JP4654633B2 - 光走査装置及び光軸調整方法 - Google Patents

光走査装置及び光軸調整方法 Download PDF

Info

Publication number
JP4654633B2
JP4654633B2 JP2004239313A JP2004239313A JP4654633B2 JP 4654633 B2 JP4654633 B2 JP 4654633B2 JP 2004239313 A JP2004239313 A JP 2004239313A JP 2004239313 A JP2004239313 A JP 2004239313A JP 4654633 B2 JP4654633 B2 JP 4654633B2
Authority
JP
Japan
Prior art keywords
light
light beam
light source
scanning direction
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004239313A
Other languages
English (en)
Other versions
JP2006058523A (ja
Inventor
進 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2004239313A priority Critical patent/JP4654633B2/ja
Publication of JP2006058523A publication Critical patent/JP2006058523A/ja
Application granted granted Critical
Publication of JP4654633B2 publication Critical patent/JP4654633B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Description

本発明は、光走査装置及び光軸調整方法に係り、特に感光体などの走査媒体上における光ビームの光量分布を調整する機能を備えた光走査装置及び光軸調整方法に関する。
感光体などの走査面に光ビームを走査するため、複数の反射面を備えた回転多面鏡を用いて光ビームを走査する光走査装置が知られている。この光走査装置では、回転多面鏡より上流側(光ビームを出射する光源側)の光学系として、装置の小型化等のために、回転多面鏡に向けて出射された光ビームを回転多面鏡の一つの反射面の幅より広い光ビームを入射するもの(所謂、「オーバーフィルド〔Overfilled〕光学系」)を用いる場合がある。この光走査装置では、走査範囲内で安定した光量の光ビームを提供するために様々な調整や設定が考えられている。
例えば、フィルタを挿入することで感光体などの走査面上の光量分布を均一化する技術が知られている(例えば、特許文献1を参照)。また、回転多面鏡への入射光軸を中心光軸からずらすことで、走査面上の光量分布を均一化する他の技術が知られている(例えば、特許文献2を参照)。さらに、走査範囲内で光量のバランスを図る技術が知られている(例えば、特許文献3を参照)。
特開平8−160338号公報 特開平10−206778号公報 特開平9−96769号公報
しかしながら、近年、光走査装置を搭載する装置の低コスト化や小型化が叫ばれており、光走査装置の光学系への低コスト化や小型化の要求も高まっている。ところが、上記の各技術では、低コスト化や小型化を図りつつ光量分布を均一化するのには不十分である。例えば、光学パーツの複雑化は高コスト化を招き、調整幅を大きく取ることは装置の大型化を招く。すなわち、特許文献1の技術では、品質向上を図ると、多数段のフィルタが必要となり、高コスト化を招く。また、特許文献2の技術では、走査の端部付近でのバランス確保は容易であるが走査範囲内の均一性では不十分である。また、特許文献3の技術では、微調整は可能であるが、やはり走査範囲内の均一性では不十分である。
本発明は上記事実に鑑みてなされたものであり、安価でかつ簡単な構成で走査面上の光量分布の均一化を図ることができる光走査装置及び光軸調整方法を提供することを目的とする。
上記目的を達成するために本発明の光走査装置は、複数の反射面を備え入射された光ビームを前記反射面により主走査方向に偏向する偏向手段と、前記偏向手段へ向けて複数の光ビームを出射すると共に、複数の光ビームが前記主走査方向と交差する副走査方向に並んで出射されるように配列されかつ、前記偏向手段により偏向された光ビームが入射されるfθレンズの光軸と一致する光ビームが反射されたときの前記偏向手段の向きにおける該光ビームの中心軸の前記偏向手段の反射面の反射位置を基準点として、前記偏向手段に向かう光ビームの中心軸の反射位置が前記基準点より主走査方向に離間した位置になるように移動して設けられた光源手段と、前記偏向手段の1つの反射面の主走査方向の幅より広い範囲の光ビームが前記偏向手段に照射されるように前記光源手段から出射された光ビームを拡大する拡大手段と、前記光源手段と前記偏向手段との間に、透過率分布が光軸に対して非対称となるように設定されたフィルタと、前記光源手段から出射された複数の光ビームの各々の中心軸を同時に移動させる調整素子を前記光源手段と前記偏向手段の間に設けて、前記複数の光ビームの何れか1つの光ビームを用いて該光ビームが前記主走査方向の所定範囲について光量変動均一になるように該光ビームの中心軸を前記調整素子により移動させることで前記光源手段から出射される光ビームの中心軸の位置を調整する光軸調整手段と、を備えている。
を備えた光走査装置。
光源手段から出射される光ビームは、偏向手段で主走査方向に偏向される。この光ビームは、偏向手段の1反射面の主走査方向の幅より広い範囲を照射するべく拡大手段により拡大されて所謂オーバーフィルド光学系に用いられる。光源手段は、複数の光ビームが主走査方向と交差する副走査方向に並んで出射されるように配列される。従って、副走査方向に並んだ複数の光ビームが主走査方向に同時に走査されるので、1つの光ビームの光量や光軸の調整を行い、その結果を他の光ビームに反映することで、複数の光ビームについて光量調整することができる。その出射される光ビームの中心軸は偏向手段の反射面の中心に対して主走査方向に沿って移動して設けられる。従って、少なくとも走査端の光量をバランスすることができる。また、フィルタは、透過率分布が光軸に対して非対称となるように設定されており、このフィルタによって、光量分布を調整ことができる。光軸調整手段は、複数の光ビームの何れか1つを光軸調整用光ビームと設定しかつ該光軸調整用光ビームが主走査方向の所定範囲について光量変動を均一化するように光源手段から出射される光ビームの中心軸を調整する。これによって、少なくとも走査端の光量をバランスすることができると共に、走査範囲内で光量を均一化することができる。
前記光源手段は、前記主走査方向の直交方向に対して正逆の回転方向について5度の傾き範囲内に複数の光ビームが副走査方向に並んで出射されるように配列されることを特徴とする。
光源手段からは、複数の光ビームが主走査方向と交差する副走査方向に並んで出射されるが、その角度によっては調整可能な許容範囲を超える場合もある。本発明者は、多数の実験により主走査方向の直交方向に対して正逆の回転方向について5度の傾き範囲内に設定することで、実用上充分な結果を得られることを確認した。
前記光源手段の光ビームの各々は、異なる感光体へ向けて出射されることを特徴とする。
本発明の光走査装置は、多色の画像形成装置に用いて好適である。すなわち、光走査装置から出射された光ビームで感光体などの走査面を露光する場合、単色で用いる装置は勿論であるが、多色画像を形成する場合、各色毎に光ビームを対応させる必要がある。このため、光源手段の光ビームの各々は、異なる感光体へ向けて出射されるように設定することで、異なる感光体に対して、ほぼ同様の均一な光量分布の光ビームを照射することができる。従って、異なる感光体間でのすなわち、色間での光量分布の差異を抑制することが可能となる。
前記光源手段は、4本の光ビームを出射することを特徴とする。
前記多色画像では、イエロー、マゼンタ、シアン、ブラックなどの4色について各々独立してコントロールする場合が多い。そこで光源手段が4本の光ビームを出射するようにすることで、多色画像を形成する等の場合において、各色間での差異を抑制することが可能となる、走査面における色バランスや色差の変動を抑制することができる。
前記光源手段及び偏向手段は、前記偏向手段に入射する光ビームの方向と、前記偏向手段の偏向中心方向とのなす角度が60度以上になるように設定されることを特徴とする。
装置を小型化しようとしても、光源手段から偏向手段へ向けて光ビームを入射させる角度が鋭角であると、光学設計上で光路中に挿入したレンズなどの光学素子のない箇所に設置するため、装置の大型化を招く。また、偏向手段へ向けて光ビームを入射させるにあたって、その入射角度が鋭角であると、光学設計上で光路中に挿入したレンズなどの光学素子に光束の一部が浸食される。そこで、偏向手段に入射する光ビームの方向と、偏向手段の偏向中心方向とのなす角度が60度以上、より好ましくは65度以上になるように設定することで、前記光学素子で光束が浸食されずかつ偏向手段の下流側の光学素子の位置に影響されず、小型化を図ることができる。
前記光源手段は、前記偏向手段による主走査の終了端側から前記偏向手段へ光ビームが入射されるように設けたことを特徴とする。
偏向手段に入射する光ビームの方向と、偏向手段の偏向中心方向とのなす角度を60度以上に設定することで、走査面上で光ビームの隙間の距離に差異が生じる。これは、主走査サイド入射オーバーフィルドではビーム幅が走査位置(偏向角度)により異なることによって、単位時間の両方の光ビームの隙間が走査位置(偏向角度)により変化するためである。すなわち、走査開始側の走査端における光ビームの隙間距離に比べて走査終了側の走査端における光ビームの隙間距離が小さくなる。このため、同期検出のためなどに利用する光ビームを有効走査範囲該に設定する場合、容易にこれらを分離することが可能となる。
前記出射手段と前記偏向手段との間の前記光ビームの光路内に配置されると共に前記光ビームを透過する開口部が設けられかつ該開口部が光軸に対して非対称となる位置に設定された開口部材をさらに設けたことを特徴とする。
光ビームを透過する開口部を光軸に対して非対称となる位置に設定された開口部材を出射手段と偏向手段との間の光ビームの光路内に、すなわち開口部の中心位置が前記光ビームの光軸中心から主走査方向に所定距離を隔てた位置にさらに設けることで、余分な光ビームを抑制することができる。
前記フィルタは、前記偏向手段近傍であると共に、前記偏向手段の入射側に副走査方向にパワーを有する光学素子が設置された場合には該光学素子の入射側に設けたことを特徴とする。
このように、フィルタを偏向手段近傍に設けることにより、偏向手段の下流側の光学素子の倍率による光束の広がりや位置の影響(例えば、色毎に分離対応した部品の影響)を受けることなくフィルタの性能をそのまま発揮できる。
なお、光走査装置は、次の光軸調整方法によって、容易に光軸を調整することができる。詳細には、複数の反射面を備え入射された光ビームを前記反射面により主走査方向に偏向する偏向手段と、前記偏向手段へ向けて複数の光ビームを出射する光源手段と、前記偏向手段の1つの反射面の主走査方向の幅より広い範囲の光ビームが前記偏向手段に照射されるように前記光源手段から出射された光ビームを拡大する拡大手段と、前記光源手段と前記偏向手段との間に設定されたフィルタと、を備えた光走査装置の光軸調整方法であって、前記光源手段を、前記複数の光ビームが前記主走査方向と交差する副走査方向に並んで出射されるように配列されかつ、前記偏向手段により偏向された光ビームが入射されるfθレンズの光軸と一致する光ビームが反射されたときの前記偏向手段の向きにおける該光ビームの中心軸の前記偏向手段の反射面の反射位置を基準点として、前記偏向手段に向かう光ビームの中心軸の反射位置が前記基準点より主走査方向に離間した位置になるように移動して設け、前記フィルタを、透過率分布が光軸に対して非対称となるように設け、前記光源手段から出射された複数の光ビームの各々の中心軸を同時に移動調整する調整素子を前記光源手段から前記偏向手段の間に設けて、前記複数の光ビームの何れか1つの光ビームを用いて該光ビームが前記主走査方向の所定範囲について光量変動均一となるように該光ビームの中心軸を前記調整素子により移動調整して前記光源手段から出射される光ビームの中心軸の位置を調整することを特徴とする。
以上説明したように本発明によれば、複数の光ビームが主走査方向と交差する副走査方向に並んで出射されるように配列して、光ビームの中心軸を偏向手段の反射面の中心に対して移動して設け、透過率分布が光軸に対して非対称となるように設定されたフィルタを設けて、1つの光ビームについて光量変動を均一化するように光ビームの中心軸を調整するので、少なくとも走査端の光量をバランスすることができると共に、走査範囲内で光量を均一化することができる、という効果を得ることができる。
以下、本発明の好ましい実施の形態について図面を参照しながら詳細に説明する。
図1には、本発明の実施形態に係る光走査装置の概略構成を示している。図1(A)は側面図(副走査方向断面)であり、図1(B)は平面図(主走査方向断面)である。本実施の形態にかかる光走査装置は、4つの光源を備えて4本のレーザービームをほぼ1列に出射する半導体レーザーアレイ等からなるレーザー光源10を備えている。このレーザ光源10は、4本のレーザービームが副走査方向に一列に出射されるように4つの光源の並びが副走査方向に配設される。レーザ光源10から出射される4本のレーザービームの各々は、多色画像を形成するための4色、例えばY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色に対応され、各色の画像情報に応じて制御されるものである。つまりレーザ光源10はコントローラ60に接続されており、このコントローラ60により画像信号に応じてレーザ光源10は各色毎にオンオフ制御される。
レーザー光源10の出射側には、コリメーターレンズ12、スリット14、及び副走査方向(サジタル方向)にパワーを有する第1シリンドリカルレンズ16が順に配置され、第1シリンドリカルレンズ16の出射側には第1反射ミラー18が設置されている。第1反射ミラー18の反射側には第2反射ミラー20が設けられており、第1反射ミラー18で反射されたレーザービームは、第2反射ミラー20に入射される。第2反射ミラー20の反射側には、主走査方向(タンジェンシャル方向)にパワーを有する第2シリンドリカルレンズ22、フィルター24,副走査方向(サジタル方向)にパワーを有する第3シリンドリカルレンズ26、及びポリゴンミラー28が順に配置されている。ポリゴンミラー28は、所定速度で回転する略正12角柱形状の各面に反射ミラー28Aが形成されており、第2反射ミラー20で反射されたレーザービームが第2シリンドリカルレンズ22、フィルター24、及び第3シリンドリカルレンズ26を介して入射される。
なお、ポリゴンミラー28へ向けたレーザービームは(主走査方向について)、ポリゴンミラー28の1つの反射ミラー28Aの範囲より大きな光束とされ、所謂オーバーフィルド光学系を構成している。
ポリゴンミラー28で反射されたレーザービームは、fθレンズ30、32を透過して、スプリットミラー34に入射される。
スプリットミラー34は、断面正方形に形成されて、その長手方向(中心軸方向)が主走査方向になるように、ポリゴンミラー28の回転軸方向と交差する方向に配設される。スプリットミラー34の反射面34A、34Bの頂点は、4本あるレーザービームの内側の2本で挟まれる場所に位置しており、反射面34A、34Bは、この頂点を結ぶ縁を含み、レーザービームと略平行な面(基準面)に対して45°に調整されている。そして、4本のレーザービームは、略等間隔で、その基準面に対して2本ずつが対称の位置となる光路で入射するように、コリメーターレンズ12やシリンドリカルレンズ16等の光学素子によって調整されている。
スプリットミラー34の反射面34A、34Bの反射側には、第1案内ミラー36、第2案内ミラー38、第3案内ミラー40、第4案内ミラー42が配設されており、各案内ミラー36〜42は4本のレーザービームにそれぞれ対応している。第1案内ミラー36と第4案内ミラー42、及び第2案内ミラー38と第3案内ミラー40とが、それぞれスプリットミラー34に対して略対称の位置で、第1案内ミラー36と第4案内ミラー42とが外側に、第2案内ミラー38と第3案内ミラー40とが内側に配置されている。また、第1案内ミラー36と第4案内ミラー42は、第2案内ミラー38と第3案内ミラー40よりもポリゴンミラー28側に設けられている。
案内ミラー36〜42よりもポリゴンミラー28側には、第1シリンドリカルミラー44、第2シリンドリカルミラー46、第3シリンドリカルミラー48、第4シリンドリカルミラー50が配設されている。第1案内ミラー36で反射したレーザービームは第1シリンドリカルミラー44に、第2案内ミラー38で反射したレーザービームは第2シリンドリカルミラー46に、第3案内ミラー40で反射したレーザービームは第3シリンドリカルミラー48に、第4案内ミラー42で反射したレーザービームは第4シリンドリカルミラー50に各々入射される。シリンドリカルミラー44〜50に入射されたレーザービームは、そのシリンドリカルミラー44〜50で反射され、被走査体である感光体ドラムなどの像担持体(図示省略)に入射されて、その表面に静電潜像が形成される。
案内ミラー36〜42とシリンドリカルミラー44〜50の位置は、4本のレーザービームのレーザー光源10から像担持体の像形成位置44に至る光路長が略等しくなる位置とされている。このため、図1(B)で示すように、スプリットミラー34を挟んで、第2シリンドリカルミラー46は第2案内ミラー38の反対側に、第3シリンドリカルミラー48は第3案内ミラー40の反対側に、それぞれ配置されて、第2案内ミラー38と第2シリンドリカルミラー46との間の光路、及び第3案内ミラー40と第3シリンドリカルミラー48との間の光路は、スプリットミラー34を越えて形成されている。なお、第2シリンドリカルミラー46と第3シリンドリカルミラー48、第1シリンドリカルミラー44と第4シリンドリカルミラー50は、それぞれ同一の曲率半径を有している。
また、感光ドラムなどの像担持体は適宜な速度で回転しており、この回転に応じて静電潜像を形成する位置が変更される。そして、ポリゴンミラー28の回転によって、スプリットミラー34への入射位置が変更され、これによって、像担持体への入射位置が変更される。ここで、ポリゴンミラー28の回転によって像担持体への入射位置が変更される走査方向を主走査方向とし、像担持体の回転に応じて入射位置が変更される走査方向を副走査方向とすると、スプリットミラー34における主走査方向への走査範囲の外側(画像形成領域外)には、スプリットミラー34の反射面34Aで反射したレーザービームを(同期信号検出のために)入射させるためのセンサーミラー52が設けられている。センサーミラー52の反射側には走査位置検出センサー56が設けられている(図9参照)。
走査位置検出センサー56は本体コントローラ61を介してコントローラ60に接続されており、この本体コントローラ61によりレーザ光源10の光量制御を各色毎に制御することができる。
なお、上記ポリゴンミラー28は、本発明の偏向手段に対応し、レーザ光源10は本発明の光源手段に対応する。また、コリメーターレンズ12は、本発明の拡大手段の一部に対応する。また、フィルター24は本発明のフィルタに対応する。また、レーザ光源10乃至ポリゴンミラー28までの光路を調整する調整素子は本発明の光軸調整手段に相当する。この調整素子は、例えば第2反射ミラー20を保持または固定する部材20iがあり(図3参照)、この他、レーザ光源10乃至ポリゴンミラー28までの光路を固定するのに用いられる各光学素子の部材がある。また、これらの部材をプレートなどで保持して調整可能にしてもよい。また、光軸を調整する手順が本発明の光軸調整方法に対応する。
上述の光走査装置の構成で、本実施の形態では、光量の均一性を図るために光軸や開口などを以下のように設定している。
まず、レーザー光源10から出射されたレーザービームは、主走査方向と副走査方向とで光束状態が異なる。
図2及び図3に示すように、主走査方向についてのレーザービームはコリメーターレンズ12により緩い発散光に整形され、スリット14の開口で透過光が制限される。スリット14を透過したレーザビームは、第2シリンドリカルレンズ22により主走査方向についてコリメートされる。一方、副走査方向についてのレーザービームはコリメーターレンズ12により緩い発散光に整形され、スリット14の開口で透過光が制限される。スリット14を透過したレーザビームは、第1シリンドリカルレンズ16により副走査方向についてポリゴンミラー28の反射ミラー28A上に(線状に)結像されるように設定されており、また第3シリンドリカルレンズ26により反射ミラー28Aの入射角を増加させるように設定されている(図7(A)も参照)。
図4に示すように、本実施の形態では、スリット14の開口について、光軸と非対称に設定している。図4は、第1シリンドリカルレンズ16側からレーザ光源10を透視した図であり、スリット14については開口14Aの縁を示している。スリット14は、開口14Aの中心14Xがコリメーターレンズ12の中心光軸CLから主走査方向に所定距離を隔てて設置されている。従って、光軸を基準とすると、スリット14は主走査方向に非対称な形状になっている。
これは、開口の中心部分を光軸から主走査方向に移動することで光量分布を変動させることが可能となり、主走査方向についての光量バランスの確保を容易としている。
図5には、スリット14の開口の他例を示した。また、光量の均一性を図るためには、図4に示すスリット14の開口14Aでは矩形状に開口を形成することにより、副走査方向結像ビーム径の影響はない。これに対して図5に示す開口は、光軸を基準として副走査方向の開口幅を異ならせている。これによってポリゴンミラー28へ斜めに入射させるときに生じることが予測される主走査方向の光量変動を、副走査方向の開口幅で制限(または開放)することで、積極的に光量分布を変更することができる。これによって、図5に示すスリットは、図4のスリット14に比べてさらに均一性を確保することができる。
図6には、フィルター24の詳細を示した。図6(A)はフィルター24の外観斜視図であり、図6(B)は正面図である。フィルター24は、主走査方向に2段階の透過率分布(第1領域24Aと第2領域24B)を有するように形成されている。すなわち本実施の形態では、オーバーフィルド光学系に固有なFナンバー変化などの光量分布の不均一性が発生することを抑制して、光量の均一性を図るために、図6に示すフィルター24を第2反射ミラー20とポリゴンミラー28の間に設けている。このフィルター24を光路に挿入することによって、光量分布の不均一性を抑制することができる。
なお、フィルター24は、ポリゴンミラー28の近傍で、副走査方向にパワーを有する第3シリンドリカルレンズ26の入射側に設置することが好ましい。これは、レーザビームの光束幅に応じてフィルター24の大きさが左右されるので、より小さな光束幅となる位置に設置することで小さなフィルターの形成を可能とすると共に、4本のレーザビームの配置を考慮したためである。すなわち、ポリゴンミラー28直近にフィルター24を設置することでフィルター24の機能を効果的に利用できるが、第3シリンドリカルレンズ26により4本のレーザビームの各々が副走査方向に拡大(発散角度が大きく)されることにより、光束幅が副走査方向に大きくなる。これを解消するために、第3シリンドリカルレンズ26の入射側に設置することで光束幅が副走査方向に大きくなる以前にフィルター24による調整をすることができる。
次に、本実施の形態では、主走査方向の走査両端部付近における光量バランスをさらに確保するために、レーザービームの光束中心を主走査方向に移動している。
図7には、第2反射ミラー20とポリゴンミラー28との間の光学系を示した。図7(A)は側面図(副走査方向断面)であり、図7(B)は平面図(主走査方向断面)である。また、図8には、ポリゴンミラー28周辺の光路を平面図(主走査方向断面)で示した。
図7(B)及び図8に示すように、ポリゴンミラー28へ入射されるレーザービームの入射光軸Lを、ポリゴンミラー28の反射ミラー28Aの中心点である基準点Pよりfθレンズ30へ向かう方向(反入射側)に主走査方向に沿って移動量Mだけ移動している。この光軸調整は、レーザ光源10乃至第2反射ミラー20の光学素子を調整することにより達成できる。特に、第2反射ミラー20の位置を移動(平行移動)することにより容易に達成することができる。このように入射光軸Lを移動量Mだけ移動した設定にすることにより光量の変動量は抑制される。
なお、上述のように光軸を移動した場合、スリット14の調整を上述のように行うことが好ましい。
ここで、本実施の形態にかかる光走査装置は、ポリゴンミラー28へレーザービームを入射する入射角度を鈍角にすることによって、小型化を図っている。すなわち、図1に示すように、ポリゴンミラー28への入射光軸Lと、ポリゴンミラー28へ偏向されるレーザービームの偏向幅の中心光軸(以下、走査光軸Lsという)とのなす角度(以下、入射走査角度Gという)を60度以上の所定角度に設定している。本実施の形態では、この入射走査角度Gを65度に設定している。入射走査角度Gを鈍角に設定することにより、ポリゴンミラー28に入射されるレーザービームが、ポリゴンミラー28で偏向されるレーザビームに干渉することはない。また、ポリゴンミラー28に入射されるレーザービームが、ポリゴンミラー28以降の光学素子例えばfθレンズ30で浸食されることのない領域を、走査領域の外に作り出すことができる。この入射走査角度Gは角度を大きくするほどポリゴンミラー28の偏向側直近のfθレンズ30を、ポリゴンミラー28へ接近させることができる。
また、入射走査角度Gを鈍角にすることは、同期検出にも好ましい効果を生む。
図9に示すように、センサーミラー52の反射側にはセンサーレンズ54及び走査位置検出センサー56が順に設けられている。センサーミラー52で反射されたレーザービームは、センサーレンズ54により収束されて(同期信号検出のための)走査位置検出センサー56に入射されるように構成されている。この走査位置検出センサー56へのレーザービームの入射があると、感光体ドラムなどの像担持体への静電潜像の形成が適切なタイミングで開始される。
本光走査装置では、ポリゴンミラー28による偏向でスプリットミラー34上では有効走査範囲Jを含む走査がなされる。すなわち、ポリゴンミラー28が(時計回りに)回転することにより、走査開始端(図9では下方)から走査終了端(図9では上方)へレーザービームは偏向される。有効走査範囲Jは、感光体ドラムなどの像担持体への静電潜像の主走査方向の形成領域幅に相当する。従って、有効走査範囲Jの外のレーザービームを検出することで、1主走査のタイミングを検出することができる。
ここで、ポリゴンミラー28へのレーザービームの入射は1主走査の終了側から行っている。従って、同一の時間間隔dtでは、スプリットミラー34上のレーザービームの隙間距離が、走査終了端(図9では上方)付近に比べて走査開始端(図9では下方)付近が長くなる。隙間距離とは、単位時間あたりで隣り合うビームの隙間の距離である。具体的には、走査終了端付近を1単位隙間距離とした場合、走査開始端(図9では下方)付近では、2単位隙間距離になる。これによって、センサーミラー52によりレーザービームをサンプリングするためのレーザービームの分離が容易となる。
〔均一化〕
次に、本実施の形態の光走査装置の光量均一化について概略を説明する。
図10には、光量均一化(パワーバランス調整)のプロセスを示した。まず、プロセスPr1では、レーザ光源10のうち1つのレーザビームのみを点灯し、主走査を繰り返す。次のプロセスPr2では主走査範囲内(特に有効走査範囲Jに対応する範囲)に対応する感光体ドラムなどの像担持体上における光量分布を測定する。この測定は、走査範囲内を連続的に測定してもよく、代表的な複数箇所を測定してもよい。次のプロセスPr3では、プロセスPr2の測定結果から光量分布が均一になるように、上述のように光軸を調整(さらに微調整)する。
以上の調整で、1つのレーザービームについて調整が終了するが、この時点で、他の3本のレーザビームについても調整が終了したことに相当する。すなわち、本実施の形態では、レーザ光源10は4つの光源を備えて4本のレーザービームを副走査方向にほぼ1列に出射するように設置される。従って、4本のレーザービームのうち、何れか1本のレーザービームについて調整を終了すれば、副走査方向に並んだ他の光源によるレーザビームについての調整が等価的に終了したことになる。このように、何れか1本のレーザービームについて調整をするのみで4本全ての調整が終了するので、光量均一化(パワーバランス調整)のプロセス工数を簡素化することができる。
なお、本体コントローラ61によって光量分布の微調整をさらに行うこともできる。この微調整処理では、一定の駆動電圧でレーザ光源10を点灯して上記プロセスで均一化処理がなされたのちの光量分布を測定した結果を計測データ(走査位置検出センサー56によるセンサ値を含む)として記憶しておき、さらに光量分布が均一になるレーザ光源10の駆動電圧を予め測定する。そして、上記の計測データに対する光量分布が均一になるレーザ光源10の駆動電圧の測定結果の差分を駆動データとして記憶すると共に、走査位置検出センサー56によるセンサ値を基準データとして記憶するものとする。
図11には、本体コントローラ61で実行される微調整処理の流れを示した。ステップS1では、レーザ光源10のうち1つのレーザビームのみをセンサーミラー52に照射するべく点灯させ、次のステップS2で光量を検出する。次のステップS3では、ステップS2の測定結果と基準データとの差分を求め、求めた差分値が減少するように(最も好ましくは「0」となるように)補正値を求める。この補正値は、4つの光源の各々に適用が可能である。次のステップS4では、上記ステップS3で求めた補正値でレーザ光源10を駆動する。この駆動はコントローラ60によりなされる。これにより、経時変化などでレーザ光源10から出射した全体光量の変動が生じた場合であっても、補正することができる。
次に、本実施の形態にかかる光走査装置の有効性について説明する。
図12は、レーザ光源10を中心光軸を中心として回転させたときの回転角度と入射位置との関係を示したものである。図12(A)は回転角度に対してポリゴンミラー28の反射ミラー28A上において副走査方向について入射位置変化を示したものである。図12(B)は回転角度に対してポリゴンミラー28の反射ミラー28A上において主走査方向について入射位置変化を示したものである。図12(C)は回転角度に対して感光体ドラムなどの像担持体上において主走査方向について入射位置変化を示したものである。
各図から理解されるように、主走査方向の直交方向(鉛直方向)をレーザ光源10の回転角度0度とすると、回転角度が大きくなるに従って、入射位置の変化量は大きくなる。
図12(A)の結果によるポリゴンミラー28の副走査方向の入射位置変動はスプリットミラー34における位置変化に大きく影響する。スプリットミラー34では、4つのレーザービームの分離性が要求されるため、スプリットミラー34における位置変化が大きくなると、色ズレなどが生じる。そこで、実測すると、ポリゴンミラー28の副走査方向の入射位置変動は約0.004mm以内が好ましいという結果を得た。この結果は、レーザ光源10は5度以内の回転角度を許容範囲とすることが好ましいということに対応する。
また、図12(B)の結果によるポリゴンミラー28の主走査方向の入射位置変動は線形的に変動し、最終的には走査位置や倍率に影響する。各種実験を行った結果、主走査方向の入射位置変動は0.20mm以内が好ましいという結果を得た。この結果は、シアン色に対応するレーザービームと黒色に対応するレーザービームが該当し、レーザ光源10としては回転角度が5度以内が好ましいということに対応する。
また、図12(C)の結果による像担持体の主走査方向の入射位置変動は線形的に変動する。像担持体上での各種実験を行った結果、その入射位置変動は0.10mm以内が好ましいという結果を得ており、レーザ光源10としては回転角度が5度以内が好ましいということに対応している。
以上のことから、レーザ光源10の副走査方向の光源並びについての角度変化(回転)は、5度以内が好ましいという結果を得た。
図13には、スリット14の移動量に対する光量変動の特性を示したもので、(A)はシアン、(B)はイエロー、(C)は黒、(D)はマゼンタの各色について示したものである。なお、図13の結果は、フィルター24を挿入せずに測定したものである。また、SOSは走査開始端、COS走査中央端、EOSは走査終了端を示している。図から理解されるように、走査中央端以外の変動はレーザ光源10の回転の影響を受ける。各色の各位置の変動について、光源全体すなわちレーザ光源10の副走査方向の光源並びについての角度変化(回転)を、5度以内に抑えることで、光量変動を10%程度の幅に抑えることができる。そして、フィルター24を挿入して調整すると、さらに向上が見られるという結果も得た。これにより、レーザ光源10の副走査方向の光源並びについての角度変化(回転)を、5度以内に抑えることが好ましいという結果を得た。
また、図14には、スリット14の開口の形状を変更したときの走査位置に対するレーザービームの径を測定した結果を示したものである。スリット形状は、図4に示す形状をノーマルスリット、図5に示す形状を変形スリットとしている。ノーマルスリットでは走査開始端から走査終了端に向けて徐々にビーム径が小さくなるが変形スリットでは走査中央端を境にビーム径が大きくなる傾向に変更できる。このように、スリット形状によりビーム径を、走査範囲内で調整できることが理解される。
図15には、入射走査角度Gに対する光走査装置の状態を示すもので、(A)は走査範囲両端のバランス特性を示し、(B)はポリゴンミラー28とfθレンズ30との最小間隔の特性を示した。図から理解されるように、入射走査角度Gを変更しても光量バランスへの影響は少なく、入射走査角度Gの設定値の自由度を増加(入射走査角度Gのパラメータ範囲を増加)できることが理解できる。また、ポリゴンミラー28とfθレンズ30との間隔は、極力接近させたいが、斜め入射であるため、入射されるレーザービームがfθレンズ30で浸食される(ケラレル)結果となる。このため、光学設計上接近させることが可能であるが、組み立て調整やアタッチメントなど様々な要因によって、14mm以下を確保できれば実質上支障がなく、好ましくは11mm以下が最適であるという結果を得た。これに対応して、入射走査角度Gは約60度以上が好ましく、より好ましくは65度以上であることが理解できる。
なお、以上説明した本実施の形態は、本発明の構成を限定するものではない。本実施の形態では、光走査装置を用いて説明したが、本発明が適用される光走査装置は、これに限らず、画像処理に対する基本機能を備えた画像形成装置などに内蔵されるの光学系等のように、複数のレーザービームを走査する機能を備えた任意の構成の装置に適用することができる。
本発明の実施形態に係る光走査装置の概略構成を示し、(A)は側面図、(B)は平面図である。 レーザ光源から第1シリンドリカルレンズまでの光路の説明図である。 レーザ光源からポリゴンミラーまでの光路の説明図である。 スリット形状の説明図である。 変形スリットのスリット形状の説明図である。 フィルターの概略構成を示し、(A)は斜視図、(B)は平面図である。 第2反射ミラー乃至ポリゴンミラーの光路の説明図であり、(A)は側面図、(B)は平面図である。 ポリゴンミラーへの入射光軸を移動することの説明図である。 光走査装置の走査についての説明図である。 光量均一化(パワーバランス調整)のプロセスの流れを示すフローチャートである 本体コントローラでの処理の流れを示すフローチャートである。 レーザ光源10を中心光軸を中心として回転させたときの回転角度と入射位置との関係を示し、(A)はポリゴンミラー上での副走査方向入射位置変化、(B)はポリゴンミラー上での主走査方向入射位置変化、(C)は像担持体上での主走査方向入射位置変化を示す。 スリット14の移動量に対する光量変動の特性を示し、(A)はシアン、(B)はイエロー、(C)は黒、(D)はマゼンタを示す。 スリットの開口形状変更による走査位置に対するレーザービームの径の関係を示す特性図である。 入射走査角度に対する光走査装置の状態を示し、(A)は走査範囲両端のバランス特性、(B)はポリゴンミラーとfθレンズとの最小間隔の特性を示す。
符号の説明
10…レーザ光源
12…コリメーターレンズ
14…スリット
14A…開口
16…第1シリンドリカルレンズ
18…第1反射ミラー
20…第2反射ミラー
22…第2シリンドリカルレンズ
24…フィルター
26…第3シリンドリカルレンズ
28…ポリゴンミラー
28A…反射ミラー
30…fθレンズ
32…fθレンズ
34…スプリットミラー
52…センサーミラー
54…センサーレンズ
56…走査位置検出センサー
61…本体コントローラ

Claims (9)

  1. 複数の反射面を備え入射された光ビームを前記反射面により主走査方向に偏向する偏向手段と、
    前記偏向手段へ向けて複数の光ビームを出射すると共に、複数の光ビームが前記主走査方向と交差する副走査方向に並んで出射されるように配列されかつ、前記偏向手段により偏向された光ビームが入射されるfθレンズの光軸と一致する光ビームが反射されたときの前記偏向手段の向きにおける該光ビームの中心軸の前記偏向手段の反射面の反射位置を基準点として、前記偏向手段に向かう光ビームの中心軸の反射位置が前記基準点より主走査方向に離間した位置になるように移動して設けられた光源手段と、
    前記偏向手段の1つの反射面の主走査方向の幅より広い範囲の光ビームが前記偏向手段に照射されるように前記光源手段から出射された光ビームを拡大する拡大手段と、
    前記光源手段と前記偏向手段との間に、透過率分布が光軸に対して非対称となるように設定されたフィルタと、
    前記光源手段から出射された複数の光ビームの各々の中心軸を同時に移動させる調整素子を前記光源手段と前記偏向手段の間に設けて、前記複数の光ビームの何れか1つの光ビームを用いて該光ビームが前記主走査方向の所定範囲について光量変動均一になるように該光ビームの中心軸を前記調整素子により移動させることで前記光源手段から出射される光ビームの中心軸の位置を調整する光軸調整手段と、
    を備えた光走査装置。
  2. 前記光源手段は、前記主走査方向の直交方向に対して正逆の回転方向について5度の傾き範囲内に複数の光ビームが副走査方向に並んで出射されるように配列されることを特徴とする請求項1に記載の光走査装置。
  3. 前記光源手段の光ビームの各々は、異なる感光体へ向けて出射されることを特徴とする請求項1または請求項2に記載の光走査装置。
  4. 前記光源手段は、4本の光ビームを出射することを特徴とする請求項3に記載の光走査装置。
  5. 前記光源手段及び偏向手段は、前記偏向手段に入射する光ビームの方向と、前記偏向手段の偏向中心方向とのなす角度が60度以上になるように設定されることを特徴とする請求項1乃至請求項4の何れか1項に記載の光走査装置。
  6. 前記光源手段は、前記偏向手段による主走査の終了端側から前記偏向手段へ光ビームが入射されるように設けたことを特徴とする請求項5に記載の光走査装置。
  7. 前記光源手段と前記偏向手段との間の前記光ビームの光路内に配置されると共に前記光ビームを透過する開口部が設けられかつ該開口部が光軸に対して非対称となる位置に設定された開口部材をさらに設けたことを特徴とする請求項1乃至請求項6の何れか1項に記載の光走査装置。
  8. 前記フィルタは、前記偏向手段近傍であると共に、前記偏向手段の入射側に副走査方向に光ビームを発散するパワーを有する光学素子が設置された場合には該光学素子の入射側に設けたことを特徴とする請求項1乃至請求項7の何れか1項に記載の光走査装置。
  9. 複数の反射面を備え入射された光ビームを前記反射面により主走査方向に偏向する偏向手段と、前記偏向手段へ向けて複数の光ビームを出射する光源手段と、前記偏向手段の1つの反射面の主走査方向の幅より広い範囲の光ビームが前記偏向手段に照射されるように前記光源手段から出射された光ビームを拡大する拡大手段と、前記光源手段と前記偏向手段との間に設定されたフィルタと、を備えた光走査装置の光軸調整方法であって、
    前記光源手段を、前記複数の光ビームが前記主走査方向と交差する副走査方向に並んで出射されるように配列されかつ、前記偏向手段により偏向された光ビームが入射されるfθレンズの光軸と一致する光ビームが反射されたときの前記偏向手段の向きにおける該光ビームの中心軸の前記偏向手段の反射面の反射位置を基準点として、前記偏向手段に向かう光ビームの中心軸の反射位置が前記基準点より主走査方向に離間した位置になるように移動して設け、
    前記フィルタを、透過率分布が光軸に対して非対称となるように設け、
    前記光源手段から出射された複数の光ビームの各々の中心軸を同時に移動調整する調整素子を前記光源手段から前記偏向手段の間に設けて、前記複数の光ビームの何れか1つの光ビームを用いて該光ビームが前記主走査方向の所定範囲について光量変動均一となるように該光ビームの中心軸を前記調整素子により移動調整して前記光源手段から出射される光ビームの中心軸の位置を調整する
    ことを特徴とする光走査装置の光軸調整方法。
JP2004239313A 2004-08-19 2004-08-19 光走査装置及び光軸調整方法 Active JP4654633B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239313A JP4654633B2 (ja) 2004-08-19 2004-08-19 光走査装置及び光軸調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239313A JP4654633B2 (ja) 2004-08-19 2004-08-19 光走査装置及び光軸調整方法

Publications (2)

Publication Number Publication Date
JP2006058523A JP2006058523A (ja) 2006-03-02
JP4654633B2 true JP4654633B2 (ja) 2011-03-23

Family

ID=36106040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239313A Active JP4654633B2 (ja) 2004-08-19 2004-08-19 光走査装置及び光軸調整方法

Country Status (1)

Country Link
JP (1) JP4654633B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160338A (ja) * 1994-12-12 1996-06-21 Fuji Xerox Co Ltd 光学走査装置
JPH08292385A (ja) * 1995-04-20 1996-11-05 Konica Corp 光ビーム走査装置
JPH09211366A (ja) * 1996-02-02 1997-08-15 Fuji Xerox Co Ltd 光学走査装置
JPH10206778A (ja) * 1997-01-28 1998-08-07 Fuji Xerox Co Ltd 光学走査装置
JPH11218702A (ja) * 1998-01-30 1999-08-10 Fuji Xerox Co Ltd 光走査装置
JP2001125033A (ja) * 1999-10-27 2001-05-11 Canon Inc 走査光学系と画像形成装置
JP2003295079A (ja) * 2002-04-01 2003-10-15 Fuji Xerox Co Ltd 光走査装置
JP2004109610A (ja) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd 光走査装置及び画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160338A (ja) * 1994-12-12 1996-06-21 Fuji Xerox Co Ltd 光学走査装置
JPH08292385A (ja) * 1995-04-20 1996-11-05 Konica Corp 光ビーム走査装置
JPH09211366A (ja) * 1996-02-02 1997-08-15 Fuji Xerox Co Ltd 光学走査装置
JPH10206778A (ja) * 1997-01-28 1998-08-07 Fuji Xerox Co Ltd 光学走査装置
JPH11218702A (ja) * 1998-01-30 1999-08-10 Fuji Xerox Co Ltd 光走査装置
JP2001125033A (ja) * 1999-10-27 2001-05-11 Canon Inc 走査光学系と画像形成装置
JP2003295079A (ja) * 2002-04-01 2003-10-15 Fuji Xerox Co Ltd 光走査装置
JP2004109610A (ja) * 2002-09-19 2004-04-08 Fuji Xerox Co Ltd 光走査装置及び画像形成装置

Also Published As

Publication number Publication date
JP2006058523A (ja) 2006-03-02

Similar Documents

Publication Publication Date Title
US7999970B2 (en) Light source device, optical scanning device, and image forming apparatus
JP6047107B2 (ja) 光走査装置及びそれを有する画像形成装置
JP4492360B2 (ja) 画像形成装置
US6987594B2 (en) Optical scanning apparatus
JP2006091157A (ja) 光走査装置
JP2005284270A (ja) マルチビーム光走査装置及び画像形成装置
JP2007140418A (ja) 走査装置及び走査光学系
KR100683189B1 (ko) 레이저 스캐닝 장치
US6950216B2 (en) Light source apparatus and optical scanner
US9279979B2 (en) Optical scanning device and image forming apparatus
JP4654633B2 (ja) 光走査装置及び光軸調整方法
US7766491B2 (en) Optical beam scanning device, image forming apparatus
JP2006301482A (ja) 画像形成装置
US8791974B2 (en) Optical scanning apparatus and image forming apparatus
US7304660B2 (en) Optical beam scanning device and diaphragm device capable of adjusting light quantity distribution
JP2005164997A (ja) 光走査装置およびそれに用いる同期検知方法
CN101082701B (zh) 光扫描装置、图像形成装置、光扫描方法
JP3448137B2 (ja) 画像形成装置
JP4497577B2 (ja) マルチビーム光走査装置
US7012723B2 (en) Optical scanning device and color image forming apparatus
JP2005156943A (ja) 光走査装置
JP4706628B2 (ja) 光走査装置
JP4890966B2 (ja) 光走査装置・画像形成装置
JP4106537B2 (ja) 光走査装置およびレーザプリンタ装置
JP2001004939A (ja) マルチビーム走査システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4654633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350