すもので、(イ)は成形体の塑性変形前の初期状態を示す概略切断側面図、(ロ)は(イ)のB−B方向矢視図、(ハ)は所要量の塑性変形させた成形体に対し全方位静水圧を作用させる状態を示す概略切断側面図である。FIG. 11 shows a plastic working apparatus used for the implementation of the omnidirectional hydrostatic pressure step of FIG. 10, (A) is a schematic cut side view showing an initial state before plastic deformation of the molded body, and (B) is B- of (A). B direction arrow directional view, (c) is a schematic cut side view showing a state in which omnidirectional hydrostatic pressure is applied to a molded body that has been plastically deformed in a required amount. 本発明の熱電半導体素子の製造方法の手順を示すもので、(イ)はN型の熱電半導体材料に導電材処理を施した状態を、(ロ)は(イ)の熱電半導体材料より切り出されたN型熱電半導体素子をそれぞれ示す概略斜視図である。The procedure of the manufacturing method of the thermoelectric semiconductor element of this invention is shown, (A) is the state which performed the electrically conductive material process to the N-type thermoelectric semiconductor material, (B) is cut out from the thermoelectric semiconductor material of (A). It is a schematic perspective view which shows each N type thermoelectric semiconductor element. (イ)(ロ)(ハ)はいずれも本発明の熱電半導体素子の製造方法の実施の他の形態として熱電半導体材料より切り出されたN型熱電半導体素子を示す概略斜視図である。(A), (B), and (C) are schematic perspective views showing an N-type thermoelectric semiconductor element cut out from a thermoelectric semiconductor material as another embodiment of the method for manufacturing a thermoelectric semiconductor element of the present invention. 複数の異なる組成のP型の熱電半導体の材料について、ゼーベック係数の温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of a Seebeck coefficient about the material of the P-type thermoelectric semiconductor of a several different composition. 複数の異なる組成のP型の熱電半導体の材料について、電気伝導率の温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of electrical conductivity about the material of the P-type thermoelectric semiconductor of a several different composition. 複数の異なる組成のP型の熱電半導体の材料について、パワーファクターの温度変化に対する相関を示す図である。It is a figure which shows the correlation with respect to the temperature change of a power factor about the material of the P-type thermoelectric semiconductor of several different composition. 図1の固化成形工程にてP型の熱電半導体素材から形成される成形体を示すもので、(イ)は概略斜視図、(ロ)は熱電半導体素材の積層構造を模式的に示す斜視図、(ハ)は(ロ)の一部を切断して示す拡大斜視図である。FIG. 1 shows a molded body formed from a P-type thermoelectric semiconductor material in the solidification molding step of FIG. 1, (A) is a schematic perspective view, and (B) is a perspective view schematically showing a laminated structure of thermoelectric semiconductor materials. (C) is an expansion perspective view which cuts and shows a part of (b). 図1の塑性変形工程で形成されるP型の熱電半導体材料を示すもので、(イ)は概略斜視図、(ロ)は結晶粒の配向性を模式的に示す斜視図である。FIGS. 2A and 2B show a P-type thermoelectric semiconductor material formed in the plastic deformation step of FIG. 1. FIG. 1A is a schematic perspective view, and FIG. 2B is a perspective view schematically showing crystal grain orientation. 本発明の熱電半導体素子の製造方法の手順を示すもので、(イ)はP型の熱電半導体材料に導電材処理を施した状態を、(ロ)は(イ)の熱電半導体材料より切り出されたP型熱電半導体素子をそれぞれ示す概略斜視図である。The procedure of the manufacturing method of the thermoelectric semiconductor element of the present invention is shown. (A) shows a state where a P-type thermoelectric semiconductor material is treated with a conductive material, and (B) is cut out from the thermoelectric semiconductor material of (A). It is a schematic perspective view which shows each P type thermoelectric semiconductor element. 本発明の熱電モジュールの実施の一形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of the thermoelectric module of this invention. 図20の熱電モジュールの比較例を示す概略斜視図である。It is a schematic perspective view which shows the comparative example of the thermoelectric module of FIG. 図1の塑性変形工程で用いる塑性加工装置の他の例を示すもので、(イ)は概略切断側面図、(ロ)は(イ)のC−C方向矢視図である。The other example of the plastic working apparatus used at the plastic deformation process of FIG. 1 is shown, (A) is a schematic cut | disconnection side view, (B) is a CC direction arrow directional view of (A). 熱電モジュールの一例の概略を示す斜視図である。It is a perspective view which shows the outline of an example of a thermoelectric module. 従来提案されている異なる組成の熱電半導体材料を積層してなる熱電半導体素子を用いた熱電モジュールの一例を示す概略側面図である。It is a schematic side view which shows an example of the thermoelectric module using the thermoelectric semiconductor element formed by laminating | stacking the thermoelectric semiconductor material of a different composition proposed conventionally.

符号の説明Explanation of symbols

I 成分調製工程
II 徐冷箔製造工程
III 固化成形工程
IV 組成変形工程
1,1a 熱電モジュール
2,2a P型熱電半導体素子
3,3a N型熱電半導体素子
4 金属電極
4a 低温側金属電極(電極)
4b 高温側金属電極(電極)
8 溶融合金
9 回転ロール(冷却部材)
10b,10c,10f,10g,10h 熱電半導体素材
12 成形体
17 熱電半導体材料
I Component preparation process
II Slow cooling foil manufacturing process
III Solidification process
IV Composition deformation process 1, 1a Thermoelectric module 2, 2a P-type thermoelectric semiconductor element 3, 3a N-type thermoelectric semiconductor element 4 Metal electrode 4a Low-temperature side metal electrode (electrode)
4b High-temperature side metal electrode (electrode)
8 Molten alloy 9 Rotating roll (cooling member)
10b, 10c, 10f, 10g, 10h Thermoelectric semiconductor material 12 Molded body 17 Thermoelectric semiconductor material

Claims (43)

組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して、該選定した組成の異なる熱電半導体の素材を低温側から高温側の順に層状に積層充填し固化成形して成形体とし、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直角一軸方向より押圧して上記組成の異なる熱電半導体素材の積層方向に平行な一軸方向に剪断力が掛かるように塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっていることを特徴とする熱電半導体材料。 For thermoelectric semiconductor materials with different compositions, the thermoelectric performance of the change to temperature obtained with the Seebeck coefficient as a parameter for evaluating thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side. Based on the data, the thermoelectric semiconductor composition that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the low temperature side, and the thermoelectric that can exhibit the different thermoelectric semiconductor compositions on the high temperature side. Select a thermoelectric semiconductor composition that can exhibit superior thermoelectric performance by comparing performance, or thermoelectric semiconductor that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the low temperature side Of thermoelectric semiconductors that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can be exhibited by the different thermoelectric semiconductor compositions on the high temperature side And comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side, and selecting the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance, the selected composition different thermoelectric semiconductor material and a layer stacked filled into solidified molding in the order of the high temperature side from the low temperature side and the molded body, the molded article, pressed from the uniaxial direction perpendicular to the product layer the direction of different thermoelectric semiconductor material having the composition of and plastically deformed so as shearing force is applied to the flat line uniaxial direction to the product layer the direction of different thermoelectric semiconductor material having the above composition, the gradient of composition along the stacking direction of the thermoelectric semiconductor material is provided, the The crystal grains in the structure of the thermoelectric semiconductor material have a hexagonal C-plane extending in the tilt direction of the composition, and the C-axis direction is also aligned to enhance crystal orientation. Thermoelectric semiconductor characterized by Material. 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とした請求項1記載の熱電半導体材料。 The thermoelectric semiconductor material according to claim 1 , wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとした請求項1記載の熱電半導体材料。 The thermoelectric semiconductor material according to claim 1 , wherein a parameter for evaluating the thermoelectric performance is changed to a power factor in place of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とした請求項1記載の熱電半導体材料。 The thermoelectric semiconductor material according to claim 1 , wherein a parameter for evaluating the thermoelectric performance is used as a figure of merit instead of the Seebeck coefficient . 熱電半導体の素材を、複数の熱電半導体の組成の原料合金を個別に溶融した後、徐冷して形成させてなる板状の熱電半導体素材とした請求項1、2、3又は4記載の熱電半導体材料。 The thermoelectric semiconductor material according to claim 1, 2, 3, or 4 , wherein the thermoelectric semiconductor material is a plate-shaped thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then slowly cooling it. Semiconductor material. 複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとした請求項1、2、3、4又は5記載の熱電半導体材料。 The thermoelectric semiconductor material of a plurality of compositions, both (Bi-Sb) 2 Te 3 system claims a composition were of compositions comprising varying the Ingredient based on 1, 2, 3, 4 or 5, wherein Thermoelectric semiconductor material. 複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に成分を変化させてなる組成のものとした請求項1、2、3、4又は5記載の熱電半導体材料。 The thermoelectric semiconductor material of a plurality of compositions, both Bi 2 (Te-Se) 3 based claim 1, 2, 3 compositions were of compositions comprising varying the Ingredient based on the, 4 or 5, wherein Thermoelectric semiconductor material. 組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して、該選定した組成の異なる熱電半導体の素材を低温側から高温側の順に層状に積層充填し固化成形して成形体とし、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直角一軸方向より押圧して上記組成の異なる熱電半導体素材の積層方向に平行な一軸方向に剪断力が掛かるように塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料とし、該熱電半導体材料における上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してなることを特徴とする熱電半導体素子。 For thermoelectric semiconductor materials with different compositions, the thermoelectric performance of the change to temperature obtained with the Seebeck coefficient as a parameter for evaluating thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side. Based on the data, the thermoelectric semiconductor composition that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the low temperature side, and the thermoelectric that can exhibit the different thermoelectric semiconductor compositions on the high temperature side. Select a thermoelectric semiconductor composition that can exhibit superior thermoelectric performance by comparing performance, or thermoelectric semiconductor that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the low temperature side Of thermoelectric semiconductors that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can be exhibited by the different thermoelectric semiconductor compositions on the high temperature side And comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side, and selecting the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance, the selected composition different thermoelectric semiconductor material and a layer stacked filled into solidified molding in the order of the high temperature side from the low temperature side and the molded body, the molded article, pressed from the uniaxial direction perpendicular to the product layer the direction of different thermoelectric semiconductor material having the composition of and plastically deformed so as shearing force is applied to the flat line uniaxial direction to the product layer the direction of different thermoelectric semiconductor material having the above composition, the gradient of composition along the stacking direction of the thermoelectric semiconductor material is provided, the The thermoelectric semiconductor material has a crystal grain in which the C-plane of the hexagonal crystal structure extends in the tilt direction of the composition and the C-axis direction is aligned to enhance crystal orientation. As a semiconductor material, the heat Thermoelectric semiconductor elements, characterized in that by uniaxially opposite end portions of the Eject and switching power sale by can be bonded with electrode processing to the action of shear forces during plastic deformation of the shaped body in the semiconductor material. 熱電半導体材料における成形体の組成変形加工時に剪断力の作用する一軸方向の一端側と他端側の断面積を相違させて切り出し加工した請求項記載の熱電半導体素子。 The thermoelectric semiconductor element according to claim 8, which is cut out by making the cross-sectional areas of one end side and the other end side in a uniaxial direction on which a shearing force acts during the composition deformation processing of the molded body in the thermoelectric semiconductor material differ. 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とした請求項8又は9記載の熱電半導体素子。 The thermoelectric semiconductor element according to claim 8 or 9, wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとした請求項8又は9記載の熱電半導体素子。 The thermoelectric semiconductor element according to claim 8 or 9 , wherein a parameter for evaluating the thermoelectric performance is changed to a power factor in place of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とした請求項8又は9記載の熱電半導体素子。 The thermoelectric semiconductor element according to claim 8 or 9 , wherein a parameter for evaluating the thermoelectric performance is a performance index instead of the Seebeck coefficient . 熱電半導体の素材を、複数の熱電半導体の組成の原料合金を個別に溶融した後、徐冷して形成させてなる板状の熱電半導体素材とした請求項8、9、10、11又は12記載の熱電半導体素子。 The thermoelectric semiconductor material is a plate-shaped thermoelectric semiconductor material formed by melting a raw material alloy having a composition of a plurality of thermoelectric semiconductors individually and then slowly cooling the material alloy, 13, 10, 11, or 12. Thermoelectric semiconductor element. 複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとした請求項8、9、10、11、12又は13記載の熱電半導体素子。 The thermoelectric semiconductor material of a plurality of compositions, both (Bi-Sb) claims a composition of 2 Te 3 system were of compositions comprising varying the Ingredient based 8,9,10,11,12 or 13. The thermoelectric semiconductor element according to 13 . 複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に成分を変化させてなる組成のものとした請求項8、9、10、11、12又は13記載の熱電半導体素子。 The thermoelectric semiconductor material of a plurality of compositions, both Bi 2 (Te-Se) claims a composition of 3 systems were of compositions comprising varying the Ingredient based 8,9,10,11,12 or 13. The thermoelectric semiconductor element according to 13 . 組成を異にしたP型の複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、高温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成を選定し、又は、低温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、高温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、低温側から高温側までの間の温度領域で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成を選定し、且つ組成を異にしたN型の複数の熱電半導体の素材について、低温側から、高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、高温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成を選定し、又は、低温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、高温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、低温側から高温側までの間の温度領域で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成を選定して、それぞれ選定した組成の異なるP型とN型の各熱電半導体の素材を、低温側から高温側の順に層状に積層充填し固化成形して別々の成形体とし、該P型とN型の熱電半導体の組成を有する各成形体を、それぞれ上記組成の異なる熱電半導体素材の積層方向に直角一軸方向より押圧して上記組成の異なる熱電半導体素材の積層方向に平行な一軸方向に剪断力が掛かるように塑性変形加工して、上記それぞれの熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっているP型及びN型の熱電半導体材料とし、該P型とN型の各熱電半導体材料より、上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してそれぞれ形成してなるP型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力の作用した一軸方向に共に直交する方向に並べて配置すると共に、該P型とN型の各熱電半導体素子を電極を介し接合して形成してなるPN素子対を備えた構成を有することを特徴とする熱電モジュール。 About the change with respect to the temperature obtained by the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side for materials of a plurality of P-type thermoelectric semiconductors with different compositions Based on the thermoelectric performance data, the composition of the P-type thermoelectric semiconductor capable of exhibiting superior thermoelectric performance by comparing the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor of different P-type on the low temperature side, and the above P on the high temperature side. Compare the thermoelectric performance that can be exhibited by the composition of each thermoelectric semiconductor of different types, and select the composition of the P-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance, or the composition of each of the thermoelectric semiconductors of different P-type on the low temperature side Compared to the thermoelectric performance that can be exhibited, the composition of P-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance, and the thermoelectric performance that can exhibit the composition of each thermoelectric semiconductor different from the P-type on the high temperature side Compare the composition of P-type thermoelectric semiconductors that can exhibit superior thermoelectric performance and thermoelectric performance that can exhibit the composition of each P-type thermoelectric semiconductor different in the temperature range from the low temperature side to the high temperature side. Different temperature ranges in the temperature range from the low temperature side to the high temperature side for a plurality of N type thermoelectric semiconductor materials that have selected the composition of P-type thermoelectric semiconductors that can exhibit excellent thermoelectric performance. Based on the thermoelectric performance data on the change with temperature obtained by the Seebeck coefficient as a parameter for evaluating thermoelectric performance in the thermoelectric performance, the thermoelectric performance that can exhibit the composition of each thermoelectric semiconductor of different N type on the low temperature side is superior The composition of an N-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance and the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor different from the above N-type on the high temperature side are compared. The composition of the N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each thermoelectric semiconductor different from the N-type on the low temperature side, The composition of the N-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance by comparing the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor different in N-type on the side, and the above in the temperature region from the low temperature side to the high temperature side Comparing the thermoelectric performance that can exhibit the composition of each thermoelectric semiconductor having different N-type, selecting the composition of the N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance, each of the P-type and N-type having different selected compositions The thermoelectric semiconductor material is layered and packed in layers from the low temperature side to the high temperature side and solidified to form separate molded bodies. Each molded body having the composition of the P-type and N-type thermoelectric semiconductors has the above composition. product layers of different thermoelectric semiconductor material Direction and then pressed from the uniaxial direction perpendicular plastically deformed as a shear force is applied to the flat line uniaxial direction to the product layer the direction of different thermoelectric semiconductor material having the above composition, in the stacking direction of the respective thermoelectric semiconductor material The crystal grain in the structure of the thermoelectric semiconductor extends along the C-plane of the hexagonal structure in the tilt direction of the composition, and the C-axis direction is also aligned to enhance the crystal orientation. Both P-type and N-type thermoelectric semiconductor materials, and both end portions in the uniaxial direction on which shearing force acts during plastic deformation processing of the molded body from the P-type and N-type thermoelectric semiconductor materials in Seebeck coefficient of the Eject and switching power sale by can be bonded with the electrodes processed obtained by forming each P-type and N-type each thermoelectric semiconductor elements, as a parameter for evaluating the thermoelectric performance at respective thermoelectric a semiconductor element Changes to the obtained temperature Based on the data of thermoelectric performance for, distribution by side each other thermoelectric semiconductor composition excellent thermoelectric performance can be exhibited at a low temperature side, and were distribution of the thermoelectric semiconductor composition which can exhibit excellent thermoelectric properties at high temperature side align the side between each and the uniaxial direction by applying a pressing force at the time of plastic deformation of the shaped body, as well as arranged in a straight direction orthogonal to the co uniaxially that shear force by the pressing pressure, the P A thermoelectric module comprising a PN element pair formed by joining a thermoelectric semiconductor element of a type and an N type through electrodes. 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とした請求項16記載の熱電モジュール。 The thermoelectric module according to claim 16 , wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとした請求項16記載の熱電モジュール。 The thermoelectric module according to claim 16 , wherein a parameter for evaluating the thermoelectric performance is changed to a power factor instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とした請求項16記載の熱電モジュール。 The thermoelectric module according to claim 16 , wherein a parameter for evaluating the thermoelectric performance is changed to a performance index instead of the Seebeck coefficient . 熱電半導体の素材を、複数の熱電半導体の組成の原料合金を個別に溶融した後、徐冷して形成させてなる板状の熱電半導体素材とした請求項16、17、18又は19記載の熱電モジュール。 20. The thermoelectric semiconductor material according to claim 16, 17, 18 or 19, wherein the thermoelectric semiconductor material is a plate-shaped thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then slowly cooling it. module. 熱電半導体の原料合金を溶融固化させて箔状、板状とするか、あるいはこれらの粉砕物とさせてなる熱電半導体の素材を、組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して用意し、該用意した複数の組成の熱電半導体素材を、低温側から高温側の順に層状に積層させて固化成形して成形体を形成し、次に、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の積層方向に平行な一軸方向に剪断力を作用させて塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料を形成することを特徴とする熱電半導体材料の製造方法。 Thermoelectric semiconductor raw material alloys are melted and solidified into foils , plates, or pulverized products of thermoelectric semiconductor materials with different compositions from the low temperature side. Based on the thermoelectric performance data on changes to temperature obtained with the Seebeck coefficient as a parameter for evaluating thermoelectric performance in different temperature ranges up to the high temperature side, the composition of each of the different thermoelectric semiconductors on the low temperature side is demonstrated. The composition of a thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance by comparing the thermoelectric performance capable of exhibiting excellent thermoelectric performance by comparing the thermoelectric performance capable of exhibiting the above-mentioned different thermoelectric semiconductor compositions on the high temperature side Or a composition of a thermoelectric semiconductor that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors on the low temperature side Compare the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the high temperature side, and the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance, and the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side. Compare the thermoelectric performance that can be exhibited by selecting the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance , prepare the thermoelectric semiconductor material of the prepared multiple compositions in layers from the low temperature side to the high temperature side are stacked solidified molded to form a molded body, then, the molded article, one of the axial direction in the biaxial direction intersecting with the straight intersects plane to the product layer the direction of different thermoelectric semiconductor material having the composition and pressed from the other axial direction on the state of restraining the deformation of the by the action of shear forces on the flat line uniaxial direction to the product layer direction of the thermoelectric semiconductor material to plastic deformation working, the lamination of the thermoelectric semiconductor material The composition gradient along the direction The crystal grains in the structure of the thermoelectric semiconductor material have a C-plane of the hexagonal structure extending in the inclination direction of the composition, and the C-axis direction is also aligned to enhance the crystal orientation. A method of manufacturing a thermoelectric semiconductor material, comprising forming the thermoelectric semiconductor material. 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とする請求項21記載の熱電半導体材料の製造方法。 The method for producing a thermoelectric semiconductor material according to claim 21 , wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとする請求項21記載の熱電半導体材料の製造方法。 The method for producing a thermoelectric semiconductor material according to claim 21 , wherein a parameter for evaluating the thermoelectric performance is changed to a power factor in place of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とする請求項21記載の熱電半導体材料の製造方法。 The method for producing a thermoelectric semiconductor material according to claim 21 , wherein a parameter for evaluating the thermoelectric performance is replaced with a Seebeck coefficient and a performance index is used. 複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとする請求項21、22、23又は24記載の熱電半導体材料の製造方法。 The thermoelectric semiconductor material of a plurality of compositions, thermoelectric of both (Bi-Sb) is varied with Ingredient based on the composition of 2 Te 3 system and having composition comprising according to claim 21, 22, 23 or 24, wherein Manufacturing method of semiconductor material. 複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に成分を変化させてなる組成のものとする請求項21、22、23又は24記載の熱電半導体材料の製造方法。 The thermoelectric semiconductor material of a plurality of compositions, thermoelectric of both Bi 2 (Te-Se) the composition of the 3 system by changing the Ingredient based on the intended composition comprising according to claim 21, 22, 23 or 24, wherein Manufacturing method of semiconductor material. 熱電半導体の素材として、複数の熱電半導体の組成の原料合金を個別に溶融した後、溶融合金を冷却部材表面に接触させて徐冷して形成させてなる板状の熱電半導体素材を使用する請求項21、22、23、24、25又は26記載の熱電半導体材料の製造方法。 Claims: As a thermoelectric semiconductor material, a plate-like thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then bringing the molten alloy into contact with the surface of a cooling member and gradually cooling it is used. Item 27. A method for producing a thermoelectric semiconductor material according to Item 21, 22, 23, 24, 25, or 26 . 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項27記載の熱電半導体材料の製造方法。 When the molten alloy of the raw material alloy is brought into contact with the surface of the cooling member to form a plate-like thermoelectric semiconductor material, the above-mentioned melting is performed at a speed at which 90% or more of the thickness of the formed plate-like thermoelectric semiconductor material is not rapidly cooled. 28. The method for producing a thermoelectric semiconductor material according to claim 27, wherein the alloy is cooled and solidified. 熱電半導体の原料合金を溶融固化させて箔状、板状とするか、あるいはこれらの粉砕物とさせてなる熱電半導体の素材を、組成を異にした複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定し、又は、低温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、高温側で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成と、低温側から高温側までの間の温度領域で上記異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できる熱電半導体の組成を選定して用意し、該用意した複数の組成の熱電半導体素材を、低温側から高温側の順に層状に積層させて固化成形して成形体を形成し、次に、該成形体を、上記組成の異なる熱電半導体素材の積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の積層方向に平行な一軸方向に剪断力を作用させて塑性変形加工して、上記熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっている熱電半導体材料を形成し、しかる後、該熱電半導体材料を、上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工して熱電半導体素子を形成することを特徴とする熱電半導体素子の製造方法。 Thermoelectric semiconductor raw material alloys are melted and solidified into foils , plates, or pulverized products of thermoelectric semiconductor materials with different compositions from the low temperature side. Based on the thermoelectric performance data on changes to temperature obtained with the Seebeck coefficient as a parameter for evaluating thermoelectric performance in different temperature ranges up to the high temperature side, the composition of each of the different thermoelectric semiconductors on the low temperature side is demonstrated. The composition of a thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance by comparing the thermoelectric performance capable of exhibiting excellent thermoelectric performance by comparing the thermoelectric performance capable of exhibiting the above-mentioned different thermoelectric semiconductor compositions on the high temperature side Or a composition of a thermoelectric semiconductor that can exhibit excellent thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each of the different thermoelectric semiconductors on the low temperature side Compare the thermoelectric performance that can exhibit the different thermoelectric semiconductor compositions on the high temperature side, and the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance, and the different thermoelectric semiconductors in the temperature range from the low temperature side to the high temperature side. Compare the thermoelectric performance that can be exhibited by selecting the composition of the thermoelectric semiconductor that can exhibit excellent thermoelectric performance , prepare the thermoelectric semiconductor material of the prepared multiple compositions in layers from the low temperature side to the high temperature side are stacked solidified molded to form a molded body, then, the molded article, one of the axial direction in the biaxial direction intersecting with the straight intersects plane to the product layer the direction of different thermoelectric semiconductor material having the composition and pressed from the other axial direction on the state of restraining the deformation of the by the action of shear forces on the flat line uniaxial direction to the product layer direction of the thermoelectric semiconductor material to plastic deformation working, the lamination of the thermoelectric semiconductor material The composition gradient along the direction The crystal grains in the structure of the thermoelectric semiconductor material have a C-plane of the hexagonal structure extending in the inclination direction of the composition, and the C-axis direction is also aligned to enhance the crystal orientation. going on to form a thermoelectric semiconductor material, thereafter, the thermoelectric semiconductor material, and both end portions of the Eject and switching power sale by can be bonded with electrode processing uniaxial direction acting shear forces during plastic deformation of the shaped body A method of manufacturing a thermoelectric semiconductor element, comprising forming a thermoelectric semiconductor element. 熱電半導体材料より熱電半導体素子を切り出すときに、形成される熱電半導体素子における成形体の組成変形加工時に剪断力の作用する一軸方向の一端側と他端側の断面積を相違させるようにする請求項29記載の熱電半導体素子の製造方法。 When the thermoelectric semiconductor element is cut out from the thermoelectric semiconductor material, the cross-sectional areas on one end side and the other end side in the uniaxial direction where the shearing force acts during the composition deformation processing of the molded body in the thermoelectric semiconductor element to be formed are made different. Item 30. A method for producing a thermoelectric semiconductor element according to Item 29 . 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とする請求項29又は30記載の熱電半導体素子の製造方法。 The method for producing a thermoelectric semiconductor element according to claim 29 or 30 , wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとする請求項29又は30記載の熱電半導体素子の製造方法。 The method for producing a thermoelectric semiconductor element according to claim 29 or 30 , wherein a parameter for evaluating the thermoelectric performance is replaced with a Seebeck coefficient to be a power factor. 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とする請求項29又は30記載の熱電半導体素子の製造方法。 31. The method of manufacturing a thermoelectric semiconductor element according to claim 29 or 30 , wherein a parameter for evaluating the thermoelectric performance is a performance index instead of the Seebeck coefficient . 複数の組成の熱電半導体の素材を、いずれも(Bi−Sb)Te系の組成を基に成分を変化させてなる組成のものとする請求項29、30、31、32又は33記載の熱電半導体素子の製造方法。 The thermoelectric semiconductor material of a plurality of compositions, both (Bi-Sb) 2 Te 3 system according to claim 29, 30, 31, 32 or 33, wherein group by changing the components in the composition and that of the composition comprising the A method for manufacturing a thermoelectric semiconductor element. 複数の組成の熱電半導体の素材を、いずれもBi(Te−Se)系の組成を基に成分を変化させてなる組成のものとする請求項29、30、31、32又は33記載の熱電半導体素子の製造方法。 The thermoelectric semiconductor material of a plurality of compositions, both Bi 2 (Te-Se) the composition of the 3 system by changing the Ingredient based on the intended composition comprising according to claim 29, 30, 31, 32 or 33, wherein Manufacturing method of the thermoelectric semiconductor element. 熱電半導体の素材として、複数の熱電半導体の組成の原料合金を個別に溶融した後、溶融合金を冷却部材表面に接触させて徐冷して形成させてなる板状の熱電半導体素材を使用する請求項29、30、31、32、33、34又は35記載の熱電半導体素子の製造方法。 Claims: As a thermoelectric semiconductor material, a plate-like thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then bringing the molten alloy into contact with the surface of a cooling member and gradually cooling it is used. Item 36. A method for manufacturing a thermoelectric semiconductor element according to Item 29, 30, 31, 32, 33, 34, or 35 . 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項36記載の熱電半導体素子の製造方法。 When the molten alloy of the raw material alloy is brought into contact with the surface of the cooling member to form a plate-like thermoelectric semiconductor material, the above-mentioned melting is performed at a speed at which 90% or more of the thickness of the formed plate-like thermoelectric semiconductor material is not rapidly cooled. The method of manufacturing a thermoelectric semiconductor element according to claim 36, wherein the alloy is cooled and solidified. 熱電半導体の原料合金を溶融固化させて箔状、板状とするか、あるいはこれらの粉砕物とさせてなる熱電半導体の素材を、組成を異にしたP型の複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、高温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成を選定し、又は、低温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、高温側で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成と、低温側から高温側までの間の温度領域で上記P型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるP型の熱電半導体の組成を選定し、且つ組成を異にしたN型の複数の熱電半導体の素材について、低温側から高温側までの温度範囲内における異なる温度域で熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、高温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成を選定し、又は、低温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、高温側で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成と、低温側から高温側までの間の温度領域で上記N型の異なる各熱電半導体の組成の発揮できる熱電性能を比較して優れた熱電性能を発揮できるN型の熱電半導体の組成を選定して用意し、P型とN型の熱電半導体についてそれぞれ用意した上記複数の組成ごとの熱電半導体素材を、低温側から高温側の順に層状に積層させて固化成形して成形体を形成し、次に、該P型とN型の熱電半導体組成を有する各成形体を、上記組成の異なる熱電半導体素材の積層方向に直交する平面内で交叉する二軸方向のうち一方の軸方向への変形を拘束した状態にて他方の軸方向より押圧して上記熱電半導体素材の積層方向に平行な一軸方向に剪断力を作用させて塑性加工して、上記それぞれの熱電半導体素材の積層方向に沿って組成の傾斜が設けられ、該熱電半導体素材の組織中の結晶粒が、上記組成の傾斜方向にその六方晶構造のC面が延び、更に、C軸方向も揃えられて結晶配向性が高められているものとなっているP型及びN型の熱電半導体材料を形成し、次いで、該P型及びN型の熱電半導体材料を、上記成形体の塑性変形加工時に剪断力の作用する一軸方向の両端部を電極と接合できるよう切り出し加工してP型とN型の熱電半導体素子をそれぞれ形成し、しかる後、該P型とN型の各熱電半導体素子を、該各熱電半導体素子中にて上記熱電性能を評価するパラメータとしてのゼーベック係数で得られた温度に対する変化についての熱電性能のデータに基づき、低温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士、及び、高温側で優れた熱電性能を発揮できる熱電半導体の組成の配された側同士をそれぞれ揃え、且つ上記成形体の塑性変形加工時に押圧力を作用させた一軸方向と、該押圧により剪断力を作用させた一軸方向に共に直交する方向に並べて配置すると共に、上記P型とN型の各熱電半導体素子を電極を介し接合してPN素子対を形成することを特徴とする熱電モジュールの製造方法。 Thermoelectric semiconductor raw material alloy is melted and solidified into a foil shape, a plate shape, or a thermoelectric semiconductor material formed into a pulverized product of a plurality of P type thermoelectric semiconductor materials with different compositions, Based on the thermoelectric performance data about the change with respect to the temperature obtained with the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side, each of the different P-types on the low temperature side Compare the thermoelectric performance that can be demonstrated by comparing the thermoelectric performance that can be demonstrated by the composition of the thermoelectric semiconductor, and the thermoelectric performance that can be demonstrated by the composition of each thermoelectric semiconductor that is different from the above P type on the high temperature side. The composition of the P-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance is selected, or the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor different from the P-type is compared on the low temperature side. The composition of the P-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance by comparing the composition of the P-type thermoelectric semiconductor capable of exhibiting the electrical performance and the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor different from the P-type on the high temperature side Compare the thermoelectric performance that can exhibit the composition of each P-type different thermoelectric semiconductor in the temperature range from the low temperature side to the high temperature side, and select the composition of the P type thermoelectric semiconductor that can exhibit excellent thermoelectric performance. The change with respect to the temperature obtained by the Seebeck coefficient as a parameter for evaluating the thermoelectric performance in different temperature ranges in the temperature range from the low temperature side to the high temperature side for the materials of a plurality of N-type thermoelectric semiconductors having different compositions On the basis of the thermoelectric performance data about N-type thermoelectric semiconductors that can exhibit superior thermoelectric performance by comparing the thermoelectric performance that can exhibit the composition of each of the N-type different thermoelectric semiconductors on the low temperature side The composition of the N-type thermoelectric semiconductor capable of exhibiting excellent thermoelectric performance is selected by comparing the composition and the thermoelectric performance capable of exhibiting the composition of each thermoelectric semiconductor of different N-type on the high temperature side, or the above N on the low temperature side Comparing the thermoelectric performance that can exhibit the composition of each thermoelectric semiconductor of different types, the composition of the N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance, and the thermoelectric that can exhibit the composition of each thermoelectric semiconductor of different N type on the high temperature side Comparing the composition of N-type thermoelectric semiconductors that can demonstrate superior thermoelectric performance by comparing the performance, and the thermoelectric performance that can exhibit the composition of each N-type different thermoelectric semiconductor in the temperature range from the low temperature side to the high temperature side The composition of N-type thermoelectric semiconductor that can exhibit excellent thermoelectric performance is selected and prepared, and the thermoelectric semiconductor material for each of the plurality of compositions prepared for the P-type and N-type thermoelectric semiconductors is heated from the low temperature side to the high temperature. Layered in order of side And solidifying and molding by laminating to form a molded body, then the P-type and N-type each molded body having a thermoelectric semiconductor composition, straight interlinked planar to the product layer the direction of different thermoelectric semiconductor material having the composition the deformation of the one axial direction in the biaxial direction intersecting the inner at restrained state by pressing than other axial cause a shearing force to the flat line uniaxial direction to the product layer direction of the thermoelectric semiconductor material The composition of the thermoelectric semiconductor material is inclined along the stacking direction of the thermoelectric semiconductor material, and the crystal grains in the structure of the thermoelectric semiconductor material are aligned in the direction of inclination of the composition in the C plane of the hexagonal structure. The P-type and N-type thermoelectric semiconductor materials are formed in which the C-axis direction is aligned and the crystal orientation is enhanced , and then the P-type and N-type thermoelectric semiconductor materials are formed. Uniaxial direction in which a shearing force acts during plastic deformation of the molded body Both end portions and Eject and switching power sale by can be bonded to the electrode machining to form a P-type and N-type thermoelectric semiconductor elements, respectively, and thereafter, the P-type and N-type each thermoelectric semiconductor element, respective thermoelectric semiconductor elements Based on the thermoelectric performance data on the change to temperature obtained with the Seebeck coefficient as a parameter to evaluate the thermoelectric performance in the above , the sides of the thermoelectric semiconductor composition that can exhibit excellent thermoelectric performance on the low temperature side And the uniaxial direction in which the thermoelectric semiconductor compositions capable of exhibiting excellent thermoelectric performance on the high temperature side are aligned with each other, and a pressing force is applied during plastic deformation processing of the molded body, and shearing is caused by the pressing. while disposed co uniaxially an acting force are arranged in a straight direction orthogonal, thermoelectric, characterized in that to form a PN element pairs each thermoelectric semiconductor elements of the P-type and N-type bonding through the electrode Mo Manufacturing method of Yuru. 熱電性能を評価するパラメータをゼーベック係数に代えて、電気伝導率とする請求項38記載の熱電モジュールの製造方法。 39. The method of manufacturing a thermoelectric module according to claim 38 , wherein a parameter for evaluating the thermoelectric performance is changed to an electric conductivity instead of the Seebeck coefficient . 熱電性能を評価するパラメータをゼーベック係数に代えて、パワーファクターとする請求項38記載の熱電モジュールの製造方法。 The method for manufacturing a thermoelectric module according to claim 38 , wherein a parameter for evaluating the thermoelectric performance is replaced with a Seebeck coefficient to be a power factor. 熱電性能を評価するパラメータをゼーベック係数に代えて、性能指数とする請求項38記載の熱電モジュールの製造方法。 The method for manufacturing a thermoelectric module according to claim 38 , wherein a parameter for evaluating the thermoelectric performance is replaced with a Seebeck coefficient and a performance index is used. 熱電半導体の素材として、複数の熱電半導体の組成の原料合金を個別に溶融した後、溶融合金を冷却部材表面に接触させて徐冷して形成させてなる板状の熱電半導体素材を使用する請求項38、39、40又は41記載の熱電モジュールの製造方法。 Claims: As a thermoelectric semiconductor material, a plate-like thermoelectric semiconductor material formed by melting a raw material alloy having a plurality of thermoelectric semiconductor compositions individually and then bringing the molten alloy into contact with the surface of a cooling member and gradually cooling it is used. Item 42. A method for manufacturing a thermoelectric module according to Item 38, 39, 40 or 41 . 原料合金の溶融合金を冷却部材表面に接触させて板状の熱電半導体素材を形成させるときに、該形成される板状の熱電半導体素材の厚さの90%以上が急冷にならない速度で上記溶融合金を冷却して凝固させる請求項42記載の熱電モジュールの製造方法。 When the molten alloy of the raw material alloy is brought into contact with the surface of the cooling member to form a plate-like thermoelectric semiconductor material, the above-mentioned melting is performed at a speed at which 90% or more of the thickness of the formed plate-like thermoelectric semiconductor material is not rapidly cooled. The method of manufacturing a thermoelectric module according to claim 42, wherein the alloy is cooled and solidified.
JP2003388219A 2003-11-18 2003-11-18 THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM Expired - Fee Related JP4665391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388219A JP4665391B2 (en) 2003-11-18 2003-11-18 THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388219A JP4665391B2 (en) 2003-11-18 2003-11-18 THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2005150534A JP2005150534A (en) 2005-06-09
JP4665391B2 true JP4665391B2 (en) 2011-04-06

Family

ID=34695358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388219A Expired - Fee Related JP4665391B2 (en) 2003-11-18 2003-11-18 THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP4665391B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922652B2 (en) * 2005-08-16 2007-05-30 松下電器産業株式会社 Thermoelectric conversion device, cooling method and power generation method using the same
JP5736636B2 (en) * 2009-07-29 2015-06-17 ヤマハ株式会社 Thermoelectric converter
JP6333204B2 (en) * 2015-03-20 2018-05-30 トヨタ自動車株式会社 Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element using the same
KR102269404B1 (en) * 2015-11-12 2021-06-24 한국전기연구원 Selenium content increased thermal element
GB2577572A (en) * 2018-09-28 2020-04-01 Sumitomo Chemical Co Thermoelectric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163634A (en) * 1999-12-07 2001-06-19 Univ Osaka Solid electrolyte
JP2002232026A (en) * 2000-11-30 2002-08-16 Yamaha Corp Thermoelectric material, its manufacturing method and peltier module
JP2003092432A (en) * 2001-09-18 2003-03-28 Yamaha Corp Thermoelectric material and its manufacturing method
JP2003342613A (en) * 2002-05-23 2003-12-03 Matsushita Electric Works Ltd Method for manufacturing thermoelectric conversion element
JP2004335796A (en) * 2003-05-08 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric semiconductor material, thermoelectric semiconductor device using same, thermoelectric module using the device, and method for manufacturing these device and module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219244B2 (en) * 1996-09-13 2001-10-15 株式会社小松製作所 Thermoelectric semiconductor material and thermoelectric module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163634A (en) * 1999-12-07 2001-06-19 Univ Osaka Solid electrolyte
JP2002232026A (en) * 2000-11-30 2002-08-16 Yamaha Corp Thermoelectric material, its manufacturing method and peltier module
JP2003092432A (en) * 2001-09-18 2003-03-28 Yamaha Corp Thermoelectric material and its manufacturing method
JP2003342613A (en) * 2002-05-23 2003-12-03 Matsushita Electric Works Ltd Method for manufacturing thermoelectric conversion element
JP2004335796A (en) * 2003-05-08 2004-11-25 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric semiconductor material, thermoelectric semiconductor device using same, thermoelectric module using the device, and method for manufacturing these device and module

Also Published As

Publication number Publication date
JP2005150534A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4286053B2 (en) THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT USING THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM
WO1998011612A1 (en) Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
JP6182889B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN107074666A (en) The porous thermoelectric generator of nanostructured
JP3958857B2 (en) Thermoelectric semiconductor material manufacturing method
JP5463204B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP4665391B2 (en) THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP6317123B2 (en) Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element
JP2006237460A (en) Process for producing thermoelectric material
JP3305991B2 (en) Thermoelectric semiconductor material, method for producing the same, thermoelectric module using the same, and hot forging method
JP4200770B2 (en) Thermoelectric material ingot, method for producing the same, and method for producing the thermoelectric module
JP2000299504A (en) Semiconductor material and manufacture thereof
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP2004235278A (en) Thermoelectric material and its manufacturing method
JP2005294538A (en) Thermoelectric element, manufacturing method thereof and thermoelectric module
US11282997B2 (en) Thermoelectric conversion material, thermoelectric conversion element and production method of thermoelectric conversion material
JP2002111086A (en) Thermoelectric semiconductor material, its producing method and thermoelectric module and hot forcing method employing it
KR102203115B1 (en) Method for manufacturing thermoelectric material with improved orientation
KR102248813B1 (en) Method for manufacturing porous thermoelectric material and thermoelectric device comprising porous thermoelectric material
JP6549442B2 (en) Thermoelectric element, thermoelectric module and method of manufacturing thermoelectric element
JP2004342893A (en) Method of manufacturing thermoelectric material
JP2006108419A (en) Manufacturing method of thermoelectric material and thermoelement
JP2004356272A (en) Manufacturing method for thermoelectric material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4665391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees