JP4656891B2 - Carbon fiber assembly and method for producing the same - Google Patents

Carbon fiber assembly and method for producing the same Download PDF

Info

Publication number
JP4656891B2
JP4656891B2 JP2004248482A JP2004248482A JP4656891B2 JP 4656891 B2 JP4656891 B2 JP 4656891B2 JP 2004248482 A JP2004248482 A JP 2004248482A JP 2004248482 A JP2004248482 A JP 2004248482A JP 4656891 B2 JP4656891 B2 JP 4656891B2
Authority
JP
Japan
Prior art keywords
solution
carbon
aggregate
carbon fibers
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248482A
Other languages
Japanese (ja)
Other versions
JP2005097101A (en
JP2005097101A5 (en
Inventor
悌互 榊原
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Tokai University Educational Systems
Original Assignee
Canon Inc
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Tokai University Educational Systems filed Critical Canon Inc
Priority to JP2004248482A priority Critical patent/JP4656891B2/en
Publication of JP2005097101A publication Critical patent/JP2005097101A/en
Publication of JP2005097101A5 publication Critical patent/JP2005097101A5/ja
Application granted granted Critical
Publication of JP4656891B2 publication Critical patent/JP4656891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、表面が活性な中空状または芯部が充填された炭素繊維を溶液中または溶液の飽和蒸気圧の雰囲気中で製造する方法とその製造物に関する。   The present invention relates to a method for producing a hollow or active core-filled carbon fiber in a solution or in an atmosphere having a saturated vapor pressure of the solution, and a product thereof.

従来カーボンナノチューブ、カーボンナノファイバー、炭素繊維として中空状または芯充実ファイバー等が知られている。これらのファイバーを製造するには減圧されたガスを500℃以上の高温に曝す必要がある(例えば、特許文献1〜10参照。)。また、製造するのに900℃以上の高温を必要とする場合がある(例えば、特許文献11参照。)。これらの材料は、プラスチック、セラミックス、ゴム、金属等と複合することにより、これらの材料の機械的特性、電気的特性等を大きく改善することができるものと見なされ様々な検討が行われてきた。   Conventionally, hollow or core-filled fibers are known as carbon nanotubes, carbon nanofibers, and carbon fibers. In order to produce these fibers, it is necessary to expose the decompressed gas to a high temperature of 500 ° C. or higher (see, for example, Patent Documents 1 to 10). In addition, a high temperature of 900 ° C. or higher may be required for manufacturing (for example, see Patent Document 11). These materials are considered to be able to greatly improve the mechanical properties, electrical properties, etc. of these materials by combining with plastics, ceramics, rubber, metals, etc., and various studies have been conducted. .

これらの方法で製造できるカーボンナノチューブ、カーボンナノファイバー、炭素繊維等はファイバー表面においては活性点が非常に少なく、プラスチック、セラミックス、ゴム、金属等との間に隙間が生じ、当初の目的を十分には達成できていなかった。これらの欠点を克服するために、酸化処理、機械的処理等の表面を活性化処理する方法が述べられている(例えば、特許文献12〜14参照。)。   Carbon nanotubes, carbon nanofibers, carbon fibers, etc. that can be produced by these methods have very few active sites on the fiber surface, creating gaps between plastics, ceramics, rubber, metals, etc. Was not achieved. In order to overcome these drawbacks, a method of activating the surface such as oxidation treatment and mechanical treatment has been described (for example, see Patent Documents 12 to 14).

しかし、これらの方法においては、500℃以上の高温での処理が必要であるために、安定的に製造するのが難しい。
特開平5-125619号公報 特開平5-229809号公報 特開平6-153192号公報 特開平6-157016号公報 特開平8-13254号公報 特開平8-134724号公報 特開平9-241929号公報 特開2000-95509号公報 特開2001-19413号公報 特開2001-80913公報 特開2003-12312公報 特開平5-9812号公報 特開平5-179514号公報 特開平6-212517号公報
However, these methods require treatment at a high temperature of 500 ° C. or higher, and are difficult to produce stably.
Japanese Patent Laid-Open No. 5-125619 Japanese Unexamined Patent Publication No. 5-229809 JP-A-6-153192 Japanese Patent Laid-Open No. 6-15016 Japanese Patent Laid-Open No. 8-13254 JP-A-8-13724 JP 9-241929 A JP 2000-95509 A Japanese Patent Laid-Open No. 2001-19413 JP 2001-80913 JP Japanese Patent Laid-Open No. 2003-12312 Japanese Patent Laid-Open No. 5-9812 Japanese Unexamined Patent Publication No. 5-179514 Japanese Patent Laid-Open No. 6-21517

本発明の課題は、活性点が多く、プラスチック、セラミックス、ゴム、金属等との間に隙間が生じない炭素繊維の集合体の製造方法を提供することにある。   The subject of this invention is providing the manufacturing method of the aggregate | assembly of a carbon fiber with many active points and a clearance gap not producing between plastics, ceramics, rubber | gum, a metal, etc.

第1の本発明は、中空状または芯部が充填された炭素繊維の集合体を製造する方法であって、
少なくとも炭素、酸素、水素および硫黄を構成要素として有し、炭素と酸素の元素の存在比率が1:2から6:1の範囲にあり、かつ炭素と硫黄の元素の存在比率が300:1から1000000:1の範囲である溶液の飽和蒸気の雰囲気中において、該溶液の蒸気を加熱する工程と、
加熱された該溶液の蒸気を硫黄存在下で分解して炭素繊維を生成する工程と、
該炭素繊維を、該飽和蒸気の雰囲気中に配置してなる300から700℃の基板上に形成させる工程と、
を有することを特徴とする、中空状または芯部が充填された炭素繊維の集合体の製造方法である。
The first aspect of the present invention is a method for producing an aggregate of carbon fibers filled with a hollow shape or a core,
At least carbon, oxygen, and useful as hydrogen and sulfur components, the presence ratio of carbon and oxygen element 1: 2 to 6: is in the first range, and the presence ratio of carbon and sulfur elements 300: 1 Heating the vapor of the solution in an atmosphere of saturated vapor of the solution in the range of 1000000: 1
Decomposing steam of the heated solution in the presence of sulfur to produce carbon fibers;
Forming the carbon fiber on a substrate at 300 to 700 ° C. arranged in the saturated steam atmosphere;
It is a manufacturing method of the aggregate | assembly of the carbon fiber with which the hollow shape or the core part was filled characterized by having.

第2の本発明は、中空状または芯部が充填された炭素繊維の集合体を製造する方法であって、
少なくとも炭素、酸素および水素を構成要素として有する溶液の飽和蒸気の雰囲気中で、該溶液の飽和蒸気の雰囲気中に配置したフィラメントで該溶液の飽和蒸気を加熱する工程と、
加熱された該溶液の蒸気を分解して該飽和蒸気の雰囲気中に配置してなる300から700℃の基板上に炭素繊維を生成させる工程を有し、
該基板の表面に少なくとも硫黄化合物を含有することを特徴とする、中空状または芯部が充填された炭素繊維の集合体の製造方法である。

The second aspect of the present invention is a method for producing an aggregate of carbon fibers filled with a hollow shape or a core,
Heating the saturated vapor of the solution in a saturated vapor atmosphere of a solution having at least carbon, oxygen and hydrogen as constituents with a filament disposed in the saturated vapor atmosphere of the solution;
Decomposing the vapor of the heated solution to produce carbon fiber on a substrate at 300 to 700 ° C., which is disposed in the saturated vapor atmosphere,
A method for producing an aggregate of carbon fibers filled with a hollow shape or a core, wherein the surface of the substrate contains at least a sulfur compound.

本発明は、活性点が多く、プラスチック、セラミックス、ゴム、金属等との間に隙間が生じない炭素繊維の集合体の製造方法を可能にした。   The present invention has enabled a method for producing an aggregate of carbon fibers that has many active sites and does not have gaps between plastic, ceramics, rubber, metal, and the like.

本発明について詳述する。   The present invention will be described in detail.

本発明の中空状または芯部が充填された炭素繊維を造るための装置および製法の概略を図1に基づいて述べる。   An outline of an apparatus for producing a hollow or core-filled carbon fiber of the present invention and a production method will be described with reference to FIG.

ガラス反応容器01に漏斗02を介して、少なくとも炭素、酸素、水素および硫黄を構成要素として有する溶液03を空間が無いように満たした後に漏斗02のコックを閉じる。炭素、酸素、水素および硫黄を構成要素として有する溶液としては、アルコール、エーテル、ケトン、エステル、アルデヒド、カルボン酸化合物等と、チオール、チオエーテル、チオカルボニル、炭化硫黄、硫化水素、硫酸化合物、芳香族チオ化合物等とを混合した物か、含硫炭水化物溶液が挙げられる。   After filling the glass reaction vessel 01 with the solution 03 having at least carbon, oxygen, hydrogen and sulfur as constituent elements through the funnel 02 so that there is no space, the cock of the funnel 02 is closed. As a solution having carbon, oxygen, hydrogen and sulfur as constituent elements, alcohol, ether, ketone, ester, aldehyde, carboxylic acid compound and the like, thiol, thioether, thiocarbonyl, sulfur carbide, hydrogen sulfide, sulfuric acid compound, aromatic The thing which mixed thio compound etc., or a sulfur-containing carbohydrate solution is mentioned.

溶液の炭素と酸素の元素の存在比率が1:2から6:1の範囲にある化合物が好ましい。特に1:2から4:1の範囲にある化合物が好ましい。炭素の比率が6:1より多い場合、目的とする中空状炭素繊維が得られにくく、煤が多く生成されてしまう。炭素、酸素、水素を構成要素として有する溶液の具体例としては、メタノール、エタノール、プロパノール、ブタノール、ジメチルエーテル、メチルエチルエーテル、ホルムアルデヒド、アセトアルデヒド、アセトン、ギ酸、酢酸、酢酸エチルなどであるが本発明はこれらに限定するものではない。   Compounds in which the abundance ratio of carbon and oxygen elements in the solution is in the range of 1: 2 to 6: 1 are preferred. Particularly preferred are compounds in the range of 1: 2 to 4: 1. When the ratio of carbon is more than 6: 1, it is difficult to obtain the target hollow carbon fiber, and a lot of soot is generated. Specific examples of the solution having carbon, oxygen, and hydrogen as constituent elements include methanol, ethanol, propanol, butanol, dimethyl ether, methyl ethyl ether, formaldehyde, acetaldehyde, acetone, formic acid, acetic acid, and ethyl acetate. It is not limited to these.

溶液の炭素と硫黄の元素の存在比率が100:1から1000000:1の範囲にある組成が好ましい。特に300:1から100000:1の範囲にある組成が好ましい。硫黄の比率が100:1より多い場合は、上記の炭素繊維は成長しない。一方、1000000:1より少ない場合は、独立した形状の炭素繊維が成長し易い。   A composition in which the abundance ratio of carbon and sulfur elements in the solution is in the range of 100: 1 to 1000000: 1 is preferred. A composition in the range of 300: 1 to 100,000: 1 is particularly preferable. If the sulfur ratio is greater than 100: 1, the carbon fiber will not grow. On the other hand, when it is less than 1000000: 1, carbon fibers having independent shapes are likely to grow.

ガラス反応容器01は金属管06を通して他のガラスの反応容器07につながる。このガラス反応容器07には他の金属管09が図のようにつながっている。ガラス反応容器01には、Ni等の金属でできた基板10をガラス反応容器01の下部に置く。この基板10の5mmほど上部にW製のフィラメント04が設置されている。このような状態において、Wフィラメント04に通電する。Wフィラメント04が加熱されるに従い、ガラス反応容器01に満たされた溶液03はガラス管06を通って液面がガラス管06の面に接するまでガラス反応容器07に流れ出し、ガラス反応容器07には溶液08が溜まる。この後には溶液の飽和蒸気に満たされた空間05が残る。この時の溶液の残量は容器01の20%ほどの容量であるのが望ましい。Wフィラメント04を1500〜2300℃に加熱すると、基板10は300〜700℃に加熱される従い、反応が進み炭素繊維が基板10上に堆積し始める。炭素源である溶液蒸気はWフィラメントの熱で、加熱、分解され、炭素系の励起種(例えば、C、C2、CH、CH2など)や炭素系ガス(CH4、C2H2、COなど)となり、Wフィラメントの5mm下に設置された金属基板上に炭素繊維として堆積する。その際、硫黄原子が何らかの効果により、炭素繊維の生成を助長することが確認できた。反応が進むに従い、原料である溶液03が消費されるが、消費された溶液はガラス反応容器07にある溶液08から供給され、液面は常に一定に保たれる。 The glass reaction vessel 01 is connected to another glass reaction vessel 07 through a metal tube 06. Another glass tube 09 is connected to the glass reaction vessel 07 as shown in the figure. In the glass reaction vessel 01, a substrate 10 made of a metal such as Ni is placed under the glass reaction vessel 01. A filament 04 made of W is installed on the upper side of the substrate 10 about 5 mm. In such a state, the W filament 04 is energized. As the W filament 04 is heated, the solution 03 filled in the glass reaction vessel 01 flows through the glass tube 06 to the glass reaction vessel 07 until the liquid level contacts the surface of the glass tube 06. Solution 08 accumulates. This is followed by a space 05 filled with saturated vapor of solution. The remaining amount of the solution at this time is preferably about 20% of the capacity of the container 01. When the W filament 04 is heated to 1500 to 2300 ° C., the substrate 10 is heated to 300 to 700 ° C., and the reaction proceeds and carbon fibers start to be deposited on the substrate 10. The solution vapor, which is a carbon source, is heated and decomposed by the heat of the W filament, and is excited by carbon-based excited species (for example, C, C 2 , CH, CH 2 etc.) and carbon-based gas (CH 4 , C 2 H 2 , CO, etc.) and is deposited as carbon fiber on a metal substrate placed 5 mm below the W filament. At that time, it was confirmed that the sulfur atom promotes the generation of the carbon fiber by some effect. As the reaction proceeds, the solution 03 as a raw material is consumed, but the consumed solution is supplied from the solution 08 in the glass reaction vessel 07, and the liquid level is always kept constant.

このようにしてできた炭素繊維は、製作する温度が300〜700℃と低いために非晶質構造である。また、溶液の飽和蒸気中で製作されるために炭素繊維の表面は溶液からの物質が吸着している。そのために炭素繊維が酸化されず安定に保たれ、表面の活性が維持され樹脂材料との相溶性が良くなるという特長がある。基板としては、Pt、Rh,Ru,Ni、Fe、Ti、Pd、Cu、Al、W、Si、Mo、Co、Y等が用いられるがこの中ではNiが最も望ましい。   The carbon fiber produced in this way has an amorphous structure because the manufacturing temperature is as low as 300 to 700 ° C. In addition, since the carbon fiber is manufactured in a saturated vapor of the solution, a substance from the solution is adsorbed on the surface of the carbon fiber. For this reason, the carbon fibers are not oxidized and kept stable, the surface activity is maintained, and the compatibility with the resin material is improved. As the substrate, Pt, Rh, Ru, Ni, Fe, Ti, Pd, Cu, Al, W, Si, Mo, Co, Y, etc. are used, and among these, Ni is most desirable.

また、前記金属基板に、硫黄蒸気中で加熱処理または表面を硫黄化合物で処理する等によって、硫黄化合物を含有させることにより、溶液中に硫黄化合物を含有していなくても同様の効果が得られることが検討によりわかった。   Moreover, the same effect is acquired even if it does not contain a sulfur compound in a solution by making the said metal substrate contain a sulfur compound by heat-processing in sulfur vapor | steam, or processing a surface with a sulfur compound etc. It became clear by examination.

得られた堆積物をFE型SEM(電界放出型走査型電子顕微鏡)で観察すると、糸が捩れたような、また、ロープ状の炭素繊維が観測された。繊維の典型的な直径は約10nmからサブμmの大きさである。この繊維をTEM(透過型電子顕微鏡)観察を行ったところ、直径75nm、内径20nmのカーボンナノチューブ(中空状ナノサイズ炭素繊維)であることが判明した。また、少し太いカーボンチューブは直径450nm、内径250nmのものもあった。複数本の繊維が束ねられた炭素繊維の集合体があった。また、得られた炭素繊維は非晶質(アモルファスともいう)構造を持っていることがTEM観察またはラマン分光分析(1350cm−1のブロードなアモルファスカーボンピーク)から分かった。これは従来報告されている結晶質の炭素繊維とは大きく異なる点である。このように本発明より得られた炭素繊維は少なくとも表面は非晶質構造で活性点が維持されている為、樹脂等になじみがよく分散性に優れている。また、束状の炭素繊維の集合体は樹脂等に分散した場合、少ない添加量で分散樹脂の導電率の向上や強度の向上などの効果が見られる。 When the obtained deposit was observed with an FE SEM (field emission scanning electron microscope), twisted and rope-like carbon fibers were observed. The typical diameter of the fiber is about 10 nm to sub-μm in size. Observation of this fiber by TEM (transmission electron microscope) revealed that it was a carbon nanotube (hollow nano-sized carbon fiber) having a diameter of 75 nm and an inner diameter of 20 nm. Some carbon tubes with a slightly thicker diameter had a diameter of 450 nm and an inner diameter of 250 nm. There was an aggregate of carbon fibers in which a plurality of fibers were bundled. Further, it was found from TEM observation or Raman spectroscopic analysis (broad amorphous carbon peak at 1350 cm −1 ) that the obtained carbon fiber had an amorphous (also referred to as amorphous) structure. This is a significant difference from the crystalline carbon fibers reported so far. Thus, since the carbon fiber obtained from the present invention has an amorphous structure at least on the surface and maintains the active site, the carbon fiber is well suited to resins and the like and has excellent dispersibility. Moreover, when the aggregate | assembly of bundle-like carbon fiber is disperse | distributed to resin etc., effects, such as an improvement of the electroconductivity and intensity | strength of a dispersion resin, are seen with little addition amount.

炭素を析出させるために、ニッケル、パラジウム、白金、鉄、コバルトならびにルテニウム等の8族の金属錯体類またはタングステン、モリブデン等の6A族の金属錯体を使用することも良い。これらの金属錯体類を塗布したものを基板に使用するか、または溶液中に分散または溶解させると中空状炭素繊維の成長効率が向上する。   In order to deposit carbon, a group 8 metal complex such as nickel, palladium, platinum, iron, cobalt and ruthenium or a group 6A metal complex such as tungsten or molybdenum may be used. When these metal complexes coated are used for a substrate, or dispersed or dissolved in a solution, the growth efficiency of hollow carbon fibers is improved.

本発明は使用する溶液に水が混合したものでも良い。溶液に水を1〜50vol%添加し、その効果を認めたが、望ましくは、20vol%以下が効果も高いことが判明した。また、ニッケル、パラジウム、白金、鉄、コバルトならびにルテニウム等の8族の金属錯体類またはタングステン、モリブデン等の6A族の金属錯体を分散または溶液に溶解したものを原料として使用しても良い。この濃度は、溶液100mlに対して0.0005g〜1.0gの濃度、望ましくは0.001g〜0.5gが良い。   In the present invention, the solution to be used may be mixed with water. Although 1 to 50 vol% of water was added to the solution and the effect thereof was observed, it was found that 20 vol% or less desirably had a high effect. In addition, a group 8 metal complex such as nickel, palladium, platinum, iron, cobalt and ruthenium or a group 6A metal complex such as tungsten or molybdenum dispersed or dissolved in a solution may be used as a raw material. This concentration is 0.0005 g to 1.0 g, preferably 0.001 g to 0.5 g, per 100 ml of solution.

金属錯体の具体例としては、白金アセチルアセトネート、ニッケルアセチルアセトネート、パラジウムアセチルアセトネート、コバルトアセチルアセトネート並びに鉄アセチルアセトネートなどの8族の金属錯体が挙げられるが、本発明はこれらに限定するものではない。   Specific examples of the metal complex include group 8 metal complexes such as platinum acetylacetonate, nickel acetylacetonate, palladium acetylacetonate, cobalt acetylacetonate, and iron acetylacetonate, but the present invention is not limited thereto. Not what you want.

図2は、基板10の上に金属微粒子11(例えばNi微粒子(直径1〜3μm))を置き、Wフィラメント04を1500〜2300℃に加熱すると、Ni微粒子が反応空間05中に漂う。一方、原料03(例えばメタノールに二硫化炭素を0.01vol%添加)もWフィラメントの熱により蒸発し、さらに炭素系のガスやラジカルに分解され、反応空間中に漂っているNi微粒子に付着、固溶し、固体炭素として析出する。具体的な炭素の生成の様子は、反応空間中に黒い繊維状の物質が漂うことである。この黒い物質が、基板上に降り積もるので、FE型SEMで観察したところ、束状のCNFおよびCFが生成されていることが確認された。なお、用いたNi微粒子はCNFおよびCFの核として働いている。合成時間は約10分である。   In FIG. 2, when metal fine particles 11 (for example, Ni fine particles (diameter 1 to 3 μm)) are placed on the substrate 10 and the W filament 04 is heated to 1500 to 2300 ° C., Ni fine particles drift in the reaction space 05. On the other hand, the raw material 03 (for example, 0.01 vol% of carbon disulfide added to methanol) is evaporated by the heat of the W filament, and further decomposed into carbon-based gases and radicals, and adheres to the Ni fine particles floating in the reaction space. Dissolves and precipitates as solid carbon. The specific state of carbon generation is that black fibrous substances drift in the reaction space. Since this black substance was deposited on the substrate, observation with an FE SEM confirmed that bundled CNF and CF were generated. The used Ni fine particles function as nuclei for CNF and CF. The synthesis time is about 10 minutes.

図3は、原料03(例えばメタノールに二硫化炭素を0.01vol%添加)中に金属キレート粉(例えばニッケルアセチルアセトネート)を溶かし、Wフィラメント04を1500〜2300℃に加熱すると、原料は沸騰し、気泡12が発生する。合成を約10分続けると、原料の溶液が黒化する。その理由は、気泡中で固体炭素の析出が起こったためである。この溶液中の黒い物質を抽出、乾燥させ、FE型SEMで観察したところ、束状のCNFおよびCFが生成されていることが確認された。   FIG. 3 shows that when a metal chelate powder (for example, nickel acetylacetonate) is dissolved in raw material 03 (for example, 0.01% by volume of carbon disulfide is added to methanol) and W filament 04 is heated to 1500 to 2300 ° C., the raw material boils. , Bubbles 12 are generated. When the synthesis is continued for about 10 minutes, the raw material solution turns black. The reason is that solid carbon deposition occurred in the bubbles. When the black substance in this solution was extracted and dried, and observed with an FE type SEM, it was confirmed that bundled CNF and CF were produced.

本発明の特長は、以上のように大気圧の下におけるキャリアガスを使用しない中空状炭素繊維を作製する特異な方法でもある。   The feature of the present invention is also a unique method for producing hollow carbon fibers that do not use a carrier gas under atmospheric pressure as described above.

以下この発明を実施例について具体的に説明する。   The present invention will be specifically described below with reference to examples.

(実施例1)
炭素源としてメタノール(CH3OH)に二硫化炭素(CS2)を体積濃度0.01%添加した溶液をCVD装置(図1)を使い、Wフィラメント(0.2mmφ)を2000℃に加熱し、基板にはNi板(7×7×0.5mm)を用い、その間の距離を3mm離すと、フィラメントの輻射熱で基板温度は約600℃になった。合成時間は10分とした。10分後、黒い物質がNi板上に堆積しているのが確認された。その堆積物(積層物)をFE型SEMを用いて観察したところ、直径が0.3μmから4μmの1本からなるCF(カーボンファイバー)が成長しているのが確認された。図4に合成した太いCFのSEM写真を示す。また、極細のCNF(カーボンナノファイバー、直径は数10nm〜数100nm)が束になった束状のCNFも多く観測された。直径は約4μmであった。図5に代表的な束状になったCFのSEM写真を示す。表面はCNFで覆われているのが観察される。得られた炭素繊維はラマン分光分析においてアモルファスカーボンピーク(1350cm−1)が大きく出ていることから非晶質構造を持っていることがわかる(図6)。さらにTEM観察(図7)から表面も中心部も非晶質であることが確かめられた。
Example 1
A solution obtained by adding carbon disulfide (CS 2 ) to a volume concentration of 0.01% to methanol (CH 3 OH) as a carbon source is heated to 2000 ° C. using a CVD apparatus (FIG. 1). When a Ni plate (7 × 7 × 0.5 mm) was used as the substrate and the distance between them was 3 mm, the substrate temperature was about 600 ° C. due to the radiant heat of the filament. The synthesis time was 10 minutes. After 10 minutes, it was confirmed that a black substance was deposited on the Ni plate. When the deposit (laminate) was observed using an FE type SEM, it was confirmed that a single CF (carbon fiber) having a diameter of 0.3 μm to 4 μm was growing. FIG. 4 shows an SEM photograph of the synthesized thick CF. In addition, many bundles of CNF (carbon nanofibers having a diameter of several tens of nanometers to several hundreds of nanometers) bundled were observed. The diameter was about 4 μm. FIG. 5 shows an SEM photograph of a typical bundled CF. The surface is observed to be covered with CNF. The obtained carbon fiber has an amorphous structure because an amorphous carbon peak (1350 cm −1 ) is large in Raman spectroscopic analysis (FIG. 6). Further, TEM observation (FIG. 7) confirmed that the surface and the center were amorphous.

(実施例2)
実施例1のNiの替わりにFe板(7×7×0.5mm)を基板として用い、同様の合成条件でCFの成長を行ったところ、同じように直径の太いCFがFe板上に堆積することが判明した。しかし、生成量はNiに比べ少なかった。
(Example 2)
When a CF plate was grown under the same synthesis conditions using a Fe plate (7 × 7 × 0.5 mm) instead of Ni in Example 1, CF with a large diameter was deposited on the Fe plate in the same manner. Turned out to be. However, the amount produced was less than that of Ni.

(実施例3)
実施例1で示したWフィラメントの温度を1700℃に加熱して、他は同様の条件にて反応させたところ、得られた炭素繊維の量は少ないものの、中空状の非晶質炭素繊維を得ることができた。
(Example 3)
When the temperature of the W filament shown in Example 1 was heated to 1700 ° C. and the reaction was performed under the same conditions, the amount of carbon fiber obtained was small, but the hollow amorphous carbon fiber was reduced. I was able to get it.

(実施例4)
メタノールにチオ尿素を体積濃度0.1%添加し、実施例1と同じ装置、同じ合成条件で実験を行ったところ、太いCF、また、束状のCNFが成長していることがFE型SEM観察で確認された。
Example 4
When thiourea was added to methanol at a volume concentration of 0.1% and an experiment was conducted with the same apparatus and the same synthesis conditions as in Example 1, it was found that thick CF and bundled CNF were growing. Confirmed by observation.

(実施例5)
炭素源としてメタノールにチオ硫酸ナトリウムを体積濃度0.01%添加した溶液を用い、実施例1と同様な装置、同じ合成条件で実験を行ったところ、太いCF、また、束状のCNFが成長していることがFE型SEMで観察された。
(Example 5)
Using a solution obtained by adding 0.01% by volume of sodium thiosulfate to methanol as a carbon source, an experiment was performed using the same apparatus and the same synthesis conditions as in Example 1. As a result, thick CF and bundled CNF grew. It was observed by FE type SEM.

(実施例6)
炭素源としてメタノールにメチオニンを体積濃度0.01%添加した溶液を用い、実施例1と同様な装置、同じ合成条件で実験を行ったところ、太いCF、また、束状のCNFが成長していることがFE型SEMで観察された。
(Example 6)
Using a solution obtained by adding 0.01% volume concentration of methionine to methanol as a carbon source, an experiment was performed using the same apparatus and the same synthesis conditions as in Example 1. As a result, thick CF and bundled CNF grew. It was observed by FE type SEM.

(実施例7)
ウール状のFe(融点:1535℃、直径:0.02mm)を硫化し、FeS(融点1193℃)、FeS2(融点:642℃)を作製した。形状はウール状を保っていた。この硫化FeをWフィラメントの周りに巻きつけ、メタノール100%雰囲気中でフィラメント温度2000℃に加熱したところ、黒い煤状のものが反応空間中に漂うことが見出された。束状のCNFが成長していることがFE型SEMで観察された。
(Example 7)
Wool-like Fe (melting point: 1535 ° C., diameter: 0.02 mm) was sulfided to prepare FeS (melting point 1193 ° C.) and FeS 2 (melting point: 642 ° C.). The shape was kept wool. When this Fe sulfide was wound around the W filament and heated to a filament temperature of 2000 ° C. in an atmosphere of 100% methanol, it was found that a black bowl-like thing drifted in the reaction space. It was observed with a FE SEM that bundled CNFs were growing.

(実施例8)
ウール状Ni(融点:1453℃、直径:0.05mm)を硫黄蒸気中で加熱し硫化させ、X線回折で結晶構造を確認したところ、NiS(融点:810℃)であることが分かった。メタノール100%の雰囲気中でWフィラメントとフィラメントの下に基材としてウール状NiSを設置した。フィラメントと基材の距離は2〜3mmにした。Wフィラメントを2000℃に加熱したところ、フィラメントからの輻射熱で基材温度は約500〜600℃になっており、さらに、黒い繊維状物質が反応空間中に漂う現象が見出された。この繊維状物質を別の場所に設置した捕集板で採取し、FE型SEMで観察したところ、直径0.1〜0.5μmのCF(カーボンファイバー)であることが判明した。
(Example 8)
Wool-like Ni (melting point: 1453 ° C., diameter: 0.05 mm) was heated and sulfurized in sulfur vapor, and the crystal structure was confirmed by X-ray diffraction. As a result, it was found to be NiS (melting point: 810 ° C.). Wool-like NiS was placed as a substrate under the W filament and the filament in an atmosphere of 100% methanol. The distance between the filament and the substrate was 2 to 3 mm. When the W filament was heated to 2000 ° C., the substrate temperature was about 500 to 600 ° C. due to the radiant heat from the filament, and a phenomenon in which a black fibrous substance drifted in the reaction space was found. When this fibrous substance was collected with a collecting plate installed at another place and observed with an FE type SEM, it was found to be CF (carbon fiber) having a diameter of 0.1 to 0.5 μm.

(比較例1)
実施例1で二硫化炭素(CS2)を体積濃度5%添加した溶液を用い、実施例1と同様な装置、同じ合成条件で実験を行ったところ、黒い煤状のものが堆積したが、FE型SEMでは繊維状のものは観察されなかった。
(Comparative Example 1)
When an experiment was performed using the same apparatus and the same synthesis conditions as in Example 1 using a solution in which carbon disulfide (CS 2 ) was added at a volume concentration of 5% in Example 1, a black bowl-shaped product was deposited. No fibrous material was observed in the FE type SEM.

(比較例2)
実施例7でメタノールの代わりにベンゼンを用いた他は同様の操作を行ったところ、黒い煤状のものが反応空間に漂ったが、FE型SEMでは繊維状のものは観察されなかった。
(Comparative Example 2)
A similar operation was performed except that benzene was used instead of methanol in Example 7. As a result, a black bowl-like thing drifted in the reaction space, but no fibrous matter was observed in the FE SEM.

本発明の一実施例である装置に関するものである。The present invention relates to an apparatus according to an embodiment of the present invention. 本発明の一実施例である装置に関するものである。The present invention relates to an apparatus according to an embodiment of the present invention. 本発明の一実施例である装置に関するものである。The present invention relates to an apparatus according to an embodiment of the present invention. 実施例1で合成したカーボンファイバーと束状のカーボンナノファイバーのFE型SEM写真である。2 is an FE-type SEM photograph of the carbon fiber synthesized in Example 1 and a bundle of carbon nanofibers. 実施例1で合成したカーボンファイバーと束状のカーボンナノファイバーのFE型SEM写真である。2 is an FE-type SEM photograph of the carbon fiber synthesized in Example 1 and a bundle of carbon nanofibers. 実施例1で合成したカーボンファイバーと束状のカーボンナノファイバーのラマン分光スペクトルである。3 is a Raman spectrum of the carbon fiber synthesized in Example 1 and a bundle of carbon nanofibers. 実施例1で合成したカーボンファイバーと束状のカーボンナノファイバーのTEM写真である。2 is a TEM photograph of carbon fibers synthesized in Example 1 and bundled carbon nanofibers.

符号の説明Explanation of symbols

01 反応容器
02 原料を補給するための漏斗
03 原料
04 Wフィラメント
05 反応空間
06 輸送管
07 原料補給槽
08 補給用原料
09 管
10 基板
11 金属微粒子
12 気泡
01 Reaction vessel
02 Funnel for replenishing raw materials
03 Raw material
04 W filament
05 reaction space
06 Transport pipe
07 Raw material supply tank
08 Supply material
09 tube
10 Board
11 Metal fine particles
12 bubbles

Claims (12)

中空状または芯部が充填された炭素繊維の集合体を製造する方法であって、
少なくとも炭素、酸素、水素および硫黄を構成要素として有し、炭素と酸素の元素の存在比率が1:2から6:1の範囲にあり、かつ炭素と硫黄の元素の存在比率が300:1から1000000:1の範囲である溶液の飽和蒸気の雰囲気中において、該溶液の蒸気を加熱する工程と、
加熱された該溶液の蒸気を硫黄存在下で分解して炭素繊維を生成する工程と、該炭素繊維を、該飽和蒸気の雰囲気中に配置してなる300から700℃の基板上に形成させる工程と、
を有することを特徴とする、中空状または芯部が充填された炭素繊維の集合体の製造方法。
A method of producing an aggregate of carbon fibers filled with a hollow shape or a core,
At least carbon, oxygen, and useful as hydrogen and sulfur components, the presence ratio of carbon and oxygen element 1: 2 to 6: is in the first range, and the presence ratio of carbon and sulfur elements 300: 1 Heating the vapor of the solution in an atmosphere of saturated vapor of the solution in the range of 1000000: 1
Decomposing the heated vapor of the solution in the presence of sulfur to produce carbon fibers, and forming the carbon fibers on a substrate at 300 to 700 ° C. arranged in the saturated vapor atmosphere When,
A method for producing an aggregate of carbon fibers filled with a hollow shape or a core, characterized by comprising:
該溶液が、アルコール、エーテル、ケトン、エステル、アルデヒドおよびカルボン酸化合物から選ばれる有機溶剤の少なくとも1つと、チオール、チオエーテル、チオカルボニル、炭化硫黄、硫化水素、硫酸化合物および芳香族チオ化合物から選ばれる硫黄化合物の少なくとも1つを含んでいる請求項1に記載の炭素繊維の集合体の製造方法。 The solution is selected from at least one organic solvent selected from alcohols, ethers, ketones, esters, aldehydes, and carboxylic acid compounds, and thiols, thioethers, thiocarbonyls, sulfur carbides, hydrogen sulfides, sulfuric acid compounds, and aromatic thio compounds. method for producing aggregate of carbon fibers according to claim 1 which contains at least one sulfur compound. 該硫黄化合物が、メタンチオール、チオ尿素、二硫化炭素、チオ硫酸ナトリウムおよびメチオニンから選ばれる少なくとも1つを含んでいる請求項に記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to claim 2 , wherein the sulfur compound contains at least one selected from methanethiol, thiourea, carbon disulfide, sodium thiosulfate, and methionine. 該溶液が、更に金属錯体化合物を含有し、
該金属錯体化合物の中心金属が、白金、パラジウム、ニッケル、鉄、コバルト、ルテニウム、タングステンおよびモリブデンから選ばれるいずれかの元素である請求項1乃至のいずれかに記載の炭素繊維の集合体の製造方法。
The solution further contains a metal complex compound,
Central metal of the metal complex compound, platinum, palladium, nickel, iron, cobalt, ruthenium, according to any one of claims 1 to 3 which is one element selected from tungsten and molybdenum aggregate of carbon fibers Production method.
該溶液の蒸気の加熱を、該溶液の飽和蒸気の雰囲気中に配置したフィラメントで行う請求項1乃至のいずれかに記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to any one of claims 1 to 4 , wherein the heating of the vapor of the solution is performed by a filament disposed in an atmosphere of a saturated vapor of the solution. 該フィラメントの温度が1500から2300℃である請求項に記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to claim 5 , wherein the filament has a temperature of 1500 to 2300 ° C. 該基板が、ニッケル、白金、ルテニウム、ロジウム、鉄、チタン、パラジウム、銅、アルミニウム、タングステン、ケイ素、モリブデン、イットリウムおよびコバルトから選ばれる少なくとも1つの元素を含んでいる請求項1乃至のいずれかに記載の炭素繊維の集合体の製造方法。 Substrate is nickel, platinum, ruthenium, rhodium, iron, titanium, palladium, copper, aluminum, tungsten, silicon, molybdenum, any one of claims 1 to 6 containing at least one element selected from yttrium and cobalt The manufacturing method of the aggregate | assembly of carbon fiber as described in any one of. 中空状または芯部が充填された炭素繊維の集合体を製造する方法であって、
少なくとも炭素、酸素および水素を構成要素として有する溶液の飽和蒸気の雰囲気中で、該溶液の飽和蒸気の雰囲気中に配置したフィラメントで該溶液の飽和蒸気を加熱する工程と、
加熱された該溶液の蒸気を分解して該飽和蒸気の雰囲気中に配置してなる300から700℃の基板上に炭素繊維を生成させる工程を有し、
該基板の表面に少なくとも硫黄化合物を含有することを特徴とする、中空状または芯部が充填された炭素繊維の集合体の製造方法。
A method of producing an aggregate of carbon fibers filled with a hollow shape or a core,
Heating the saturated vapor of the solution in a saturated vapor atmosphere of a solution having at least carbon, oxygen and hydrogen as constituents with a filament disposed in the saturated vapor atmosphere of the solution;
Decomposing the vapor of the heated solution to produce carbon fiber on a substrate at 300 to 700 ° C., which is disposed in the saturated vapor atmosphere,
A method for producing an aggregate of carbon fibers filled with a hollow shape or a core, wherein the surface of the substrate contains at least a sulfur compound.
該溶液は、炭素と酸素の存在比率が1:2から6:1の範囲にある請求項に記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to claim 8 , wherein the solution has an abundance ratio of carbon and oxygen in the range of 1: 2 to 6: 1. 該溶液が、アルコール、エーテル、ケトン、エステル、アルデヒドおよびカルボン酸化合物から選ばれる少なくとも1つを含んでいる請求項またはに記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to claim 8 or 9 , wherein the solution contains at least one selected from alcohols, ethers, ketones, esters, aldehydes, and carboxylic acid compounds. 前記工程において、該フィラメントを1500から2300℃に加熱する工程を更に有する請求項乃至10のいずれかに記載の炭素繊維の集合体の製造方法。 The method for producing an aggregate of carbon fibers according to any one of claims 8 to 10 , further comprising a step of heating the filament to 1500 to 2300 ° C in the step. 該基板が、ニッケル、白金、ルテニウム、ロジウム、鉄、チタン、パラジウム、銅、アルミニウム、タングステン、ケイ素、モリブデン、イットリウム、コバルトまたはこれらの合金を硫黄蒸気中で加熱処理した物である請求項乃至11のいずれかに記載の炭素繊維の集合体の製造方法。 Substrate is nickel, platinum, ruthenium, rhodium, iron, titanium, palladium, copper, aluminum, tungsten, silicon, molybdenum, yttrium, cobalt, or 8 to claim these alloys is obtained by heat treatment with sulfur vapor A method for producing an aggregate of carbon fibers according to any one of 11 .
JP2004248482A 2003-08-28 2004-08-27 Carbon fiber assembly and method for producing the same Expired - Fee Related JP4656891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248482A JP4656891B2 (en) 2003-08-28 2004-08-27 Carbon fiber assembly and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003304824 2003-08-28
JP2004248482A JP4656891B2 (en) 2003-08-28 2004-08-27 Carbon fiber assembly and method for producing the same

Publications (3)

Publication Number Publication Date
JP2005097101A JP2005097101A (en) 2005-04-14
JP2005097101A5 JP2005097101A5 (en) 2009-09-17
JP4656891B2 true JP4656891B2 (en) 2011-03-23

Family

ID=34467308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248482A Expired - Fee Related JP4656891B2 (en) 2003-08-28 2004-08-27 Carbon fiber assembly and method for producing the same

Country Status (1)

Country Link
JP (1) JP4656891B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5989319B2 (en) 2011-10-06 2016-09-07 ライオン株式会社 Sleep quality improver
AU2016205850B2 (en) 2015-01-06 2018-10-04 David Burton Mobile wearable monitoring systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062299A (en) * 1999-08-31 2001-03-13 Agency Of Ind Science & Technol Catalytic liquid for synthesis of carbon nanotube
JP2003171832A (en) * 2001-12-11 2003-06-20 Showa Denko Kk Raw material composition for synthesizing carbon fiber, method for producing carbon fiber from the same and carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062299A (en) * 1999-08-31 2001-03-13 Agency Of Ind Science & Technol Catalytic liquid for synthesis of carbon nanotube
JP2003171832A (en) * 2001-12-11 2003-06-20 Showa Denko Kk Raw material composition for synthesizing carbon fiber, method for producing carbon fiber from the same and carbon fiber

Also Published As

Publication number Publication date
JP2005097101A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
Giordano et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
JP5102633B2 (en) Method for growing long carbon single-walled nanotubes
CA2630166C (en) Carbon nanotubes functionalized with fullerenes
Ivanov et al. The study of carbon nanotubules produced by catalytic method
US20050244327A9 (en) Catalytic growth of single-wall carbon nanotubes from metal particles
Sharma et al. Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures
US20020110513A1 (en) Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
RU2579075C2 (en) Carbon nanostructures and meshes obtained by chemical precipitation from steam phase
US20020004028A1 (en) Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
EP2305601B1 (en) Nanotube-nanohorn composite and process for production thereof
JP3986711B2 (en) Method for producing single-walled carbon nanotube
JP2009507744A (en) Synthesis of narrow-diameter carbon single-walled nanotubes
Khanderi et al. Binary Au/MWCNT and ternary Au/ZnO/MWCNT nanocomposites: synthesis, characterisation and catalytic performance
Sridhar et al. Direct growth of carbon nanofiber forest on nickel foam without any external catalyst
JP5672008B2 (en) Method and apparatus for producing nanocarbon composite
Sivakumar et al. Role of reaction and factors of carbon nanotubes growth in chemical vapour decomposition process using methane: a highlight
JP4656891B2 (en) Carbon fiber assembly and method for producing the same
EP2719660B1 (en) Method for synthesizing carbon nanowires on the surface of pores or gaps in a structure
US7214408B2 (en) Method of producing carbon fiber aggregate
RU2391289C2 (en) Method of preparing nitrogen-containing carbon material with nanotube structure
JP3953928B2 (en) Aggregate of carbon fibers and method for producing the same
US20050214459A1 (en) Diamond and aggregated carbon fiber and production methods
JP3952479B2 (en) Method for producing carbon nanotube
RU2389550C1 (en) Method for production of applied catalyst and method for production of carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100617

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4656891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees