JP4642248B2 - Game machine - Google Patents

Game machine Download PDF

Info

Publication number
JP4642248B2
JP4642248B2 JP2001032959A JP2001032959A JP4642248B2 JP 4642248 B2 JP4642248 B2 JP 4642248B2 JP 2001032959 A JP2001032959 A JP 2001032959A JP 2001032959 A JP2001032959 A JP 2001032959A JP 4642248 B2 JP4642248 B2 JP 4642248B2
Authority
JP
Japan
Prior art keywords
payout
ball
state
game
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001032959A
Other languages
Japanese (ja)
Other versions
JP2002233637A (en
Inventor
詔八 鵜川
康男 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2001032959A priority Critical patent/JP4642248B2/en
Publication of JP2002233637A publication Critical patent/JP2002233637A/en
Application granted granted Critical
Publication of JP4642248B2 publication Critical patent/JP4642248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pinball Game Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遊技媒体を用いて遊技を行うことが可能なパチンコ遊技機やスロット機等の遊技機に関する。
【0002】
【従来の技術】
遊技機として、遊技球などの遊技媒体を発射装置によって遊技領域に発射し、遊技領域に設けられている入賞口などの入賞領域に遊技媒体が入賞すると、所定個の賞球が遊技者に払い出されるものがある。遊技媒体の払い出しは払出機構によって行われる。また、遊技者は、例えばカード挿入口にプリペイドカード等を挿入して遊技球の貸し出しを受ける。遊技機の払出機構は、カード挿入を検出して所定個数の遊技球を遊技者に払い出す。
【0003】
払出機構は、一般に、払出制御基板に搭載された払出制御手段によって制御されるので、遊技球の貸し出し制御も払出制御手段によって実行される。遊技の進行は主基板に搭載された遊技制御手段によって制御されるので、球切れによる払出停止は、遊技制御手段によって決定され、払出制御基板に送信される。従って、球切れが発生すると、払出制御手段により、払出停止制御が行われる。
【0004】
【発明が解決しようとする課題】
ストックしている遊技媒体数以上の払出要求があると、球切れ状態となる場合がある。一単位の払出予定数の遊技球を払い出している途中で遊技機への電力供給が停止すると、払出途中であった残りの遊技球については球切れ状態が解除されても払い出されないおそれがある。このような場合には、遊技機への電力供給が停止したときに、払出制御手段における所定の情報を電源バックアップするように遊技機を構成するようにすればよい。そのような遊技機では、遊技機への電力供給が停止した後に、電力供給が復旧すると、払出制御手段は電源バックアップされている情報にもとづいて遊技球の払出を再開することができる。
【0005】
しかし、前回の電力供給が停止する直前に球切れが発生して払出禁止状態となっている場合や、電力供給の停止中に球切れ状態となっていた場合(例えば、遊技店員による点検において遊技球が取り除かれていた場合)などには、電力供給が復旧したときに払出禁止状態となっていることから、連続的に払い出される一単位の遊技球のうちの未だ払い出されていない残りの遊技球については電力供給が復旧しても払い出されない。従って、連続的に払い出される遊技球の一部を払い出したに過ぎない区切りの悪い状態で払出が停止された状態が維持されてしまう。また、球切れ状態に限らず、他の原因により払出停止状態とされた場合も同様である。
【0006】
そこで、本発明は、払出途中で電力供給が停止したあとの電力供給が復旧したときに払出禁止状態となっている場合であっても、区切りの良い状態で遊技媒体の払い出しを中断するための払出制御を行うことができる遊技機を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による遊技機は、遊技媒体を用いて所定の遊技を行うことが可能な遊技機であって、遊技媒体を払い出すことが可能な払出手段と、所定の払出条件が成立したことにもとづいて、払出手段により遊技媒体を払い出す制御を行う払出制御手段と、遊技媒体の払い出しを禁止するか否かの判定に用いられる検出信号を出力する状態検出手段と、遊技機への電力供給が停止しても所定期間は記憶内容が保持される記憶手段とを含み、記憶手段の記憶内容には、払出手段により払い出されるべき遊技媒体の払出予定数が含まれ、電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、払出制御手段が、記憶手段に保持されている払出予定数の遊技媒体を払い出すための制御を開始することを特徴とする。
【0008】
状態検出手段として、払出手段が払出可能な遊技媒体が所定量以上確保されているか否かを検出するための払出準備状態検出手段を含み、払出準備状態検出手段が遊技媒体が所定量以上確保されていない検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされるように構成されていてもよい。
【0009】
状態検出手段として、払出手段から払い出された遊技媒体が貯留される貯留部に所定量以上の遊技媒体が貯留されているか否かを検出するための貯留状態検出手段を含み、貯留状態検出手段が貯留部に所定量以上の遊技媒体が貯留されている検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされるように構成されていてもよい。
【0010】
電力供給が停止する直前に状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、払出制御手段が、電力供給が開始したときには記憶手段に保持されている払出予定数の遊技媒体を払い出すための払出手段の制御を開始することが可能であるように構成されていてもよい。
【0011】
電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、払出制御手段が、払出予定数の遊技媒体の払出制御を行ったあと払出禁止状態とするように構成されていてもよい。
【0012】
払出手段により払い出された遊技媒体を検出可能な遊技媒体検出手段を備え、払出制御手段が、払出予定数の遊技媒体を払い出すために払出手段を駆動する払出予定駆動期間を決定し、電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、払出制御手段が、払出予定駆動期間を終了したあとは、払出予定数分の遊技媒体が遊技媒体検出手段によって検出されたか否かに関わらず払出禁止状態とするように構成されていてもよい。
【0013】
遊技の進行を制御する遊技制御手段を備え、状態検出手段の検出信号が遊技制御手段に入力され、遊技制御手段が、状態検出手段の検出信号の入力にもとづいて、払い出しを許可することを示す払出許可状態信号または払い出しを禁止することを示す払出禁止状態信号を送信し、払出制御手段が、払出許可状態信号または払出禁止状態信号の受信に応じて払出手段を制御するように構成されていてもよい。
【0014】
遊技制御手段が、遊技機への電力供給が停止していても電力供給が停止する際に払い出しを禁止する状態であったか否かを記憶する払出状態記憶を保持可能であり、電力供給が開始した場合には、払出状態記憶の記憶内容にもとづいて払出許可状態信号または払出禁止状態信号を払出制御手段に送信するように構成されていてもよい。
【0015】
払出制御手段が、遊技機への電力供給が停止していても電力供給が停止する際に払出可能な状態であったか否かを記憶する払出制御状態記憶を保持可能であるように構成されていてもよい。
【0016】
払出予定数は、払出手段により払い出されるべき遊技媒体の総数のうち、払出手段が一回の連続した払出動作により払い出す数として設定した数のうちの未払出数であることが好ましい。
【0017】
払出予定数は、例えば入賞の発生に応じて設定された賞遊技媒体の未払出数である。
【0018】
遊技の進行を制御するとともに、入賞の発生に応じて払い出すべき賞遊技媒体数データを払出制御手段に送信する遊技制御手段を備え、払出制御手段が、賞遊技媒体数データの受信に応じて払出予定数を決定するように構成されていてもよい。
【0019】
入賞の発生に応じて設定された払出予定数が、複数の入賞に対応した数に設定可能であるように構成されていてもよい。
【0020】
払出予定数は、例えば貸出要求に応じて設定された貸出遊技媒体の未払出数である。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図、図2はガラス扉枠を取り外した状態での遊技盤の前面を示す正面図である。なお、以下の実施の形態では、パチンコ遊技機を例に説明を行うが、本発明による遊技機はパチンコ遊技機に限られず、例えばスロット機等であってもよい。また、画像式の遊技機に適用することもできる。
【0022】
パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠とで構成される。また、パチンコ遊技機1は、遊技枠に開閉可能に設けられている額縁状に形成されたガラス扉枠2を有する。遊技枠は、外枠に対して開閉自在に設置される前面枠(図示せず)と、機構部品等が取り付けられる機構板と、それらに取り付けられる種々の部品(後述する遊技盤を除く。)とを含む構造体である。
【0023】
図1に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠2を有する。ガラス扉枠2の下部表面には打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿4と打球を発射する打球操作ハンドル(操作ノブ)5が設けられている。ガラス扉枠2の背面には、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。
【0024】
遊技領域7の中央付近には、それぞれが識別情報としての図柄を可変表示する複数の可変表示部を含む可変表示装置(特別図柄表示装置)9が設けられている。可変表示装置9には、例えば「左」、「中」、「右」の3つの可変表示部(図柄表示エリア)がある。可変表示装置9の下方には、始動入賞口14が設けられている。始動入賞口14に入った入賞球は、遊技盤6の背面に導かれ、始動口スイッチ14aによって検出される。また、始動入賞口14の下部には開閉動作を行う可変入賞球装置15が設けられている。可変入賞球装置15は、ソレノイド16によって開状態とされる。
【0025】
可変入賞球装置15の下部には、特定遊技状態(大当り状態)においてソレノイド21によって開状態とされる開閉板20が設けられている。開閉板20は大入賞口を開閉する手段である。開閉板20から遊技盤6の背面に導かれた入賞球のうち一方(V入賞領域)に入った入賞球はV入賞スイッチ22で検出され、開閉板20からの入賞球はカウントスイッチ23で検出される。遊技盤6の背面には、大入賞口内の経路を切り換えるためのソレノイド21Aも設けられている。また、可変表示装置9の下部には、始動入賞口14に入った有効入賞球数すなわち始動記憶数を表示する4個の表示部を有する始動記憶表示器18が設けられている。この例では、4個を上限として、有効始動入賞がある毎に、始動記憶表示器18は点灯している表示部を1つずつ増やす。そして、可変表示装置9の可変表示が開始される毎に、点灯している表示部を1つ減らす。
【0026】
ゲート32に遊技球が入賞すると、7セグメントLEDによる普通図柄表示器10の表示の可変表示が開始される。そして、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定回数、所定時間だけ開状態になる。普通図柄表示器10の近傍には、ゲート32に入った入賞球数を表示する4個の表示部を有する普通図柄始動記憶表示器41が設けられている。この例では、4個を上限として、ゲート32への入賞がある毎に、普通図柄始動記憶表示器41は点灯している表示部を1つずつ増やす。そして、可変入賞球装置15の開放制御がなされる毎に、点灯している表示部を1つ減らす。
【0027】
遊技盤6には、複数の入賞口24,29,30,33が設けられ、遊技球の入賞口24,29,30,33への入賞は、それぞれ入賞口スイッチ24a,29a,30a,33aによって検出される。遊技領域7の左右周辺には、遊技中に点滅表示される装飾ランプ25が設けられ、下部には、入賞しなかった打球を吸収するアウト口26がある。また、遊技領域7の外側の左右上部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ28a、左枠ランプ28bおよび右枠ランプ28cが設けられている。さらに、遊技領域7における各構造物(大入賞口等)の周囲には装飾LEDが設置されている。
【0028】
そして、この例では、左枠ランプ28bの近傍に、賞球残数があるときに点灯する賞球ランプ51が設けられ、天枠ランプ28aの近傍に、補給球が切れたときに点灯する球切れランプ52が設けられている。さらに、図1には、パチンコ遊技機1に隣接して設置され、プリペイドカードが挿入されることによって球貸しを可能にするカードユニット50も示されている。
【0029】
カードユニット50には、使用可能状態であるか否かを示す使用可表示ランプ151、カード内に記録された残額情報に端数(100円未満の数)が存在する場合にその端数を打球供給皿3の近傍に設けられる度数表示LEDに表示させるための端数表示スイッチ152、カードユニット50がいずれの側のパチンコ遊技機1に対応しているのかを示す連結台方向表示器153、カードユニット50内にカードが投入されていることを示すカード投入表示ランプ154、記録媒体としてのカードが挿入されるカード挿入口155、およびカード挿入口155の裏面に設けられているカードリーダライタの機構を点検する場合にカードユニット50を解放するためのカードユニット錠156が設けられている。
【0030】
打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。打球が始動入賞口14に入り始動口スイッチ14aで検出されると、図柄の可変表示を開始できる状態であれば、可変表示装置9において特別図柄が可変表示(変動)を始める。図柄の可変表示を開始できる状態でなければ、始動記憶数を1増やす。
【0031】
可変表示装置9における特別図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄の組み合わせが大当り図柄の組み合わせであると、大当り遊技状態に移行する。すなわち、開閉板20が、一定時間経過するまで、または、所定個数(例えば10個)の打球が入賞するまで開放する。そして、開閉板20の開放中に打球がV入賞領域に入賞しV入賞スイッチ22で検出されると、継続権が発生し開閉板20の開放が再度行われる。継続権の発生は、所定回数(例えば15ラウンド)許容される。
【0032】
停止時の可変表示装置9における特別図柄の組み合わせが確率変動を伴う大当り図柄の組み合わせである場合には、次に大当りとなる確率が高くなる。すなわち、高確率状態という遊技者にとってさらに有利な状態となる。
【0033】
打球がゲート32に入賞すると、普通図柄表示器10において普通図柄としての表示数字が連続的に変化する状態になる。また、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定時間だけ開状態になる。さらに、高確率状態では、普通図柄表示器10における停止図柄が当り図柄になる確率が高められるとともに、可変入賞球装置15の開放時間と開放回数が高められる。
【0034】
次に、パチンコ遊技機1の裏面の構造について図3および図4を参照して説明する。図3は、遊技機を裏面から見た背面図である。図4は、各種部材が取り付けられた機構板を遊技機背面側から見た背面図である。
【0035】
図3に示すように、遊技機裏面側では、可変表示装置9を制御する図柄制御基板80を含む可変表示制御ユニット49、遊技制御用マイクロコンピュータ等が搭載された遊技制御基板(主基板)31が設置されている。また、球払出制御を行う払出制御用マイクロコンピュータ等が搭載された払出制御基板37が設置されている。さらに、遊技盤6に設けられている各種装飾LED、特別図柄始動記憶表示器18および普通図柄始動記憶表示器41、装飾ランプ25、枠側に設けられている天枠ランプ28a、左枠ランプ28b、右枠ランプ28c、賞球ランプ51および球切れランプ52を点灯制御するランプ制御手段が搭載されたランプ制御基板35、スピーカ27からの音発生を制御する音制御手段が搭載された音制御基板70も設けられている。また、DC30V、DC21V、DC12VおよびDC5Vを作成する電源回路が搭載された電源基板910や発射制御基板91が設けられている。
【0036】
遊技機裏面において、上方には、各種情報を遊技機外部に出力するための各端子を備えたターミナル基板160が設置されている。ターミナル基板160には、少なくとも、遊技媒体切れ検出手段の検出出力を導入して外部出力するための球切れ用端子、賞球個数信号を外部出力するための賞球用端子および球貸し個数信号を外部出力するための球貸し用端子が設けられている。また、中央付近には、主基板31からの各種情報を遊技機外部に出力するための各端子を備えた情報端子盤34が設置されている。
【0037】
さらに、各基板(主基板31や払出制御基板37等)に含まれる記憶内容保持手段(例えば、電力供給停止時にもその内容を保持可能なバックアップRAM)に記憶されたバックアップデータをクリアするための初期化操作手段としてのクリアスイッチ921が搭載されたスイッチ基板190が設けられている。スイッチ基板190には、クリアスイッチ921と、主基板31等の他の基板と接続されるコネクタ922が設けられている。
【0038】
貯留タンク38に貯留された遊技球は誘導レール39を通り、図4に示されるように、カーブ樋186を経て賞球ケース40Aで覆われた球払出装置に至る。球払出装置の上部には、遊技媒体切れ検出手段としての球切れスイッチ187が設けられている。球切れスイッチ187が球切れを検出すると、球払出装置の払出動作が停止する。球切れスイッチ187は遊技球通路内の遊技球の有無を検出するスイッチであるが、貯留タンク38内の補給球の不足を検出する球切れ検出スイッチ167も誘導レール39における上流部分(貯留タンク38に近接する部分)に設けられている。球切れ検出スイッチ167が遊技球の不足を検知すると、遊技機設置島に設けられている補給機構から遊技機に対して遊技球の補給が行われる。
【0039】
なお、球切れスイッチ187は、球払出装置に至る払出球通路に27〜28個程度の遊技球が存在することを検出できるような位置に係止されている。すなわち、球切れスイッチ187は、賞球の一単位の最大払出量(この実施の形態では25個)および球貸しの一単位の最大払出量(この実施の形態では100円:25個)以上が確保されていることが確認できるような位置に設置されている。なお、この実施の形態では、一単位として設定された払出量の遊技球のうち、未だ払い出されていない遊技球の数を払出予定数という。
【0040】
球払出装置から払い出された遊技球は、連絡口45を通ってパチンコ遊技機1の前面に設けられている打球供給皿3に誘導される。連絡口45の側方には、パチンコ遊技機1の前面に設けられている余剰球受皿4に連通する余剰球通路46が形成されている。
【0041】
入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払い出されて打球供給皿3が満杯になり、ついには遊技球が連絡口45に到達した後さらに遊技球が払い出されると、遊技球は、余剰球通路46を経て余剰球受皿4に導かれる。さらに遊技球が払い出されると、感知レバー47が貯留状態検出手段としての満タンスイッチ48を押圧して、貯留状態検出手段としての満タンスイッチ48がオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに発射装置の駆動も停止する。
【0042】
図4に示すように、球払出装置の側方には、カーブ樋186から遊技機下部の排出口192に至る球抜き通路191が形成されている。球抜き通路191の上部には球抜きレバー193が設けられ、球抜きレバー193が遊技店員等によって操作されると、誘導レール39から球抜き通路191への遊技球通路が形成され、貯留タンク38内に貯留されている遊技球は、排出口192から遊技機外に排出される。
【0043】
図5は、球払出装置97の構成例を示す分解斜視図である。この例では、賞球ケース40Aとしての3つのケース140,141,142の内部に球払出装置97が形成されている。ケース140,141の上部には、球切れスイッチ187の下部の球通路と連通する穴170,171が設けられ、遊技球は、穴170,171から球払出装置97に流入する。
【0044】
球払出装置97は駆動源となる払出モータ(例えばステッピングモータ)289を含む。払出モータ289の回転力は、払出モータ289の回転軸に嵌合しているギア290に伝えられ、さらに、ギア290と噛み合うギア291に伝えられる。ギア291の中心軸には、凹部を有するスプロケット292が嵌合している。穴170,171から流入した遊技球は、スプロケット292の凹部によって、スプロケット292の下方の球通路293に1個ずつ落下させられる。
【0045】
球通路293には遊技球の流下路を切り替えるための振分部材311が設けられている。振分部材311はソレノイド310によって駆動され、賞球払出時には、球通路293における一方の流下路を遊技球が流下するように倒れ、球貸し時には球通路293における他方の流下路を遊技球が流下するように倒れる。なお、払出モータ289およびソレノイド310は、払出制御基板37に搭載されている払出制御用CPUによって制御される。また、払出制御用CPUは、主基板31に搭載されている遊技制御用のCPUからの指令に応じて払出モータ289およびソレノイド310を制御する。
【0046】
賞球払出時に選択される流下路の下方には球払出装置によって払い出された遊技球を検出する賞球センサ(賞球カウントスイッチ)301Aが設けられ、球貸し時に選択される流下路の下方には球払出装置によって払い出された遊技球を検出する球貸しセンサ(球貸しカウントスイッチ)301Bが設けられている。賞球カウントスイッチ301Aの検出信号と球貸しカウントスイッチ301Bの検出信号は払出制御基板37の払出制御用CPUに入力される。払出制御用CPUは、それらの検出信号にもとづいて、実際に払い出された遊技球の個数を計数する。
【0047】
図6は、主基板31における回路構成の一例を示すブロック図である。なお、図6には、払出制御基板37、ランプ制御基板35、音制御基板70、発射制御基板91および図柄制御基板80も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する基本回路53と、ゲートスイッチ32a、始動口スイッチ14a、V入賞スイッチ22、カウントスイッチ23、入賞口スイッチ24a,29a,30a,33a、満タンスイッチ48、球切れスイッチ187、賞球カウントスイッチ301Aおよびクリアスイッチ921からの信号を基本回路53に与えるスイッチ回路58と、可変入賞球装置15を開閉するソレノイド16、開閉板20を開閉するソレノイド21および大入賞口内の経路を切り換えるためのソレノイド21Aを基本回路53からの指令に従って駆動するソレノイド回路59とが搭載されている。
【0048】
なお、図6には示されていないが、カウントスイッチ短絡信号もスイッチ回路58を介して基本回路53に伝達される。また、ゲートスイッチ32a、始動口スイッチ14a、V入賞スイッチ22、カウントスイッチ23、入賞口スイッチ24a,29a,30a,33a、満タンスイッチ48、球切れスイッチ187、賞球カウントスイッチ301A等のスイッチは、センサと称されているものでもよい。すなわち、遊技球を検出できる遊技媒体検出手段(この例では遊技球検出手段)であれば、その名称を問わない。
【0049】
また、基本回路53から与えられるデータに従って、大当りの発生を示す大当り情報、可変表示装置9における図柄の可変表示開始に利用された始動入賞球の個数を示す有効始動情報、確率変動が生じたことを示す確変情報等の情報出力信号をホールコンピュータ等の外部機器に対して出力する情報出力回路64が搭載されている。
【0050】
基本回路53は、ゲーム制御用のプログラム等を記憶するROM54、ワークデータ領域(作業領域)およびスタック領域(退避領域)として使用される記憶手段(変動データ記憶手段)としてのRAM55、プログラムに従って制御動作を行うCPU56およびI/Oポート部57を含む。この実施の形態では、ROM54,RAM55はCPU56に内蔵されている。すなわち、CPU56は、1チップマイクロコンピュータである。なお、1チップマイクロコンピュータは、少なくともRAM55が内蔵されていればよく、ROM54およびI/Oポート部57は外付けであっても内蔵されていてもよい。
【0051】
また、RAM(CPU内蔵RAMであってもよい。)55の一部または全部が、電源基板910において作成されるバックアップ電源よってバックアップされているバックアップRAMである。すなわち、遊技機に対する電力供給が停止しても、所定期間は、RAM55の一部または全部の内容は保存される。
【0052】
遊技球を打撃して発射する打球発射装置は発射制御基板91上の回路によって制御される駆動モータ94で駆動される。そして、駆動モータ94の駆動力は、操作ノブ5の操作量に従って調整される。すなわち、発射制御基板91上の回路によって、操作ノブ5の操作量に応じた速度で打球が発射されるように制御される。
【0053】
なお、この実施の形態では、ランプ制御基板35に搭載されているランプ制御手段が、遊技盤に設けられている始動記憶表示器18、普通図柄始動記憶表示器41および装飾ランプ25の表示制御を行うとともに、枠側に設けられている天枠ランプ28a、左枠ランプ28b、右枠ランプ28c、賞球ランプ51および球切れランプ52の表示制御を行う。また、特別図柄を可変表示する可変表示装置9および普通図柄を可変表示する普通図柄表示器10の表示制御は、図柄制御基板80に搭載されている表示制御手段によって行われる。
【0054】
図7は、払出制御基板37および球払出装置97の構成要素などの払出に関連する構成要素を示すブロック図である。図7に示すように、満タンスイッチ48からの検出信号は、中継基板71を介して主基板31のI/Oポート部57に入力される。また、球切れスイッチ187からの検出信号も、中継基板72および中継基板71を介して主基板31のI/Oポート部57に入力される。
【0055】
主基板31のCPU56は、球切れスイッチ187からの検出信号が球切れ状態を示しているか、または、満タンスイッチ48からの検出信号が満タン状態を示していると、払出を停止すべき状態であることを指示する払出制御コマンドを送出する。払出を停止すべき状態であることを指示する払出制御コマンドを受信すると、払出制御基板37の払出制御用CPU371は球払出処理を停止する。
【0056】
さらに、賞球カウントスイッチ301Aからの検出信号は、中継基板72および中継基板71を介して主基板31のI/Oポート部57に入力されるとともに、中継基板72を介して払出制御基板37の入力ポート372bに入力される。賞球カウントスイッチ301Aは、球払出装置97の払出機構部分に設けられ、実際に払い出された賞球払出球を検出する。
【0057】
入賞があると、払出制御基板37には、主基板31の出力ポート(ポート0,1)570,571から賞球個数を示す払出制御コマンドが入力される。出力ポート(出力ポート1)571は8ビットのデータを出力し、出力ポート570は1ビットのINT信号を出力する。賞球個数を示す払出制御コマンドは、入力バッファ回路373Aを介してI/Oポート372aに入力される。INT信号は、入力バッファ回路373Bを介して払出制御用CPU371の割込端子に入力されている。払出制御用CPU371は、I/Oポート372aを介して払出制御コマンドを入力し、払出制御コマンドに応じて球払出装置97を駆動して賞球払出を行う。なお、この実施の形態では、払出制御用CPU371は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。
【0058】
また、主基板31において、出力ポート570,571の外側にバッファ回路620,68Aが設けられている。バッファ回路620,68Aとして、例えば、汎用のCMOS−ICである74HC250,74HC14が用いられる。このような構成によれば、外部から主基板31の内部に入力される信号が阻止されるので、払出制御基板37から主基板31に信号が与えられる可能性がある信号ラインをさらに確実になくすことができる。なお、バッファ回路620,68Aの出力側にノイズフィルタを設けてもよい。
【0059】
払出制御用CPU371は、出力ポート372cを介して、貸し球数を示す球貸し個数信号をターミナル基板160に出力する。さらに、出力ポート372dを介して、エラー表示用LED374にエラー信号を出力する。
【0060】
さらに、払出制御基板37の入力ポート372bには、中継基板72を介して、球貸しカウントスイッチ301B、および払出モータ289の回転位置を検出するための払出モータ位置センサからの検出信号が入力される。球貸しカウントスイッチ301Bは、球払出装置97の払出機構部分に設けられ、実際に払い出された貸し球を検出する。払出制御基板37からの払出モータ289への駆動信号はあ、出力ポート372cおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられ、振分ソレノイド310への駆動信号は、出力ポート372eおよび中継基板72を介して球払出装置97の払出機構部分における振分ソレノイド310に伝えられる。また、クリアスイッチ921の出力も、入力ポート372bに入力される。
【0061】
カードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、端数表示スイッチ152、連結台方向表示器153、カード投入表示ランプ154およびカード挿入口155が設けられている(図1参照)。残高表示基板74には、打球供給皿3の近傍に設けられている度数表示LED、球貸しスイッチおよび返却スイッチが接続される。
【0062】
残高表示基板74からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ信号および返却スイッチ信号が払出制御基板37を介して与えられる。また、カードユニット50から残高表示基板74には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が払出制御基板37を介して与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)が入力ポート372bおよび出力ポート372eを介してやりとりされる。
【0063】
パチンコ遊技機1の電源が投入されると、払出制御基板37の払出制御用CPU371は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、VL信号を出力する。払出制御用CPU371は、VL信号の入力状態により接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。
【0064】
そして、払出制御基板37の払出制御用CPU371は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。このとき、振分ソレノイド310は駆動状態とされている。すなわち、球振分部材311を球貸し側に向ける。そして、払出が完了したら、払出制御用CPU371は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でなければ、賞球払出制御を実行する。
【0065】
以上のように、カードユニット50からの信号は全て払出制御基板37に入力される構成になっている。従って、球貸し制御に関して、カードユニット50から主基板31に信号が入力されることはなく、主基板31の基本回路53にカードユニット50の側から不正に信号が入力される余地はない。また、カードユニット50で用いられる電源電圧AC24Vは払出制御基板37から供給される。
【0066】
この実施の形態では、電源基板910から払出制御基板37に対して電源断信号も入力される。電源断信号は、払出制御用CPU371のマスク不能割込(NMI)端子に入力される。さらに、払出制御基板37に存在するRAM(CPU内蔵RAMであってもよい。)の少なくとも一部は、電源基板910において作成されるバックアップ電源によって、バックアップされている。すなわち、遊技機に対する電力供給が停止しても、所定期間は、RAMの少なくとも一部の内容は保存される。
【0067】
なお、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。
【0068】
図8は、電源基板910の一構成例を示すブロック図である。電源基板910は、主基板31、図柄制御基板80、音制御基板70、ランプ制御基板35および払出制御基板37等の電気部品制御基板と独立して設置され、遊技機内の各電気部品制御基板および機構部品が使用する電圧を生成する。この例では、AC24V、VSL(DC+30V)、DC+21V、DC+12VおよびDC+5Vを生成する。また、バックアップ電源すなわち記憶保持手段となるコンデンサ916は、DC+5Vすなわち各基板上のIC等を駆動する電源のラインから充電される。なお、VSLは、整流回路912において、整流素子でAC24Vを整流昇圧することによって生成される。VSLは、ソレノイド駆動電源となる。
【0069】
トランス911は、交流電源からの交流電圧を24Vに変換する。AC24V電圧は、コネクタ915に出力される。また、整流回路912は、AC24Vから+30Vの直流電圧を生成し、DC−DCコンバータ913およびコネクタ915に出力する。DC−DCコンバータ913は、1つまたは複数のコンバータIC922(図8では1つのみを示す。)を有し、VSLにもとづいて+21V、+12Vおよび+5Vを生成してコネクタ915に出力する。コンバータIC922の入力側には、比較的大容量のコンデンサ923が接続されている。従って、外部からの遊技機に対する電力供給が停止したときに、+30V、+12V、+5V等の直流電圧は、比較的緩やかに低下する。コネクタ915は例えば中継基板に接続され、中継基板から各電気部品制御基板および機構部品に必要な電圧の電力が供給される。
【0070】
ただし、電源基板910に各電気部品制御基板に至る各コネクタを設け、電源基板910から、中継基板を介さずにそれぞれの基板に至る各電圧を供給するようにしてもよい。また、図8には1つのコネクタ915が代表して示されているが、コネクタは、各電気部品制御基板対応に設けられている。
【0071】
DC−DCコンバータ913からの+5Vラインは分岐してバックアップ+5Vラインを形成する。バックアップ+5Vラインとグラウンドレベルとの間には大容量のコンデンサ916が接続されている。コンデンサ916は、遊技機に対する電力供給が停止したときの電気部品制御基板のバックアップRAM(電源バックアップされているRAMすなわち電力供給停止時にも記憶内容保持状態となりうるバックアップ記憶手段)に対して記憶状態を保持できるように電力を供給するバックアップ電源となる。また、+5Vラインとバックアップ+5Vラインとの間に、逆流防止用のダイオード917が挿入される。なお、この実施の形態では、バックアップ用の+5Vは、主基板31および払出制御基板37に供給される。
【0072】
また、電源基板910には、電源監視回路としての電源監視用IC902が搭載されている。電源監視用IC902は、VSL電圧を導入し、VSL電圧を監視することによって遊技機への電力供給停止の発生を検出する。具体的には、VSL電圧が所定値(この例では+22V)以下になったら、電力供給の停止が生ずるとして電源断信号を出力する。なお、監視対象の電源電圧は、各電気部品制御基板に搭載されている回路素子の電源電圧(この例では+5V)よりも高い電圧であることが好ましい。この例では、交流から直流に変換された直後の電圧であるVSLが用いられている。電源監視用IC902からの電源断信号は、主基板31や払出制御基板37等に供給される。
【0073】
電源監視用IC902が電力供給の停止を検知するための所定値は、通常時の電圧より低いが、各電気部品制御基板上のCPUが暫くの間動作しうる程度の電圧である。また、電源監視用IC902が、CPU等の回路素子を駆動するための電圧(この例では+5V)よりも高く、また、交流から直流に変換された直後の電圧を監視するように構成されているので、CPUが必要とする電圧に対して監視範囲を広げることができる。従って、より精密な監視を行うことができる。さらに、監視電圧としてVSL(+30V)を用いる場合には、遊技機の各種スイッチに供給される電圧が+12Vであることから、電源瞬断時のスイッチオン誤検出の防止も期待できる。すなわち、+30V電源の電圧を監視すると、+30V作成の以降に作られる+12Vが落ち始める以前の段階でそれの低下を検出できる。
【0074】
+12V電源の電圧が低下するとスイッチ出力がオン状態を呈するようになるが、+12Vより早く低下する+30V電源電圧を監視して電力供給の停止を認識すれば、スイッチ出力がオン状態を呈する前に電力供給回復待ちの状態に入ってスイッチ出力を検出しない状態となることができる。
【0075】
また、電源監視用IC902は、電気部品制御基板とは別個の電源基板910に搭載されているので、電源監視回路から複数の電気部品制御基板に電源断信号を供給することができる。電源断信号を必要とする電気部品制御基板が幾つあっても電源監視手段は1つ設けられていればよいので、各電気部品制御基板における各電気部品制御手段が後述する復旧制御を行っても、遊技機のコストはさほど上昇しない。
【0076】
なお、図8に示された構成では、電源監視用IC902の検出信号(電源断信号)は、バッファ回路918,919を介してそれぞれの電気部品制御基板(例えば主基板31と払出制御基板37)に伝達されるが、例えば、1つの検出信号を中継基板に伝達し、中継基板から各電気部品制御基板に同じ信号を分配する構成でもよい。また、電源断信号を必要とする基板数に応じたバッファ回路を設けてもよい。さらに、主基板31と払出制御基板37とに出力される電源断信号について、電源断信号を出力することになる電源監視回路の監視電圧を異ならせてもよい。
【0077】
図9は、主基板31におけるCPU56周りの一構成例を示すブロック図である。図9に示すように、電源基板910の電源監視回路(電源監視手段;第1の電源監視手段)からの電源断信号が、CPU56のマスク不能割込端子(XNMI端子)に接続されている。従って、CPU56は、マスク不能割込(NMI)処理によって遊技機への電力供給の停止の発生を確認することができる。
【0078】
図9には、システムリセット回路65も示されている。リセットIC651は、電源投入時に、外付けのコンデンサの容量で決まる所定時間だけ出力をローレベルとし、所定時間が経過すると出力をハイレベルにする。すなわち、リセット信号をハイレベルに立ち上げてCPU56を動作可能状態にする。また、リセットIC651は、電源監視回路が監視する電源電圧と等しい電源電圧であるVSLの電源電圧を監視して電圧値が所定値(電源監視回路が電源断信号を出力する電源電圧値よりも低い値)以下になると出力をローレベルにする。従って、CPU56は、電源監視回路からの電源断信号に応じて所定の電力供給停止時処理を行った後、システムリセットされる。
【0079】
図9に示すように、リセットIC651からのリセット信号は、NAND回路947に入力されるとともに、反転回路(NOT回路)944を介してカウンタIC941のクリア端子に入力される。カウンタIC941は、クリア端子への入力がローレベルになると、発振器943からのクロック信号をカウントする。そして、カウンタIC941のQ5出力がNOT回路945,946を介してNAND回路947に入力される。また、カウンタIC941のQ6出力は、フリップフロップ(FF)942のクロック端子に入力される。フリップフロップ942のD入力はハイレベルに固定され、Q出力は論理和回路(OR回路)949に入力される。OR回路949の他方の入力には、NAND回路947の出力がNOT回路948を介して導入される。そして、OR回路949の出力がCPU56のリセット端子に接続されている。このような構成によれば、電源投入時に、CPU56のリセット端子に2回のリセット信号(ローレベル信号)が与えられるので、CPU56は、確実に動作を開始する。
【0080】
そして、例えば、電源監視回路の検出電圧(電源断信号を出力することになる電圧)を+22Vとし、リセット信号をローレベルにするための検出電圧を+9Vとする。そのように構成した場合には、電源監視回路とシステムリセット回路65とが、同一の電源VSLの電圧を監視するので、電圧監視回路が電源断信号を出力するタイミングとシステムリセット回路65がシステムリセット信号を出力するタイミングの差を所望の所定期間に確実に設定することができる。所望の所定期間とは、電源監視回路からの電源断信号に応じて電力供給停止時処理を開始してから電力供給停止時処理が確実に完了するまでの期間である。
【0081】
なお、電源監視回路とシステムリセット回路65とが監視する電源の電圧は異なっていてもよい。また、システムリセット回路65は、第2の電源監視手段に相当する。
【0082】
CPU56等の駆動電源である+5V電源から電力が供給されていない間、RAMの少なくとも一部は、電源基板から供給されるバックアップ電源によってバックアップされ、遊技機に対する電力供給が停止しても内容は保存される。そして、+5V電源が復旧すると、システムリセット回路65からリセット信号が発せられるので、CPU56は、通常の動作状態に復帰する。そのとき、必要なデータがバックアップRAMに保存されているので、停電等からの復旧時に停電等の発生時の遊技状態に復旧させることができる。
【0083】
なお、図9に示す構成では、電源投入時にCPU56のリセット端子に2回のリセット信号(ローレベル信号)が与えられるが、リセット信号の立ち上がりタイミングが1回しかなくても確実にリセット解除されるCPUを使用する場合には、符号941〜949で示された回路素子は不要である。その場合、リセットIC651の出力がそのままCPU56のリセット端子に接続される。
【0084】
この実施の形態で用いられるCPU56は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)も内蔵している。PIOは、PB0〜PB3の4ビットおよびPA0〜PA7の1バイトのポートを有する。PB0〜PB3およびPA0〜PA7のポートは、入力/出力いずれにも設定できる。
【0085】
図10は、この実施の形態における入力ポートのビット割り当てを示す説明図である。図10に示すように、入力ポート0のビット0〜7には、それぞれ、入賞口スイッチ33a、24a,29a,30a、始動口スイッチ14a、カウントスイッチ23、V入賞スイッチ22、ゲートスイッチ32aの検出信号が入力される。また、入力ポート1のビット0〜4には、それぞれ、賞球カウントスイッチ301A、満タンスイッチ48、球切れスイッチ187の検出信号、カウントスイッチ短絡信号およびクリアスイッチ921の検出信号が入力される。なお、各スイッチからの検出信号は、スイッチ回路58において論理反転されている。このように、クリアスイッチ921の検出信号すなわち初期化操作手段の操作入力は、遊技球を検出するためのスイッチの検出信号が入力される入力ポート(8ビット構成の入力部)と同一の入力ポートにおけるビット(入力ポート回路)に入力されている。
【0086】
次に遊技機の動作について説明する。図11は、主基板31における遊技制御手段(CPU56およびROM,RAM等の周辺回路)が実行するメイン処理を示すフローチャートである。遊技機に対して電源が投入され、リセット端子の入力レベルがハイレベルになると、CPU56は、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。
【0087】
初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、割込モードを割込モード2に設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。そして、内蔵デバイスレジスタの初期化を行う(ステップS4)。また、内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の初期化(ステップS5)を行った後、RAMをアクセス可能状態に設定する(ステップS6)。
【0088】
この実施の形態で用いられるCPU56は、I/Oポート(PIO)およびタイマ/カウンタ回路(CTC)も内蔵している。また、CTCは、2本の外部クロック/タイマトリガ入力CLK/TRG2,3と2本のタイマ出力ZC/TO0,1を備えている。
【0089】
この実施の形態で用いられているCPU56には、マスク可能な割込のモードとして以下の3種類のモードが用意されている。なお、マスク可能な割込が発生すると、CPU56は、自動的に割込禁止状態に設定するとともに、プログラムカウンタの内容をスタックにセーブする。
【0090】
割込モード0:割込要求を行った内蔵デバイスがRST命令(1バイト)またはCALL命令(3バイト)をCPUの内部データバス上に送出する。よって、CPU56は、RST命令に対応したアドレスまたはCALL命令で指定されるアドレスの命令を実行する。リセット時に、CPU56は自動的に割込モード0になる。よって、割込モード1または割込モード2に設定したい場合には、初期設定処理において、割込モード1または割込モード2に設定するための処理を行う必要がある。
【0091】
割込モード1:割込が受け付けられると、常に0038(h)番地に飛ぶモードである。
【0092】
割込モード2:CPU56の特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)から合成されるアドレスが、割込番地を示すモードである。すなわち、割込番地は、上位アドレスが特定レジスタの値とされ下位アドレスが割込ベクタとされた2バイトで示されるアドレスである。従って、任意の(飛び飛びではあるが)偶数番地に割込処理を設置することができる。各内蔵デバイスは割込要求を行うときに割込ベクタを送出する機能を有している。
【0093】
よって、割込モード2に設定されると、各内蔵デバイスからの割込要求を容易に処理することが可能になり、また、プログラムにおける任意の位置に割込処理を設置することが可能になる。さらに、割込モード1とは異なり、割込発生要因毎のそれぞれの割込処理を用意しておくことも容易である。上述したように、この実施の形態では、初期設定処理のステップS2において、CPU56は割込モード2に設定される。
【0094】
次いで、CPU56は、入力ポート1を介して入力されるクリアスイッチ921の出力信号の状態を1回だけ確認する(ステップS7)。その確認においてオンを検出した場合には、CPU56は、通常の初期化処理を実行する(ステップS11〜ステップS15)。クリアスイッチ921がオンである場合(押下されている場合)には、ローレベルのクリアスイッチ信号が出力されている。なお、入力ポート1では、クリアスイッチ信号のオン状態はハイレベルである(図10参照)。また、例えば、遊技店員は、クリアスイッチ921をオン状態にしながら遊技機に対する電力供給を開始することによって、容易に初期化処理を実行させることができる。すなわち、RAMクリア等を行うことができる。
【0095】
クリアスイッチ921がオンの状態でない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばパリティデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS8)。この実施の形態では、電力供給の停止が生じた場合には、バックアップRAM領域のデータを保護するための処理が行われている。そのような保護処理が行われていた場合をバックアップありとする。そのような保護処理が行われていないことを確認したら、CPU56は初期化処理を実行する。
【0096】
この実施の形態では、バックアップRAM領域にバックアップデータがあるか否かは、電力供給停止時処理においてバックアップRAM領域に設定されるバックアップフラグの状態によって確認される。この例では、図12に示すように、バックアップフラグ領域に「55H」が設定されていればバックアップあり(オン状態)を意味し、「55H」以外の値が設定されていればバックアップなし(オフ状態)を意味する。
【0097】
バックアップありを確認したら、CPU56は、バックアップRAM領域のデータチェック(この例ではパリティチェック)を行う(ステップS9)。この実施の形態では、クリアデータ(00)をチェックサムデータエリアにセットし、チェックサム算出開始アドレスをポインタにセットする。また、チェックサムの対象となるデータ数に対応するチェックサム算出回数をセットする。そして、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する。演算結果をチェックサムデータエリアにストアするとともに、ポインタの値を1増やし、チェックサム算出回数の値を1減算する。以上の処理が、チェックサム算出回数の値が0になるまで繰り返される。チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転し、反転後のデータをチェックサムとする。
【0098】
電力供給停止時処理において、上記の処理と同様の処理によってチェックサムが算出され、チェックサムはバックアップRAM領域に保存されている。ステップS9では、算出したチェックサムと保存されているチェックサムとを比較する。不測の停電等の電力供給停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されているはずであるから、チェック結果(比較結果)は正常(一致)になる。チェック結果が正常でないということは、バックアップRAM領域のデータが、電力供給停止時のデータとは異なっていることを意味する。そのような場合には、内部状態を電力供給停止時の状態に戻すことができないので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理を実行する。
【0099】
チェック結果が正常であれば、CPU56は、遊技制御手段の内部状態と表示制御手段等の電気部品制御手段の制御状態を電力供給停止時の状態に戻すための遊技状態復旧処理を行う(ステップS10)。そして、バックアップRAM領域に保存されていたPC(プログラムカウンタ)の退避値がPCに設定され、そのアドレスに復帰する。
【0100】
このように、バックアップフラグとチェックサム等のチェックデータとを用いてバックアップRAM領域のデータが保存されているか否かを確認することによって、遊技状態を電力供給停止時の状態に正確に戻すことができる。すなわち、バックアップRAM領域のデータにもとづく状態復旧処理の確実性が向上する。なお、この実施の形態では、バックアップフラグとチェックデータとの双方を用いてバックアップRAM領域のデータが保存されているか否かを確認しているが、いずれか一方のみを用いてもよい。すなわち、バックアップフラグとチェックデータとのいずれかを、状態復旧処理を実行するための契機としてもよい。
【0101】
また、バックアップフラグの状態によって「バックアップあり」が確認されなかった場合には、後述する遊技状態復旧処理を行うことなく後述する初期化処理を行うようにしているので、バックアップデータが存在しないのにもかかわらず遊技状態復旧処理が実行されてしまうことを防止することができ、初期化処理によって制御状態を初期状態に戻すことが可能となる。
【0102】
さらに、チェックデータを用いたチェック結果が正常でなかった場合には、後述する遊技状態復旧処理を行うことなく後述する初期化処理を行うようにしているので、電力供給停止時とは異なる内容となってしまっているバックアップデータにもとづいて遊技状態復旧処理が実行されてしまうことを防止することができ、初期化処理によって制御状態を初期状態に戻すことが可能となる。
【0103】
初期化処理では、CPU56は、まず、RAMクリア処理を行う(ステップS11)。また、所定の作業領域(例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄左中右図柄バッファ、特別図柄プロセスフラグ、払出コマンド格納ポインタ、賞球中フラグ、球切れフラグ、払出停止フラグなど制御状態に応じて選択的に処理を行うためのフラグ)に初期値を設定する作業領域設定処理を行う(ステップS12)。さらに、球払出装置97からの払出が可能であることを指示する払出許可状態指定コマンド(以下、払出可能状態指定コマンドという。)を払出制御基板37に対して送信する処理を行う(ステップS13)。また、他のサブ基板(ランプ制御基板35、音制御基板70、図柄制御基板80)を初期化するための初期化コマンドを各サブ基板に送信する処理を実行する(ステップS14)。初期化コマンドとして、可変表示装置9に表示される初期図柄を示すコマンド(図柄制御基板80に対して)や賞球ランプ51および球切れランプ52の消灯を指示するコマンド(ランプ制御基板35に対して)等がある。
【0104】
初期化処理では、払出制御基板37に対して常に払出可能状態指定コマンドが送信される。仮に、遊技機の状態が球払出装置97からの払出が可能でない状態であったとしても、直後に実行される遊技制御処理において、その旨が検出され、払出が可能でない状態であることを指示する払出禁止状態指定コマンド(以下、払出停止状態指定コマンドという。)が送信されるので問題はない。なお、払出可能状態指定コマンドおよび他のサブ基板に対する初期化コマンドの送信処理において、例えば、各コマンドが設定されているテーブル(ROM領域)のアドレスをポインタにセットし、後述するコマンドセット処理(図33参照)のような処理ルーチンをコールすればよい。
【0105】
そして、2ms毎に定期的にタイマ割込がかかるようにCPU56に設けられているCTCのレジスタの設定が行われる(ステップS15)。すなわち、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
【0106】
初期化処理の実行(ステップS11〜S15)が完了すると、メイン処理で、表示用乱数更新処理(ステップS17)および初期値用乱数更新処理(ステップS18)が繰り返し実行される。表示用乱数更新処理および初期値用乱数更新処理が実行されるときには割込禁止状態とされ(ステップS16)、表示用乱数更新処理および初期値用乱数更新処理の実行が終了すると割込許可状態とされる(ステップS19)。表示用乱数とは、可変表示装置9に表示される図柄を決定するための乱数であり、表示用乱数更新処理とは、表示用乱数を発生するためのカウンタのカウント値を更新する処理である。また、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。初期値用乱数とは、大当りとするか否かを決定するための乱数を発生するためのカウンタ(大当り決定用乱数発生カウンタ)等のカウント値の初期値を決定するための乱数である。後述する遊技制御処理において、大当り決定用乱数発生カウンタのカウント値が1周すると、そのカウンタに初期値が設定される。
【0107】
なお、表示用乱数更新処理が実行されるときには割込禁止状態とされるのは、表示用乱数更新処理が後述するタイマ割込処理でも実行されることから、タイマ割込処理における処理と競合してしまうのを避けるためである。すなわち、ステップS17の処理中にタイマ割込が発生してタイマ割込処理中で表示用乱数を発生するためのカウンタのカウント値を更新してしまったのでは、カウント値の連続性が損なわれる場合がある。しかし、ステップS17の処理中では割込禁止状態にしておけば、そのような不都合が生ずることはない。
【0108】
図13は、遊技状態復旧処理の一例を示すフローチャートである。遊技状態復旧処理において、CPU56は、まず、スタックポインタの復帰処理を行う(ステップS81)。スタックポインタの値は、後で詳述する電力供給停止時処理において、所定のRAMエリア(電源バックアップされている作業領域におけるスタックポインタ退避バッファ)に退避している。よって、ステップS81では、そのRAMエリアの値をスタックポインタに設定することによって復帰させる。なお、復帰されたスタックポインタが指す領域(すなわちスタック領域)には、電力供給が停止したときのレジスタ値やプログラムカウンタ(PC)の値が退避している。
【0109】
次いで、CPU56は、払出停止状態であったか否か確認する(ステップS82)。払出停止状態であったか否かは、電源バックアップされているRAMエリアに保存されている所定の作業領域(例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄左中右図柄バッファ、特別図柄プロセスフラグ、払出コマンド格納ポインタ、賞球中フラグ、球切れフラグ、払出停止フラグなど)における払出状態データとしての払出停止フラグによって確認される。払出停止状態であった場合には、払出制御基板37に搭載されている払出制御手段に対して、払出の停止を指示する払出制御コマンド(払出停止状態指定コマンド)を送信する(ステップS83)。払出停止状態でなかった場合には、払出制御手段に対して払出が可能であることを指示する払出制御コマンド(払出可能状態指定コマンド)を送信する(ステップS84)。なお、後述するように、払出停止フラグは、払出停止状態指定コマンドを受信するとセットされ、払出可能状態指定コマンドを受信するとリセットされるので、払出停止フラグには、払出停止状態指定コマンドと払出可能状態指定コマンドとのうちで、電力供給が停止する前に最後に遊技制御手段が送信したコマンドに対応するデータが設定されていることになる。
【0110】
補給球の不足や余剰球受皿4の満タンについて払出制御手段は認識できないので、遊技制御手段から通知しないと、停電等からの復旧時に、補給球の不足や余剰球受皿4の満タンであるにもかかわらず遊技球の払出処理を開始してしまうおそれがある。しかし、この実施の形態では、遊技状態復旧処理において、払出の停止を指示する払出制御コマンドまたは払出が可能であること指示する払出制御コマンドが送信されるので、払出制御手段が、補給球の不足や余剰球受皿4の満タンであるにもかかわらず遊技球の払出処理を開始してしまうことはない。ただし、この例では、詳しくは後述するが、払出予定数の払い出し途中に停電等によって電力供給が停止された場合には、その復旧時に補給球が不足していたり余剰球受皿4が満タン状態となっていても払出予定数についての遊技球の払出処理は開始される。
【0111】
なお、ここでは、遊技媒体の払い出しが可能であるか否かを判定する払出状態判定手段(遊技制御手段の一部)が払出可能でないことを検出したら、原因の如何に関わらず、1種類の払出停止状態指定コマンドが送信されるようにしたが、原因別のコマンド(この例では、補給球の不足を示すコマンドと下皿満タンを示すコマンド)に分けて送信してもよい。さらに、遊技球の払出が可能でない場合に、遊技の継続を禁止するために遊技球の発射を禁止することを指示するコマンドを払出制御基板37に対して送信してもよい。払出制御基板37に搭載された払出制御手段は、遊技球の発射を禁止することを指示するコマンドを受信したら、打球発射装置の駆動を停止する。また、遊技球の払出が可能でない場合に、遊技制御手段が発射制御手段に対して、直接、遊技球の発射を禁止することを指示する信号を与えてもよい。また、払出制御手段は、払出停止状態指定コマンドを受信した場合に、打球発射装置の駆動を停止するようにしてもよい。
【0112】
次いで、CPU56は、電力供給が停止したときの可変表示装置9における特別図柄の表示状態に応じて、その表示状態を復旧させるための表示制御コマンドを送信する(ステップS85)。
【0113】
その後、CPU56は、バックアップフラグをクリアする(ステップS91)すなわち、前回の電力供給停止時に所定の記憶保護処理が実行されたことを示すフラグをリセットする。よって、制御状態の復旧後に不必要な情報が残存しないようにすることができる。また、スタック領域から各種レジスタの退避値を読み出して、各種レジスタ(IXレジスタ、HLレジスタ、DEレジスタ、BCレジスタ)に設定する(ステップS92)。すなわち、レジスタ復元処理を行う。なお、各レジスタが復元させる毎に、スタックポインタの値が減らされる。すなわち、スタックポインタの値が、スタック領域の1つ前のアドレスを指すように更新される。そして、パリティフラグがオンしていない場合には割込許可状態にする(ステップS93,S94)。最後に、AFレジスタ(アキュミュレータとフラグのレジスタ)をスタック領域から復元する(ステップS95)。
【0114】
そして、RET命令が実行される。RET命令が実行されるときには、CPU56は、スタックポインタが指す領域に格納されているデータをプログラムカウンタに設定することによってプログラムのリターン動作を実現する。ただし、ここでのリターン先は、遊技状態復旧処理をコールした部分ではない。なぜなら、ステップS81においてスタックポインタの復帰処理がなされ、ステップS92でレジスタの復元処理が終了した後では、スタック領域を指すスタックポインタは、NMIによる電力供給停止時処理が開始されたときに実行されていたプログラムのアドレスが退避している領域を指している。すなわち、復帰されたスタックポインタが指すスタック領域に格納されているリターンアドレスは、プログラムにおける前回の電力供給停止時にNMIが発生したアドレスである。従って、ステップS95の次のRET命令によって、電力供給停止時にNMIが発生したアドレスにリターンする。すなわち、スタック領域に退避されていたアドレスデータにもとづいて復旧制御が実行されている。
【0115】
タイマ割込が発生すると、CPU56は、レジスタの退避処理(ステップS20)を行った後、図14に示すステップS21〜S32の遊技制御処理を実行する。遊技制御処理において、CPU56は、まず、スイッチ回路58を介して、ゲートスイッチ32a、始動口スイッチ14a、カウントスイッチ23および入賞口スイッチ33a,24a,29a,30a等のスイッチの検出信号を入力し、それらの状態判定を行う(スイッチ処理:ステップS21)。
【0116】
次いで、パチンコ遊技機1の内部に備えられている自己診断機能によって種々の異常診断処理が行われ、その結果に応じて必要ならば警報が発せられる(エラー処理:ステップS22)。
【0117】
次に、遊技制御に用いられる大当り判定用の乱数等の各判定用乱数を生成するための各カウンタのカウント値を更新する処理を行う(ステップS23)。CPU56は、さらに、表示用乱数および初期値用乱数を生成するためのカウンタのカウント値を更新する処理を行う(ステップS24,S25)。
【0118】
さらに、CPU56は、特別図柄プロセス処理を行う(ステップS26)。特別図柄プロセス制御では、遊技状態に応じてパチンコ遊技機1を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、特別図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。また、普通図柄プロセス処理を行う(ステップS27)。普通図柄プロセス処理では、普通図柄表示器10の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理が選び出されて実行される。そして、普通図柄プロセスフラグの値は、遊技状態に応じて各処理中に更新される。
【0119】
次いで、CPU56は、特別図柄に関する表示制御コマンドをRAM55の所定の領域に設定して表示制御コマンドを送出する処理を行う(特別図柄コマンド制御処理:ステップS28)。また、普通図柄に関する表示制御コマンドをRAM55の所定の領域に設定して表示制御コマンドを送出する処理を行う(普通図柄コマンド制御処理:ステップS29)。
【0120】
さらに、CPU56は、例えばホール管理用コンピュータに供給される大当り情報、始動情報、確率変動情報などのデータを出力する情報出力処理を行う(ステップS30)。
【0121】
また、CPU56は、所定の条件が成立したときにソレノイド回路59に駆動指令を行う(ステップS31)。可変入賞球装置15または開閉板20を開状態または閉状態としたり、大入賞口内の遊技球通路を切り替えたりするために、ソレノイド回路59は、駆動指令に応じてソレノイド16,21,21Aを駆動する。
【0122】
そして、CPU56は、入賞口スイッチ33a,24a,29a,30aの検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS32)。具体的には、入賞口スイッチ33a,24a,29a,30aがオンしたことにもとづく入賞検出に応じて、払出制御基板37に賞球個数を示す払出制御コマンドを出力する。払出制御基板37に搭載されている払出制御用CPU371は、賞球個数を示す払出制御コマンドに応じて球払出装置97を駆動する。その後、レジスタの内容を復帰させ(ステップS33)、割込許可状態に設定する(ステップS34)。
【0123】
以上の制御によって、この実施の形態では、遊技制御処理は2ms毎に起動されることになる。なお、この実施の形態では、タイマ割込処理で遊技制御処理が実行されているが、タイマ割込処理では例えば割込が発生したことを示すフラグのセットのみがなされ、遊技制御処理はメイン処理において実行されるようにしてもよい。
【0124】
図15〜図17は、電源基板910からの電源断信号に応じて実行されるマスク不能割込処理(電力供給停止時処理)の処理例を示すフローチャートである。マスク不能割込が発生すると、CPU56に内蔵されている割込制御機構は、マスク不能割込発生時に実行されていたプログラムのアドレス(具体的には実行完了後の次のアドレス)を、スタックポインタが指すスタック領域に退避させるとともに、スタックポインタの値を増やす。すなわち、スタックポインタの値がスタック領域の次のアドレスを指すように更新する。
【0125】
電力供給停止時処理において、CPU56は、AFレジスタ(アキュミュレータとフラグのレジスタ)をスタックポインタが指すスタック領域に退避する(ステップS451)。このとき、スタックポインタの値が、スタック領域の次のアドレスを指すように更新される。また、割込フラグをパリティフラグにコピーする(ステップS452)。パリティフラグはバックアップRAM領域に形成されている。割込フラグは、割込許可状態であるのか割込禁止状態であるのかを示すフラグであって、CPU56が内蔵する制御レジスタ中にある。割込フラグのオン状態が割込禁止状態であることを示す。上述したように、パリティフラグは遊技状態復旧処理で参照される。そして、遊技状態復旧処理において、パリティフラグがオン状態であれば、割込許可状態には設定されない。
【0126】
また、BCレジスタ、DEレジスタ、HLレジスタおよびIXレジスタをスタックポインタが指すスタック領域に退避する(ステップS454〜457)。この段階で、スタック領域には、マスク不能割込発生時に実行されていたプログラムのアドレス、BCレジスタ、DEレジスタ、HLレジスタおよびIXレジスタの各値が順に格納されたことになる。なお、各レジスタが退避される毎に、スタックポインタの値が、スタック領域の次のアドレスを指すように更新される。また、スタックポインタの値を作業領域における所定の領域(スタックポインタ退避バッファ)に退避する(ステップS458)。
【0127】
次いで、この実施の形態では、所定期間、賞球カウントスイッチ301Aの検出信号をチェックする。そして、賞球カウントスイッチ301Aがオンしたら総賞球数バッファの内容を1減らす。
【0128】
なお、この実施の形態では、所定期間を計測するために、所定期間計測用カウンタが用いられる。所定期間計測用カウンタの値は、初期値m(ステップS460で設定される)から、以下に説明するスイッチ検出処理のループ(S461から始まってS461に戻るループ)が1回実行される毎に−1され、その値が0になると、所定期間が終了したとする。検出処理のループでは、例外はあるがほぼ一定の処理が行われるので、ループの1周に要する時間のm倍の時間が、ほぼ所定期間に相当する。
【0129】
所定期間を計測するために、CPU56の内蔵タイマを用いてもよい。すなわち、スイッチ検出処理開始時に、内蔵タイマに所定値(所定期間に相当)を設定しておく。そして、スイッチ検出処理のループが1回実行される毎に、内蔵タイマのカウント値をチェックする。そして、カウント値が0になったら、所定期間が終了したとする。内蔵タイマの値が0になったことを検出するために内蔵タイマによる割込を用いることもできるが、この段階では制御内容(RAMに格納されている各値など)を変化させないように、割込を用いず、内蔵タイマのカウント値を読み出してチェックするようなプログラム構成の方が好ましい。
【0130】
また、所定期間は、遊技球が、球払出装置97から落下した時点から、賞球カウントスイッチ301Aに到達するまでの時間以上に設定される。球払出装置97から賞球カウントスイッチ301Aまでの距離をLとすると、その間の落下時間tは、t=√(2L/g)(g:重力加速度)になるので、所定期間は、それ以上に設定される。
【0131】
少なくとも、スイッチ検出処理が実行される所定期間では、賞球カウントスイッチ301Aが遊技球を検出できる状態でなければならない。そこで、この実施の形態では、図8に示されたように、電源基板910におけるコンバータIC922の入力側に比較的大容量の補助駆動電源としてのコンデンサ923が接続されている。よって、遊技機に対する電力供給停止時にも、ある程度の期間は+12V電源電圧がスイッチ駆動可能な範囲に維持され、賞球カウントスイッチ301Aが動作可能になる。その期間が、上記の所定期間以上になるように、コンデンサの容量が決定される。
【0132】
なお、入力ポートおよびCPU56も、コンバータIC922で作成される+5V電源で駆動されるので、電力供給停止時にも、比較的長い期間動作可能になっている。
【0133】
ステップS461において、2ms計測用カウンタに2msの時間に相当する初期値nが設定される。そして、2ms計測用カウンタの値が0になるまで(ステップS462)、2ms計測用カウンタの値が−1される(ステップS463)。
【0134】
2ms計測用カウンタの値が0になると、賞球カウントスイッチ301Aの検出信号の入力チェックが行われる。すなわち、後述するスイッチ処理およびスイッチチェック処理(図22,図23参照)に類似した処理が行われる。具体的には、入力ポート1に入力されているデータを入力する(ステップS464)。次いで、クリアデータ(00)をセットする(ステップS465)。また、ポート入力データ、この場合には入力ポート1からの入力データを「比較値」として設定する(ステップS466)。さらに、賞球カウントスイッチ301Aのためのスイッチタイマのアドレスをポインタにセットする(ステップS467)。
【0135】
そして、ポインタ(スイッチタイマのアドレスが設定されている)が指すスイッチタイマをロードするとともに(ステップS468)、比較値を右(上位ビットから下位ビットへの方向)にシフトする(ステップS469)。比較値には入力ポート1のデータ設定されている。そして、この場合には、賞球カウントスイッチ301Aの検出信号がキャリーフラグに押し出される。
【0136】
キャリーフラグの値が「1」であれば(ステップS470)、すなわち賞球カウントスイッチ301Aの検出信号がオン状態であれば、スイッチタイマの値を1加算する(ステップS471)。キャリーフラグの値が「0」であれば、すなわち賞球カウントスイッチ301Aの検出信号がオフ状態であれば、スイッチタイマにクリアデータをセットする(ステップS472)。すなわち、スイッチがオフ状態であれば、スイッチタイマの値が0に戻る。
【0137】
そして、スイッチタイマの値が2になったときに(ステップS473)、総賞球数格納バッファの格納値を1減算するとともに(ステップS474)、賞球情報カウンタの値を+1する(ステップS475)。そして、賞球情報カウンタの値が10以上であれば(ステップS476)、賞球情報出力カウンタの値を+1するとともに(ステップS477)、賞球情報カウンタの値を−10する(ステップS478)。
【0138】
次いで、所定期間計測用カウンタの値を−1し(ステップS479)、その値が0になっていなければステップS461に戻る。
【0139】
以上の処理によって、所定期間内に賞球カウントスイッチ301Aがオンしたら、総賞球数格納バッファの値が−1される。バックアップRAMの内容を保存するための処理は、このようなスイッチ検出処理の後で行われるので、払出が完了した賞球について、必ず総賞球数格納バッファが−1される。従って、遊技球の払出に関して、保存される制御状態に矛盾が生じてしまうことが防止される。また、スイッチ検出処理において、遊技機外部への賞球情報出力のための賞球情報出力回数カウンタの演算も行われるので、外部に出力される賞球情報と実際の払出賞球数とが食い違ってしまうようなこともない。
【0140】
また、上記のスイッチ検出処理では、検出期間用カウンタを用いたタイマ処理が施されている。すなわち、2ms毎に賞球カウントスイッチ301Aの検出出力のチェックが行われ、2回連続してオン検出した場合に、賞球カウントスイッチ301Aが確実にオンしたと見なされる。すなわち、所定の遊技媒体検出判定期間(電力供給停止時処理において、遊技媒体(ここでは払い出された賞球)の検出の有無を判定するための期間。本例では、2ms以上の期間)の前後に2回連続してオン検出した場合に、1個の賞球の払出が完了したと見なされる。このように、本例では、遊技媒体検出判定期間を、通常遊技媒体検出判定期間(電力供給停止時処理での処理でない、通常の遊技状態において遊技媒体の有無を判定するための期間。本例では、後述するスイッチオン判定値(図28参照)によって決定される2ms以上の期間であって、後述する図26のステップS244の判断で用いられている。)と同じ期間としている。従って、通常の制御と同一の条件の下で、賞球カウントスイッチ301Aがオンしたか否かを判定することができる。なお、遊技媒体検出判定期間は、通常遊技媒体検出判定期間と異なる期間としてもよい。上記のように、2回連続してオン検出した場合に、賞球カウントスイッチ301Aが確実にオンしたと見なされるようにしているため、誤ってスイッチオン検出がなされてしまうことが防止され、払い出された賞球を確実に検出することが可能となる。
【0141】
なお、この実施の形態では、賞球カウントスイッチ301Aのみのスイッチ検出処理が行われたが、始動入賞口のスイッチや大入賞口に関連するV入賞スイッチ22やカウントスイッチ23についても同様のスイッチ検出処理を行ってもよい。また、他の入賞についても同様のスイッチ検出処理を行ってもよい。そのようなオンチェックも行う場合には、入賞口に遊技球が入賞した直後に停電が発生したような場合でも、その入賞が確実に検出され、保存される遊技状態に反映される。
【0142】
所定期間が経過すると(ステップS480)、すなわち、所定期間計測用カウンタの値が0になると、バックアップあり指定値(この例では「55H」)をバックアップフラグにストアする。バックアップフラグはバックアップRAM領域に形成されている。次いで、パリティデータを作成する(ステップS481〜S489)。すなわち、まず、クリアデータ(00)をチェックサムデータエリアにセットし(ステップS482)、チェックサム算出開始アドレスをポインタにセットする(ステップS483)。また、チェックサム算出回数をセットする(ステップS484)。
【0143】
そして、チェックサムデータエリアの内容とポインタが指すRAM領域の内容との排他的論理和を演算する(ステップS485)。演算結果をチェックサムデータエリアにストアするとともに(ステップS486)、ポインタの値を1増やし(ステップS487)、チェックサム算出回数の値を1減算する(ステップS488)。ステップS485〜S488の処理が、チェックサム算出回数の値が0になるまで繰り返される(ステップS489)。
【0144】
チェックサム算出回数の値が0になったら、CPU56は、チェックサムデータエリアの内容の各ビットの値を反転する(ステップS490)。そして、反転後のデータをチェックサムデータエリアにストアする(ステップS491)。このデータが、電源投入時にチェックされるパリティデータとなる。次いで、RAMアクセスレジスタにアクセス禁止値を設定する(ステップS492)。以後、内蔵RAM55のアクセスができなくなる。従って、電圧低下に伴ってプログラムの暴走が生じても、RAMの記憶内容が破壊されるようなことはない。
【0145】
このように、遊技状態を保存するための処理(この例では、チェックサムの生成およびRAMアクセス防止)が実行される。なお、この実施の形態では、遊技制御処理において用いられるデータが格納されるRAM領域は全て電源バックアップされている。従って、その内容が正しく保存されているか否かを示すチェックサムの生成処理、およびその内容を書き換えないようにするためのRAMアクセス防止処理が、遊技状態を保存するための処理に相当する。
【0146】
そして、RAMアクセス防止処理が完了すると、CPU56は、待機状態(ループ状態)に入る。従って、システムリセットされるまで、何もしない状態になる。
【0147】
なお、この実施の形態では、NMIに応じて電力供給停止時処理が実行されたが、電源断信号をCPU56のマスク可能端子に接続し、マスク可能割込処理によって電力供給停止時処理を実行してもよい。また、電源断信号を入力ポートに入力し、入力ポートのチェック結果に応じて電力供給停止時処理を実行してもよい。
【0148】
また、この実施の形態では、電源断信号に応じて起動される処理の最初にレジスタの保存処理が行われたが、スイッチ検出処理においてレジスタを使用しない場合には、スイッチ検出処理の実行後に、すなわち、バックアップフラグの設定とチェックサムの算出の処理の前にレジスタ保存処理を行うことができる。その場合には、レジスタ保存処理、バックアップフラグ設定処理、チェックサム算出処理および出力ポートのオフ設定処理を電力供給停止時処理と見なすことができる。さらに、スイッチ検出処理において幾つかのレジスタを使用する場合であっても、使用しないレジスタについては、バックアップフラグの設定とチェックサムの算出の処理の前にレジスタ保存処理を行うことができる。
【0149】
図18は、払出検出手段からの検出信号の入力処理が実行される様子の一例を示すタイミング図である。この実施の形態では、電源断信号は、主基板31および払出制御基板37に入力され、主基板31のCPU56および払出制御用CPU371のNMI端子に入力される。主基板31のCPU56は、マスク不能割込処理によって、上述した電力供給停止時処理を実行する。
【0150】
図18に示すように、電源断信号がオン(この例ではハイレベルからローレベルに変化)するあたりで賞球払出が実行された場合、払出検出手段からの検出信号の入力処理が実行される所定期間内で賞球カウントスイッチ301Aがオンする。従って、電源断信号がオンするあたりで実行された球払出についても、電力供給停止時処理が実行される際に、総賞球数バッファに反映することができる。
【0151】
VSLの電圧値がさらに低下して所定値(この例では+9V)にまで低下すると、図9に示されたように主基板31搭載されているリセットIC651の出力がローレベルになり、CPU56がシステムリセット状態になる。なお、CPU56は、システムリセット状態とされる前に、電力供給停止時処理を完了している。
【0152】
VSLの電圧値がさらに低下してVcc(各種回路を駆動するための+5V)を生成することが可能な電圧を下回ると、各基板において各回路が動作できない状態となる。しかし、主基板31では、電力供給停止時処理が実行され、CPU56がシステムリセット状態とされている。
【0153】
なお、後述するように、払出制御基板37における払出制御用CPU371も、同様に電力供給停止時処理を行った後にシステムリセット状態になる。
【0154】
図19は、チェックサム作成方法の一例を説明するための説明図である。ただし、図19に示す例では、簡単のために、バックアップRAM領域のデータのサイズを3バイトとする。電源電圧低下にもとづく電力供給停止時処理において、図19に示すように、チェックサムデータとして初期データ(この例では00(H))が設定される。次に、「00(H)」と「F0(H)」の排他的論理和がとられ、その結果と「16(H)」の排他的論理和がとられる。さらに、その結果と「DF(H)」の排他的論理和がとられる。そして、その結果(この例では「39(H)」)を論理反転して得られた値(この例では「C6(H)」)がチェックサムバッファに設定される。
【0155】
なお、図19では、説明を容易にするために、論理反転前のデータ「39(H)」がチェックサムバッファに格納されている様子が示されている。なお、初期データとしての00(H)はステップS60で設定されるチェックサムデータに対するクリアデータに応じた値であるが、実際には、00(H)との排他的論理和は演算前と後とで値が変わらないので、00(H)との排他的論理和演算を行わなくてもよい。なお、この実施の形態では、チェックサムバッファは、バックアップRAM領域(変動データ記憶手段)に格納されている。
【0156】
なお、遊技機への電力供給開始時にはパリティチェックOKか否かの判断が行われるが(図11におけるステップS9)、その判断では、電力供給停止時処理におけるパリティデータの作成処理(ステップS481〜S490)と同様の処理が行われ、処理結果すなわち演算結果がチェックサムバッファの内容と一致したらパリティチェックOKと判定される。
【0157】
さらに、この実施の形態では、電力供給開始時に、電力供給停止時処理における処理と同じ処理によってチェックサムを生成し、生成されたチェックサムとバックアップRAMに保存されていたチェックサムとを比較したが、他の方法を用いてもよい。例えば、バックアップRAMに保存されていたチェックサムを初期値として、電力供給停止時処理において演算対象となった各データについて演算を行い、演算結果が所定値(例えば00(H))と一致したらパリティチェックOKと判定するようにしてもよい。また、パリティチェックのためのチェックデータはチェックサムに限られず、バックアップRAMの内容が正当に保存されているかを判定できるものであれば、他のチェックデータを用いてもよい。
【0158】
図20は、遊技機への電力供給停止時の電源電圧低下やNMI信号(=電源断信号:電力供給停止時信号)の様子を示すタイミング図である。遊技機に対する電力供給が停止すると、最も高い直流電源電圧であるVSLの電圧値は徐々に低下する。そして、この例では、+22Vにまで低下すると、電源基板910に搭載されている電源監視用IC902から電源断信号が出力される(ローレベルになる)。
【0159】
電源断信号は、電気部品制御基板(この実施の形態では主基板31および払出制御基板37)に導入され、CPU56および払出制御用CPU371のNMI端子に入力される。CPU56および払出制御用CPU371は、NMI処理によって、所定の電力供給停止時処理を実行する。
【0160】
VSLの電圧値がさらに低下して所定値(この例では+9V)にまで低下すると、主基板31や払出制御基板37に搭載されているシステムリセット回路の出力がローレベルになり、CPU56および払出制御用CPU371がシステムリセット状態になる。なお、CPU56および払出制御用CPU371は、システムリセット状態とされる前に、電力供給停止時処理を完了している。
【0161】
VSLの電圧値がさらに低下してVcc(各種回路を駆動するための+5V)を生成することが可能な電圧を下回ると、各基板において各回路が動作できない状態となる。しかし、少なくとも主基板31や払出制御基板37では、電力供給停止時処理が実行され、CPU56および払出制御用CPU371がシステムリセット状態とされている。
【0162】
以上のように、この実施の形態では、電源監視回路は、遊技機で使用される直流電圧のうちで最も高い電源VSLの電圧を監視して、その電源の電圧が所定値を下回ったら電圧低下信号(電源断検出信号)を発生する。図20に示すように、電源断信号が出力されるタイミングでは、IC駆動電圧は、まだ各種回路素子を十分駆動できる電圧値になっている。従って、IC駆動電圧で動作する主基板31のCPU56が所定の電力供給停止時処理を行うための動作時間が確保されている。
【0163】
なお、ここでは、電源監視回路は、遊技機で使用される直流電圧のうちで最も高い電源VSLの電圧を監視したが、電源断信号を発生するタイミングが、IC駆動電圧で動作する電気部品制御手段が所定の電力供給停止時処理を行うための動作時間が確保されるようなタイミングであれば、監視対象電圧は、最も高い電源VSLの電圧でなくてもよい。すなわち、少なくともIC駆動電圧よりも高い電圧を監視すれば、電気部品制御手段が所定の電力供給停止時処理を行うための動作時間が確保されるようなタイミングで電源断信号を発生することができる。
【0164】
その場合、上述したように、監視対象電圧は、電力供給停止時のスイッチオン誤検出の防止も期待できる電圧であることが好ましい。すなわち、遊技機の各種スイッチに供給される電圧(スイッチ電圧)が+12Vであることから、+12V電源電圧が落ち始める以前の段階で、電圧低下を検出できることが好ましい。よって、少なくともスイッチ電圧よりも高い電圧を監視することが好ましい。
【0165】
次に、メイン処理におけるスイッチ処理(ステップS21)の具体例を説明する。この実施の形態では、各スイッチの検出信号のオン状態が所定時間継続すると、確かにスイッチがオンしたと判定されスイッチオンに対応した処理が開始される。所定時間を計測するために、スイッチタイマが用いられる。スイッチタイマは、バックアップRAM領域に形成された1バイトのカウンタであり、検出信号がオン状態を示している場合に2ms毎に+1される。図21に示すように、スイッチタイマは検出信号の数N(クリアスイッチ921の検出信号を除く)だけ設けられている。この実施の形態ではN=12である。また、RAM55において、各スイッチタイマのアドレスは、入力ポートのビット配列順(図10に示された上から下への順)と同じ順序で並んでいる。
【0166】
図22は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。なお、スイッチ処理は、図14に示すように遊技制御処理において最初に実行される。スイッチ処理において、CPU56は、まず、入力ポート0に入力されているデータを入力する(ステップS101)。次いで、処理数として「8」を設定し(ステップS102)、入賞口スイッチ33aのためのスイッチタイマのアドレスをポインタにセットする(ステップS103)。そして、スイッチチェック処理サブルーチンをコールする(ステップS104)。
【0167】
図23は、スイッチチェック処理サブルーチンを示すフローチャートである。スイッチチェック処理サブルーチンにおいて、CPU56は、ポート入力データ、この場合には入力ポート0からの入力データを「比較値」として設定する(ステップS121)。また、クリアデータ(00)をセットする(ステップS122)。そして、ポインタ(スイッチタイマのアドレスが設定されている)が指すスイッチタイマをロードするとともに(ステップS123)、比較値を右(上位ビットから下位ビットへの方向)にシフトする(ステップS124)。比較値には入力ポート0のデータ設定されている。そして、この場合には、入賞口スイッチ33aの検出信号がキャリーフラグに押し出される。
【0168】
キャリーフラグの値が「1」であれば(ステップS125)、すなわち入賞口スイッチ33aの検出信号がオン状態であれば、スイッチタイマの値を1加算する(ステップS127)。加算後の値が0でなければ加算値をスイッチタイマに戻す(ステップS128,S129)。加算後の値が0になった場合には加算値をスイッチタイマに戻さない。すなわち、スイッチタイマの値が既に最大値(255)に達している場合には、それよりも値を増やさない。
【0169】
キャリーフラグの値が「0」であれば、すなわち入賞口スイッチ33aの検出信号がオフ状態であれば、スイッチタイマにクリアデータをセットする(ステップS126)。すなわち、スイッチがオフ状態であれば、スイッチタイマの値が0に戻る。
【0170】
その後、CPU56は、ポインタ(スイッチタイマのアドレス)を1加算するとともに(ステップS130)、処理数を1減算する(ステップS131)。処理数が0になっていなければステップS122に戻る。そして、ステップS122〜S132の処理が繰り返される。
【0171】
ステップS122〜S132の処理は、処理数分すなわち8回繰り返され、その間に、入力ポート0の8ビットに入力されるスイッチの検出信号について、順次、オン状態かオフ状態か否かのチェック処理が行われ、オン状態であれば、対応するスイッチタイマの値が1増やされる。
【0172】
CPU56は、スイッチ処理のステップS105において、入力ポート1に入力されているデータを入力する。次いで、処理数として「4」を設定し(ステップS106)、賞球カウントスイッチ301Aのためのスイッチタイマのアドレスをポインタにセットする(ステップS107)。そして、スイッチチェック処理サブルーチンをコールする(ステップS108)。
【0173】
スイッチチェック処理サブルーチンでは、上述した処理が実行されるので、ステップS122〜S132の処理が、処理数分すなわち4回繰り返され、その間に、入力ポート1の4ビットに入力されるスイッチの検出信号について、順次、オン状態かオフ状態か否かのチェック処理が行われ、オン状態であれば、対応するスイッチタイマの値が1増やされる。
【0174】
なお、この実施の形態では、遊技制御処理が2ms毎に起動されるので、スイッチ処理も2msに1回実行される。従って、スイッチタイマは、2ms毎に+1される。
【0175】
図24〜図26は、遊技制御処理におけるステップS32の賞球処理の一例を示すフローチャートである。この実施の形態では、賞球処理では、賞球払出の対象となる入賞口スイッチ33a,24a,29a,30a、カウントスイッチ23および始動口スイッチ14aが確実にオンしたか否か判定されるとともに、オンしたら賞球個数を示す払出制御コマンドが払出制御基板37に送出されるように制御し、また、満タンスイッチ48および球切れスイッチ187が確実にオンしたか否か判定されるとともに、オンしたら所定の払出制御コマンドが払出制御基板37に送出されるように制御する等の処理が行われる。
【0176】
賞球処理において、CPU56は、入力判定値テーブルのオフセットとして「1」を設定し(ステップS150)、スイッチタイマのアドレスのオフセットとして「9」を設定する(ステップS151)。入力判定値テーブル(図28参照)のオフセット「1」は、入力判定値テーブルの2番目のデータ「50」を使用することを意味する。また、各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「9」は満タンスイッチ48に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS152)。
【0177】
入力判定値テーブルとは、各スイッチについて、連続何回のオンが検出されたら確かにスイッチがオンしたと判定するための判定値が設定されているROM領域である。入力判定値テーブルの構成例は図28に示されている。図28に示すように、入力判定値テーブルには、上から順に、すなわちアドレス値が小さい領域から順に、「2」、「50」、「250」、「30」、「250」、「1」の判定値が設定されている。また、スイッチオンチェックルーチンでは、入力判定値テーブルの先頭アドレスとオフセット値とで決まるアドレスに設定されている判定値と、スイッチタイマの先頭アドレスとオフセット値とで決まるスイッチタイマの値とが比較され、一致した場合には、例えばスイッチオンフラグがセットされる。
【0178】
スイッチオンチェックルーチンの一例が図27に示されている。スイッチオンチェックルーチンにおいて、満タンスイッチ48に対応するスイッチタイマの値が満タンスイッチオン判定値「50」に一致していればスイッチオンフラグがセットされるので(ステップS153)、満タンフラグがセットされる(ステップS154)。なお、図24には明示されていないが、満タンスイッチ48に対応したスイッチタイマの値が0になると、満タンフラグはリセットされる。
【0179】
また、CPU56は、入力判定値テーブルのオフセットとして「2」を設定し(ステップS156)、スイッチタイマのアドレスのオフセットとして「0A(H)」を設定する(ステップS157)。入力判定値テーブルのオフセット「2」は、入力判定値テーブルの3番目のデータ「250」を使用することを意味する。また、各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「0A(H)」は球切れスイッチ187に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS158)。
【0180】
スイッチオンチェックルーチンにおいて、球切れスイッチ187に対応するスイッチタイマの値が球切れスイッチオン判定値「250」に一致していればスイッチオンフラグがセットされるので(ステップS159)、球切れフラグがセットされる(ステップS160)。なお、図24には明示されていないが、球切れスイッチ187に対応したスイッチオフタイマが用意され、その値が50になると、球切れフラグはリセットされる。
【0181】
そして、CPU56は、払出停止状態であるか否か確認する(ステップS201)。払出停止状態は、払出制御基板37に対して払出を停止すべき状態であることを指示する払出制御コマンドである払出停止状態指定コマンドを送出した後の状態であり、具体的には、作業領域における払出停止フラグがセットされている状態である。払出停止状態でなければ、上述した球切れ状態フラグまたは満タンフラグがオンになったか否かを確認する(ステップS202)。
【0182】
いずれかがオン状態に変化したときには、払出停止状態フラグをセットするとともに(ステップS203)、払出停止状態指定コマンドに関するコマンド送信テーブルをセットし(ステップS204)、コマンドセット処理をコールする(ステップS205)。ステップS204では、払出停止状態指定コマンドの払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。払出停止状態指定コマンドに関するコマンド送信テーブルには、後述するINTデータ、払出制御コマンドの1バイト目のデータ、および払出制御コマンドの2バイト目のデータが設定されている。なお、ステップS202において、いずれか一方のフラグが既にオン状態であったときに他方のフラグがオン状態になったときには、ステップS203〜ステップS205の処理は行われない。
【0183】
また、払出停止状態であれば、球切れ状態フラグおよび満タンフラグがともにオフ状態になったか否かを確認する(ステップS206)。ともにオフ状態となったときには、払出停止フラグをリセットするとともに(ステップS207)、払出可能状態指定コマンドに関するコマンド送信テーブルをセットし(ステップS208)、コマンドセット処理をコールする(ステップS209)。ステップS208では、払出可能状態指定コマンドの払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。払出可能状態指定コマンドに関するコマンド送信テーブルには、後述するINTデータ、払出制御コマンドの1バイト目のデータ、および払出制御コマンドの2バイト目のデータが設定されている。
【0184】
さらに、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS221)、スイッチタイマのアドレスのオフセットとして「0」を設定する(ステップS222)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「0」は入賞口スイッチ33aに対応したスイッチタイマが指定されることを意味する。また、繰り返し数として「4」をセットする(ステップS223)。そして、スイッチオンチェックルーチンがコールされる(ステップS224)。
【0185】
スイッチオンチェックルーチンにおいて、CPU56は、入力判定値テーブル(図28参照)の先頭アドレスを設定する(ステップS281)。そして、そのアドレスにオフセットを加算し(ステップS282)、加算後のアドレスからスイッチオン判定値をロードする(ステップS283)。
【0186】
次いで、CPU56は、スイッチタイマの先頭アドレスを設定し(ステップS284)、そのアドレスにオフセットを加算し(ステップS285)、加算後のアドレスからスイッチタイマの値をロードする(ステップS286)。各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチに対応したスイッチタイマの値がロードされる。
【0187】
そして、CPU56は、ロードしたスイッチタイマの値とスイッチオン判定値とを比較する(ステップS287)。それらが一致すれば、スイッチオンフラグをセットする(ステップ128)。
【0188】
この場合には、スイッチオンチェックルーチンにおいて、入賞口スイッチ33aに対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS225)。そして、スイッチチェックオンルーチンは、スイッチタイマのアドレスのオフセットが更新されつつ(ステップS230)、最初に設定された繰り返し数分だけ実行されるので(ステップS228,S229)、結局、入賞口スイッチ33a,24a,29a,30aについて、対応するスイッチタイマの値がスイッチオン判定値「2」と比較されることになる。
【0189】
スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「10」をリングバッファに設定する(ステップS226)。そして、総賞球数格納バッファの格納値に10を加算する(ステップS227)。なお、リングバッファにデータを書き込んだときには、書込ポインタをインクリメントし、リングバッファの最後の領域にデータを書き込まれたときには、書込ポインタを、リングバッファの最初の領域を指すように更新する。
【0190】
総賞球数格納バッファは、払出制御手段に対して指示した賞球個数の累積値(ただし、払い出しがなされると減算される)が格納されるバッファであり、バックアップRAMに形成されている。なお、この実施の形態では、リングバッファにデータを書き込んだ時点で総賞球数格納バッファの格納値に対する加算処理が行われるが、払い出すべき賞球個数を指示する払出制御コマンドを出力ポートに出力した時点で総賞球数格納バッファの格納値に対する、出力する払出制御コマンドに対応した賞球数の加算処理を行ってもよい。
【0191】
次に、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS231)、スイッチタイマのアドレスのオフセットとして「4」を設定する(ステップS232)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「4」は始動口スイッチ14aに対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS233)。
【0192】
スイッチオンチェックルーチンにおいて、始動口スイッチ14aに対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS234)。スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「6」をリングバッファに設定する(ステップS235)。また、総賞球数格納バッファの格納値に6を加算する(ステップS236)。
【0193】
次いで、CPU56は、入力判定値テーブルのオフセットとして「0」を設定し(ステップS241)、スイッチタイマのアドレスのオフセットとして「5」を設定する(ステップS242)。入力判定値テーブルのオフセット「0」は、入力判定値テーブルの最初のデータを使用することを意味する。また、各スイッチタイマは、図10に示された入力ポートのビット順と同順に並んでいるので、スイッチタイマのアドレスのオフセット「5」はカウントスイッチ23に対応したスイッチタイマが指定されることを意味する。そして、スイッチオンチェックルーチンがコールされる(ステップS243)。
【0194】
スイッチオンチェックルーチンにおいて、カウントスイッチ23に対応するスイッチタイマの値がスイッチオン判定値「2」に一致していればスイッチオンフラグがセットされる(ステップS244)。スイッチオンフラグがセットされたら、払い出すべき賞球個数としての「15」をリングバッファに設定する(ステップS245)。また、総賞球数格納バッファの格納値に15を加算する(ステップS246)。
【0195】
そして、リングバッファにデータが存在する場合には(ステップS247)、読出ポインタが指すリングバッファの内容を送信バッファにセットするとともに(ステップS248)、読出ポインタの値を更新(リングバッファの次の領域を指すように更新)し(ステップS249)、賞球個数に関するコマンド送信テーブルをセットし(ステップS250)、コマンドセット処理をコールする(ステップS251)。コマンドセット処理の動作については後で詳しく説明する。
【0196】
ステップS250では、賞球個数に関する払出制御コマンドが格納されているコマンド送信テーブル(ROM)の先頭アドレスが、コマンド送信テーブルのアドレスとして設定される。賞球個数に関するコマンド送信テーブルには、後述するINTデータ(01(H))、払出制御コマンドの1バイト目のデータ(F0(H))、および払出制御コマンドの2バイト目のデータが設定されている。ただし、2バイト目のデータとして「80(H)」が設定されている。
【0197】
以上のように、遊技制御手段から払出制御基板37に賞球個数を指示する払出制御コマンドを出力しようとするときに、賞球個数に関するコマンド送信テーブルのアドレス設定と送信バッファの設定とが行われる。そして、コマンドセット処理によって、賞球個数に関するコマンド送信テーブルと送信バッファの設定内容とにもとづいて払出制御コマンドが払出制御基板37に送出される。なお、ステップS247において、書込ポインタと読出ポインタとの差によってデータがあるか否か確認することができるが、リングバッファ内の未処理のデータ個数を示すカウンタを設け、カウント値によってデータがあるか否か確認するようにしてもよい。
【0198】
そして、総賞球数格納バッファの内容が0でない場合、すなわち、まだ賞球残がある場合には、CPU56は、賞球払出中フラグをオンする(ステップS252,S253)。
【0199】
また、CPU56は、賞球払出中フラグがオンしているときには(ステップS254)、球払出装置97から実際に払い出された賞球個数を監視して総賞球数格納バッファの格納値を減算する賞球個数減算処理を行う(ステップS255)。なお、賞球払出中フラグがオンからオフに変化したときには、ランプ制御基板35に対して、賞球ランプ51の点灯を指示するランプ制御コマンドが送出される。
【0200】
この実施の形態では、払出停止中であっても(ステップS201,S206)、ステップS221〜S251の処理が実行される。すなわち、遊技制御手段は、払出停止状態であっても、賞球個数を指示するための払出制御コマンドを送出することができる。すなわち、賞球個数を指示するためのコマンドが、払出停止状態であっても払出制御手段に伝達され、払出停止状態が解除されたときに、早めに賞球払出を開始することができる。また、遊技制御手段において、払出停止状態における入賞にもとづく賞球個数を記憶するための大きな記憶領域は必要とされない。
【0201】
次に、遊技制御手段から各電気部品制御手段に対する制御コマンドの送出方式について説明しておく。遊技制御手段から他の電気部品制御基板(サブ基板)に制御コマンドを出力しようとするときに、コマンド送信テーブルの先頭アドレスの設定が行われる。図29(A)は、コマンド送信テーブルの一構成例を示す説明図である。1つのコマンド送信テーブルは3バイトで構成され、1バイト目にはINTデータが設定される。また、2バイト目のコマンドデータ1には、制御コマンドの1バイト目のMODEデータが設定される。そして、3バイト目のコマンドデータ2には、制御コマンドの2バイト目のEXTデータが設定される。
【0202】
なお、EXTデータそのものがコマンドデータ2の領域に設定されてもよいが、コマンドデータ2には、EXTデータが格納されているテーブルのアドレスを指定するためのデータが設定されるようにしてもよい。例えば、コマンドデータ2のビット7(ワークエリア参照ビット)が0であれば、コマンドデータ2にEXTデータそのものが設定されていることを示す。そのようなEXTデータはビット7が0であるデータである。この実施の形態では、ワークエリア参照ビットが1であれば、EXTデータとして、送信バッファの内容を使用することを示す。なお、ワークエリア参照ビットが1であれば、他の7ビットが、EXTデータが格納されているテーブルのアドレスを指定するためのオフセットであることを示すように構成することもできる。
【0203】
図29(B)INTデータの一構成例を示す説明図である。INTデータにおけるビット0は、払出制御基板37に払出制御コマンドを送出すべきか否かを示す。ビット0が「1」であるならば、払出制御コマンドを送出すべきことを示す。従って、CPU56は、例えば賞球処理(メイン処理のステップS32)において、INTデータに「01(H)」を設定する。また、INTデータにおけるビット1は、図柄出制御基板80に表示制御コマンドを送出すべきか否かを示す。ビット1が「1」であるならば、表示制御コマンドを送出すべきことを示す。従って、CPU56は、例えば特別図柄コマンド制御処理(メイン処理のステップS28)において、INTデータに「02(H)」を設定する。
【0204】
INTデータのビット2,3は、それぞれ、ランプ制御コマンド、音制御コマンドを送出すべきか否かを示すビットであり、CPU56は、それらのコマンドを送出すべきタイミングになったら、特別図柄プロセス処理等で、ポインタが指しているコマンド送信テーブルに、INTデータ、コマンドデータ1およびコマンドデータ2を設定する。それらのコマンドを送出するときには、INTデータの該当ビットが「1」に設定され、コマンドデータ1およびコマンドデータ2にMODEデータおよびEXTデータが設定される。
【0205】
この実施の形態では、払出制御コマンドについて、図29(C)に示すように、リングバッファおよび送信バッファが用意されている。そして、賞球処理において、賞球払出条件が成立すると、成立した条件に応じた賞球個数が順次リングバッファに設定される。また、賞球個数に関する払出制御コマンド送出する際に、リングバッファから1個のデータが送信バッファに転送される。なお、図29(C)に示す例では、リングバッファには、12個分の払出制御コマンドに相当するデータが格納可能になっている。すなわち、12個のバッファがある。なお、リングバッファにおけるバッファの数は、賞球を発生させる入賞口の数に対応した数であればよい。同時入賞が発生した場合でも、それぞれの入賞にもとづく払出制御コマンドのデータの格納が可能だからである。
【0206】
図30は、主基板31から他の電気部品制御基板に送出される制御コマンドのコマンド形態の一例を示す説明図である。この実施の形態では、制御コマンドは2バイト構成であり、1バイト目はMODE(コマンドの分類)を表し、2バイト目はEXT(コマンドの種類)を表す。MODEデータの先頭ビット(ビット7)は必ず「1」とされ、EXTデータの先頭ビット(ビット7)は必ず「0」とされる。このように、電気部品制御基板へのコマンドとなる制御コマンドは、複数のデータで構成され、先頭ビットによってそれぞれを区別可能な態様になっている。なお、図30に示されたコマンド形態は一例であって他のコマンド形態を用いてもよい。例えば、1バイトや3バイト以上で構成される制御コマンドを用いてもよい。また、図30では払出制御基板37に送出される払出制御コマンドを例示するが、他の電気部品制御基板に送出される制御コマンドも同一構成である。
【0207】
図31は、各電気部品制御手段に対する制御コマンドを構成する8ビットの制御信号CD0〜CD7とINT信号との関係を示すタイミング図である。図31に示すように、MODEまたはEXTのデータが出力ポート(出力ポート1〜出力ポート4のうちのいずれか)に出力されてから、Aで示される期間が経過すると、CPU56は、データ出力を示す信号であるINT信号をハイレベル(オンデータ)にする。また、そこからBで示される期間が経過するとINT信号をローレベル(オフデータ)にする。さらに、次に送出すべきデータがある場合には、すなわち、MODEデータ送出後では、Cで示される期間をおいてから2バイト目のデータを出力ポートに送出する。2バイト目のデータに関して、A,Bの期間は、1バイト目の場合と同様である。このように、取込信号はMODEおよびEXTのデータのそれぞれについて出力される。
【0208】
Aの期間は、CPU56が、コマンドの送出準備の期間すなわちバッファに送出コマンドを設定する処理に要する期間であるとともに、制御信号線におけるデータの安定化のための期間である。すなわち、制御信号線において制御信号CD0〜CD7が出力された後、所定期間(Aの期間:オフ出力期間の一部)経過後に、取込信号としてのINT信号が出力される。また、Bの期間(オン出力期間)は、INT信号安定化のための期間である。そして、Cの期間(オフ出力期間の一部)は、電気部品制御手段が確実にデータを取り込めるように設定されている期間である。B,Cの期間では、信号線上のデータは変化しない。すなわち、B,Cの期間が経過するまでデータ出力が維持される。
【0209】
この実施の形態では、払出制御基板37への払出制御コマンド、図柄制御基板80への表示制御コマンド、ランプ制御基板35へのランプ制御コマンドおよび音制御基板70への音制御コマンドは、同一のコマンド送信処理ルーチン(共通モジュール)を用いて送出される。そこで、B,Cの期間すなわち1バイト目に関するINT信号が立ち上がってから2バイト目のデータが送出開始されるまでの期間は、コマンド受信処理に最も時間がかかる電気部品制御手段における受信処理時間よりも長くなるように設定される。
【0210】
なお、各電気部品制御手段は、INT信号が立ち上がったことを検知して、例えば割込処理によって1バイトのデータの取り込み処理を開始する。
【0211】
B,Cの期間が、コマンド受信処理に最も時間がかかる電気部品制御手段における受信処理時間よりも長いので、遊技制御手段が、各電気部品制御手段に対するコマンド送出処理を共通モジュールで制御しても、いずれの電気部品制御手段でも遊技制御手段からの制御コマンドを確実に受信することができる。
【0212】
CPU56は、INT信号出力処理を実行した後に所定期間が経過すると次のデータを送出できる状態になるが、その所定期間(B,Cの期間)は、INT信号出力処理の前にデータを送出してからINT信号を出力開始するまでの期間(Aの期間)よりも長い。上述したように、Aの期間はコマンドの信号線における安定化期間であり、B,Cの期間は受信側がデータを取り込むのに要する時間を確保するための期間である。従って、Aの期間をB,Cの期間よりも短くすることによって、受信側の電気部品制御手段が確実にコマンドを受信できる状態になるという効果を得ることができるとともに、1つのコマンドの送出完了に要する期間が短縮される効果もある。
【0213】
図32は、払出制御コマンドの内容の一例を示す説明図である。図32に示された例において、MODE=FF(H),EXT=00(H)のコマンドFF00(H)は、払出が可能であることを指示する払出制御コマンド(払出可能状態指定コマンド)である。MODE=FF(H),EXT=01(H)のコマンドFF01(H)は、払出を停止すべき状態であることを指示する払出制御コマンド(払出停止状態指定コマンド)である。また、MODE=F0(H)のコマンドF0XX(H)は、賞球個数を指定する払出制御コマンドである。EXTである「XX」が払出個数を示す。
【0214】
払出制御手段は、主基板31の遊技制御手段からFF01(H)の払出制御コマンドを受信すると賞球払出および球貸しを停止する状態となり、FF00(H)の払出制御コマンドを受信すると賞球払出および球貸しができる状態になる。また、賞球個数を指定する払出制御コマンドを受信すると、受信したコマンドで指定された個数に応じた賞球払出制御を行う。
【0215】
なお、払出制御コマンドは、払出制御手段が認識可能に1回だけ送出される。認識可能とは、この例では、INT信号のレベルが変化することであり、認識可能に1回だけ送出されるとは、この例では、払出制御信号の1バイト目および2バイト目のそれぞれに応じてINT信号が1回だけパルス状(矩形波状)に出力されることである。
【0216】
各電気部品制御基板への制御コマンドを、対応する出力ポート(出力ポート1〜4)に出力する際に、出力ポート0のビット0〜3のうちのいずれかのビットが所定期間「1」(ハイレベル)になるのであるが、INTデータにおけるビット配列と出力ポート0におけるビット配列とは対応している。従って、各電気部品制御基板に制御コマンドを送出する際に、INTデータにもとづいて、容易にINT信号の出力を行うことができる。
【0217】
図33は、コマンドセット処理(ステップS205,S209,S251)の処理例を示すフローチャートである。コマンドセット処理は、コマンド出力処理とINT信号出力処理とを含む処理である。コマンドセット処理において、CPU56は、まず、コマンド送信テーブルのアドレス(送信信号指示手段としてのポインタの内容)をスタック等に退避する(ステップS331)。そして、ポインタが指していたコマンド送信テーブルのINTデータを引数1にロードする(ステップS332)。引数1は、後述するコマンド送信処理に対する入力情報になる。また、コマンド送信テーブルを指すアドレスを+1する(ステップS333)。従って、コマンド送信テーブルを指すアドレスは、コマンドデータ1のアドレスに一致する。
【0218】
そこで、CPU56は、コマンドデータ1を読み出して引数2に設定する(ステップS334)。引数2も、後述するコマンド送信処理に対する入力情報になる。そして、コマンド送信処理ルーチンをコールする(ステップS335)。
【0219】
図34は、コマンド送信処理ルーチンを示すフローチャートである。コマンド送信処理ルーチンにおいて、CPU56は、まず、引数1に設定されているデータすなわちINTデータを、比較値として決められているワークエリアに設定する(ステップS351)。次いで、送信回数=4を、処理数として決められているワークエリアに設定する(ステップS352)。そして、払出制御信号を出力するためのポート1のアドレスをIOアドレスにセットする(ステップS353)。この実施の形態では、ポート1のアドレスは、払出制御信号を出力するための出力ポートのアドレスである。また、ポート2〜4のアドレスが、表示制御信号、ランプ制御信号、音声制御信号を出力するための出力ポートのアドレスである。
【0220】
次に、CPU56は、比較値を1ビット右にシフトする(ステップS354)。シフト処理の結果、キャリービットが1になったか否か確認する(ステップS355)。キャリービットが1になったということは、INTデータにおける最も右側のビットが「1」であったことを意味する。この実施の形態では4回のシフト処理が行われるのであるが、例えば、払出制御コマンドを送出すべきことが指定されているときには、最初のシフト処理でキャリービットが1になる。
【0221】
キャリービットが1になった場合には、引数2に設定されているデータ、この場合にはコマンドデータ1(すなわちMODEデータ)を、IOアドレスとして設定されているアドレスに出力する(ステップS356)。最初のシフト処理が行われたときにはIOアドレスにポート1のアドレスが設定されているので、そのときに、払出制御コマンドのMODEデータがポート1に出力される。
【0222】
次いで、CPU56は、IOアドレスを1加算するとともに(ステップS357)、処理数を1減算する(ステップS358)。加算前にポート1を示していた場合には、IOアドレスに対する加算処理によって、IOアドレスにはポート2のアドレスが設定される。ポート2は、表示制御コマンドを出力するためのポートである。そして、CPU56は、処理数の値を確認し(ステップS359)、値が0になっていなければ、ステップS354に戻る。ステップS354で再度シフト処理が行われる。
【0223】
2回目のシフト処理ではINTデータにおけるビット1の値が押し出され、ビット1の値に応じてキャリーフラグが「1」または「0」になる。従って、表示制御コマンドを送出すべきことが指定されているか否かのチェックが行われる。同様に、3回目および4回目のシフト処理によって、ランプ制御コマンドおよび音制御コマンドを送出すべきことが指定されているか否かのチェックが行われる。このように、それぞれのシフト処理が行われるときに、IOアドレスには、シフト処理によってチェックされる制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に対応したIOアドレスが設定されている。
【0224】
よって、キャリーフラグが「1」になったときには、対応する出力ポート(ポート1〜ポート4)に制御コマンドが送出される。すなわち、1つの共通モジュールで、各電気部品制御手段に対する制御コマンドの送出処理を行うことができる。
【0225】
また、このように、シフト処理のみによってどの電気部品制御手段に対して制御コマンドを出力すべきかが判定されるので、いずれの電気部品制御手段に対して制御コマンドを出力すべきか判定する処理が簡略化されている。
【0226】
次に、CPU56は、シフト処理開始前のINTデータが格納されている引数1の内容を読み出し(ステップS360)、読み出したデータをポート0に出力する(ステップS361)。この実施の形態では、ポート0のアドレスは、各制御信号についてのINT信号を出力するためのポートであり、ポート0のビット0〜4が、それぞれ、払出制御INT信号、表示制御INT信号、ランプ制御INT信号、音制御INT信号を出力するためのポートである。INTデータでは、ステップS351〜S359の処理で出力された制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に応じたINT信号の出力ビットに対応したビットが「1」になっている。従って、ポート1〜ポート4のいずれかに出力された制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)に対応したINT信号がハイレベルになる。
【0227】
次いで、CPU56は、ウェイトカウンタに所定値を設定し(ステップS362)、その値が0になるまで1ずつ減算する(ステップS363,S364)。この処理は、図31に示されたBの期間を設定するための処理である。ウェイトカウンタの値が0になると、クリアデータ(00)を設定して(ステップS365)、そのデータをポート0に出力する(ステップS366)。よって、INT信号はローレベルになる。そして、ウェイトカウンタに所定値を設定し(ステップS362)、その値が0になるまで1ずつ減算する(ステップS368,S369)。この処理は、図31に示されたCの期間を設定するための処理である。ただし、実際のCの期間は、ステップS367〜S369で作成される時間に、その後の処理時間(この時点でMODEデータが出力されている場合にはEXTデータを出力するまでに要する制御にかかる時間)が加算された期間となる。このように、Cの期間が設定されることによって、連続してコマンドが送出される場合であっても、一のコマンドの出力完了後、次にコマンドの送出が開始されるまでに所定期間がおかれることになり、コマンドを受信する電気部品制御手段の側で、容易に連続するコマンドの区切りを識別することができ、各コマンドは確実に受信される。
【0228】
従って、ステップS367でウェイトカウンタに設定される値は、Cの期間が、制御コマンド受信対象となる全ての電気部品制御手段が確実にコマンド受信処理を行うのに十分な期間になるような値である。また、ウェイトカウンタに設定される値は、Cの期間が、ステップS357〜S359の処理に要する時間(Aの期間に相当)よりも長くなるような値である。なお、Aの期間をより長くしたい場合には、Aの期間を作成するためのウェイト処理(例えば、ウェイトカウンタに所定値を設定し、ウェイトカウンタの値が0になるまで減算を行う処理)を行う。
【0229】
以上のようにして、制御コマンドの1バイト目のMODEデータが送出される。そこで、CPU56は、図33に示すステップS336で、コマンド送信テーブルを指す値を1加算する。従って、3バイト目のコマンドデータ2の領域が指定される。CPU56は、指し示されたコマンドデータ2の内容を引数2にロードする(ステップS337)。また、コマンドデータ2のビット7(ワークエリア参照ビット)の値が「0」であるか否か確認する(ステップS339)。0でなければ、送信バッファの内容を引数2にロードする(ステップS341)。なお、ワークエリア参照ビットの値が「1」であるときに拡張データを使用するように構成されている場合には、コマンド拡張データアドレステーブルの先頭アドレスをポインタにセットし、そのポインタにコマンドデータ2のビット6〜ビット0の値を加算してアドレスを算出する。そして、そのアドレスが指すエリアのデータを引数2にロードする。
【0230】
送信バッファには賞球個数を特定可能なデータが設定されているので、引数2にそのデータが設定される。なお、ワークエリア参照ビットの値が「1」であるときに拡張データを使用するように構成されている場合には、コマンド拡張データアドレステーブルには、電気部品制御手段に送出されうるEXTデータが順次設定される。よって、ワークエリア参照ビットの値が「1」であれば、コマンドデータ2の内容に応じたコマンド拡張データアドレステーブル内のEXTデータが引数2にロードされる。
【0231】
次に、CPU56は、コマンド送信処理ルーチンをコールする(ステップS342)。従って、MODEデータの送出の場合と同様のタイミングでEXTデータが送出される。
【0232】
以上のようにして、2バイト構成の制御コマンド(払出制御コマンド、表示制御コマンド、ランプ制御コマンド、音制御コマンド)が、対応する電気部品制御手段に送信される。電気部品制御手段ではINT信号の立ち上がりを検出すると制御コマンドの取り込み処理を開始するのであるが、いずれの電気部品制御手段についても、取り込み処理が完了する前に遊技制御手段からの新たな信号が信号線に出力されることはない。すなわち、各電気部品制御手段において、確実なコマンド受信処理が行われる。なお、各電気部品制御手段は、INT信号の立ち下がりで制御コマンドの取り込み処理を開始してもよい。また、INT信号の極性を図31に示された場合と逆にしてもよい。
【0233】
また、この実施の形態では、賞球処理において、賞球払出条件が成立すると賞球個数を特定可能なデータが、同時に複数のデータを格納可能なリングバッファに格納され、賞球個数を指定する払出制御コマンドを送出する際に、読出ポインタが指しているリングバッファの領域のデータが送信バッファに転送される。従って、同時に複数の賞球払出条件の成立があっても、それらの条件成立にもとづく賞球個数を特定可能なデータがリングバッファに保存されるので、各条件成立にもとづくコマンド出力処理は問題なく実行される。
【0234】
さらに、この実施の形態では、1回の賞球処理内で払出停止状態指定コマンドまたは払出可能状態指定コマンドと賞球個数を示すコマンドとの双方を送出することができる。すなわち、2ms毎に起動される1回の制御期間内において、複数のコマンドを送出することができる。また、この実施の形態では、各制御手段への制御コマンド(表示制御コマンド、ランプ制御コマンド、音制御コマンド、払出制御コマンド)毎に、それぞれ複数のリングバッファが用意されているので、例えば、表示制御コマンド、ランプ制御コマンドおよび音制御コマンドのリングバッファに制御コマンドを特定可能なデータが設定されている場合には、1回のコマンド制御処理で複数の表示制御コマンド、ランプ制御コマンドおよび音制御コマンドを送出するように構成することも可能である。すなわち、同時に(遊技制御処理すなわち2msタイマ割込処理の起動周期での意味)、複数の制御コマンドを送出することができる。遊技演出の進行上、それらの制御コマンドの送出タイミングは同時に発生するので、このように構成されているのは便利である。ただし、払出制御コマンドは、遊技演出の進行とは無関係に発生するので、一般には、表示制御コマンド、ランプ制御コマンドおよび音制御コマンドと同時に送出されることはない。
【0235】
次に、遊技制御手段以外の電気部品制御手段の例として、払出制御手段について説明する。
【0236】
図35は、払出制御用CPU371周りの一構成例を示すブロック図である。図35に示すように、電源基板910の電源監視回路(電源監視手段)からの電源断信号が、バッファ回路960を介して払出制御用CPU371のマスク不能割込端子(XNMI端子)に接続されている。従って、払出制御用CPU371は、マスク不能割込処理によって遊技機への電力供給停止の発生を確認することができる。
【0237】
払出制御用CPU371のCLK/TRG2端子には、主基板31からのINT信号が接続されている。CLK/TRG2端子にクロック信号が入力されると、払出制御用CPU371に内蔵されているタイマカウンタレジスタCLK/TRG2の値がダウンカウントされる。そして、レジスタ値が0になると割込が発生する。従って、タイマカウンタレジスタCLK/TRG2の初期値を「1」に設定しておけば、INT信号の入力に応じて割込が発生することになる。
【0238】
払出制御基板37には、システムリセット回路975も搭載されているが、この実施の形態では、システムリセット回路975におけるリセットIC976は、電源投入時に、外付けのコンデンサに容量で決まる所定時間だけ出力をローレベルとし、所定時間が経過すると出力をハイレベルにする。また、リセットIC976は、VSLの電源電圧を監視して電圧値が所定値(例えば+9V)以下になると出力をローレベルにする。従って、遊技機への電力供給停止時には、リセットIC976からの信号がローレベルになることによって払出制御用CPU371がシステムリセットされる。
【0239】
リセットIC976が電力供給停止を検知するための所定値は、通常時の電圧より低いが、払出制御用CPU371が暫くの間動作しうる程度の電圧である。また、リセットIC976が、払出制御用CPU371が必要とする電圧(この例では+5V)よりも高い電圧を監視するように構成されているので、払出制御用CPU371が必要とする電圧に対して監視範囲を広げることができる。従って、より精密な監視を行うことができる。なお、システムリセット回路975は、第2の電源監視手段に相当する。
【0240】
+5V電源から電力が供給されていない間、払出制御用CPU371の内蔵RAMの少なくとも一部は、電源基板から供給されるバックアップ電源がバックアップ端子に接続されることによってバックアップされ、停電等の遊技機に対する電力供給停止が発生しても内容は保存される。そして、+5V電源が復旧すると、システムリセット回路975からリセット信号が発せられるので、払出制御用CPU371は、通常の動作状態に復帰する。そのとき、必要なデータがバックアップされているので、停電等からの復旧時には停電発生時の払出制御状態に復旧させることができる。
【0241】
なお、図35に示された構成では、システムリセット回路975は、電源投入時に、コンデンサの容量で決まる期間のローレベルを出力し、その後ハイレベルを出力する。すなわち、リセット解除タイミングは1回だけである。しかし、図9に示された主基板31の場合と同様に、複数回のリセット解除タイミングが発生するような回路構成を用いてもよい。
【0242】
図36は、この実施の形態における入力ポートのビット割り当てを示す説明図である。図36に示すように、入力ポートA(アドレス06H)は、主基板31から送出された払出制御コマンドの8ビットの払出制御信号を取り込むための入力ポートである。また、入力ポートB(アドレス07H)のビット0〜1には、それぞれ、賞球カウントスイッチ301Aおよび球貸しカウントスイッチ301Bの検出信号が入力される。ビット2〜5には、カードユニット50からのBRDY信号、BRQ信号、VL信号およびクリアスイッチ921の検出信号が入力される。
【0243】
図37は、払出制御手段(払出制御用CPU371およびROM,RAM等の周辺回路)のメイン処理を示すフローチャートである。メイン処理では、払出制御用CPU371は、まず、必要な初期設定を行う。すなわち、払出制御用CPU371は、まず、割込禁止に設定する(ステップS701)。次に、割込モードを割込モード2に設定し(ステップS702)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS703)。また、払出制御用CPU371は、内蔵デバイスレジスタの初期化を行い(ステップS704)、CTCおよびPIOの初期化(ステップS705)を行った後に、RAMをアクセス可能状態に設定する(ステップS706)。
【0244】
この実施の形態では、内蔵CTCのうちの一つのチャネルがタイマモードで使用される。従って、ステップS704の内蔵デバイスレジスタの設定処理およびステップS705の処理において、使用するチャネルをタイマモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定が行われる。そして、そのチャネルによる割込がタイマ割込として用いられる。タイマ割込を例えば2ms毎に発生させたい場合は、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。
【0245】
なお、タイマモードに設定されたチャネル(この実施の形態ではチャネル3)に設定される割込ベクタは、タイマ割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでタイマ割込処理の先頭アドレスが特定される。タイマ割込処理では、払出制御処理が実行される。
【0246】
また、内蔵CTCのうちの他の一つのチャネル(この実施の形態ではチャネル2)が、遊技制御手段からの払出制御コマンド受信のための割込発生用のチャネルとして用いられ、そのチャネルがカウンタモードで使用される。従って、ステップS704の内蔵デバイスレジスタの設定処理およびステップS705の処理において、使用するチャネルをカウンタモードに設定するためのレジスタ設定、割込発生を許可するためのレジスタ設定および割込ベクタを設定するためのレジスタ設定が行われる。
【0247】
カウンタモードに設定されたチャネル(チャネル2)に設定される割込ベクタは、後述するコマンド受信割込処理の先頭アドレスに相当するものである。具体的は、Iレジスタに設定された値と割込ベクタとでコマンド受信割込処理の先頭アドレスが特定される。
【0248】
この実施の形態では、払出制御用CPU371でも割込モード2が設定される。従って、内蔵CTCのカウントアップにもとづく割込処理を使用することができる。また、CTCが送出した割込ベクタに応じた割込処理開始アドレスを設定することができる。
【0249】
CTCのチャネル2(CH2)のカウントアップにもとづく割込は、上述したタイマカウンタレジスタCLK/TRG2の値が「0」になったときに発生する割込である。従って、例えばステップS705において、特定レジスタとしてのタイマカウンタレジスタCLK/TRG2に初期値「1」が設定される。さらに、CLK/TRG2端子に入力される信号の立ち上がりまたは立ち下がりで特定レジスタとしてのタイマカウンタレジスタCLK/TRG2のカウント値が−1されるのであるが、所定の特定レジスタの設定によって、立ち上がり/立ち下がりの選択を行うことができる。この実施の形態では、CLK/TRG2端子に入力される信号の立ち上がりで、タイマカウンタレジスタCLK/TRG2のカウント値が−1されるような設定が行われる。
【0250】
また、CTCのチャネル3(CH3)のカウントアップにもとづく割込は、CPUの内部クロック(システムクロック)をカウントダウンしてレジスタ値が「0」になったら発生する割込であり、後述する2msタイマ割込として用いられる。具体的には、CPU371の動作クロックを分周したクロックがCTCに与えられ、クロックの入力によってレジスタの値が減算され、レジスタの値が0になるとタイマ割込が発生する。例えば、CH3のレジスタ値はシステムクロックの1/256周期で減算される。分周したクロックにもとづいて減算が行われるので、レジスタの初期値は大きくならない。ステップS705において、CH3のレジスタには、初期値として2msに相当する値が設定される。
【0251】
CTCのCH2のカウントアップにもとづく割込は、CH3のカウントアップにもとづく割込よりも優先順位が高い。従って、同時にカウントアップが生じた場合に、CH2のカウントアップにもとづく割込、すなわち、コマンド受信割込処理の実行契機となる割込の方が優先される。
【0252】
次いで、払出制御用CPU371は、入力ポートB(図36参照)を介して入力されるクリアスイッチ921の出力信号の状態を1回だけ確認する(ステップS707)。その確認においてオンを検出した場合には、払出制御用CPU371は、通常の初期化処理を実行する(ステップS711〜ステップS713)。クリアスイッチ921がオンである場合(押下されている場合)には、ローレベルのクリアスイッチ信号が出力されている。なお、入力ポート372では、クリアスイッチ信号のオン状態はハイレベルである。また、払出制御手段においては、ステップS707の判定を行わなくてもよい。
【0253】
なお、払出制御用CPU371も、主基板31のCPU56と同様に、スイッチの検出信号のオン判定を行う場合には、例えば、オン状態が少なくとも2ms(2ms毎に起動される処理の1回目の処理における検出直前に検出信号がオンした場合)継続しないとスイッチオンとは見なさないが、クリアスイッチ921のオン検出の場合には、1回のオン判定でオン/オフが判定される。すなわち、初期化操作手段としてのクリアスイッチ921が所定の操作状態であるか否かを払出制御用CPU371が判定するための初期化要求検出判定期間は、遊技媒体検出手段としての賞球カウントスイッチ等が遊技媒体を検出したことを判定するための遊技媒体検出判定期間とは異なる期間とされている。
【0254】
クリアスイッチ921がオンの状態でない場合には、払出制御用CPU371は、払出制御用のバックアップRAM領域にバックアップデータが存在しているか否かの確認を行う(ステップS708)。例えば、主基板31のCPU56の処理と同様に、遊技機への電力供給停止時にセットされるバックアップフラグがセット状態になっているか否かによって、バックアップデータが存在しているか否か確認する。バックアップフラグがセット状態になっている場合には、バックアップデータありと判断する。
【0255】
バックアップありを確認したら、払出制御用CPU371は、バックアップRAM領域のデータチェック(この例ではパリティチェック)を行う。不測の停電等の電力供給の停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されていたはずであるから、チェック結果は正常になる。チェック結果が正常でない場合には、内部状態を電力供給の停止時の状態に戻すことができないので、不足の停電等からの復旧時ではなく電源投入時に実行される初期化処理を実行する。
【0256】
チェック結果が正常であれば(ステップS709)、払出制御用CPU371は、内部状態を電力供給停止時の状態に戻すための払出状態復旧処理を行う(ステップS710)。そして、バックアップRAM領域に保存されていたPC(プログラムカウンタ)の指すアドレスに復帰する。
【0257】
初期化処理では、払出制御用CPU371は、まず、RAMクリア処理を行う(ステップS711)。そして、2ms毎に定期的にタイマ割込がかかるように払出制御用CPU371に設けられているCTCのレジスタの設定が行われる(ステップS712)。すなわち、初期値として2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。そして、初期設定処理のステップS701において割込禁止とされているので、初期化処理を終える前に割込が許可される(ステップS713)。
【0258】
この実施の形態では、払出制御用CPU371の内蔵CTCが繰り返しタイマ割込を発生するように設定される。この実施の形態では、繰り返し周期は2msに設定される。そして、タイマ割込が発生すると、図38に示すように、タイマ割込があったことを示すタイマ割込フラグがセットされる(ステップS792)。そして、メイン処理において、タイマ割込フラグがセットされたことが検出されたら(ステップS714)、タイマ割込フラグがリセットされるとともに(ステップS751)、払出制御処理(ステップS751〜S760)が実行される。
【0259】
なお、タイマ割込では、図38に示すように、最初に割込許可状態に設定される(ステップS791)。よって、タイマ割込処理中では割込許可状態になり、INT信号の入力にもとづく払出制御コマンド受信処理を優先して実行することができる。
【0260】
払出制御処理において、払出制御用CPU371は、まず、入力ポート372bに入力される賞球カウントスイッチ301Aや球貸しカウントスイッチ301B等のスイッチがオンしたか否かを判定する(スイッチ処理:ステップS752)。
【0261】
次に、払出制御用CPU371は、主基板31から払出停止状態指定コマンドを受信していたら払出停止状態に設定し、払出可能状態指定コマンドを受信していたら払出停止状態の解除を行う(払出停止状態設定処理:ステップS753)。また、受信した払出制御コマンドを解析し、解析結果に応じた処理を実行する(コマンド解析実行処理:ステップS754)。さらに、プリペイドカードユニット制御処理を行う(ステップS755)。
【0262】
次いで、払出制御用CPU371は、球貸し要求に応じて貸し球を払い出す制御を行う(ステップS756)。このとき、払出制御用CPU371は、振分ソレノイド310によって球振分部材311を球貸し側に設定する。
【0263】
さらに、払出制御用CPU371は、総合個数記憶に格納された個数の賞球を払い出す賞球制御処理を行う(ステップS757)。このとき、払出制御用CPU371は、振分ソレノイド310によって球振分部材311を賞球側に設定する。そして、出力ポート372cおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に対して駆動信号を出力し、所定の回転数分払出モータ289を回転させる払出モータ制御処理を行う(ステップS758)。
【0264】
なお、この実施の形態では、払出モータ289としてステッピングモータが用いられ、それらを制御するために1−2相励磁方式が用いられる。従って、具体的には、払出モータ制御処理において、8種類の励磁パターンデータが繰り返し払出モータ289に出力される。また、この実施の形態では、各励磁パターンデータが4msずつ出力される。
【0265】
次いで、エラー検出処理が行われ、その結果に応じてエラー表示LED374に所定の表示を行う(エラー処理:ステップS759)。また、遊技機外部に出力される球貸し個数信号を出力する処理等を行う(出力処理:ステップS760)。
【0266】
図39は、ステップS710の払出状態復旧処理の一例を示すフローチャートである。払出状態復旧処理において、払出制御用CPU371は、まず、スタックポインタの復帰処理を行う(ステップS731)。スタックポインタの値は、後述する電力供給停止時処理において、所定のRAMエリア(電源バックアップされている)に退避している。よって、ステップS731では、そのRAMエリアの値をスタックポインタに設定することによって復帰させる。なお、復帰されたスタックポインタが指す領域(すなわちスタック領域)には、電力供給が停止したときのレジスタ値やプログラムカウンタ(PC)の値が退避している。
【0267】
次いで、払出制御用CPU371は、バックアップフラグをクリアする(ステップS732)すなわち、前回の電力供給停止時に所定の記憶保護処理が実行されたことを示すフラグをリセットする。また、スタック領域から各種レジスタの退避値を読み出して、各種レジスタに設定する(ステップS733)。すなわち、レジスタ復元処理を行う。そして、パリティフラグがオンしていない場合には割込許可状態にする(ステップS734,S735)。最後に、AFレジスタ(アキュミュレータとフラグのレジスタ)をスタック領域から復元する(ステップS736)。
【0268】
そして、RET命令が実行されるのであるが、ここでのリターン先は、払出状態復旧処理をコールした部分ではない。なぜなら、ステップS731においてスタックポインタの復帰処理がなされ、復帰されたスタックポインタが指すスタック領域に格納されているリターンアドレスは、プログラムにおける前回の電力供給停止時にNMIが発生したアドレスである。従って、ステップS736の次のRET命令によって、電力供給停止時にNMIが発生したアドレスにリターンする。すなわち、スタック領域に退避されていたアドレスにもとづいて復旧制御が実行されている。
【0269】
図40〜図42は、電源基板910からの電源断信号に応じて実行されるマスク不能割込処理(NMI処理:電力供給停止時処理)の処理例を示すフローチャートである。
【0270】
電力供給停止時処理において、払出制御用CPU371は、AFレジスタを所定のバックアップRAM領域に退避する(ステップS801)。また、割込フラグをパリティフラグにコピーする(ステップS802)。パリティフラグはバックアップRAM領域に形成されている。割込フラグは、割込許可状態であるのか割込禁止状態であるのかを示すフラグであって、払出制御用CPU371が内蔵する制御レジスタ中にある。割込フラグのオン状態が割込禁止状態であることを示す。上述したように、パリティフラグは遊技状態復旧処理で参照される。そして、払出状態復旧処理において、パリティフラグがオン状態であれば、割込許可状態には設定されない。
【0271】
また、BCレジスタ、DEレジスタ、HLレジスタ、IXレジスタおよびスタックポインタをバックアップRAM領域に退避する(ステップS804〜808)。
【0272】
次いで、払出モータ289に出力される駆動信号をオフ状態にする(ステップS761)。よって、球払出装置97の駆動は停止する。その後、この実施の形態では、所定期間、払出検出手段としての賞球カウントスイッチ301A(賞遊技媒体払出検出手段に相当)および球貸しカウントスイッチ301B(貸出遊技媒体払出検出手段に相当)の検出信号をチェックする。そして、賞球カウントスイッチ301Aがオンしたら総合個数記憶の内容を1減らす。また、球貸しカウントスイッチ301Bがオンしたら貸し球個数記憶の内容を1減らす。
【0273】
なお、この実施の形態では、所定期間を計測するために、所定期間計測用カウンタが用いられる。所定期間計測用カウンタの値は、初期値m(ステップS762にて設定される)から、以下に説明するスイッチ検出処理のループ(S763から始まってS763に戻るループ)が1回実行される毎に−1され、その値が0になると、所定期間が終了したとする。検出処理のループでは、例外はあるがほぼ一定の処理が行われるので、ループの1周に要する時間のm倍の時間が、ほぼ所定期間に相当する。
【0274】
所定期間を計測するために、払出制御用CPU371の内蔵タイマを用いてもよい。すなわち、スイッチ検出処理開始時に、内蔵タイマに所定値(所定期間に相当)を設定しておく。そして、スイッチ検出処理のループが1回実行される毎に、内蔵タイマのカウント値をチェックする。そして、カウント値が0になったら、所定期間が終了したとする。内蔵タイマの値が0になったことを検出するために内蔵タイマによる割込を用いることもできるが、この段階では制御内容(RAMに格納されている各値など)を変化させないように、割込を用いず、内蔵タイマのカウント値を読み出してチェックするようなプログラム構成の方が好ましい。また、所定期間は、遊技球が、球払出装置97から落下した時点から、賞球カウントスイッチ301Aまたは球貸しカウントスイッチ301Bに到達するまでの時間以上に設定される。
【0275】
少なくとも、スイッチ検出処理が実行される所定期間では、賞球カウントスイッチ301Aおよび球貸しカウントスイッチ301Bが遊技球を検出できる状態でなければならない。そこで、この実施の形態では、図8に示されたように、電源基板910におけるコンバータIC922の入力側に比較的大容量の補助駆動電源としてのコンデンサ923が接続されている。よって、遊技機に対する電力供給停止時にも、ある程度の期間は+12V電源電圧がスイッチ駆動可能な範囲に維持され、賞球カウントスイッチ301Aおよび球貸しカウントスイッチ301Bが動作可能になる。その期間が、上記の所定期間以上になるように、コンデンサの容量が決定される。
【0276】
なお、入力ポートおよび払出制御用CPU371も、コンバータIC922で作成される+5V電源で駆動されるので、電力供給停止時にも、比較的長い期間動作可能になっている。
【0277】
さらに、この実施の形態では、賞球路と貸し球路とを切り換えるために振分ソレノイド310が用いられている。よって、図8に示されたコンデンサ923の容量は、少なくとも上記の所定期間の間、振分ソレノイド310も駆動できるような容量になっている。なお、コンデンサ923は、VSLの電源ラインと並列接続されているが、電源断信号に応じて遊技制御手段が他のソレノイド(大入賞口開閉用等)の駆動信号をオフ状態にしているので、電源断信号発生後では、コンデンサ923は、各ソレノイドのうちでは振分ソレノイド310のみを駆動できればよい。
【0278】
なお、この実施の形態で用いられているコンデンサ923は補助駆動電源の一つの例であるが、補助駆動電源として他のものを用いてもよい。少なくとも、上記の所定期間の間は、賞球カウントスイッチ301A、球貸しカウントスイッチ301B、振分ソレノイド310および払出制御用CPU371等の払出制御手段を駆動できるものであれば、他の態様の補助駆動電源を用いることができる。
【0279】
払出検出手段からの検出信号の入力処理(スイッチ検出処理)では、払出制御用CPU371は、まず、所定期間計測用カウンタに、所定期間に対応した値mを設定する(ステップS762)。そして、払出制御用CPU371は、所定期間計測用カウンタの値を−1し(ステップS763)、所定期間計測用カウンタの値を確認する(ステップS764)。その値が0であれば、スイッチ検出処理を終了し、制御状態を保存するための処理である電力供給停止時処理に移行する。
【0280】
所定期間計測用カウンタの値が0になっていなければ、賞球カウントスイッチオン中であるか否か確認する(ステップS765)。オン中であれば、検出期間用カウンタの値を1減らした後(ステップS766)、検出期間用カウンタの値が0になったか否か確認する(ステップS767)。0になっていれば、入力ポートを介して賞球カウントスイッチ301Aの検出信号を確認し(ステップS768)、オン状態を示していれば、賞球カウントスイッチ301Aが確実にオンしたとして、総合個数記憶および払出個数記憶の値を1減らす(ステップS769)。
【0281】
ステップS765で、賞球カウントスイッチオン中でないことを確認したら、入力ポートを介して賞球カウントスイッチ301Aの検出信号を確認し(ステップS770)、オン状態を示していれば、賞球カウントスイッチON中フラグをセットするとともに(ステップS771)、検出期間用カウンタに初期値nをセットする(ステップS772)。
【0282】
以上の処理によって、所定期間内に賞球カウントスイッチ301Aがオンしたら、総合個数記憶および払出個数記憶の値が−1される。バックアップRAMの内容を保存するための処理は、このようなスイッチ検出処理の後で行われるので、払出が完了した賞球について、必ず総合個数記憶および払出個数記憶が−1される。従って、遊技球の払出に関して、保存される制御状態に矛盾が生じてしまうことが防止される。また、上記のスイッチ検出処理では、検出期間用カウンタを用いたタイマ処理が施されている。すなわち、一度賞球カウントスイッチ301Aのオンが検出された後、所定時間(S763からS767に至りS763に戻るループにおける処理時間のn倍:遊技媒体検出判定期間)の経過後にもオンが検出されないとスイッチオンと見なされない。つまり、最初のオン検出後、所定の遊技媒体検出判定期間経過後にもオン検出した場合に、1個の賞球の払出が完了したと見なされる。従って、誤ってスイッチオン検出がなされてしまうことは防止される。
【0283】
この場合、例えば、遊技媒体検出判定期間がほぼ2msとなるようにnを設定すれば、遊技媒体検出判定期間を通常遊技媒体検出判定期間(電力供給停止時処理での処理でない、通常の遊技状態において遊技媒体の有無を判定するための期間)と同じ期間とすることが可能となる。このように構成すれば、通常の制御とほぼ同一の条件で、賞球カウントスイッチ301Aがオンしたか否かを判定することが可能となる。
【0284】
なお、通常時のスイッチ処理(図37におけるステップS752)でも、誤検出防止用のタイマ処理が施されている。よって、そのような通常時のスイッチ処理をコールするようにしてもよい。また、ここでは、検出期間用カウンタを用いたタイマ処理が行われたが、所定期間の計測の場合にCPU内蔵タイマを用いてもよいのと同様、CPU内蔵タイマを用いてスイッチ検出処理におけるタイマ処理を実現してもよい。
【0285】
賞球カウントスイッチオン中でなく、かつ、賞球カウントスイッチ301Aのオン状態が検出できない場合には、球貸しカウントスイッチ301Bについてスイッチ検出処理を行う。すなわち、払出制御用CPU371は、球貸しカウントスイッチオン中であるか否か確認する(ステップS775)。オン中であれば、検出期間用カウンタの値を1減らした後(ステップS776)、検出期間用カウンタの値が0になったか否か確認する(ステップS777)。0になっていれば、入力ポートを介して球貸しカウントスイッチ301Bの検出信号を確認し(ステップS778)、オン状態を示していれば、球貸しカウントスイッチ301Bが確実にオンしたとして、貸し球個数記憶の値を1減らす(ステップS779)。
【0286】
ステップS775で、球貸しカウントスイッチオン中でないことを確認したら、入力ポートを介して球貸しカウントスイッチ301Bの検出信号を確認し(ステップS780)、オン状態を示していれば、球貸しカウントスイッチON中フラグをセットするとともに(ステップS781)、検出期間用カウンタに初期値nをセットする(ステップS782)。
【0287】
以上の処理によって、所定期間内に球貸しカウントスイッチ301Bがオンしたら、貸し球個数記憶の値が−1される。バックアップRAMの内容を保存するための処理は、このようなスイッチ検出処理の後で行われるので、払出が完了した貸し球について、必ず貸し球個数記憶が−1される。従って、遊技球の払出に関して、保存される制御状態に矛盾が生じてしまうことが防止される。また、上記のスイッチ検出処理では、検出期間用カウンタを用いたタイマ処理が施されている。すなわち、球貸しカウントスイッチ301Bのオンが所定時間(遊技媒体検出判定期間)以上継続しないとスイッチオンと見なされない。つまり、賞球の払出検出の場合と同様に、最初のオン検出後、所定の遊技媒体検出判定期間経過後にもオン検出した場合に、1個の貸し球の払出が完了したと見なされる。従って、誤ってスイッチオン検出がなされてしまうことは防止される。
【0288】
また、賞球の払出検出の場合と同様に、例えば、遊技媒体検出判定期間がほぼ2msとなるようにnを設定すれば、遊技媒体検出判定期間を通常遊技媒体検出判定期間(電力供給停止時処理での処理でない、通常の遊技状態において遊技媒体の有無を判定するための期間)と同じ期間とすることが可能となる。このように構成すれば、通常の制御とほぼ同一の条件で、球貸しカウントスイッチ301Bがオンしたか否かを判定することが可能となる。
【0289】
所定期間が経過すると(ステップS764)、払出制御用CPU371は、バックアップあり指定値(この例では「55H」)をバックアップフラグにストアする(ステップS809)。バックアップフラグはバックアップRAM領域に形成されている。次いで、主基板31のCPU56の処理と同様の処理を行ってパリティデータを作成しバックアップRAM領域に保存する(ステップS810〜S819)。そして、RAMアクセスレジスタにアクセス禁止値を設定する(ステップS820)。以後、内蔵RAMのアクセスができなくなる。
【0290】
このように、制御状態を保存するための処理(この例では、チェックサムの生成およびRAMアクセス防止)が実行される。保存された内容が正しく保存されているか否かを示すチェックサムの生成処理、およびその内容を書き換えないようにするためのRAMアクセス防止処理が、払出制御状態を保存するための処理に相当する。
【0291】
RAMアクセス防止処理が完了すると、払出制御用CPU371は、待機状態(ループ状態)に入る。従って、システムリセットされるまで、何もしない状態になる。
【0292】
図43は、払出制御用CPU371が内蔵するRAMの使用例を示す説明図である。この例では、バックアップRAM領域に、総合個数記憶(例えば2バイト)と、貸し球個数記憶と、払出個数記憶とがそれぞれ形成されている。総合個数記憶は、主基板31の側から指示された賞球払出個数の総数を記憶するものである。貸し球個数記憶は、未払出の球貸し個数を記憶するものである。払出個数記憶は、賞球払出個数の総数から払出予定数として設定された賞球個数のうち、未払出の賞球個数を記憶するものである。なお、払出制御処理において用いられるデータが格納されるRAM領域は全て電源バックアップされるようにしてもよい。また、払出予定数というときには、未払出の球貸し個数を意味することもある。
【0293】
払出制御用CPU371は、例えば、賞球制御処理(ステップS757)において、遊技制御手段から賞球個数を示す払出制御コマンドを受信すると、指示された個数分だけ総合個数記憶に内容を増加する。また、球貸し制御処理(ステップS756)において、カードユニット50から球貸し要求の信号を受信する毎に1単位(例えば25個)の個数分だけ貸し球個数記憶に内容を増加する。さらに、払出制御用CPU371は、賞球制御処理において賞球カウントスイッチ301Aが1個の賞球払出を検出すると総合個数記憶および払出個数記憶の値を1減らし、球貸し制御処理において球貸しカウントスイッチ301Bが1個の貸し球払出を検出すると貸し球個数記憶の値を1減らす。
【0294】
従って、未払出の賞球個数(総合個数記憶に記憶された未払出の賞球総数、および払出個数記憶に記憶された払出予定数)と、貸し球個数(貸し球個数記憶に記憶された未払出の貸し球総数(=払出予定数:本例では一単位の払い出しが完了するまで貸し球数が増加されることがないため))とが、所定期間はその内容を保持可能なバックアップRAM領域に記憶されることになる。よって、停電等の不測の電力供給停止が生じても、所定期間内に電力供給が復旧すれば、バックアップRAM領域の記憶内容にもとづいて賞球処理および球貸し処理を再開することができる。すなわち、遊技機への電力供給が停止しても、電力供給が再開すれば、電力供給停止時の未払出の賞球個数と貸し球個数とにもとづいて払い出しが行われ、遊技者に与えられる不利益を低減することができる。また、賞球または貸し球の払出予定数が所定期間はバックアップRAM領域に記憶されることになるため、賞球または貸し球の一単位の払出数の払出途中で電力供給が停止されても、所定期間内に電力供給が復旧すれば、バックアップRAM領域の記憶内容にもとづいて賞球処理および球貸し処理を再開して払出途中の遊技球の残りを払い出すことができる。
【0295】
図44は、主基板31から受信した払出制御コマンドを格納するための受信バッファの一構成例を示す説明図である。この例では、2バイト構成の払出制御コマンドを6個格納可能なリングバッファ形式の受信バッファが用いられる。従って、受信バッファは、受信コマンドバッファ1〜12の12バイトの領域で構成される。そして、受信したコマンドをどの領域に格納するのかを示すコマンド受信個数カウンタが用いられる。コマンド受信個数カウンタは、0〜11の値をとる。
【0296】
図45は、割込処理による払出制御コマンド受信処理を示すフローチャートである。主基板31からの払出制御用のINT信号は払出制御用CPU371のCLK/TRG2端子に入力されている。よって、主基板31からのINT信号が立ち上がると、払出制御用CPU371に割込がかかり、図45に示す払出制御コマンドの受信処理が開始される。なお、払出制御用CPU371は、割込が発生すると、ソフトウェアで割込許可にしない限り、マスク可能割込がさらに生ずることはないような構造のCPUである。
【0297】
なお、ここでは払出制御手段のコマンド受信処理について説明するが、表示制御手段、ランプ制御手段および音制御手段でも、同様のコマンド受信処理が実行されている。また、この実施の形態では、CLK/TRG2端子の入力が立ち上がるとタイマカウンタレジスタCLK/TRG2の値が−1されるような初期設定を行ったが、すなわち、INT信号の立ち上がりで割込が発生するような初期設定を行ったが、CLK/TRG2端子の入力が立ち下がるとタイマカウンタレジスタCLK/TRG2の値が−1されるような初期設定を行ってもよい。換言すれば、INT信号の立ち下がりで割込が発生するような初期設定を行ってもよい。
【0298】
すなわち、取込信号としてのパルス状(矩形波状)のINT信号のレベル変化タイミング(エッジ)で割込が発生するように構成すれば、エッジは立ち上がりエッジであっても立ち下がりエッジであってもよい。いずれにせよ、取込信号としてのパルス状(矩形波状)のINT信号のレベル変化タイミング(エッジ)で割込が発生するように構成される。このようにすることで、コマンドの取込が指示された段階でいち早くコマンド受信を行うことが可能になる。また、Aの期間(図31)が経過するまでINT信号の出力が待機されるので、INT信号の出力時に、制御信号CD0〜CD7のライン上のコマンドデータの出力状態は安定している。よって、払出制御手段において、払出制御コマンドは良好に受信される。
【0299】
払出制御コマンドの受信処理において、払出制御用CPU371は、まず、各レジスタをスタックに退避する(ステップS850)。次いで、払出制御コマンドデータの入力に割り当てられている入力ポート372a(図7参照)からデータを読み込む(ステップS851)。そして、2バイト構成の払出制御コマンドのうちの1バイト目であるか否か確認する(ステップS852)。1バイト目であるか否かは、受信したコマンドの先頭ビットが「1」であるか否かによって確認される。先頭ビットが「1」であるのは、2バイト構成である払出制御コマンドのうちのMODEバイト(1バイト目)のはずである(図30参照)。そこで、払出制御用CPU371は、先頭ビットが「1」であれば、有効な1バイト目を受信したとして、受信したコマンドを受信バッファ領域におけるコマンド受信個数カウンタが示す受信コマンドバッファに格納する(ステップS853)。
【0300】
払出制御コマンドのうちの1バイト目でなければ、1バイト目を既に受信したか否か確認する(ステップS854)。既に受信したか否かは、受信バッファ(受信コマンドバッファ)に有効なデータが設定されているか否かによって確認される。
【0301】
1バイト目を既に受信している場合には、受信した1バイトのうちの先頭ビットが「0」であるか否か確認する。そして、先頭ビットが「0」であれば、有効な2バイト目を受信したとして、受信したコマンドを、受信バッファ領域におけるコマンド受信個数カウンタ+1が示す受信コマンドバッファに格納する(ステップS855)。先頭ビットが「0」であるのは、2バイト構成である払出制御コマンドのうちのEXTバイト(2バイト目)のはずである(図30参照)。なお、ステップS854における確認結果が1バイト目を既に受信したである場合には、2バイト目として受信したデータのうちの先頭ビットが「0」でなければ処理を終了する。なお、ステップS854で「N」と判断された場合には、ステップS856の処理が行われないので、次に受信したコマンドは、今回受信したコマンドが格納されるはずであったバッファ領域に格納される。
【0302】
ステップS855において、2バイト目のコマンドデータを格納すると、コマンド受信個数カウンタに2を加算する(ステップS856)。そして、コマンド受信カウンタが12以上であるか否か確認し(ステップS857)、12以上であればコマンド受信個数カウンタをクリアする(ステップS858)。その後、退避されていたレジスタを復帰し(ステップS859)、最後に割込許可に設定する(ステップS859)。
【0303】
コマンド受信割込処理中は割込禁止状態になっている。上述したように、2msタイマ割込処理中は割込許可状態になっているので、2msタイマ割込中にコマンド受信割込が発生した場合には、コマンド受信割込処理が優先して実行される。また、コマンド受信割込処理中に2msタイマ割込が発生しても、その割込処理は待たされる。このように、この実施の形態では、主基板31からのコマンド受信処理の処理優先度が高くなっている。また、コマンド受信処理中には他の割込処理が実行されないので、コマンド受信処理に要する最長時間は決まる。コマンド受信処理中に他の割込処理が実行可能であるように構成したのでは、コマンド受信処理に要する最長の時間を見積もることは困難である。コマンド受信処理に要する最長時間が決まるので、遊技制御手段のコマンド送出処理におけるCの期間(図31参照)をどの程度にすればよいのかを正確に判断することができる。
【0304】
また、払出制御コマンドは2バイト構成であって、1バイト目(MODE)と2バイト目(EXT)とは、受信側で直ちに区別可能に構成されている。すなわち、先頭ビットによって、MODEとしてのデータを受信したのかEXTとしてのデータを受信したのかを、受信側において直ちに検出できる。よって、上述したように、適正なデータを受信したのか否かを容易に判定することができる。
【0305】
なお、この実施の形態では、コマンド受信割込処理では、受信したコマンドを受信バッファに格納する制御が行われるが、後述する払出停止状態設定処理(図47参照)やコマンド解析実行処理(図48参照)を、コマンド受信割込処理において実行するように構成してもよい。そのように、受信バッファ内のコマンドについて判定するコマンド判定処理までもコマンド受信割込処理において実行する場合には、コマンドの判定も迅速に実行される。
【0306】
図46は、ステップS752のスイッチ処理の一例を示すフローチャートである。スイッチ処理において、払出制御用CPU371は、賞球カウントスイッチ301Aがオン状態を示しているか否か確認する(ステップS752a)。オン状態を示していれば、払出制御用CPU371は、賞球カウントスイッチオンカウンタを+1する(ステップS752b)。賞球カウントスイッチオンカウンタは、賞球カウントスイッチ301Aのオン状態を検出した回数を計数するためのカウンタである。
【0307】
そして、賞球カウントスイッチオンカウンタの値をチェックし(ステップS752c)、その値が2になっていれば、1個の賞球の払出が行われたと判断する。1個の賞球の払出が行われたと判断した場合には、払出制御用CPU371は、総賞球未払出カウンタ(総合個数記憶に格納されている賞球個数)を−1する(ステップS752d)。また、払出制御用CPU371は、賞球未払出カウンタ(払出個数記憶に格納されている賞球個数)を−1する(ステップS752k)。
【0308】
ステップS752aにおいて賞球カウントスイッチ301Aがオン状態でないことが確認されると、払出制御用CPU371は、賞球カウントスイッチオンカウンタをクリアする(ステップS752e)。そして、この実施の形態では、球貸しカウントスイッチ301Bがオン状態を示しているか否か確認する(ステップS752f)。オン状態を示していれば、払出制御用CPU371は、球貸しカウントスイッチオンカウンタを+1する(ステップS752g)。球貸しカウントスイッチオンカウンタは、球貸しカウントスイッチ301Bのオン状態を検出した回数を計数するためのカウンタである。
【0309】
そして、球貸しカウントスイッチオンカウンタの値をチェックし(ステップS752h)、その値が2になっていれば、1個の貸し球の払出が行われたと判断する。1個の貸し球の払出が行われたと判断した場合には、払出制御用CPU371は、貸し球未払出個数カウンタ(貸し球個数記憶に格納されている貸し球数)を−1する(ステップS752i)。
【0310】
ステップS751fにおいて球貸しカウントスイッチ301Bがオン状態でないことが確認されると、払出制御用CPU371は、球貸しカウントスイッチオンカウンタをクリアする(ステップS752j)。
【0311】
図47は、ステップS753の払出停止状態設定処理の一例を示すフローチャートである。払出停止状態設定処理において、払出制御用CPU371は、受信バッファ中に受信コマンドがあるか否かの確認を行う(ステップS753a)。受信バッファ中に受信コマンドがあれば、受信した払出制御コマンドが払出停止状態指定コマンドであるか否かの確認を行う(ステップS753b)。払出停止状態指定コマンドであれば、払出制御用CPU371は、払出停止状態に設定する(ステップS753c)。ただし、払出停止状態に設定された場合であっても、本例では直ちに払出処理が停止されるとは限らず、連続的に払い出される貸し球または賞球の一単位の払出途中である場合には、その一単位の遊技球の払出が完了したあとに払出停止状態とされる(図50〜図53参照)。なお、払出停止状態の設定は、本例では払出停止状態フラグをセットすることによって行われる。
【0312】
ステップS753bで受信コマンドが払出停止状態指定コマンドでないことを確認すると、受信した払出制御コマンドが払出可能状態指定コマンドであるか否かの確認を行う(ステップS753d)。払出可能状態指定コマンドであれば、払出停止状態を解除する(ステップS753e)。
【0313】
図48は、ステップS754のコマンド解析実行処理の一例を示すフローチャートである。コマンド解析実行処理において、払出制御用CPU371は、受信バッファに受信コマンドがあるか否かの確認を行う(ステップS754a)。受信コマンドがあれば、受信した払出制御コマンドが賞球個数を指定するための払出制御コマンドであるか否かの確認を行う(ステップS754b)。なお、払出制御用CPU371は、コマンド指示手段としての読出ポインタが指す受信バッファ中のアドレスに格納されている受信コマンドについてステップS754bの判断を行う。また、その判断後、読出ポインタの値は+1される。読出ポインタが指すアドレスが受信コマンドバッファ12(図44参照)のアドレスを越えた場合には、読出ポインタの値は、受信コマンドバッファ1を指すように更新される。
【0314】
受信した払出制御コマンドが賞球個数を指定するための払出制御コマンドであれば、払出制御コマンドで指示された個数を総合個数記憶に加算する(ステップS754c)。すなわち、払出制御用CPU371は、主基板31のCPU56から送られた払出制御コマンドに含まれる賞球個数をバックアップRAM領域(総合個数記憶)に記憶する。
【0315】
なお、払出制御用CPU371は、必要ならば、コマンド受信個数カウンタの減算や受信バッファにおける受信コマンドシフト処理を行う。また、払出停止状態設定処理およびコマンド解析実行処理が、読出ポインタの値と受信バッファにおける最新コマンド格納位置とが一致するまで繰り返すように構成されていてもよい。例えば、読出ポインタの値と受信バッファにおける最新コマンド格納位置との差が「3」であれば未処理の受信済みコマンドが3つあることになるが、一致するまで繰り返し処理が実行されることによって、未処理の受信済みコマンドがなくなる。すなわち、受信バッファに格納されている受信済みコマンドが、一度の処理で、全て読み出されて処理される。
【0316】
図49は、ステップS755のプリペイドカードユニット制御処理の一例を示すフローチャートである。プリペイドカードユニット制御処理において、払出制御用CPU371は、カードユニット制御用マイクロコンピュータより入力されるVL信号を検知したか否かを確認する(ステップS755a)。VL信号を検知していなければ、VL信号非検知カウンタを+1する(ステップS755b)。また、払出制御用CPU371は、VL信号非検知カウンタの値が本例では125であるか否か確認する(ステップS755c)。VL信号非検知カウンタの値が125であれば、払出制御用CPU371は、発射制御基板91への発射制御信号出力を停止して、駆動モータ94を停止させる(ステップS755d)。
【0317】
以上の処理によって、125回(2ms×125=250ms)継続してVL信号のオフが検出されたら、球発射禁止状態に設定される。
【0318】
ステップS755aにおいてVL信号を検知していれば、払出制御用CPU371は、VL信号非検知カウンタをクリアする(ステップS755e)。そして、払出制御用CPU371は、発射制御信号出力を停止していれば(ステップS755f)、発射制御基板91への発射制御信号出力を開始して駆動モータ94を動作可能状態にする(ステップS755g)。
【0319】
図50および図51は、ステップS756の球貸し制御処理の一例を示すフローチャートである。なお、この実施の形態では、連続的な払出数の最大値を貸し球の一単位(例えば25個)とするが、連続的な払出数の最大値は他の数であってもよい。連続的な払出数の最大値を25個としたのは、球払出装置97から球切れスイッチ187までの間に貯留されている個数に対応しており、球切れ検出がされた時点でも、少なくとも払出可能な個数として確保されている数である。また、25個は、最小単位の貸出数(一般に100円分)でもあり、かかる数については、途中で払い出しを中断することなく払い出すことができる
【0320】
球貸し制御処理において、払出制御用CPU371は、貸し球払出中であるか否かの確認を行う(ステップS511)。なお、貸し球払出中であるか否かは、後述する球貸し処理中フラグの状態によって判断される。貸し球払出中であれば、払出モータ289がオンしているか否かの確認を行い(ステップS520)、オンしていれば図51に示す球貸し中の処理に移行する。払出モータ289がオンしていなければ、払出制御用CPU371は、バックアップRAM領域の貸し球個数記憶に設定されている貸し球個数(未払出の貸し球数)分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、貸し球個数記憶に設定されている貸し球個数の払出動作の設定を行う(ステップS521)。
具体的には、設定された払出予定数(貸し球数)を払い出すために、払出モータ289に対して駆動信号を出力する期間を設定する。駆動信号は、払出制御用CPU371から出力ポートを介して払出モータに出力されるオン信号である。設定された期間中、オン信号が出力されるので、かかる期間中払出モータ289が駆動する。払出モータ289がステッピングモータである場合には、払出予定数の払い出しに対応したステップ数を設定するものであってもよい。また、払出動作の設定(期間またはステップ数)は、設定された払出予定数によって異なる。このように、動作期間やステップ数にもとづいてモータを駆動制御することにより、一個一個の払い出しを検出しながらモータ駆動信号を出力する場合に比べて、早く払い出すことができる。なお、賞球個数の払い出し動作の設定においても同様である。
そして、払出制御用CPU371は、払出モータ289をオンして(ステップS519)、図51に示す球貸し中の処理に移行する。なお、本例では、払出モータ289のオン/オフの状態は、電力供給が停止したときにバックアップされておらず、その後に電力供給が復旧した場合における復旧処理(図39)では復元されないものとする。従って、払出制御用CPU371は、球貸し処理中フラグが設定されているのにもかかわらず、払出モータ289がオンしていなければ、連続して払い出される一単位の貸し球の払出途中に電源供給が停止したものとしてステップS521およびステップS519の処理を実行する。また、振分用ソレノイド310を駆動されていない場合には、振分用ソレノイド310を駆動するようにする。
【0321】
貸し球払出中でなければ、賞球の払出中であるか否か確認する(ステップS512)。賞球の払出中であるか否は、後述する賞球処理中フラグの状態によって判断される。なお、球貸し処理中フラグおよび賞球処理中フラグは、バックアップRAM領域に格納されている。
【0322】
貸し球払出中でも賞球払出中でもなければ、払出制御用CPU371は、払出停止状態か否か確認する(ステップS513)。この確認は、ステップS753cでセットされ、ステップS753eでクリアされる払出停止状態フラグによって行われる。なお、払出停止状態フラグは、バックアップRAM領域に格納されている。払出停止状態でなければ、払出制御用CPU371は、カードユニット50から球貸し要求があったか否かを確認する(ステップS514)。要求があれば、球貸し処理中フラグをオンするとともに(ステップS515)、25(球貸し一単位数:ここでは100円分)をバックアップRAM領域の貸し球個数記憶に設定する(ステップS516)。そして、払出制御用CPU371は、EXS信号をオンする(ステップS517)。また、球払出装置97の下方の球振分部材311を球貸し側に設定するために振分用ソレノイド310を駆動する(ステップS518)。さらに、払出モータ289をオンして(ステップS519)、図51に示す球貸し中の処理に移行する。
【0323】
このように、払出停止状態か否かの確認(ステップS513)の前に、球貸し処理中フラグ(ステップS511)の確認が行われるので、電力供給が復旧したときに球貸し処理中フラグがセットされている場合には、球貸し処理が再開し、払出予定数の貸し球の払出処理が続行されることになる。
【0324】
なお、払出モータ289をオンするのは、厳密には、カードユニット50が受付を認識したことを示すためにBRQ信号をOFFとしてからである。なお、球貸し処理中フラグはバックアップRAM領域に設定される。
【0325】
図51は、払出制御用CPU371による払出制御処理における球貸し中の処理を示すフローチャートである。なお、この実施の形態では、ステップS752のスイッチ処理で、球貸しカウントスイッチ301Bの検出信号による遊技球の払出がなされたか否かの確認を行うので、球貸し制御処理では貸し球個数記憶の減算などは行われない。
【0326】
球貸し制御処理において、払出制御用CPU371は、貸し球通過待ち時間中であるか否かの確認を行う(ステップS522)。貸し球通過待ち時間中でなければ、貸し球の払出を行い(ステップS523)、払出モータ289の駆動を終了すべきか(一単位の払出動作が終了したか)否かの確認を行う(ステップS524)。具体的には、所定個数の払出に対応した回転が完了したか否かを確認する。所定個数の払出に対応した回転が完了した場合には、払出制御用CPU371は、払出モータ289の駆動を停止し(ステップS525)、貸し球通過待ち時間の設定を行う(ステップS526)。
【0327】
ステップS522で貸し球通過待ち時間中であれば、払出制御用CPU371は、貸し球通過待ち時間が終了したか否かの確認を行う(ステップS527)。貸し球通過待ち時間は、最後の払出球が払出モータ289によって払い出されてから球貸しカウントスイッチ301Bを通過するまでの時間である。貸し球通過待ち時間の終了を確認すると、一単位の貸し球は全て払い出された状態であるので、カードユニット50に対して次の球貸し要求の受付が可能になったことを示すためにEXS信号をオフにする(ステップS528)。また、振分ソレノイドをオフするとともに(ステップS529)、球貸し処理中フラグをオフする(ステップS530)。すなわち、球貸し処理では、所定個数の払出に対応した回転が完了したことが確認された場合には、所定個数の貸し球が払い出されたか否かを確認することなく払出モータ289の駆動を終了する。なお、貸し球通過待ち時間が経過するまでに最後の払出球が球貸しカウントスイッチ301Bを通過しなかった場合には、球貸し経路エラーとするようにしてもよい。また、この実施の形態では、賞球も球貸しも同じ払出装置で行われる。
【0328】
なお、球貸し要求の受付を示すEXS信号をオフにした後、所定期間内に再び球貸し要求信号であるBRQ信号がオンしたら、振分ソレノイドおよび払出モータをオフせずに球貸し処理を続行するようにしてもよい。すなわち、所定単位(この例では100円単位)毎に球貸し処理を行うのではなく、球貸し処理を連続して実行するように構成することもできる。
【0329】
上述したように、一単位の貸し球の払い出しの実行中は払出停止状態か否かの確認を行わず、一単位の払い出しが完了したあとに払出停止状態か否かを確認(ステップS513)する構成としているので、払出途中に払出停止状態となった場合であっても、確実に一単位の払い出しを完了することができ、区切りの良い状態で払出停止状態とすることができる。
【0330】
また、上述したように、貸し球の払出中であるのにもかかわらず払出モータがオン状態でない場合には、払出モータ289に貸し球個数記憶に記憶されていた未払出の貸し球数分の払出動作の設定を行う構成としたことで、一単位の貸し球の払出途中に電力供給が停止しても、所定期間中に電力供給が復旧すると、払出制御用CPU371は、貸し球個数記憶の内容にもとづいて球貸し処理を再開することができる。
【0331】
以上のことから、一単位の貸し球の払い出しの実行中に電力供給が停止し、さらに電力供給が復旧したときに払出停止状態となっていた場合であっても、一単位の貸し球のうちの未払出分の払出制御を再開することができ、その未払出分の球貸し処理を完了したあとに払出停止状態とすることができる。従って、貸出可能な遊技球が確保されているのにもかかわらず、不必要に区切りの悪い状態で払出停止状態となることを防止することができる。
【0332】
図52および図53は、ステップS757の賞球制御処理の一例を示すフローチャートである。なお、この例では、連続的な払出数の最大値を貸し球の一単位と同数(例えば25個)とするが、連続的な払出数の最大値は他の数であってもよい。
【0333】
賞球制御処理において、払出制御用CPU371は、貸し球払出中であるか否か確認する(ステップS531)。貸し球払出中であるか否かは、球貸し処理中フラグの状態によって判断される。貸し球払出中でなければ賞球の払出中であるか否か確認する(ステップS532)。賞球の払出中であるか否かは、後述する賞球処理中フラグの状態によって判断される。賞球の払出中であれば、払出モータ289がオンしているか否かの確認を行い(ステップS541)、オンしていれば図53に示す賞球中の処理に移行する。払出モータ289がオンしていなければ、払出制御用CPU371は、バックアップRAM領域の払出個数記憶に設定されている賞球個数(設定されている一単位の払出数のうちの未払出の賞球数)分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、払出個数記憶に設定されている賞球個数の払出動作の設定を行う(ステップS542)。そして、払出制御用CPU371は、払出モータ289をオンして(ステップS540)、図53に示す賞球中の処理に移行する。なお、本例では、払出モータ289のオン/オフの状態は、電力供給が停止したときにバックアップされておらず、その後に電力供給が復旧した場合における復旧処理(図39)では復元されないものとする。従って、払出制御用CPU371は、賞球処理中フラグが設定されているのにもかかわらず、払出モータ289がオンしていなければ、連続して払い出される一単位の賞球の払出途中に電源供給が停止したものとしてステップS542およびステップS540の処理を実行する。
【0334】
貸し球払出中でも賞球払出中でもなければ、払出制御用CPU371は、払出停止中か否かを確認する(ステップS533)。この確認は、払出停止状態フラグが設定されているか否かを確認することで行われる。払出停止状態でなければ、カードユニット50からの球貸し準備要求があるか否か確認する(ステップS534)。球貸し準備要求があるか否かは、カードユニット50から入力されるBRDY信号のオン(要求あり)またはオフ(要求なし)を確認することによって行われる。
【0335】
このように、払出停止状態か否かの確認(ステップS533)の前に、賞球処理中フラグ(ステップS532)の確認が行われるので、電力供給が復旧したときに賞球処理中フラグがセットされている場合には、賞球処理が再開し、払出予定数の賞球の払出処理が続行して行われることになる。
【0336】
カードユニット50からの球貸し準備要求がなければ、払出制御用CPU371は、総合個数記憶に格納されている賞球個数(未払出の賞球個数)が0でないか否か確認する(ステップS535)。総合個数記憶に格納されている賞球個数が0でなければ、賞球制御用CPU371は、賞球処理中フラグをオンし(ステップS536)、総合個数記憶の値が25以上であるか否か確認する(ステップS537)。なお、賞球処理中フラグは、バックアップRAM領域に設定される。
【0337】
本実施例では、一回の連続した払出動作で払い出される数を、最大で25個としている。25個は、前述のように、球払出装置97から球切れスイッチ187までの間に確保されている数である。まT、本実施例では、遊技球の入賞個所によって5個、10個、15個の3段階の賞球が払い出されることとしているが、最大25個とした場合には、5個入賞と10個入賞、または10個入賞と15個入賞などの複数の入賞に対して一回の連続した払出動作で払い出すことができる。上限を更に大きな数とすれば、更なる払い出しの効率化を図ることができるが、本例では25個以上の遊技球が実際に確保されているか否かを認識できないため、上限を25個としている。
【0338】
総合個数記憶に格納されている賞球個数が25以上であると、払出制御用CPU371は、25個分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、25個払出動作の設定を行う(ステップS538)。ステップS538においては、払出個数記憶に、払出予定数としての25個が設定される。総合個数記憶に格納されている賞球個数が25以上でなければ、払出制御用CPU371は、総合個数記憶に格納されている全ての遊技球を払い出すまで払出モータ289を回転させるように駆動信号を出力するために、全個数払出動作の設定を行う(ステップS539)。ステップS539においては、払出個数記憶に、総合個数記憶に格納されている全遊技球数が払出予定数として設定される。次いで、払出モータ289をオンする(ステップS540)。なお、振分ソレノイドはオフ状態であるから、球払出装置97の下方の球振分部材は賞球側に設定されている。そして、図53に示す賞球制御処理における賞球払出中の処理に移行する。
【0339】
図53は、払出制御用CPU371による払出制御処理における賞球中の処理の一例を示すフローチャートである。賞球制御処理では、払出モータ289がオンしていなければオンする。なお、この実施の形態では、ステップS752のスイッチ処理で、賞球カウントスイッチ301Aの検出信号による遊技球の払出がなされたか否かの確認を行うので、賞球制御処理では総合個数記憶や払出個数記憶の減算などは行われない。
【0340】
賞球中の処理において、払出制御用CPU371は、賞球通過待ち時間中であるか否かの確認を行う(ステップS543)。賞球通過待ち時間中でなければ、賞球払出を行い(ステップS544)、払出モータ289の駆動を終了すべきか(25個または25個未満の所定の個数の払出動作が終了したか)否かの確認を行う(ステップS545)。具体的には、所定個数の払出に対応した回転が完了したか否かを確認する。所定個数の払出に対応した回転が完了した場合には、払出制御用CPU371は、払出モータ289の駆動を停止し(ステップS546)、賞球通過待ち時間の設定を行う(ステップS547)。賞球通過待ち時間は、最後の払出球が払出モータ289によって払い出されてから賞球カウントスイッチ301Aを通過するまでの時間である。
【0341】
ステップS543で賞球通過待ち時間中であれば、払出制御用CPU371は、賞球通過待ち時間が終了したか否かの確認を行う(ステップS548)。賞球通過待ち時間が終了した時点は、ステップS538またはステップS539で設定された賞球が全て払い出された状態である。そこで、払出制御用CPU371は、賞球通過待ち時間が終了していれば、賞球処理中フラグをオフする(ステップS549)。賞球処理では、所定個数の払出に対応した回転が完了したことが確認された場合には、所定個数の賞球が払い出されたか否かを確認することなく払出モータ289の駆動を終了する。なお、賞球通過待ち時間が経過するまでに最後の払出球が賞球カウントスイッチ301Aを通過しなかった場合には、賞球経路エラーとするようにしてもよい。
【0342】
なお、この実施の形態では、ステップS511、ステップS531の判断によって球貸しが賞球処理よりも優先されることになるが、賞球処理が球貸しに優先するようにしてもよい。
【0343】
上述したように、一単位の賞球の払い出しの実行中は払出停止状態か否かの確認を行わず、一単位の払い出しが完了したときに払出停止状態か否かを確認(ステップS533)する構成としているので、払出途中に払出停止状態となった場合であっても、確実に一単位の払い出しを完了することができ、区切りの良い状態で払出停止状態とすることができる。
【0344】
また、賞球払出中であるのにもかかわらず払出モータ289がオン状態でない場合には、払出モータ289に払出個数記憶に記憶されていた未払出の賞球数分の払出動作の設定を行う構成としたことで、一単位の賞球の払出途中で電力供給が停止しても、所定期間中に電力供給が復旧すると、払出制御用CPU371は、払出個数記憶の内容にもとづいて賞球の払出処理を再開することができる。
【0345】
以上のことから、一単位の賞球の払い出しの実行中に電力供給が停止し、さらに電力供給が復旧したときに払出停止状態となっていた場合であっても、一単位の賞球のうちの未払出分の払出制御を再開することができ、その未払出分の賞球の払出処理を完了したあとに払出停止状態とすることができる。従って、払出可能な遊技球が確保されているのにもかかわらず、不必要に区切りの悪い状態で払出停止状態となることを防止することができる。
【0346】
次に、図54に示すタイミングで電源供給が停止しその後に復旧した場合であって、図54に示すタイミングで払出停止状態とされた場合の貸し球払出処理について、図50および図51を参照して説明する。なお、ここでは払出停止とされる原因として球切れ状態となった場合を例にして説明するが、払出停止の原因は例えば下皿満タンなどの他の原因であってもよい。
【0347】
図54に示すように、球貸し要求があると、払出制御用CPU371は、球貸し処理中フラグをオンするとともに(ステップS514,ステップS515)、25(球貸し一単位数:ここでは100円分)をバックアップRAM領域の貸し球個数記憶に設定する(ステップS516)。そして、払出制御用CPU371は、EXS信号をオンする(ステップS517)。また、球払出装置97の下方の球振分部材311を球貸し側に設定するために振分用ソレノイド310を駆動する(ステップS518)。さらに、払出モータ289をオンして(ステップS519)、図51に示す球貸し中の処理が開始される。
【0348】
本例では、球貸し処理中に例えば球切れが発生した場合であっても、球貸し処理は継続される(ステップS511,ステップS520のY,図51)。そして、ここでは15個の貸し球を払い出した状態で電力供給が停止されたものとする。本例では、電力供給が停止しても、所定期間は未払出の貸し球数である10個が記憶されている貸し球個数記憶(貸し球未払出カウンタの記憶内容)がバックアップRAM領域に格納されて保持される。
【0349】
そして、電力供給が復旧すると、バックアップRAM領域に格納されている球貸し処理中フラグの状態が復旧するので、払出制御用CPU371は、払出モータ289に貸し球個数記憶に記憶されていた未払出の貸し球数(ここでは10個)を払い出すための払出動作を設定し(ステップS511,ステップS520のN,ステップS521)、払出モータ289をオンして球貸し処理を再開する(ステップS519,図51)。連続して払い出される一単位の貸し球のうちの未払出の貸し球(ここでは10個)を払出終えると、払出停止状態とされているため、払い出しが行われない状態となる(ステップS513,ステップS533)。
【0350】
なお、上述した図54では、払出停止条件が成立(球切れや下皿満タンなどが発生)し、球切れスイッチ187や満タンスイッチ48などの検出手段によって払出停止状態(球切れ状態や、満タン状態など)が検出され、その検出にもとづく払出停止状態指示コマンドを受信した(払出停止状態フラグがオンした)あとに電力供給が停止する例について説明したが、例えば図55に示すように電力供給が停止したときには払出停止状態フラグがオフ(払出停止条件が成立しているが払出制御基板37側で払出停止指示コマンドを受信していない場合であっても、払出停止条件が成立していない場合であってもよい)となっており、電力供給が復旧したときに払出状態フラグがオンした場合(例えば、電力供給が停止したときに払出停止条件が成立していた場合であって、CPU56によってステップS83で出力された払出停止状態指示コマンドを受信した場合、あるいは電力供給が停止しているときに払出停止条件が成立した場合であって、電力供給が復旧した直後にCPU56からの払出停止状態指示コマンドを受信した場合(この場合、S83では、払出許可状態指示コマンドが出力される))であっても、同様に、電力供給が復旧したときに払出予定数についての払出処理が再開される。なお、電力供給が停止しているときに払出停止条件が成立した場合には、例えば電力供給が停止している最中に遊技店員が遊技球を取り除く作業を行って球切れ状態となった場合などが挙げられる。
【0351】
次に、図56に示すタイミングで電源供給が停止しその後に復旧した場合であって、図56に示すタイミングで払出停止状態とされた場合の貸し球払出処理について、図52および図53を参照して説明する。なお、ここでは払出停止とされる原因として球切れ状態となった場合を例にして説明するが、払出停止の原因は例えば下皿満タンなどの他の原因であってもよい。
【0352】
まず、払出制御用CPU371は、貸し球払出中でも賞球払出中でもなく、また払出停止中でもない場合に、カードユニット50からの球貸し準備要求がなければ、総合個数記憶に格納されている賞球個数(未払出の賞球個数)が0でないか否か確認する(ステップS531〜ステップS535)。
【0353】
本例では、図56に示すように、総合個数記憶(総賞球数未払出カウンタ)に格納されている賞球個数が30個であるため(0個でないため)、払出制御用CPU371は、賞球処理中フラグをオンする(ステップS535,ステップS536)。次いで、払出制御用CPU371は、本例では総合個数記憶の値が25以上であるため、払出個数記憶に払出予定数として25個を設定するとともに、25個分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、25個払出動作の設定を行う(ステップS537,ステップS538)。次いで、払出モータ289をオンしたあと賞球払出中の処理を開始する(ステップS540,図53)。
【0354】
本例では、賞球処理中に例えば球切れが発生して払出停止状態となった場合であっても、賞球処理は継続される(ステップS532,ステップS541のY,図53)。そして、ここでは15個の賞球を払い出した状態で電力供給が停止されたものとする。本例では、電力供給が停止しても、連続的に払い出される一単位の賞球のうちの未払出の賞球数である10個が所定期間は記憶されている払出個数記憶(賞球未払出カウンタの記憶内容)がバックアップRAM領域に格納されて保持される。なお、未払出の賞球の総数(本例では15個)が記憶されている総合個数記憶もバックアップRAM領域に格納されて保持されている。
【0355】
そして、電力供給が復旧すると、バックアップRAM領域に格納されている賞球処理中フラグの状態が復旧するので、払出制御用CPU371は、払出モータ289に払出個数記憶に記憶されていた未払出の賞球数(ここでは10個)を払い出すための払出動作を設定し(ステップS531,ステップS532,ステップS541のN,ステップS542)、払出モータ289をオンして球貸し処理を再開する(ステップS540,図53)。連続して払い出される一単位の賞球のうちの未払出個数(ここでは10個)を払出終えると、払出停止状態とされているため、払い出しが行われない状態となる(ステップS533,ステップS513)。
【0356】
なお、上述した図56では、払出停止条件が成立(球切れや下皿満タンなどが発生)し、球切れスイッチ187や満タンスイッチ48などの検出手段によって払出停止状態(球切れ状態や、満タン状態など)が検出され、その検出にもとづく払出停止状態指示コマンドを受信した(払出停止状態フラグがオンした)あとに電力供給が停止する例について説明したが、例えば図57に示すように電力供給が停止したときには払出停止状態フラグがオフ(払出停止条件が成立しているが払出制御基板37側で払出停止指示コマンドを受信していない場合であっても、払出停止条件が成立していない場合であってもよい)となっており、電力供給が復旧したときに払出状態フラグがオンした場合(例えば、電力供給が停止したときに払出停止条件が成立していた場合であって、CPU56によってステップS83で出力された払出停止状態指示コマンドを受信した場合、あるいは電力供給が停止しているときに払出停止条件が成立した場合であって、電力供給が復旧した直後にCPU56からの払出停止状態指示コマンドを受信した場合(この場合、S83では、払出許可状態指示コマンドが出力される))であっても、同様に、電力供給が復旧したときに払出予定数についての払出処理が再開される。なお、電力供給が停止しているときに払出停止条件が成立した場合には、例えば電力供給が停止している最中に遊技店員が遊技球を取り除く作業を行って球切れ状態となった場合などが挙げられる。
【0357】
また、上述した図56では、払出モータ289の駆動期間に払出予定数の遊技球が払い出された場合について説明したが、例えば図58に示すように、電力供給が復旧したあとにステップS542にて設定された払出動作によって、払出個数記憶に記憶されていた未払出の賞球数(ここでは10個)のうちの一部の賞球数(ここでは5個)しか実際には払い出されなかった場合であっても、本例では、払出制御用CPU371は、払出動作期間を終了すると払出モータ289の駆動を停止させる(ステップS545,ステップS546など)。そして、払出停止状態とされているため、払い出しが行われない状態となる(ステップS533,ステップS513)。
【0358】
そして、本例では、図58に示すように、払出停止状態が解消した場合(球切れ状態や、下皿満タン状態が解消した場合)には、払出制御用CPU371は、総合個数記憶(総賞球数未払出カウンタ)に格納されている賞球個数が10個であるため(0個でないため)、賞球処理中フラグをオンして(ステップS535,ステップS536)、払出個数記憶に払出予定数として10個を設定(なお、現在までに設定されていた5個の賞球については、総合個数記憶の記憶個数に含まれているので考慮する必要はない)するとともに、10個分の遊技球を払い出すまで払出モータ289を回転させるように払出モータ289に対して駆動信号を出力するために、10個払出動作の設定を行う(ステップS537,ステップS539)。そして、10個の賞球の払出動作を実行する。
【0359】
上記のように、払出停止状態が解消したときに払出個数記憶に未払出の賞球数が記憶されていても、総合個数記憶の記憶内容に応じて払出予定数が設定されるため、迅速に払い出すことができる。すなわち、図58の例において、払出停止状態が解消したあと、払出個数記憶に記憶されていた5個の賞球を払い出す制御を行い、そのあと総合個数記憶に記憶されている未払出の賞球(この場合5個)の賞球を払い出す制御を行うのに比較して、本例のように払出停止状態が解消したときに総合個数記憶の記憶内容に応じて払い出すようにすれば、迅速に払い出すことができるようになる。
【0360】
なお、上記の実施の形態では、変動データ記憶手段としてRAMを用いた場合を示したが、変動データ記憶手段として、電気的に書き換えが可能な記憶手段であればRAM以外のものを用いてもよい。
【0361】
さらに、上記の実施の形態では、電源監視手段が電源基板910に設けられ、システムリセットのための信号を発生する回路は電気部品制御基板に設けられたが、それらがともに電気部品制御基板に設けられていてもよい。
【0362】
以上に説明したように、一単位の払い出しが完了したときに払出停止状態か否かを確認するとともに、貸し球の払出中に払出モータがオン状態でない場合には払出モータ289に貸し球個数記憶に記憶されていた未払出の貸し球数分の払出動作の設定を行う構成としたことで、一単位の貸し球の払い出しの実行中に電力供給が停止し、さらに電力供給が復旧したときに払出停止状態となっていた場合であっても、一単位の貸し球のうちの未払出分の払出制御を再開することができ、その未払出分の球貸し処理を完了したあとに払出停止状態とすることができる。従って、貸出可能な遊技球が確保されているのにもかかわらず、不必要に区切りの悪い状態で払出停止状態となることを防止することができる。
【0363】
また、以上に説明したように、一単位の払い出しが完了したときに払出停止状態か否かを確認するとともに、賞球払出中に払出モータがオン状態でない場合には払出モータ289に払出個数記憶に記憶されていた未払出の賞球数分の払出動作の設定を行う構成としたことで、一単位の賞球の払い出しの実行中に電力供給が停止し、さらに電力供給が復旧したときに払出停止状態となっていた場合であっても、一単位の賞球のうちの未払出分の払出制御を再開することができ、その未払出分の賞球の払出処理を完了したあとに払出停止状態とすることができる。従って、払出可能な遊技球が確保されているのにもかかわらず、不必要に区切りの悪い状態で払出停止状態となることを防止することができる。
【0364】
すなわち、上述した実施の形態においては、連続して払い出される一単位の遊技球の払出途中で電力供給が停止され、その後に電力供給が復旧した場合には、たとえ払出停止状態となっていても、復旧の直後に払出制御が開始され、払出予定数の遊技球を払い出すための払出処理が実行される。
【0365】
また、上述したように、遊技状態復旧処理において、主基板31が払出制御基板37に対して払出停止状態指定コマンドまたは払出可能状態指定コマンドを出力する構成としたことで、電力供給開始後に、主基板31と払出制御基板37との間で現在状況の認識の食い違いが生じてしまうことを回避することができる。その結果、適正な遊技制御をおこなうことができる。
【0366】
なお、上記の実施の形態では、電力供給開始時に、遊技制御手段が、払出制御手段に対して払出停止状態指定コマンドまたは払出可能状態指定コマンドを送信したが、他のコマンドを送信してもよい。例えば、打球操作ハンドル5による打球発射の可否や、エラーとエラー解除に関する情報などを通知する。そのように構成することで、電力供給開始後において、遊技制御手段と払出制御手段との間に、現在状況の認識の食い違いが生じてしまうことを回避することができる。その結果、適正な遊技制御をおこなうことができる。
【0367】
また、上記の実施の形態では、払出制御手段は払出停止状態指定コマンドを受信すると球貸しも賞球払出も共に停止し、払出可能状態指定コマンドに応じて球貸しも賞球払出も共に可能な状態に戻したが、賞球に関する払出停止指示と球貸しに関する払出停止指示とを別コマンドとし、賞球に関する払出停止解除指示と球貸しに関する払出停止解除指示とを別コマンドとしてもよい。そのように構成した場合には、電力供給開始後において、遊技制御手段と払出制御手段との間に、賞球停止/停止解除および球貸し停止/停止解除についての現在状況の認識の食い違いが生じてしまうことを回避することができる。
【0368】
また、この実施の形態では、停電等の発生に応じて電源断信号が出力されたら、まず、球払出装置97の駆動を停止した後、所定期間、払出検出手段からの検出信号の入力処理が実行され、その後、払出制御状態を保存するための処理が行われる。従って、停電発生時に払出途中であった遊技球も、バックアップRAMの保存内容に反映される。
【0369】
すなわち、この実施の形態では、遊技機への電力供給停止時に制御状態をバックアップ記憶手段に保存するように構成した場合に、制御の矛盾等を生じさせないようにすることができる。
【0370】
また、この実施の形態では、遊技媒体検出手段が所定の遊技媒体検出判定期間の前後において2回連続してオン検出した場合に、1個の賞球あるいは貸し球の払出を完了したと見なすようにしたので、誤ってスイッチオン検出がなされてしまうことを防止することができる。従って、電源断時における制御の適正化を図ることが可能となる。
【0371】
また、上述した実施の形態では、球貸し処理および賞球処理において、払出予定数の払出に対応した回転が完了したことが確認された場合には、払出予定数の遊技球が払い出されたか否かを確認することなく払出モータ289の駆動を終了するように構成されているので、電力供給が復旧したあとに払出途中の遊技球についての払出制御を再開した場合に、例えば準備されている遊技球が不足(例えば、電力供給が停止しているときに遊技店員が準備されている遊技球を取り除いた場合)していることなどの原因によって、払出予定数の遊技球が払い出されないために、払出制御が継続されてしまうことを防止することが可能となる。すなわち、払出予定数の払い出しが完了しないために、モータ駆動制御が延々と継続されてしまうという無駄な制御を防止することができる。
【0372】
なお、上記の実施の形態では、払出手段は球貸しも賞球払出も実行可能な構成であったが、球貸しを行う機構と賞球払出を行う機構とが独立していても本発明を適用することができる。その場合、球貸しを行う機構と賞球払出を行う機構とが独立していても、払出制御手段が両方の機構を制御するように構成されていれば、上記の実施の形態のように1つのコマンドで球貸しも賞球払出も停止/停止解除を指示するように構成することができる。
【0373】
また、上記の実施の形態では、連続的に払い出される一単位の遊技球個数のうちの未払出の遊技球個数をバックアップ記憶領域に記憶するようにしていたが、例えば、未払出の遊技球個数を払い出すための払出モータ289の動作内容(動作パターン、動作時間)についてバックアップ記憶するようにして、電力供給が復旧した場合に、バックアップ記憶されている動作内容にもとづいて払出モータ289の設定を行うようにしてもよい。
【0374】
また、上記の実施の形態では、払出停止条件が成立する場合として、球切れ状態となった場合や、下皿満タン状態となった場合を例に挙げたが、例えば、開閉可能に取り付けられたガラス扉枠2(打球供給皿3のみが開閉可能である場合には打球供給皿3)が開状態とされた場合(この場合は、即時に払出を停止することが好ましい)、カウントスイッチ23短絡などの払出制御に関わる各部の異常を検出した場合、VL信号の入力状態によりカードユニット50が未接続状態であると判定された場合、遊技球の球詰まりが発生した場合など、払出制御の障害となる場合や払出を実行しない方が良い場合に、払出停止条件が成立したと判定するようにしてもよい。
【0375】
また、パチンコ遊技機に限られず、スロット機等の他の遊技機においても、本発明を適用することができる。以下、他の遊技機の一例であるスロット機の外観構成の例について説明する。
図59はスロット機500を正面からみた正面図である。図59に示すように、スロット機500は、中央付近に遊技パネル501が着脱可能に取り付けられている。また、遊技パネル501の前面の中央付近には、複数種類の図柄が可変表示される可変表示領域502が設けられている。可変表示領域502の左側には、1枚賭けランプ503、2枚賭けランプ504および3枚賭けランプ505が設けられている。また、可変表示領域502の右側には、ゲームオーバーランプ506、リプレイランプ507、ウェイトランプ508、スタートランプ509およびメダル投入指示ランプ510が設けられている。
【0376】
可変表示領域502の下部には、それぞれ7セグメントLEDにより構成され、該当する数値がディジタル表示されるクレジット表示器511、ゲーム回数表示器512およびペイアウト表示器513が設けられている。この実施の形態では、可変表示領域502には、「左」、「中」、「右」の3つの図柄表示エリアがあり、各図柄表示エリアに対応してそれぞれ図柄表示リール514a,514b,514cが設けられている。
【0377】
遊技パネル501の下部には、遊技者が各種の操作を行うための各種入力スイッチなどが配される操作テーブル520が設けられている。操作テーブル520の奥側には、コインを1枚ずつBETする(賭ける)ためのBETスイッチ521、1ゲームで賭けることのできる最高枚数(本例では3枚)ずつコインをBETするためのMAXBETスイッチ522、精算スイッチ523、およびコイン投入口524が設けられている。コイン投入口524に投入されたコインは、図示しない投入コインセンサによって検知される。この例では、コイン投入口524からコインが投入される毎に、例えば50枚を上限として、クレジット表示器511に表示される数値を1つずつ増やす。そして、BETスイッチ521が押下されてコインが1枚BETされる毎にクレジット表示器511に表示される数値を1減らす。また、MAXBETスイッチ522が押下されてコインが3枚BETされる毎にクレジット表示器511に表示される数値を3減らす。
【0378】
操作テーブル520の手前側には、スタートスイッチ525、左リールストップスイッチ526a、中リールストップスイッチ526b、右リールストップスイッチ526cおよびコイン詰まり解消スイッチ527が設けられている。操作テーブル520の手前左右には、それぞれランプ528a,528bが設けられている。操作テーブル520の下部には、着脱可能に取付けられているタイトルパネル530が設けられている。タイトルパネル530には、スロット機の機種名称などが描かれる。タイトルパネル530の下部には、効果音などを出力するスピーカ531が設けられている。また、タイトルパネル530の下部には、内部記憶可能な数量(本例では50個)を超えたコインを貯留するコイン貯留皿532が設けられている。
【0379】
遊技パネル501の上部には、着脱可能に取付けられているパネル540が設けられている。パネル540の中央付近には、遊技者に遊技方法や遊技状態などを報知するLCD(液晶表示装置)541が設けられている。例えば、入賞発生時に、キャラクタが所定動作を行う画像をLCD541に表示することで、後述する当選フラグが設定されていることを遊技者に報知する。パネル540の上部には、各種情報を報知するためのランプ542,543,544が設けられている。また、パネル540の外側の左右には、効果音を発する2つのスピーカ545a,545bが設けられている。さらに、遊技パネル501の外側周辺には、遊技効果ランプ550,551,552,553が設けられている。
【0380】
上記のようなスロット機500においても、払出停止状態の検出に応じてコインの払い出しを禁止することを可能とするとともに、コインの払出予定数などをバックアップ記憶可能とし、払出禁止状態とされていても払出予定数のコインの払出を続行する構成とすれば、本発明を適用することができ、本発明と同様の効果を得ることができる。
【0381】
【発明の効果】
以上のように、請求項1記載の発明によれば、遊技機を、電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、払出制御手段が、記憶手段に保持されている払出予定数の遊技媒体を払い出すための制御を開始するように構成したので、遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、電力供給が開始したときに払出予定数の遊技媒体を払い出すための制御を行うことが可能となる。
【0382】
請求項2記載の発明によれば、払出準備状態検出手段が遊技媒体が所定量以上確保されていない検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされるように構成されているので、遊技媒体の不足が生じたときに遊技媒体の払い出しを禁止する判定がなされるようにすることができる。
【0383】
請求項3記載の発明によれば、貯留状態検出手段が貯留部に所定量以上の遊技媒体が貯留されている検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされるように構成されているので、貯留部に所定量以上の遊技媒体が貯留されているときに遊技媒体の払い出しを禁止する判定がなされるようにすることができる。
【0384】
請求項4記載の発明によれば、電力供給が停止する直前に状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、払出制御手段が、電力供給が開始したときには記憶手段に保持されている払出予定数の遊技媒体を払い出すための払出手段の制御を開始することが可能であるように構成されているので、電力供給が停止する直前に遊技媒体の払い出しを禁止する判定がなされる検出状態となっていた場合であっても、電力供給が開始したときに払出予定数の遊技媒体の払出制御を開始することが可能となる。
【0385】
請求項5記載の発明によれば、電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、払出制御手段が、払出予定数の遊技媒体の払出制御を行ったあと払出禁止状態とするように構成されているので、遊技媒体の払い出しを禁止する判定がなされる検出状態となっている場合であっても、電力供給が開始したときに区切りの良い状態で払出停止状態とすることができる。
【0386】
請求項6記載の発明によれば、払出制御手段が、払出予定数の遊技媒体を払い出すために払出手段を駆動する払出予定駆動期間を決定し、電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、払出制御手段が、払出予定駆動期間を終了したあとは、払出予定数分の遊技媒体が遊技媒体検出手段によって検出されたか否かに関わらず払出禁止状態とするように構成されているので、遊技媒体が払い出されないにもかかわらず無駄に払出制御が継続されることを防止することができる。
【0387】
請求項7記載の発明によれば、払出制御手段が、払出許可状態信号または払出禁止状態信号の受信に応じて払出手段を制御するように構成されているので、遊技制御手段と払出制御手段との間の認識の食い違いを防止することができる。
【0388】
請求項8記載の発明によれば、遊技制御手段が、遊技機への電力供給が停止していても電力供給が停止する際に払い出しを禁止する状態であったか否かを記憶する払出状態記憶を保持可能であり、電力供給が開始した場合には、払出状態記憶の記憶内容にもとづいて払出許可状態信号または払出禁止状態信号を払出制御手段に送信するように構成されているので、電力供給が開始した場合においても、遊技制御手段と払出制御手段との間の認識の食い違いを防止することができる。
【0389】
請求項9記載の発明によれば、払出制御手段が、遊技機への電力供給が停止していても電力供給が停止する際に払出可能な状態であったか否かを記憶する払出制御状態記憶を保持可能であるように構成されているので、電力供給が開始した場合に払出制御状態記憶の記憶内容に応じて払出制御状態を復旧することが可能となる。
【0390】
請求項10記載の発明によれば、払出予定数は、払出手段により払い出されるべき遊技媒体の総数のうち、払出手段が一回の連続した払出動作により払い出す数として設定した数のうちの未払出数であるように構成されているので、電力供給が開始したときに区切り良く払い出すことが可能となる。
【0391】
請求項11記載の発明によれば、払出予定数が、入賞の発生に応じて設定された賞遊技媒体の未払出数であるとされているので、賞遊技媒体の払い出しに関わる適正な制御を行うことが可能となる。
【0392】
請求項12記載の発明によれば、払出制御手段が、賞遊技媒体数データの受信に応じて払出予定数を決定するように構成されているので、容易に払出予定数を決定することが可能となる。
【0393】
請求項13記載の発明によれば、入賞の発生に応じて設定された払出予定数を、複数の入賞に対応した数に設定可能であるように構成されているので、賞遊技媒体の払い出しの迅速化を図ることができる。
【0394】
請求項14記載の発明によれば、払出予定数が、貸出要求に応じて設定された貸出遊技媒体の未払出数であるとされているので、貸出遊技媒体の払い出しに関わる適正な制御を行うことが可能となる。
【図面の簡単な説明】
【図1】 パチンコ遊技機を正面からみた正面図である。
【図2】 ガラス扉枠を取り外した状態での遊技盤の前面を示す正面図である。
【図3】 遊技機を裏面から見た背面図である。
【図4】 各種部材が取り付けられた機構板を遊技機背面側から見た背面図である。
【図5】 球払出装置の構成例を示す分解斜視図である。
【図6】 遊技制御基板(主基板)の回路構成例を示すブロック図である。
【図7】 払出制御基板の回路構成例を示すブロック図である。
【図8】 電源基板の回路構成例を示すブロック図である。
【図9】 電源監視および電源バックアップのためのCPU周りの一構成例を示すブロック図である。
【図10】 入力ポートのビット割り当ての一例を示す説明図である。
【図11】 主基板におけるCPUが実行するメイン処理を示すフローチャートである。
【図12】 バックアップフラグと遊技状態復旧処理を実行するか否かとの関係の一例を示す説明図である。
【図13】 遊技状態復旧処理を示すフローチャートである。
【図14】 2msタイマ割込処理を示すフローチャートである。
【図15】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図16】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図17】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図18】 検出信号の入力処理が実行される様子の一例を示すタイミング図である。
【図19】 チェックサム作成方法の一例を説明するための説明図である。
【図20】 遊技機への電力供給停止時の電源低下やNMI信号の様子を示すタイミング図である。
【図21】 RAMにおけるスイッチタイマの形成例を示す説明図である。
【図22】 スイッチ処理の一例を示すフローチャートである。
【図23】 スイッチチェック処理の一例を示すフローチャートである。
【図24】 賞球処理の一例を示すフローチャートである。
【図25】 賞球処理の一例を示すフローチャートである。
【図26】 賞球処理の一例を示すフローチャートである。
【図27】 スイッチオンチェック処理を示すフローチャートである。
【図28】 入力判定値テーブルの構成例を示す説明図である。
【図29】 コマンド送信テーブル等の一構成例を示す説明図である。
【図30】 制御コマンドのコマンド形態の一例を示す説明図である。
【図31】 制御コマンドを構成する8ビットの制御信号とINT信号との関係を示すタイミング図である。
【図32】 払出制御コマンドの内容の一例を示す説明図である。
【図33】 コマンドセット処理の処理例を示すフローチャートである。
【図34】 コマンド送信処理ルーチンを示すフローチャートである。
【図35】 電源監視および電源バックアップのための払出制御用CPU周りの一構成例を示すブロック図である。
【図36】 入力ポートのビット割り当ての一例を示す説明図である。
【図37】 払出制御基板におけるCPUが実行するメイン処理を示すフローチャートである。
【図38】 2msタイマ割込処理を示すフローチャートである。
【図39】 払出状態復旧処理を示すフローチャートである。
【図40】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図41】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図42】 マスク不能割込処理(電力供給停止時処理)を示すフローチャートである。
【図43】 払出制御手段におけるRAMの一構成例を示す説明図である。
【図44】 受信コマンドバッファの一構成例を示す説明図である。
【図45】 払出制御用CPUのコマンド受信処理の例を示すフローチャートである。
【図46】 スイッチ処理の例を示すフローチャートである。
【図47】 払出停止状態設定処理の例を示すフローチャートである。
【図48】 コマンド解析実行処理の例を示すフローチャートである。
【図49】 プリペイドカードユニット制御処理の例を示すフローチャートである。
【図50】 球貸し制御処理の例を示すフローチャートである。
【図51】 球貸し制御処理の例を示すフローチャートである。
【図52】 賞球制御処理の例を示すフローチャートである。
【図53】 賞球制御処理の例を示すフローチャートである。
【図54】 貸し球の払出処理の例を示すタイミングチャートである。
【図55】 貸し球の払出処理の他の例を示すタイミングチャートである。
【図56】 賞球の払出処理の例を示すタイミングチャートである。
【図57】 賞球の払出処理の他の例を示すタイミングチャートである。
【図58】 賞球の払出処理のさらに他の例を示すタイミングチャートである。
【図59】 スロット機を正面から見た構成の例を示す正面図である。
【符号の説明】
1 パチンコ遊技機
31 主基板
37 払出制御基板
53 基本回路
55 RAM(変動データ記憶手段)
56 CPU
371 払出制御用CPU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gaming machine such as a pachinko gaming machine or a slot machine capable of playing a game using a gaming medium.
[0002]
[Prior art]
As a gaming machine, a game medium such as a game ball is launched into a game area by a launching device, and when a game medium wins a prize area such as a prize opening provided in the game area, a predetermined number of prize balls are paid out to the player. There is something to be done. The game medium is paid out by a payout mechanism. In addition, the player inserts a prepaid card or the like into the card insertion slot, for example, and receives a rental game ball. The payout mechanism of the gaming machine detects card insertion and pays out a predetermined number of game balls to the player.
[0003]
Since the payout mechanism is generally controlled by payout control means mounted on the payout control board, game ball lending control is also executed by the payout control means. Since the progress of the game is controlled by the game control means mounted on the main board, the payout stop due to the ball running out is determined by the game control means and transmitted to the payout control board. Accordingly, when a ball break occurs, the payout control means performs payout stop control.
[0004]
[Problems to be solved by the invention]
If there is a payout request exceeding the number of game media being stocked, the ball may be out of play. If the supply of power to the gaming machine stops while paying out the number of game balls of one unit, the remaining game balls that were in the process of paying out may not be paid out even if the out-of-ball state is released . In such a case, the gaming machine may be configured to back up predetermined information in the payout control means when power supply to the gaming machine is stopped. In such a gaming machine, when the power supply is restored after the power supply to the gaming machine is stopped, the payout control means can resume the payout of the game ball based on the power-backed up information.
[0005]
However, if the ball runs out immediately before the previous power supply stops and the payout is prohibited, or if the ball is out of power while the power supply is stopped (for example, in the inspection by a game clerk, In the case where the ball has been removed), etc., since the payout is prohibited when the power supply is restored, the remaining unpaid remaining of one unit of game balls that are continuously paid out Game balls are not paid out even if the power supply is restored. Therefore, a state in which the payout is stopped in a poorly separated state where only a part of the game balls to be continuously paid out is paid out is maintained. The same applies not only when the ball is out of play but also when the payout is stopped due to other causes.
[0006]
Therefore, the present invention is for interrupting payout of game media in a well-delimited state even when the payout is prohibited when the power supply is recovered after the power supply is stopped in the middle of payout. An object is to provide a gaming machine capable of performing payout control.
[0007]
[Means for Solving the Problems]
A gaming machine according to the present invention is a gaming machine capable of performing a predetermined game using a game medium, based on a payout means capable of paying out the game medium and a predetermined payout condition. A payout control means for controlling the game medium to be paid out by the payout means, a state detection means for outputting a detection signal used to determine whether or not to pay out the game medium, and power supply to the gaming machine. Storage means that retains the stored content for a predetermined period even if it is stopped, the stored content of the storage means includes the scheduled payout number of game media to be paid out by the payout means, and when power supply starts Even if the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out, the payout control means starts control for paying out the expected number of game media held in the storage means. This The features.
[0008]
The state detection means includes a payout preparation state detection means for detecting whether or not a predetermined amount or more of game media that can be paid out by the payout means is secured, and the payout preparation state detection means secures a predetermined amount or more of game media. It may be configured to make a determination to prohibit the payout of the game medium on the condition that the detected state is not.
[0009]
The state detection means includes a storage state detection means for detecting whether or not a predetermined amount or more of the game medium is stored in the storage portion where the game medium paid out from the payout means is stored, and the storage state detection means However, the determination may be made to prohibit the payout of game media on the condition that a predetermined amount or more of game media is stored in the storage unit.
[0010]
Even if the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out immediately before the power supply is stopped, the payout control means holds the number of payouts held in the storage means when the power supply starts. It may be configured to be able to start control of a payout means for paying out the game media.
[0011]
When the power supply is started, if the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out, the payout control means performs the payout control after performing the payout control of the number of game media to be paid out. You may be comprised so that it may be set as a state.
[0012]
A game medium detecting means capable of detecting the game medium paid out by the payout means, wherein the payout control means determines a payout scheduled drive period for driving the payout means to pay out the expected number of game media, and When the supply is started and the state detection means is in a detection state in which it is determined that the game medium is prohibited from being paid out, after the payout control means ends the payout scheduled drive period, the number of games to be paid out Regardless of whether the medium is detected by the game medium detecting means, the payout prohibition state may be set.
[0013]
It has a game control means for controlling the progress of the game, the detection signal of the state detection means is input to the game control means, and the game control means indicates that the payout is permitted based on the input of the detection signal of the state detection means A payout permission state signal or a payout prohibition state signal indicating prohibition of payout is transmitted, and the payout control means is configured to control the payout means in response to reception of the payout permission state signal or the payout prohibition state signal. Also good.
[0014]
Even if the power supply to the gaming machine is stopped, the game control means can hold a payout state memory for storing whether or not the payout is prohibited when the power supply is stopped, and the power supply is started. In this case, the payout permission state signal or the payout prohibition state signal may be transmitted to the payout control means based on the stored contents of the payout state memory.
[0015]
The payout control means is configured to be capable of holding a payout control state memory for storing whether or not the power supply to the gaming machine is in a payable state when the power supply is stopped even if the power supply to the gaming machine is stopped. Also good.
[0016]
The planned payout number is preferably the number of unpaid out of the total number of game media to be paid out by the payout means, which is set as the number of payout means paid out by one continuous payout operation.
[0017]
The number of payouts is, for example, the number of unpaid award game media set according to the occurrence of a prize.
[0018]
In addition to controlling the progress of the game, the game control means for transmitting the award game medium number data to be paid out in accordance with the occurrence of a prize to the payout control means, the payout control means responding to the reception of the award game medium number data. It may be configured to determine the number of payouts.
[0019]
The planned number of payouts set according to the occurrence of a winning may be configured to be set to a number corresponding to a plurality of winnings.
[0020]
The number of payouts is, for example, the number of payouts of loaned game media set in response to a loan request.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, the overall configuration of a pachinko gaming machine that is an example of a gaming machine will be described. FIG. 1 is a front view of a pachinko gaming machine as viewed from the front, and FIG. 2 is a front view showing the front of the game board with the glass door frame removed. In the following embodiments, a pachinko gaming machine will be described as an example. However, the gaming machine according to the present invention is not limited to a pachinko gaming machine, and may be, for example, a slot machine. It can also be applied to image-type gaming machines.
[0022]
The pachinko gaming machine 1 includes an outer frame (not shown) formed in a vertically long rectangular shape, and a game frame attached to the inside of the outer frame so as to be opened and closed. Further, the pachinko gaming machine 1 has a glass door frame 2 formed in a frame shape that is provided in the game frame so as to be opened and closed. The game frame includes a front frame (not shown) installed to be openable and closable with respect to the outer frame, a mechanism plate to which mechanism parts and the like are attached, and various parts attached to them (excluding a game board described later). Is a structure including
[0023]
As shown in FIG. 1, the pachinko gaming machine 1 has a glass door frame 2 formed in a frame shape. On the lower surface of the glass door frame 2 is a hitting ball supply tray (upper plate) 3. Under the hitting ball supply tray 3, an extra ball receiving tray 4 for storing game balls that cannot be accommodated in the hitting ball supply tray 3 and a hitting operation handle (operation knob) 5 for firing the hitting ball are provided. A game board 6 is detachably attached to the back surface of the glass door frame 2. The game board 6 is a structure including a plate-like body constituting the game board 6 and various components attached to the plate-like body. A game area 7 is formed on the front surface of the game board 6.
[0024]
Near the center of the game area 7, there is provided a variable display device (special symbol display device) 9 including a plurality of variable display portions each variably displaying a symbol as identification information. The variable display device 9 has, for example, three variable display portions (symbol display areas) of “left”, “middle”, and “right”. A start winning opening 14 is provided below the variable display device 9. The winning ball that has entered the start winning opening 14 is guided to the back of the game board 6 and detected by the start opening switch 14a. A variable winning ball device 15 that opens and closes is provided below the start winning opening 14. The variable winning ball device 15 is opened by a solenoid 16.
[0025]
An open / close plate 20 that is opened by a solenoid 21 in a specific gaming state (big hit state) is provided below the variable winning ball device 15. The opening / closing plate 20 is a means for opening and closing the special winning opening. Of the winning balls guided from the opening / closing plate 20 to the back of the game board 6, the winning ball entering one (V winning area) is detected by the V winning switch 22, and the winning ball from the opening / closing plate 20 is detected by the count switch 23. Is done. On the back of the game board 6, a solenoid 21A for switching the route in the special winning opening is also provided. Further, a start memory display 18 having four display units for displaying the number of effective winning balls that have entered the start winning opening 14, that is, the start memory number, is provided at the bottom of the variable display device 9. In this example, with the upper limit being four, every time there is an effective start winning, the start memory display 18 increases the number of lit display sections one by one. Then, each time the variable display of the variable display device 9 is started, the lit display portion is reduced by one.
[0026]
When a game ball wins the gate 32, variable display of the display of the normal symbol display 10 by 7 segment LED is started. When the stop symbol on the normal symbol display 10 is a predetermined symbol (winning symbol), the variable winning ball device 15 is opened for a predetermined number of times. In the vicinity of the normal symbol display 10, a normal symbol start memory display 41 having four display units for displaying the number of winning balls that have entered the gate 32 is provided. In this example, with the upper limit of four, every time there is a prize at the gate 32, the normal symbol start memory display 41 increases the number of display units that are lit one by one. Each time the opening control of the variable winning ball apparatus 15 is performed, the number of lit display units is reduced by one.
[0027]
The game board 6 is provided with a plurality of winning holes 24, 29, 30, 33, and winning of game balls to the winning holes 24, 29, 30, 33 is performed by winning port switches 24a, 29a, 30a, 33a, respectively. Detected. Decorative lamps 25 blinking during the game are provided around the left and right sides of the game area 7, and an outlet 26 for absorbing a hit ball that has not won a prize is provided below. Two speakers 27 that emit sound effects are provided on the left and right upper portions outside the game area 7. On the outer periphery of the game area 7, a top frame lamp 28a, a left frame lamp 28b, and a right frame lamp 28c are provided. Further, a decoration LED is installed around each structure (such as a big prize opening) in the game area 7.
[0028]
In this example, a prize ball lamp 51 that is turned on when there is a remaining number of prize balls is provided in the vicinity of the left frame lamp 28b, and a ball that is turned on in the vicinity of the top frame lamp 28a when the supply ball is cut. A cut lamp 52 is provided. Further, FIG. 1 also shows a card unit 50 that is installed adjacent to the pachinko gaming machine 1 and enables lending of a ball by inserting a prepaid card.
[0029]
The card unit 50 has a usable indicator lamp 151 indicating whether or not it is in a usable state, and when the remaining amount information recorded in the card has a fraction (a number less than 100 yen), the fraction is indicated as a hitting tray. 3, a fraction display switch 152 for displaying on a frequency display LED provided in the vicinity of 3, a connecting table direction indicator 153 indicating which side of the pachinko gaming machine 1 corresponds to the card unit 50, in the card unit 50 Check the card insertion indicator lamp 154 indicating that a card is inserted, the card insertion slot 155 into which a card as a recording medium is inserted, and the mechanism of the card reader / writer provided on the back of the card insertion slot 155. In some cases, a card unit lock 156 is provided for releasing the card unit 50.
[0030]
A game ball launched from the ball striking device enters the game area 7 through the hit ball rail, and then descends the game area 7. When the hit ball enters the start winning opening 14 and is detected by the start opening switch 14a, the variable display device 9 starts variable display (variation) if the variable display of the symbol can be started. If the variable display of the symbol cannot be started, the start memory number is increased by one.
[0031]
The variable display of the special symbol on the variable display device 9 stops when a certain time has elapsed. If the combination of special symbols at the time of stop is a combination of jackpot symbols, the game shifts to a jackpot gaming state. That is, the opening / closing plate 20 is opened until a predetermined time elapses or a predetermined number (for example, 10) of hit balls wins. When the hit ball enters the V winning area while the opening / closing plate 20 is opened and is detected by the V winning switch 22, a continuation right is generated and the opening / closing plate 20 is opened again. The generation of the continuation right is allowed a predetermined number of times (for example, 15 rounds).
[0032]
When the combination of special symbols in the variable display device 9 at the time of stoppage is a combination of jackpot symbols with probability fluctuations, the probability of the next jackpot increases. That is, it becomes a more advantageous state for the player in a high probability state.
[0033]
When the hit ball wins the gate 32, the display number as the normal symbol on the normal symbol display 10 is continuously changed. Further, when the stop symbol on the normal symbol display 10 is a predetermined symbol (winning symbol), the variable winning ball device 15 is opened for a predetermined time. Further, in the high probability state, the probability that the stop symbol in the normal symbol display 10 becomes a winning symbol is increased, and the opening time and the number of times of opening of the variable winning ball device 15 are increased.
[0034]
Next, the structure of the back surface of the pachinko gaming machine 1 will be described with reference to FIG. 3 and FIG. FIG. 3 is a rear view of the gaming machine as seen from the back side. FIG. 4 is a rear view of the mechanism plate to which various members are attached as viewed from the back side of the gaming machine.
[0035]
As shown in FIG. 3, on the back side of the gaming machine, a game control board (main board) 31 on which a variable display control unit 49 including a symbol control board 80 for controlling the variable display device 9, a game control microcomputer, and the like are mounted. Is installed. In addition, a payout control board 37 on which a payout control microcomputer for performing ball payout control is mounted is installed. Further, various decoration LEDs provided on the game board 6, special symbol start memory display 18 and normal symbol start memory display 41, decoration lamp 25, top frame lamp 28a provided on the frame side, left frame lamp 28b. , A lamp control board 35 on which lamp control means for controlling lighting of the right frame lamp 28c, the winning ball lamp 51 and the off-ball lamp 52 is mounted, and a sound control board on which sound control means for controlling sound generation from the speaker 27 is mounted 70 is also provided. Further, a power supply board 910 and a launch control board 91 on which a power supply circuit for creating DC30V, DC21V, DC12V, and DC5V is mounted are provided.
[0036]
On the back side of the gaming machine, a terminal board 160 provided with terminals for outputting various information to the outside of the gaming machine is installed above. The terminal board 160 has at least a ball break terminal for introducing the detection output of the game medium cut detection means and outputting it externally, a prize ball terminal for outputting a prize ball number signal and a ball lending number signal. A ball lending terminal for external output is provided. In addition, an information terminal board 34 having terminals for outputting various information from the main board 31 to the outside of the gaming machine is installed near the center.
[0037]
Furthermore, for clearing backup data stored in storage content holding means (for example, a backup RAM capable of holding the contents even when power supply is stopped) included in each board (main board 31 and payout control board 37). A switch board 190 on which a clear switch 921 as initialization operation means is mounted is provided. The switch board 190 is provided with a clear switch 921 and a connector 922 connected to another board such as the main board 31.
[0038]
The game balls stored in the storage tank 38 pass through the guide rail 39 and, as shown in FIG. 4, reach the ball payout device covered with the prize ball case 40A through the curve rod 186. A ball break switch 187 as a game medium break detection means is provided on the upper part of the ball payout device. When the ball break switch 187 detects a ball break, the dispensing operation of the ball dispensing device stops. The ball break switch 187 is a switch for detecting the presence or absence of a game ball in the game ball passage, but the ball break detection switch 167 for detecting the shortage of supply balls in the storage tank 38 is also an upstream portion (storage tank 38). In the vicinity of the head). When the ball break detection switch 167 detects the shortage of game balls, the game machine is replenished to the game machine from the supply mechanism provided on the gaming machine installation island.
[0039]
The ball break switch 187 is locked at a position where it can be detected that about 27 to 28 game balls are present in the payout ball passage leading to the ball payout device. In other words, the ball break switch 187 has a maximum payout amount per unit of prize balls (25 in this embodiment) and a maximum payout amount per unit of ball lending (100 yen: 25 in this embodiment). It is installed in a position where it can be confirmed that it is secured. In this embodiment, the number of game balls that have not been paid out among the game balls of the payout amount set as one unit is referred to as a planned payout number.
[0040]
The game ball paid out from the ball payout device is guided to the hitting ball supply tray 3 provided on the front surface of the pachinko gaming machine 1 through the connection port 45. A surplus ball passage 46 communicating with the surplus ball receiving tray 4 provided on the front surface of the pachinko gaming machine 1 is formed on the side of the communication port 45.
[0041]
A large number of game balls as prizes based on winning prizes and game balls based on ball lending requests are paid out and the hitting ball supply tray 3 becomes full, and finally game balls are paid out after the game balls reach the contact port 45. The game ball is guided to the surplus ball receiving tray 4 through the surplus ball passage 46. Further, when the game ball is paid out, the sensing lever 47 presses the full tank switch 48 as the storage state detection means, and the full tank switch 48 as the storage state detection means is turned on. In this state, the rotation of the payout motor in the ball payout device stops, the operation of the ball payout device stops, and the drive of the launching device also stops.
[0042]
As shown in FIG. 4, a ball removal passage 191 is formed on the side of the ball payout device from the curve rod 186 to the discharge port 192 at the lower part of the gaming machine. A ball removal lever 193 is provided above the ball removal passage 191. When the ball removal lever 193 is operated by a game clerk or the like, a game ball passage from the guide rail 39 to the ball removal passage 191 is formed, and the storage tank 38 is provided. The game balls stored inside are discharged from the discharge port 192 to the outside of the gaming machine.
[0043]
FIG. 5 is an exploded perspective view showing a configuration example of the ball dispensing device 97. In this example, a ball payout device 97 is formed inside three cases 140, 141, 142 as the prize ball case 40A. The upper portions of the cases 140 and 141 are provided with holes 170 and 171 communicating with the lower ball passage of the ball break switch 187, and the game balls flow into the ball dispensing device 97 through the holes 170 and 171.
[0044]
The ball payout device 97 includes a payout motor (for example, a stepping motor) 289 serving as a drive source. The rotational force of the payout motor 289 is transmitted to the gear 290 fitted to the rotation shaft of the payout motor 289, and further transmitted to the gear 291 that meshes with the gear 290. A sprocket 292 having a recess is fitted to the central axis of the gear 291. The game balls that have flowed in from the holes 170 and 171 are dropped one by one into the ball passage 293 below the sprocket 292 by the recess of the sprocket 292.
[0045]
The ball passage 293 is provided with a sorting member 311 for switching the flow path of the game balls. The distribution member 311 is driven by the solenoid 310, and when the winning ball is paid out, the game ball falls down so that the game ball flows down one flow path in the ball passage 293, and when the ball is lent, the game ball flows down the other flow path in the ball passage 293. To fall down. The payout motor 289 and the solenoid 310 are controlled by a payout control CPU mounted on the payout control board 37. The payout control CPU controls the payout motor 289 and the solenoid 310 in accordance with a command from the game control CPU mounted on the main board 31.
[0046]
A prize ball sensor (prize ball count switch) 301A for detecting a game ball paid out by the ball payout device is provided below the flow path selected at the time of paying out the winning ball, and below the flow path selected at the time of lending the ball. Is provided with a ball lending sensor (ball lending count switch) 301B for detecting a game ball paid out by the ball paying device. The detection signal of the winning ball count switch 301A and the detection signal of the ball lending count switch 301B are input to the payout control CPU of the payout control board 37. The payout control CPU counts the number of game balls actually paid out based on these detection signals.
[0047]
FIG. 6 is a block diagram illustrating an example of a circuit configuration in the main board 31. 6 also shows a payout control board 37, a lamp control board 35, a sound control board 70, a launch control board 91, and a symbol control board 80. The main board 31 includes a basic circuit 53 for controlling the pachinko gaming machine 1 according to a program, a gate switch 32a, a start port switch 14a, a V winning switch 22, a count switch 23, winning port switches 24a, 29a, 30a, 33a, A switch circuit 58 for supplying signals from the tongue switch 48, the ball break switch 187, the prize ball count switch 301A and the clear switch 921 to the basic circuit 53, a solenoid 16 for opening and closing the variable winning ball apparatus 15, and a solenoid for opening and closing the opening and closing plate 20. 21 and a solenoid circuit 59 for driving a solenoid 21A for switching a route in the special winning opening in accordance with a command from the basic circuit 53 is mounted.
[0048]
Although not shown in FIG. 6, the count switch short-circuit signal is also transmitted to the basic circuit 53 via the switch circuit 58. Further, the gate switch 32a, the start port switch 14a, the V winning switch 22, the count switch 23, the winning port switches 24a, 29a, 30a and 33a, the full switch 48, the ball running switch 187, the winning ball count switch 301A, etc. Also, what is called a sensor may be used. That is, the name of the game medium detection means is not limited as long as it is a game medium detection means (game ball detection means in this example) that can detect a game ball.
[0049]
Further, according to the data given from the basic circuit 53, the jackpot information indicating the occurrence of the jackpot, the effective starting information indicating the number of starting winning balls used for starting the variable display of the symbols in the variable display device 9, the probability variation has occurred. An information output circuit 64 for outputting an information output signal such as probability variation information indicating the above to an external device such as a hall computer is mounted.
[0050]
The basic circuit 53 includes a ROM 54 for storing a game control program, a RAM 55 as a storage means (variation data storage means) used as a work data area (work area) and a stack area (evacuation area), and a control operation according to the program. CPU 56 and I / O port unit 57 are included. In this embodiment, the ROM 54 and RAM 55 are built in the CPU 56. That is, the CPU 56 is a one-chip microcomputer. The one-chip microcomputer only needs to incorporate at least the RAM 55, and the ROM 54 and the I / O port unit 57 may be externally attached or built-in.
[0051]
Further, a part or all of the RAM (may be a CPU built-in RAM) 55 is a backup RAM that is backed up by a backup power source created in the power supply substrate 910. That is, even if the power supply to the gaming machine is stopped, a part or all of the contents of the RAM 55 is saved for a predetermined period.
[0052]
A ball hitting device for hitting and launching a game ball is driven by a drive motor 94 controlled by a circuit on the launch control board 91. Then, the driving force of the drive motor 94 is adjusted according to the operation amount of the operation knob 5. That is, the circuit on the firing control board 91 is controlled so that the hit ball is fired at a speed corresponding to the operation amount of the operation knob 5.
[0053]
In this embodiment, the lamp control means mounted on the lamp control board 35 controls the display of the start memory display 18, the normal symbol start memory display 41 and the decoration lamp 25 provided on the game board. In addition, display control of the top frame lamp 28a, the left frame lamp 28b, the right frame lamp 28c, the prize ball lamp 51, and the ball-out lamp 52 provided on the frame side is performed. In addition, display control of the variable display device 9 for variably displaying the special symbol and the normal symbol display 10 for variably displaying the normal symbol is performed by display control means mounted on the symbol control board 80.
[0054]
FIG. 7 is a block diagram showing components related to payout, such as components of the payout control board 37 and the ball payout device 97. As shown in FIG. 7, the detection signal from the full switch 48 is input to the I / O port portion 57 of the main board 31 via the relay board 71. The detection signal from the ball break switch 187 is also input to the I / O port portion 57 of the main board 31 through the relay board 72 and the relay board 71.
[0055]
The CPU 56 of the main board 31 should stop paying out when the detection signal from the ball-off switch 187 indicates a ball-out state, or when the detection signal from the full-tan switch 48 indicates a full-up state. A payout control command is sent to instruct that this is the case. When receiving a payout control command instructing that payout should be stopped, the payout control CPU 371 of the payout control board 37 stops the ball payout process.
[0056]
Further, the detection signal from the prize ball count switch 301A is input to the I / O port portion 57 of the main board 31 via the relay board 72 and the relay board 71, and also from the payout control board 37 via the relay board 72. Input to the input port 372b. The prize ball count switch 301A is provided in a payout mechanism portion of the ball payout device 97, and detects a prize ball payout ball actually paid out.
[0057]
When there is a winning, a payout control command indicating the number of winning balls is input to the payout control board 37 from the output ports (ports 0, 1) 570, 571 of the main board 31. The output port (output port 1) 571 outputs 8-bit data, and the output port 570 outputs a 1-bit INT signal. A payout control command indicating the number of winning balls is input to the I / O port 372a via the input buffer circuit 373A. The INT signal is input to the interrupt terminal of the payout control CPU 371 via the input buffer circuit 373B. The payout control CPU 371 inputs a payout control command via the I / O port 372a, and drives the ball payout device 97 in accordance with the payout control command to perform prize ball payout. In this embodiment, the payout control CPU 371 is a one-chip microcomputer and incorporates at least a RAM.
[0058]
In the main board 31, buffer circuits 620 and 68A are provided outside the output ports 570 and 571. As the buffer circuits 620 and 68A, for example, general-purpose CMOS-ICs 74HC250 and 74HC14 are used. According to such a configuration, since a signal input from the outside to the inside of the main board 31 is blocked, it is possible to more reliably eliminate a signal line from which a signal may be given from the payout control board 37 to the main board 31. be able to. A noise filter may be provided on the output side of the buffer circuits 620 and 68A.
[0059]
The payout control CPU 371 outputs a ball lending number signal indicating the number of lending balls to the terminal board 160 via the output port 372c. Further, an error signal is output to the error display LED 374 via the output port 372d.
[0060]
Further, a detection signal from the payout motor position sensor for detecting the rotational position of the ball lending count switch 301B and the payout motor 289 is input to the input port 372b of the payout control board 37 via the relay board 72. . The ball lending count switch 301B is provided in a payout mechanism portion of the ball payout device 97, and detects a lending ball actually paid out. The drive signal from the payout control board 37 to the payout motor 289 is transmitted to the payout motor 289 in the payout mechanism portion of the ball payout device 97 via the output port 372c and the relay board 72, and the drive signal to the sorting solenoid 310 is transmitted. Is transmitted to the sorting solenoid 310 in the payout mechanism portion of the ball payout device 97 via the output port 372e and the relay board 72. The output of the clear switch 921 is also input to the input port 372b.
[0061]
The card unit 50 is equipped with a card unit control microcomputer. Further, the card unit 50 is provided with a fraction display switch 152, a connecting table direction indicator 153, a card insertion display lamp 154, and a card insertion slot 155 (see FIG. 1). The balance display board 74 is connected with a frequency display LED, a ball lending switch, and a return switch provided in the vicinity of the hitting ball supply tray 3.
[0062]
A ball lending switch signal and a return switch signal are given from the balance display board 74 to the card unit 50 via the payout control board 37 in accordance with the player's operation. Further, a card balance display signal indicating a prepaid card balance and a ball lending display signal are given to the balance display board 74 from the card unit 50 via the payout control board 37. Between the card unit 50 and the payout control board 37, a connection signal (VL signal), a unit operation signal (BRDY signal), a ball lending request signal (BRQ signal), a ball lending completion signal (EXS signal) and a pachinko machine operation signal ( PRDY signal) is exchanged via the input port 372b and the output port 372e.
[0063]
When the power of the pachinko gaming machine 1 is turned on, the payout control CPU 371 of the payout control board 37 outputs a PRDY signal to the card unit 50. The card unit control microcomputer outputs a VL signal. The payout control CPU 371 determines the connected / unconnected state based on the input state of the VL signal. When a card is received in the card unit 50, the ball lending switch is operated and a ball lending switch signal is input, the card unit control microcomputer outputs a BRDY signal to the payout control board 37. When a predetermined delay time elapses from this point, the card unit control microcomputer outputs a BRQ signal to the payout control board 37.
[0064]
Then, the payout control CPU 371 of the payout control board 37 raises the EXS signal to the card unit 50, and when detecting the fall of the BRQ signal from the card unit 50, drives the payout motor 289 to draw a predetermined number of rental balls. Pay to the player. At this time, the sorting solenoid 310 is in a driving state. That is, the ball distribution member 311 is directed to the ball lending side. When the payout is completed, the payout control CPU 371 causes the EXS signal to the card unit 50 to fall. Thereafter, if the BRDY signal from the card unit 50 is not on, prize ball payout control is executed.
[0065]
As described above, all signals from the card unit 50 are input to the payout control board 37. Accordingly, with respect to the ball lending control, no signal is input from the card unit 50 to the main board 31, and there is no room for an illegal signal input from the card unit 50 side to the basic circuit 53 of the main board 31. The power supply voltage AC24V used in the card unit 50 is supplied from the payout control board 37.
[0066]
In this embodiment, a power-off signal is also input from the power supply board 910 to the payout control board 37. The power-off signal is input to a non-maskable interrupt (NMI) terminal of the payout control CPU 371. Furthermore, at least a part of the RAM (may be a CPU built-in RAM) present on the payout control board 37 is backed up by a backup power source created on the power board 910. That is, even if the power supply to the gaming machine is stopped, at least a part of the contents of the RAM is stored for a predetermined period.
[0067]
In this embodiment, the case where the card unit 50 is installed adjacent to the gaming machine as a separate body from the gaming machine is taken as an example, but the card unit 50 may be integrated with the gaming machine. . Further, the present invention can be applied even in the case where game balls corresponding to the amount of money are lent out in accordance with coin insertion.
[0068]
FIG. 8 is a block diagram illustrating a configuration example of the power supply substrate 910. The power supply board 910 is installed independently of the electric part control boards such as the main board 31, the symbol control board 80, the sound control board 70, the lamp control board 35, and the payout control board 37, and each electric part control board in the gaming machine and Generates voltage used by mechanical components. In this example, AC24V, VSL (DC + 30V), DC + 21V, DC + 12V, and DC + 5V are generated. Further, a capacitor 916 serving as a backup power source, that is, a memory holding means, is charged from a line of power source for driving DC + 5V, that is, an IC on each substrate. Note that VSL is generated by rectifying and boosting AC24V with a rectifier element in the rectifier circuit 912. VSL is a solenoid driving power source.
[0069]
The transformer 911 converts AC voltage from the AC power source into 24V. The AC 24V voltage is output to the connector 915. The rectifier circuit 912 also generates a DC voltage of +30 V from AC 24 V and outputs it to the DC-DC converter 913 and the connector 915. The DC-DC converter 913 includes one or a plurality of converter ICs 922 (only one is shown in FIG. 8), generates + 21V, + 12V, and + 5V based on VSL and outputs the generated voltages to the connector 915. A relatively large capacitor 923 is connected to the input side of the converter IC 922. Accordingly, when the power supply to the gaming machine from the outside is stopped, the DC voltage such as + 30V, + 12V, + 5V, etc., decreases relatively slowly. The connector 915 is connected to, for example, a relay board, and power of a voltage necessary for each electric component control board and the mechanism component is supplied from the relay board.
[0070]
However, each connector reaching each electric component control board may be provided on the power supply board 910 to supply each voltage from the power supply board 910 to each board without going through the relay board. Further, although one connector 915 is representatively shown in FIG. 8, the connector is provided for each electrical component control board.
[0071]
The + 5V line from the DC-DC converter 913 branches to form a backup + 5V line. A large-capacitance capacitor 916 is connected between the backup + 5V line and the ground level. The capacitor 916 has a storage state with respect to the backup RAM of the electrical component control board when the power supply to the gaming machine is stopped (a RAM that is backed up by power, that is, a backup storage unit that can be in a storage content holding state even when the power supply is stopped). It becomes a backup power supply that supplies power so that it can be maintained. Further, a backflow preventing diode 917 is inserted between the + 5V line and the backup + 5V line. In this embodiment, +5 V for backup is supplied to the main board 31 and the payout control board 37.
[0072]
The power supply board 910 is equipped with a power supply monitoring IC 902 as a power supply monitoring circuit. The power monitoring IC 902 detects the occurrence of power supply stoppage to the gaming machine by introducing the VSL voltage and monitoring the VSL voltage. Specifically, when the VSL voltage becomes equal to or lower than a predetermined value (+22 V in this example), a power-off signal is output because power supply is stopped. The power supply voltage to be monitored is preferably higher than the power supply voltage (+5 V in this example) of the circuit element mounted on each electric component control board. In this example, VSL, which is a voltage immediately after being converted from AC to DC, is used. A power-off signal from the power monitoring IC 902 is supplied to the main board 31, the payout control board 37, and the like.
[0073]
The predetermined value for the power monitoring IC 902 to detect the stop of power supply is lower than the normal voltage, but is a voltage that allows the CPU on each electrical component control board to operate for a while. Further, the power monitoring IC 902 is configured to monitor a voltage that is higher than a voltage for driving a circuit element such as a CPU (+5 V in this example) and immediately after being converted from AC to DC. Therefore, the monitoring range can be expanded for the voltage required by the CPU. Therefore, more precise monitoring can be performed. Furthermore, when VSL (+ 30V) is used as the monitoring voltage, the voltage supplied to the various switches of the gaming machine is + 12V, so that it can be expected to prevent erroneous switch-on detection at the time of instantaneous power interruption. That is, when the voltage of the + 30V power supply is monitored, it is possible to detect a decrease in the level before + 12V created after the creation of + 30V starts to drop.
[0074]
When the voltage of the + 12V power supply decreases, the switch output becomes on. However, if the power supply voltage is monitored by monitoring the + 30V power supply voltage, which decreases faster than + 12V, and the power supply is stopped, the switch output is turned on. It is possible to enter a supply recovery waiting state and not detect the switch output.
[0075]
Further, since the power monitoring IC 902 is mounted on the power supply board 910 that is separate from the electrical component control board, a power-off signal can be supplied from the power monitoring circuit to the plurality of electrical component control boards. Even if there are any number of electrical component control boards that require a power-off signal, it is only necessary to provide one power supply monitoring means. Therefore, even if each electrical component control means in each electrical component control board performs recovery control described later. The cost of the gaming machine does not increase so much.
[0076]
In the configuration shown in FIG. 8, the detection signal (power cut-off signal) of the power monitoring IC 902 is sent to the respective electric component control boards (for example, the main board 31 and the payout control board 37) via the buffer circuits 918 and 919. For example, a configuration may be adopted in which one detection signal is transmitted to the relay board, and the same signal is distributed from the relay board to each electrical component control board. Further, a buffer circuit corresponding to the number of substrates that require a power-off signal may be provided. Further, regarding the power-off signal output to the main board 31 and the payout control board 37, the monitoring voltage of the power supply monitoring circuit that outputs the power-off signal may be different.
[0077]
FIG. 9 is a block diagram illustrating a configuration example around the CPU 56 in the main board 31. As shown in FIG. 9, the power-off signal from the power supply monitoring circuit (power supply monitoring means; first power supply monitoring means) of the power supply board 910 is connected to the non-maskable interrupt terminal (XNMI terminal) of the CPU 56. Therefore, the CPU 56 can confirm the occurrence of the stop of power supply to the gaming machine by the non-maskable interrupt (NMI) process.
[0078]
FIG. 9 also shows a system reset circuit 65. When the power is turned on, the reset IC 651 sets the output to a low level for a predetermined time determined by the capacity of the external capacitor, and sets the output to a high level when the predetermined time has elapsed. That is, the reset signal is raised to a high level to make the CPU 56 operable. The reset IC 651 monitors the power supply voltage of VSL, which is the same as the power supply voltage monitored by the power supply monitoring circuit, and the voltage value is lower than a predetermined value (the power supply voltage value at which the power supply monitoring circuit outputs a power-off signal). When the value is less than or equal to, the output is set to low level. Accordingly, the CPU 56 performs a predetermined power supply stop process in response to the power-off signal from the power supply monitoring circuit, and then the system is reset.
[0079]
As shown in FIG. 9, the reset signal from the reset IC 651 is input to the NAND circuit 947 and also input to the clear terminal of the counter IC 941 via the inverting circuit (NOT circuit) 944. The counter IC 941 counts the clock signal from the oscillator 943 when the input to the clear terminal becomes low level. The Q5 output of the counter IC 941 is input to the NAND circuit 947 via the NOT circuits 945 and 946. The Q6 output of the counter IC 941 is input to the clock terminal of the flip-flop (FF) 942. The D input of the flip-flop 942 is fixed at a high level, and the Q output is input to an OR circuit (OR circuit) 949. The output of the NAND circuit 947 is introduced into the other input of the OR circuit 949 via the NOT circuit 948. The output of the OR circuit 949 is connected to the reset terminal of the CPU 56. According to such a configuration, since the reset signal (low level signal) is given twice to the reset terminal of the CPU 56 when the power is turned on, the CPU 56 surely starts operation.
[0080]
For example, the detection voltage of the power supply monitoring circuit (the voltage that outputs the power-off signal) is + 22V, and the detection voltage for setting the reset signal to low level is + 9V. In such a configuration, since the power supply monitoring circuit and the system reset circuit 65 monitor the voltage of the same power supply VSL, the timing at which the voltage monitoring circuit outputs a power-off signal and the system reset circuit 65 reset the system. It is possible to reliably set the difference in timing for outputting the signal within a desired predetermined period. The desired predetermined period is a period from the start of the power supply stop process in response to the power-off signal from the power supply monitoring circuit until the completion of the power supply stop process.
[0081]
The power supply voltage monitored by the power supply monitoring circuit and the system reset circuit 65 may be different. The system reset circuit 65 corresponds to second power supply monitoring means.
[0082]
While power is not supplied from the + 5V power source that is the driving power source of the CPU 56 or the like, at least a part of the RAM is backed up by the backup power source supplied from the power supply board, and the contents are preserved even if the power supply to the gaming machine is stopped. Is done. When the +5 V power supply is restored, a reset signal is issued from the system reset circuit 65, so that the CPU 56 returns to a normal operation state. At that time, since necessary data is stored in the backup RAM, it is possible to restore the gaming state at the time of occurrence of a power failure or the like at the time of recovery from the power failure or the like.
[0083]
In the configuration shown in FIG. 9, two reset signals (low level signals) are given to the reset terminal of the CPU 56 when the power is turned on, but the reset is reliably released even if the reset signal rises only once. When the CPU is used, the circuit elements denoted by reference numerals 941 to 949 are not necessary. In that case, the output of the reset IC 651 is directly connected to the reset terminal of the CPU 56.
[0084]
The CPU 56 used in this embodiment also incorporates an I / O port (PIO) and a timer / counter circuit (CTC). The PIO has 4 bits PB0 to PB3 and 1 byte port PA0 to PA7. The ports PB0 to PB3 and PA0 to PA7 can be set to either input / output.
[0085]
FIG. 10 is an explanatory diagram showing bit assignment of input ports in this embodiment. As shown in FIG. 10, bits 0 to 7 of the input port 0 detect the winning opening switches 33a, 24a, 29a, 30a, the start opening switch 14a, the count switch 23, the V winning switch 22, and the gate switch 32a, respectively. A signal is input. In addition, the award ball count switch 301A, the full switch 48, the ball break switch 187 detection signal, the count switch short-circuit signal, and the clear switch 921 detection signal are input to bits 0 to 4 of the input port 1, respectively. The detection signal from each switch is logically inverted in the switch circuit 58. In this way, the detection signal of the clear switch 921, that is, the operation input of the initialization operation means, is the same input port as the input port (8-bit input unit) to which the detection signal of the switch for detecting the game ball is input. Is input to a bit (input port circuit).
[0086]
Next, the operation of the gaming machine will be described. FIG. 11 is a flowchart showing the main processing executed by the game control means (CPU 56 and peripheral circuits such as ROM and RAM) on the main board 31. When power is turned on to the gaming machine and the input level of the reset terminal becomes high level, the CPU 56 starts main processing after step S1. In the main process, the CPU 56 first performs necessary initial settings.
[0087]
In the initial setting process, the CPU 56 first sets the interrupt prohibition (step S1). Next, the interrupt mode is set to interrupt mode 2 (step S2), and a stack pointer designation address is set to the stack pointer (step S3). Then, the built-in device register is initialized (step S4). Further, after initialization (step S5) of CTC (counter / timer) and PIO (parallel input / output port) which are built-in devices (built-in peripheral circuits), the RAM is set in an accessible state (step S6).
[0088]
The CPU 56 used in this embodiment also incorporates an I / O port (PIO) and a timer / counter circuit (CTC). The CTC also includes two external clock / timer trigger inputs CLK / TRG2, 3 and two timer outputs ZC / TO0,1.
[0089]
The CPU 56 used in this embodiment is provided with the following three modes as maskable interrupt modes. When a maskable interrupt occurs, the CPU 56 automatically sets the interrupt disabled state and saves the contents of the program counter in the stack.
[0090]
Interrupt mode 0: The built-in device that has issued the interrupt request sends an RST instruction (1 byte) or a CALL instruction (3 bytes) onto the internal data bus of the CPU. Therefore, the CPU 56 executes the instruction at the address corresponding to the RST instruction or the address specified by the CALL instruction. At reset, the CPU 56 automatically enters interrupt mode 0. Therefore, when setting to interrupt mode 1 or interrupt mode 2, it is necessary to perform a process for setting to interrupt mode 1 or interrupt mode 2 in the initial setting process.
[0091]
Interrupt mode 1: In this mode, when an interrupt is accepted, the mode always jumps to address 0038 (h).
[0092]
Interrupt mode 2: A mode in which the address synthesized from the value (1 byte) of the specific register (I register) of the CPU 56 and the interrupt vector (1 byte: least significant bit 0) output by the built-in device indicates the interrupt address It is. That is, the interrupt address is an address indicated by 2 bytes in which the upper address is the value of the specific register and the lower address is the interrupt vector. Therefore, an interrupt process can be set at an arbitrary address (although it is skipped). Each built-in device has a function of sending an interrupt vector when making an interrupt request.
[0093]
Therefore, when the interrupt mode 2 is set, it becomes possible to easily process an interrupt request from each built-in device, and it is possible to install an interrupt process at an arbitrary position in the program. . Furthermore, unlike interrupt mode 1, it is also easy to prepare each interrupt process for each interrupt generation factor. As described above, in this embodiment, the CPU 56 is set to the interrupt mode 2 in step S2 of the initial setting process.
[0094]
Next, the CPU 56 confirms the state of the output signal of the clear switch 921 input via the input port 1 only once (step S7). When the on-state is detected in the confirmation, the CPU 56 executes normal initialization processing (steps S11 to S15). When the clear switch 921 is on (when pressed), a low-level clear switch signal is output. In the input port 1, the clear switch signal is in the high level (see FIG. 10). Further, for example, the game store clerk can easily execute the initialization process by starting the power supply to the gaming machine while the clear switch 921 is turned on. That is, RAM clear or the like can be performed.
[0095]
If the clear switch 921 is not in the on state, whether or not data protection processing of the backup RAM area (for example, power supply stop processing such as addition of parity data) has been performed when power supply to the gaming machine is stopped Confirm (step S8). In this embodiment, when power supply is stopped, a process for protecting data in the backup RAM area is performed. When such protection processing is performed, it is assumed that there is a backup. When it is confirmed that such protection processing is not performed, the CPU 56 executes initialization processing.
[0096]
In this embodiment, whether or not there is backup data in the backup RAM area is confirmed by the state of the backup flag set in the backup RAM area in the power supply stop process. In this example, as shown in FIG. 12, if “55H” is set in the backup flag area, it means that there is a backup (ON state), and if a value other than “55H” is set, there is no backup (OFF). State).
[0097]
After confirming that there is a backup, the CPU 56 performs a data check of the backup RAM area (parity check in this example) (step S9). In this embodiment, clear data (00) is set in the checksum data area, and the checksum calculation start address is set in the pointer. Also, the number of checksum calculations corresponding to the number of data to be checksum is set. Then, the exclusive OR of the contents of the checksum data area and the contents of the RAM area pointed to by the pointer is calculated. The calculation result is stored in the checksum data area, the pointer value is incremented by 1, and the checksum calculation count value is decremented by 1. The above processing is repeated until the value of the checksum calculation count becomes zero. When the value of the checksum calculation count reaches 0, the CPU 56 inverts the value of each bit of the contents of the checksum data area and uses the inverted data as the checksum.
[0098]
In the power supply stop process, a checksum is calculated by the same process as described above, and the checksum is stored in the backup RAM area. In step S9, the calculated checksum is compared with the stored checksum. When the power supply is stopped after an unexpected power failure or the like, the data in the backup RAM area should be saved, so the check result (comparison result) is normal (matched). That the check result is not normal means that the data in the backup RAM area is different from the data when the power supply is stopped. In such a case, since the internal state cannot be returned to the state when the power supply is stopped, an initialization process that is executed when the power is turned on is not performed when the power supply is stopped.
[0099]
If the check result is normal, the CPU 56 performs a game state restoration process for returning the internal state of the game control means and the control state of the electric component control means such as the display control means to the state when the power supply is stopped (step S10). ). Then, the saved value of the PC (program counter) stored in the backup RAM area is set in the PC, and the address is restored.
[0100]
In this way, it is possible to accurately return the gaming state to the state when the power supply is stopped by checking whether the data in the backup RAM area is stored using the backup flag and check data such as a checksum. it can. That is, the certainty of the state restoration process based on the data in the backup RAM area is improved. In this embodiment, it is confirmed whether or not the data in the backup RAM area is stored by using both the backup flag and the check data, but only one of them may be used. That is, either the backup flag or the check data may be used as an opportunity for executing the state recovery process.
[0101]
In addition, when “backup exists” is not confirmed according to the status of the backup flag, the initialization process described later is performed without performing the gaming state recovery process described later, so the backup data does not exist. Nevertheless, it is possible to prevent the gaming state restoration process from being executed, and it is possible to return the control state to the initial state by the initialization process.
[0102]
Furthermore, when the check result using the check data is not normal, the initialization process described later is performed without performing the gaming state recovery process described later, so that the contents differ from those at the time of stopping the power supply. It is possible to prevent the gaming state restoration process from being executed based on the backup data that has been made, and the control state can be returned to the initial state by the initialization process.
[0103]
In the initialization process, the CPU 56 first performs a RAM clear process (step S11). In addition, a predetermined work area (for example, a normal symbol determination random number counter, a normal symbol determination buffer, a special symbol left middle right symbol buffer, a special symbol process flag, a payout command storage pointer, a winning ball flag, a ball out flag, a payout A work area setting process for setting an initial value to a flag such as a stop flag for selectively performing processing according to the control state is performed (step S12). Further, a process of transmitting to the payout control board 37 a payout permission state designation command (hereinafter referred to as a payout enable state designation command) instructing that payout from the ball payout device 97 is possible (step S13). . Further, a process of transmitting an initialization command for initializing other sub boards (lamp control board 35, sound control board 70, symbol control board 80) to each sub board is executed (step S14). As an initialization command, a command indicating the initial symbol displayed on the variable display device 9 (for the symbol control board 80) and a command for instructing the extinction of the prize ball lamp 51 and the ball-out lamp 52 (to the lamp control board 35) Etc).
[0104]
In the initialization process, a payout enable state designation command is always transmitted to the payout control board 37. Even if the state of the gaming machine is a state in which a payout from the ball payout device 97 is not possible, the fact is detected in the game control process executed immediately after that and an instruction is given that the payout is not possible. There is no problem because a withdrawal prohibition state designation command to be sent (hereinafter referred to as a withdrawal stop state designation command) is transmitted. In the process of transmitting the payable state designation command and the initialization command to other sub-boards, for example, the address of the table (ROM area) in which each command is set is set to the pointer, and the command setting process (see FIG. 33) may be called.
[0105]
Then, a CTC register set in the CPU 56 is set so that a timer interrupt is periodically generated every 2 ms (step S15). That is, a value corresponding to 2 ms is set in a predetermined register (time constant register) as an initial value.
[0106]
When the execution of the initialization process (steps S11 to S15) is completed, the display random number update process (step S17) and the initial value random number update process (step S18) are repeatedly executed in the main process. When the display random number update process and the initial value random number update process are executed, the interrupt disabled state is set (step S16). When the display random number update process and the initial value random number update process are finished, the interrupt enabled state is set. (Step S19). The display random number is a random number for determining a symbol displayed on the variable display device 9, and the display random number update process is a process for updating the count value of the counter for generating the display random number. . The initial value random number update process is a process for updating the count value of the counter for generating the initial value random number. The initial value random number is a random number for determining an initial value of a count value such as a counter for generating a random number for determining whether or not to make a big hit (a big hit determination random number generation counter). In a game control process described later, when the count value of the jackpot determination random number generation counter makes one round, an initial value is set in the counter.
[0107]
Note that when the display random number update process is executed, the interrupt is prohibited. The display random number update process is also executed in the timer interrupt process described later, and thus conflicts with the process in the timer interrupt process. This is to avoid that. That is, if the timer interrupt is generated during the process of step S17 and the counter value for generating the display random number is updated during the timer interrupt process, the continuity of the count value is impaired. There is a case. However, such an inconvenience does not occur if the interrupt is prohibited during the process of step S17.
[0108]
FIG. 13 is a flowchart illustrating an example of the game state restoration process. In the game state restoration process, the CPU 56 first performs a stack pointer restoration process (step S81). The value of the stack pointer is saved in a predetermined RAM area (stack pointer save buffer in the work area backed up by power) in the power supply stop process described in detail later. Therefore, in step S81, the RAM area value is set in the stack pointer to return. Note that the register value and the value of the program counter (PC) when the power supply is stopped are saved in the area pointed to by the restored stack pointer (that is, the stack area).
[0109]
Next, the CPU 56 checks whether or not the payout has been stopped (step S82). Whether or not the payout is stopped is determined according to a predetermined work area (for example, a normal symbol determination random number counter, a normal symbol determination buffer, a special symbol left middle right symbol buffer, a special symbol, This is confirmed by a payout stop flag as payout state data in a symbol process flag, a payout command storage pointer, a winning ball flag, a ball runout flag, a payout stop flag, etc. If it is in the payout stop state, a payout control command (payout stop state designation command) for instructing the payout stop is transmitted to the payout control means mounted on the payout control board 37 (step S83). If it is not in the payout stop state, a payout control command (payable state designation command) for instructing that payout is possible is sent to the payout control means (step S84). As will be described later, the payout stop flag is set when a payout stop state designation command is received, and is reset when a payout ready state designation command is received. Therefore, the payout stop flag can be issued with a payout stop state designation command. Among the state designation commands, data corresponding to the command last transmitted by the game control means before the power supply is stopped is set.
[0110]
Since the payout control means cannot recognize the shortage of the supply balls or the full tank of the surplus ball receiving tray 4, if there is no notification from the game control means, the shortage of the supply balls or the surplus ball receiving tray 4 will be full at the time of recovery from a power failure. Nevertheless, there is a risk of starting the game ball payout process. However, in this embodiment, in the game state recovery process, a payout control command for instructing stoppage of payout or a payout control command for instructing that payout is possible is transmitted. Even though the surplus ball receiving tray 4 is full, the game ball payout process is not started. However, in this example, as will be described in detail later, when the power supply is stopped due to a power failure or the like during the payout of the planned payout number, the supply ball is insufficient or the surplus ball receiving tray 4 is full at the time of recovery. Even if it is, the game ball payout process for the expected payout number is started.
[0111]
Here, when the payout state determination means (a part of the game control means) for determining whether or not the game medium can be paid out detects that the payout is not possible, one type of the game medium is determined regardless of the cause. The payout stop state designation command is transmitted. However, the command may be transmitted separately for each cause (in this example, a command indicating a shortage of supply balls and a command indicating a lower pan full). Further, when the game ball cannot be paid out, a command instructing to prohibit the release of the game ball may be transmitted to the payout control board 37 in order to prohibit the continuation of the game. When the payout control means mounted on the payout control board 37 receives a command instructing prohibition of the game ball, the drive of the hitting ball launching device is stopped. In addition, when the game ball cannot be paid out, the game control means may give a signal instructing the launch control means to prohibit the launch of the game ball directly. Further, the payout control means may stop driving the ball striking device when a payout stop state designation command is received.
[0112]
Next, the CPU 56 transmits a display control command for restoring the display state according to the display state of the special symbol on the variable display device 9 when the power supply is stopped (step S85).
[0113]
Thereafter, the CPU 56 clears the backup flag (step S91), that is, resets a flag indicating that a predetermined storage protection process has been executed when the previous power supply was stopped. Therefore, unnecessary information can be prevented from remaining after the control state is restored. Also, the saved values of various registers are read from the stack area and set in various registers (IX register, HL register, DE register, BC register) (step S92). That is, register restoration processing is performed. Each time each register is restored, the value of the stack pointer is decreased. In other words, the value of the stack pointer is updated to point to the previous address in the stack area. If the parity flag is not turned on, an interrupt permission state is set (steps S93 and S94). Finally, the AF register (accumulator and flag register) is restored from the stack area (step S95).
[0114]
Then, the RET instruction is executed. When the RET instruction is executed, the CPU 56 realizes a program return operation by setting the data stored in the area pointed to by the stack pointer in the program counter. However, the return destination here is not the part that called the game state restoration process. This is because the stack pointer restoration process is performed in step S81, and after the register restoration process is completed in step S92, the stack pointer indicating the stack area is executed when the power supply stop process by the NMI is started. Indicates the area where the program address is saved. That is, the return address stored in the stack area pointed to by the returned stack pointer is the address where the NMI occurred when the power supply was last stopped in the program. Therefore, in response to the RET instruction subsequent to step S95, the process returns to the address where the NMI occurred when the power supply was stopped. That is, the recovery control is executed based on the address data saved in the stack area.
[0115]
When the timer interrupt occurs, the CPU 56 performs the register saving process (step S20), and then executes the game control process of steps S21 to S32 shown in FIG. In the game control process, the CPU 56 first inputs detection signals of switches such as the gate switch 32a, the start port switch 14a, the count switch 23, and the winning port switches 33a, 24a, 29a, and 30a via the switch circuit 58. These state determinations are performed (switch processing: step S21).
[0116]
Next, various abnormality diagnosis processes are performed by the self-diagnosis function provided in the pachinko gaming machine 1, and an alarm is issued if necessary according to the result (error process: step S22).
[0117]
Next, a process of updating the count value of each counter for generating each determination random number such as a big hit determination random number used for game control is performed (step S23). The CPU 56 further performs a process of updating the count value of the counter for generating the display random number and the initial value random number (steps S24 and S25).
[0118]
Further, the CPU 56 performs special symbol process processing (step S26). In the special symbol process control, corresponding processing is selected and executed according to a special symbol process flag for controlling the pachinko gaming machine 1 in a predetermined order according to the gaming state. The value of the special symbol process flag is updated during each process according to the gaming state. Further, normal symbol process processing is performed (step S27). In the normal symbol process, the corresponding process is selected and executed according to the normal symbol process flag for controlling the display state of the normal symbol display 10 in a predetermined order. The value of the normal symbol process flag is updated during each process according to the gaming state.
[0119]
Next, the CPU 56 performs a process of setting a display control command related to the special symbol in a predetermined area of the RAM 55 and sending the display control command (special symbol command control process: step S28). In addition, a display control command related to the normal symbol is set in a predetermined area of the RAM 55, and a process of sending the display control command is performed (normal symbol command control process: step S29).
[0120]
Further, the CPU 56 performs information output processing for outputting data such as jackpot information, start information, probability variation information supplied to the hall management computer, for example (step S30).
[0121]
Further, the CPU 56 issues a drive command to the solenoid circuit 59 when a predetermined condition is satisfied (step S31). The solenoid circuit 59 drives the solenoids 16, 21, and 21A in response to a drive command in order to open or close the variable winning ball device 15 or the opening / closing plate 20, or to switch the game ball passage in the special winning opening. To do.
[0122]
Then, the CPU 56 executes a prize ball process for setting the number of prize balls based on the detection signals of the prize opening switches 33a, 24a, 29a, 30a (step S32). Specifically, a payout control command indicating the number of winning balls is output to the payout control board 37 in response to detection of winning based on the winning opening switch 33a, 24a, 29a, 30a being turned on. The payout control CPU 371 mounted on the payout control board 37 drives the ball payout device 97 according to a payout control command indicating the number of prize balls. Thereafter, the contents of the register are restored (step S33), and the interrupt permission state is set (step S34).
[0123]
With the above control, in this embodiment, the game control process is started every 2 ms. In this embodiment, the game control process is executed by the timer interrupt process. However, in the timer interrupt process, for example, only a flag indicating that an interrupt has occurred is set, and the game control process is performed by the main process. May be executed.
[0124]
15 to 17 are flowcharts showing a processing example of a non-maskable interrupt process (power supply stop process) executed in response to a power-off signal from the power supply board 910. When a non-maskable interrupt occurs, the interrupt control mechanism built in the CPU 56 sets the address of the program executed when the non-maskable interrupt occurs (specifically, the next address after completion of execution) as a stack pointer. Is saved in the stack area pointed to by and the value of the stack pointer is increased. That is, the stack pointer value is updated to point to the next address in the stack area.
[0125]
In the power supply stop process, the CPU 56 saves the AF register (accumulator and flag register) in the stack area pointed to by the stack pointer (step S451). At this time, the value of the stack pointer is updated to point to the next address in the stack area. Further, the interrupt flag is copied to the parity flag (step S452). The parity flag is formed in the backup RAM area. The interrupt flag is a flag indicating whether the interrupt is permitted or the interrupt prohibited state, and is in a control register built in the CPU 56. The on state of the interrupt flag indicates that the interrupt is prohibited. As described above, the parity flag is referred to in the gaming state restoration process. In the gaming state recovery process, if the parity flag is on, the interrupt permission state is not set.
[0126]
Also, the BC register, DE register, HL register, and IX register are saved in the stack area pointed to by the stack pointer (steps S454 to 457). At this stage, the address of the program, BC register, DE register, HL register, and IX register values that were being executed when the non-maskable interrupt occurred are sequentially stored in the stack area. Each time each register is saved, the value of the stack pointer is updated to point to the next address in the stack area. Further, the value of the stack pointer is saved in a predetermined area (stack pointer save buffer) in the work area (step S458).
[0127]
Next, in this embodiment, the detection signal of the prize ball count switch 301A is checked for a predetermined period. When the prize ball count switch 301A is turned on, the content of the total prize ball number buffer is reduced by one.
[0128]
In this embodiment, a predetermined period measuring counter is used to measure the predetermined period. The value of the counter for measuring the predetermined period is changed from the initial value m (set in step S460) to the switch detection processing loop described below (a loop starting from S461 and returning to S461) once- When the value becomes 1 and the value becomes 0, it is assumed that the predetermined period has ended. Since there is an exception in the detection processing loop, almost constant processing is performed, and therefore, m times the time required for one round of the loop corresponds to a predetermined period.
[0129]
In order to measure the predetermined period, a built-in timer of the CPU 56 may be used. That is, a predetermined value (corresponding to a predetermined period) is set in the built-in timer at the start of the switch detection process. Each time the switch detection processing loop is executed once, the count value of the built-in timer is checked. When the count value reaches 0, it is assumed that the predetermined period has ended. An interrupt by the internal timer can be used to detect that the value of the internal timer has reached 0, but at this stage, the control content (such as each value stored in the RAM) should not be changed. A program configuration is preferred in which the count value of the built-in timer is read and checked instead of using a program.
[0130]
The predetermined period is set to be equal to or longer than the time from when the game ball falls from the ball dispensing device 97 until it reaches the prize ball count switch 301A. If the distance from the ball payout device 97 to the prize ball count switch 301A is L, the drop time t during that time is t = √ (2L / g) (g: gravitational acceleration). Is set.
[0131]
At least for a predetermined period during which the switch detection process is executed, the prize ball count switch 301A must be in a state where it can detect a game ball. Therefore, in this embodiment, as shown in FIG. 8, a capacitor 923 serving as a relatively large capacity auxiliary drive power supply is connected to the input side of the converter IC 922 in the power supply substrate 910. Therefore, even when the power supply to the gaming machine is stopped, the + 12V power supply voltage is maintained in a range in which the switch can be driven for a certain period, and the winning ball count switch 301A becomes operable. The capacitance of the capacitor is determined so that the period is equal to or longer than the predetermined period.
[0132]
Since the input port and the CPU 56 are also driven by the + 5V power source created by the converter IC 922, the operation can be performed for a relatively long period even when the power supply is stopped.
[0133]
In step S461, an initial value n corresponding to a time of 2 ms is set in the 2 ms measurement counter. Then, until the value of the 2 ms measurement counter becomes 0 (step S462), the value of the 2 ms measurement counter is decremented by 1 (step S463).
[0134]
When the value of the 2 ms measurement counter becomes 0, the input of the detection signal of the prize ball count switch 301A is checked. That is, processing similar to switch processing and switch check processing (see FIGS. 22 and 23) described later is performed. Specifically, the data input to the input port 1 is input (step S464). Next, clear data (00) is set (step S465). Further, port input data, in this case, input data from the input port 1 is set as a “comparison value” (step S466). Further, the address of the switch timer for the prize ball count switch 301A is set in the pointer (step S467).
[0135]
Then, the switch timer indicated by the pointer (the address of the switch timer is set) is loaded (step S468), and the comparison value is shifted to the right (from the upper bit to the lower bit) (step S469). Data of the input port 1 is set as the comparison value. In this case, the detection signal of the winning ball count switch 301A is pushed out to the carry flag.
[0136]
If the value of the carry flag is “1” (step S470), that is, if the detection signal of the prize ball count switch 301A is ON, the value of the switch timer is incremented by 1 (step S471). If the value of the carry flag is “0”, that is, if the detection signal of the prize ball count switch 301A is OFF, clear data is set in the switch timer (step S472). That is, if the switch is off, the value of the switch timer returns to zero.
[0137]
When the value of the switch timer becomes 2 (step S473), 1 is subtracted from the value stored in the total prize ball number storage buffer (step S474), and the value of the prize ball information counter is incremented by 1 (step S475). . If the value of the prize ball information counter is 10 or more (step S476), the value of the prize ball information output counter is incremented by 1 (step S477), and the value of the prize ball information counter is incremented by -10 (step S478).
[0138]
Next, the value of the counter for measuring the predetermined period is decremented by -1 (step S479). If the value is not 0, the process returns to step S461.
[0139]
If the prize ball count switch 301A is turned on within the predetermined period by the above processing, the value of the total prize ball number storage buffer is decremented by one. Since the processing for saving the contents of the backup RAM is performed after such switch detection processing, the total winning ball number storage buffer is always decremented by 1 for winning balls that have been paid out. Therefore, it is possible to prevent a contradiction in the stored control state with respect to the game ball payout. In addition, in the switch detection process, the calculation of a prize ball information output number counter for outputting prize ball information to the outside of the gaming machine is also performed, so the prize ball information output to the outside and the actual number of paid-out prize balls are different. There is no such thing.
[0140]
In the above switch detection process, a timer process using a detection period counter is performed. That is, the detection output of the prize ball count switch 301A is checked every 2 ms, and it is considered that the prize ball count switch 301A is reliably turned on when it is detected to be turned on twice in succession. That is, in a predetermined game medium detection determination period (a period for determining whether or not a game medium (paid awarded ball) is detected in the power supply stop process, in this example, a period of 2 ms or more) When ON is detected twice consecutively before and after, it is considered that the payout of one prize ball is completed. In this way, in this example, the game medium detection determination period is the normal game medium detection determination period (a period for determining the presence or absence of a game medium in a normal game state, which is not a process in the power supply stop process. Is a period of 2 ms or more determined by a switch-on determination value (see FIG. 28), which will be described later, and is used in the determination of step S244 in FIG. Therefore, it is possible to determine whether or not the prize ball count switch 301A is turned on under the same conditions as in normal control. Note that the game medium detection determination period may be a period different from the normal game medium detection determination period. As described above, when the turn-on is detected twice in succession, the prize ball count switch 301A is considered to be surely turned on, so that the switch-on detection is prevented from being erroneously performed. It is possible to reliably detect the award ball that has been issued.
[0141]
In this embodiment, the switch detection process for only the winning ball count switch 301A is performed, but the same switch detection is also performed for the V winning switch 22 and the count switch 23 related to the start winning opening switch and the big winning opening. Processing may be performed. The same switch detection process may be performed for other winnings. When such an on-check is also performed, even if a power failure occurs immediately after a game ball wins a winning opening, the winning is reliably detected and reflected in the saved game state.
[0142]
When the predetermined period elapses (step S480), that is, when the value of the counter for measuring the predetermined period becomes 0, the designated value with backup (in this example, “55H”) is stored in the backup flag. The backup flag is formed in the backup RAM area. Next, parity data is created (steps S481 to S489). That is, first, the clear data (00) is set in the checksum data area (step S482), and the checksum calculation start address is set in the pointer (step S483). Also, the number of checksum calculations is set (step S484).
[0143]
Then, an exclusive OR between the contents of the checksum data area and the contents of the RAM area pointed to by the pointer is calculated (step S485). The calculation result is stored in the checksum data area (step S486), the pointer value is incremented by 1 (step S487), and the checksum calculation count value is decremented by 1 (step S488). The processing of steps S485 to S488 is repeated until the value of the checksum calculation count becomes 0 (step S489).
[0144]
When the value of the checksum calculation count becomes 0, the CPU 56 inverts the value of each bit of the contents of the checksum data area (step S490). Then, the inverted data is stored in the checksum data area (step S491). This data becomes parity data to be checked when the power is turned on. Next, an access prohibition value is set in the RAM access register (step S492). Thereafter, the built-in RAM 55 cannot be accessed. Therefore, even if a program runaway occurs as the voltage drops, the stored contents of the RAM will not be destroyed.
[0145]
In this way, processing for saving the gaming state (in this example, checksum generation and RAM access prevention) is executed. In this embodiment, the RAM area in which data used in the game control process is stored is all backed up. Therefore, the checksum generation process indicating whether or not the contents are correctly stored and the RAM access prevention process for preventing the contents from being rewritten correspond to the process for storing the gaming state.
[0146]
When the RAM access prevention process is completed, the CPU 56 enters a standby state (loop state). Therefore, nothing is done until the system is reset.
[0147]
In this embodiment, the power supply stop process is executed according to the NMI. However, the power supply stop signal is connected to the maskable terminal of the CPU 56 and the power supply stop process is executed by the maskable interrupt process. May be. Alternatively, a power-off signal may be input to the input port and the power supply stop process may be executed according to the input port check result.
[0148]
Further, in this embodiment, the register saving process is performed at the beginning of the process activated in response to the power-off signal, but when the register is not used in the switch detection process, after executing the switch detection process, That is, the register saving process can be performed before the backup flag setting and the checksum calculation process. In this case, the register saving process, the backup flag setting process, the checksum calculation process, and the output port off setting process can be regarded as a power supply stop process. Further, even when several registers are used in the switch detection process, the register storage process can be performed before the backup flag setting process and the checksum calculation process for the unused registers.
[0149]
FIG. 18 is a timing chart showing an example of how detection signal input processing from the payout detection means is executed. In this embodiment, the power-off signal is input to the main board 31 and the payout control board 37 and input to the NMI terminals of the CPU 56 of the main board 31 and the payout control CPU 371. The CPU 56 of the main board 31 executes the above-described power supply stop process by the non-maskable interrupt process.
[0150]
As shown in FIG. 18, when a prize ball payout is executed around the time when the power-off signal is turned on (in this example, the change from high level to low level), detection signal input processing from the payout detection means is executed. Within a predetermined period, the prize ball count switch 301A is turned on. Therefore, the ball payout executed when the power-off signal is turned on can also be reflected in the total winning ball number buffer when the power supply stop process is executed.
[0151]
When the voltage value of VSL further decreases to a predetermined value (+9 V in this example), the output of the reset IC 651 mounted on the main board 31 becomes low level as shown in FIG. Reset state. Note that the CPU 56 has completed the power supply stop process before entering the system reset state.
[0152]
When the voltage value of VSL is further decreased to be lower than a voltage capable of generating Vcc (+5 V for driving various circuits), each circuit cannot be operated on each substrate. However, in the main board 31, the power supply stop process is executed, and the CPU 56 is in a system reset state.
[0153]
As will be described later, the payout control CPU 371 on the payout control board 37 also enters the system reset state after performing the power supply stop process.
[0154]
FIG. 19 is an explanatory diagram for explaining an example of a checksum creation method. However, in the example shown in FIG. 19, the data size of the backup RAM area is 3 bytes for simplicity. In the power supply stop process based on the power supply voltage drop, as shown in FIG. 19, initial data (00 (H) in this example) is set as the checksum data. Next, an exclusive OR of “00 (H)” and “F0 (H)” is taken, and an exclusive OR of “16 (H)” is taken with the result. Further, an exclusive OR of the result and “DF (H)” is taken. Then, a value (“C6 (H)” in this example) obtained by logically inverting the result (“39 (H)” in this example) is set in the checksum buffer.
[0155]
In FIG. 19, for ease of explanation, a state in which data “39 (H)” before logic inversion is stored in the checksum buffer is shown. Note that 00 (H) as the initial data is a value corresponding to the clear data for the checksum data set in step S60, but in practice, the exclusive OR with 00 (H) is before and after the operation. And the value does not change, it is not necessary to perform an exclusive OR operation with 00 (H). In this embodiment, the checksum buffer is stored in the backup RAM area (variable data storage means).
[0156]
Note that, at the start of power supply to the gaming machine, it is determined whether or not the parity check is OK (step S9 in FIG. 11). In this determination, the parity data creation process (steps S481 to S490) in the power supply stop process is performed. ) Is performed, and if the processing result, that is, the operation result matches the contents of the checksum buffer, it is determined that the parity check is OK.
[0157]
Further, in this embodiment, at the start of power supply, a checksum is generated by the same process as the process at the time of power supply stop, and the generated checksum is compared with the checksum stored in the backup RAM. Other methods may be used. For example, using the checksum stored in the backup RAM as an initial value, the calculation is performed for each data that is a calculation target in the power supply stop process, and if the calculation result matches a predetermined value (eg, 00 (H)), the parity is You may make it determine with check OK. The check data for the parity check is not limited to the checksum, and other check data may be used as long as it can be determined whether the contents of the backup RAM are properly stored.
[0158]
FIG. 20 is a timing chart showing a state of a power supply voltage drop and an NMI signal (= power supply cut-off signal: power supply stop signal) when power supply to the gaming machine is stopped. When the power supply to the gaming machine is stopped, the voltage value of VSL, which is the highest DC power supply voltage, gradually decreases. In this example, when the voltage drops to +22 V, a power cut-off signal is output from the power monitoring IC 902 mounted on the power board 910 (becomes a low level).
[0159]
The power-off signal is introduced into the electrical component control board (in this embodiment, the main board 31 and the payout control board 37) and input to the NMI terminals of the CPU 56 and the payout control CPU 371. The CPU 56 and the payout control CPU 371 execute predetermined power supply stop processing by NMI processing.
[0160]
When the voltage value of VSL further decreases to a predetermined value (+9 V in this example), the output of the system reset circuit mounted on the main board 31 and the payout control board 37 becomes low level, and the CPU 56 and payout control CPU 371 enters a system reset state. Note that the CPU 56 and the payout control CPU 371 have completed the power supply stop process before being set to the system reset state.
[0161]
When the voltage value of VSL is further decreased to be lower than a voltage capable of generating Vcc (+5 V for driving various circuits), each circuit cannot be operated on each substrate. However, at least the main board 31 and the payout control board 37 execute the power supply stop process, and the CPU 56 and the payout control CPU 371 are in the system reset state.
[0162]
As described above, in this embodiment, the power supply monitoring circuit monitors the voltage of the highest power supply VSL among the DC voltages used in the gaming machine, and the voltage drops when the voltage of the power supply falls below a predetermined value. Generates a signal (power failure detection signal). As shown in FIG. 20, at the timing when the power-off signal is output, the IC drive voltage is still a voltage value that can sufficiently drive various circuit elements. Therefore, an operation time is ensured for the CPU 56 of the main board 31 operating with the IC drive voltage to perform a predetermined power supply stop process.
[0163]
In this case, the power supply monitoring circuit monitors the voltage of the highest power supply VSL among the DC voltages used in the gaming machine, but the timing for generating the power-off signal is the electrical component control that operates with the IC drive voltage. The monitoring target voltage may not be the highest voltage of the power source VSL as long as the operation time for the means to perform the predetermined power supply stop process is ensured. That is, if at least a voltage higher than the IC drive voltage is monitored, the power-off signal can be generated at such a timing that the operation time for the electrical component control means to perform the predetermined power supply stop process is ensured. .
[0164]
In this case, as described above, the monitoring target voltage is preferably a voltage that can be expected to prevent erroneous switch-on detection when power supply is stopped. That is, since the voltage (switch voltage) supplied to the various switches of the gaming machine is + 12V, it is preferable that the voltage drop can be detected before the + 12V power supply voltage starts to drop. Therefore, it is preferable to monitor a voltage higher than at least the switch voltage.
[0165]
Next, a specific example of the switch process (step S21) in the main process will be described. In this embodiment, when the ON state of the detection signal of each switch continues for a predetermined time, it is determined that the switch has been turned ON, and processing corresponding to the switch ON is started. A switch timer is used to measure the predetermined time. The switch timer is a 1-byte counter formed in the backup RAM area, and is incremented by 1 every 2 ms when the detection signal indicates an ON state. As shown in FIG. 21, the switch timer is provided for the number N of detection signals (excluding the detection signal of the clear switch 921). In this embodiment, N = 12. In the RAM 55, the addresses of the switch timers are arranged in the same order as the bit arrangement order of the input ports (from top to bottom shown in FIG. 10).
[0166]
FIG. 22 is a flowchart illustrating a processing example of the switch processing in step S21 in the game control processing. The switch process is first executed in the game control process as shown in FIG. In the switch process, the CPU 56 first inputs data input to the input port 0 (step S101). Next, “8” is set as the number of processes (step S102), and the address of the switch timer for the winning opening switch 33a is set in the pointer (step S103). Then, a switch check processing subroutine is called (step S104).
[0167]
FIG. 23 is a flowchart showing a switch check processing subroutine. In the switch check processing subroutine, the CPU 56 sets port input data, in this case, input data from the input port 0, as a “comparison value” (step S121). Further, clear data (00) is set (step S122). Then, the switch timer pointed to by the pointer (switch timer address is set) is loaded (step S123), and the comparison value is shifted to the right (from the upper bit to the lower bit) (step S124). Data of input port 0 is set as the comparison value. In this case, the detection signal of the winning opening switch 33a is pushed out to the carry flag.
[0168]
If the value of the carry flag is “1” (step S125), that is, if the detection signal of the winning opening switch 33a is on, the switch timer value is incremented by 1 (step S127). If the value after addition is not 0, the addition value is returned to the switch timer (steps S128 and S129). When the value after addition becomes 0, the addition value is not returned to the switch timer. That is, when the value of the switch timer has already reached the maximum value (255), the value is not increased further.
[0169]
If the value of the carry flag is “0”, that is, if the detection signal of the winning opening switch 33a is in the OFF state, clear data is set in the switch timer (step S126). That is, if the switch is off, the value of the switch timer returns to zero.
[0170]
Thereafter, the CPU 56 adds 1 to the pointer (switch timer address) (step S130) and subtracts 1 from the number of processes (step S131). If the number of processes is not 0, the process returns to step S122. Then, the processes of steps S122 to S132 are repeated.
[0171]
The processes in steps S122 to S132 are repeated for the number of processes, that is, eight times, and during that time, the detection signal of the switch input to the 8 bits of the input port 0 is sequentially checked to determine whether it is on or off. If it is ON, the value of the corresponding switch timer is incremented by one.
[0172]
The CPU 56 inputs the data input to the input port 1 in step S105 of the switch process. Next, “4” is set as the processing number (step S106), and the address of the switch timer for the winning ball count switch 301A is set in the pointer (step S107). Then, a switch check processing subroutine is called (step S108).
[0173]
In the switch check processing subroutine, since the above-described processing is executed, the processing in steps S122 to S132 is repeated for the number of processing, that is, four times, and the detection signal of the switch input to the 4 bits of the input port 1 during that time. Then, a check process is sequentially performed to determine whether the state is on or off. If the state is on, the value of the corresponding switch timer is incremented by one.
[0174]
In this embodiment, since the game control process is started every 2 ms, the switch process is also executed once every 2 ms. Therefore, the switch timer is incremented by 1 every 2 ms.
[0175]
24 to 26 are flowcharts showing an example of the prize ball process in step S32 in the game control process. In this embodiment, in the prize ball processing, it is determined whether or not the prize opening switches 33a, 24a, 29a, 30a, the count switch 23, and the start opening switch 14a to be paid out are surely turned on. When turned on, control is performed so that a payout control command indicating the number of award balls is sent to the payout control board 37, and it is determined whether the full tank switch 48 and the ball shortage switch 187 are turned on reliably. Processing such as control to send a predetermined payout control command to the payout control board 37 is performed.
[0176]
In the prize ball process, the CPU 56 sets “1” as the offset of the input determination value table (step S150), and sets “9” as the offset of the address of the switch timer (step S151). The offset “1” in the input determination value table (see FIG. 28) means that the second data “50” in the input determination value table is used. Further, since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the switch timer address offset “9” designates the switch timer corresponding to the full switch 48. Means. Then, a switch-on check routine is called (step S152).
[0177]
The input determination value table is a ROM area in which a determination value for determining that the switch has been turned on when it is detected how many times it is continuously turned on is set for each switch. A configuration example of the input determination value table is shown in FIG. As shown in FIG. 28, the input determination value table includes “2”, “50”, “250”, “30”, “250”, “1” in order from the top, that is, from the area with the smallest address value. The judgment value is set. In the switch-on check routine, the judgment value set at the address determined by the head address and the offset value in the input judgment value table is compared with the value of the switch timer determined by the head address and the offset value of the switch timer. If they match, for example, a switch-on flag is set.
[0178]
An example of the switch-on check routine is shown in FIG. In the switch-on check routine, if the value of the switch timer corresponding to the full tank switch 48 matches the full tank switch on determination value “50”, the switch on flag is set (step S153), so the full tank flag is set. (Step S154). Although not explicitly shown in FIG. 24, when the value of the switch timer corresponding to the full tank switch 48 becomes 0, the full tank flag is reset.
[0179]
Further, the CPU 56 sets “2” as the offset of the input determination value table (step S156), and sets “0A (H)” as the offset of the switch timer address (step S157). The offset “2” in the input determination value table means that the third data “250” in the input determination value table is used. Also, since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the switch timer address offset “0A (H)” is designated by the switch timer corresponding to the ball break switch 187. Means that Then, a switch-on check routine is called (step S158).
[0180]
In the switch-on check routine, if the value of the switch timer corresponding to the ball-out switch 187 matches the ball-out switch-on determination value “250”, the switch-on flag is set (step S159). It is set (step S160). Although not explicitly shown in FIG. 24, a switch-off timer corresponding to the ball-out switch 187 is prepared, and when the value becomes 50, the ball-out flag is reset.
[0181]
Then, the CPU 56 confirms whether or not the payout is stopped (step S201). The payout stop state is a state after a payout stop state designation command which is a payout control command for instructing the payout control board 37 that payout should be stopped. This is a state in which the payout stop flag is set. If it is not in the payout stop state, it is confirmed whether or not the above-described ball-out state flag or full tank flag is turned on (step S202).
[0182]
When either of them changes to the ON state, a payout stop state flag is set (step S203), a command transmission table relating to a payout stop state designation command is set (step S204), and command set processing is called (step S205). . In step S204, the head address of the command transmission table (ROM) storing the payout control command of the payout stop state designation command is set as the address of the command transmission table. In the command transmission table relating to the payout stop state designation command, INT data described later, data of the first byte of the payout control command, and data of the second byte of the payout control command are set. In step S202, when one of the flags is already in the on state and the other flag is in the on state, the processes in steps S203 to S205 are not performed.
[0183]
If it is in the payout stopped state, it is checked whether both the ball-out state flag and the full tank flag are turned off (step S206). When both are turned off, the payout stop flag is reset (step S207), the command transmission table relating to the payable state designation command is set (step S208), and the command setting process is called (step S209). In step S208, the start address of the command transmission table (ROM) in which the payout control command of the payable state designation command is stored is set as the address of the command transmission table. In the command transmission table related to the payout enable state designation command, INT data, data of the first byte of the payout control command, and data of the second byte of the payout control command, which will be described later, are set.
[0184]
Further, the CPU 56 sets “0” as the offset of the input determination value table (step S221), and sets “0” as the offset of the switch timer address (step S222). The offset “0” in the input determination value table means that the first data in the input determination value table is used. Further, since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the switch timer address offset “0” designates the switch timer corresponding to the winning prize switch 33a. Means. Also, “4” is set as the number of repetitions (step S223). Then, a switch-on check routine is called (step S224).
[0185]
In the switch-on check routine, the CPU 56 sets the head address of the input determination value table (see FIG. 28) (step S281). Then, an offset is added to the address (step S282), and a switch-on determination value is loaded from the address after the addition (step S283).
[0186]
Next, the CPU 56 sets the start address of the switch timer (step S284), adds an offset to the address (step S285), and loads the value of the switch timer from the address after the addition (step S286). Since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the value of the switch timer corresponding to the switch is loaded.
[0187]
Then, the CPU 56 compares the loaded switch timer value with the switch-on determination value (step S287). If they match, a switch-on flag is set (step 128).
[0188]
In this case, in the switch-on check routine, the switch-on flag is set if the value of the switch timer corresponding to the winning opening switch 33a matches the switch-on determination value “2” (step S225). The switch check-on routine is executed for the number of repetitions initially set (step S228, S229) while the offset of the switch timer address is updated (step S230). For 24a, 29a and 30a, the value of the corresponding switch timer is compared with the switch-on determination value “2”.
[0189]
When the switch-on flag is set, “10” as the number of prize balls to be paid out is set in the ring buffer (step S226). Then, 10 is added to the stored value of the total winning ball number storage buffer (step S227). When data is written to the ring buffer, the write pointer is incremented. When data is written to the last area of the ring buffer, the write pointer is updated to point to the first area of the ring buffer.
[0190]
The total winning ball number storage buffer is a buffer for storing a cumulative value of the number of winning balls instructed to the payout control means (however, subtracted when paying out), and is formed in the backup RAM. In this embodiment, when data is written to the ring buffer, an addition process is performed on the stored value of the total prize ball number storage buffer, but a payout control command for instructing the number of prize balls to be paid out is output to the output port. At the time of output, the number of prize balls corresponding to the payout control command to be output may be added to the value stored in the total prize ball number storage buffer.
[0191]
Next, the CPU 56 sets “0” as the offset of the input determination value table (step S231), and sets “4” as the offset of the switch timer address (step S232). The offset “0” in the input determination value table means that the first data in the input determination value table is used. Also, since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the switch timer address offset “4” designates the switch timer corresponding to the start port switch 14a. Means. Then, a switch-on check routine is called (step S233).
[0192]
In the switch-on check routine, if the value of the switch timer corresponding to the start port switch 14a matches the switch-on determination value “2”, the switch-on flag is set (step S234). When the switch-on flag is set, “6” as the number of prize balls to be paid out is set in the ring buffer (step S235). Further, 6 is added to the stored value of the total winning ball number storage buffer (step S236).
[0193]
Next, the CPU 56 sets “0” as the offset of the input determination value table (step S241), and sets “5” as the offset of the switch timer address (step S242). The offset “0” in the input determination value table means that the first data in the input determination value table is used. Further, since the switch timers are arranged in the same order as the bit order of the input ports shown in FIG. 10, the switch timer address offset “5” indicates that the switch timer corresponding to the count switch 23 is designated. means. Then, a switch-on check routine is called (step S243).
[0194]
In the switch-on check routine, if the value of the switch timer corresponding to the count switch 23 matches the switch-on determination value “2”, the switch-on flag is set (step S244). When the switch-on flag is set, “15” as the number of prize balls to be paid out is set in the ring buffer (step S245). Further, 15 is added to the stored value of the total winning ball number storage buffer (step S246).
[0195]
If data exists in the ring buffer (step S247), the contents of the ring buffer pointed to by the read pointer are set in the transmission buffer (step S248), and the value of the read pointer is updated (next area of the ring buffer). (Step S249), a command transmission table relating to the number of winning balls is set (Step S250), and command set processing is called (Step S251). The operation of the command set process will be described in detail later.
[0196]
In step S250, the head address of the command transmission table (ROM) in which the payout control command relating to the number of winning balls is stored is set as the address of the command transmission table. In the command transmission table relating to the number of winning balls, INT data (01 (H)) described later, data of the first byte of the payout control command (F0 (H)), and data of the second byte of the payout control command are set. ing. However, “80 (H)” is set as the second byte data.
[0197]
As described above, when the game control means tries to output a payout control command for instructing the number of prize balls to the payout control board 37, the command transmission table address setting and the transmission buffer setting regarding the number of prize balls are performed. . Then, a payout control command is sent to the payout control board 37 based on the command transmission table related to the number of winning balls and the setting contents of the transmission buffer by command set processing. In step S247, whether or not there is data can be confirmed by the difference between the write pointer and the read pointer. However, a counter indicating the number of unprocessed data in the ring buffer is provided, and there is data by the count value. It may be confirmed whether or not.
[0198]
Then, when the content of the total prize ball number storage buffer is not 0, that is, when there is still a prize ball remaining, the CPU 56 turns on a prize ball paying-in flag (steps S252 and S253).
[0199]
Further, when the winning ball payout flag is on (step S254), the CPU 56 monitors the number of winning balls actually paid out from the ball paying device 97 and subtracts the stored value of the total winning ball number storage buffer. The number of winning balls to be subtracted is performed (step S255). When the prize ball paying flag changes from on to off, a lamp control command for instructing lighting of the prize ball lamp 51 is sent to the lamp control board 35.
[0200]
In this embodiment, even when the payout is stopped (steps S201 and S206), the processing of steps S221 to S251 is executed. That is, the game control means can send out a payout control command for instructing the number of prize balls even when the payout is stopped. That is, a command for instructing the number of prize balls is transmitted to the payout control means even in the payout stop state, and when the payout stop state is canceled, the payout of the prize balls can be started early. Further, the game control means does not require a large storage area for storing the number of winning balls based on winning in the payout stop state.
[0201]
Next, a method for sending a control command from the game control means to each electric component control means will be described. When a control command is to be output from the game control means to another electrical component control board (sub board), the head address of the command transmission table is set. FIG. 29A is an explanatory diagram showing a configuration example of the command transmission table. One command transmission table is composed of 3 bytes, and INT data is set in the first byte. In the command data 1 of the second byte, MODE data of the first byte of the control command is set. Then, in the command data 2 of the third byte, the EXT data of the second byte of the control command is set.
[0202]
Although the EXT data itself may be set in the area of the command data 2, the command data 2 may be set with data for designating the address of the table storing the EXT data. . For example, if bit 7 (work area reference bit) of command data 2 is 0, it indicates that EXT data itself is set in command data 2. Such EXT data is data in which bit 7 is 0. In this embodiment, if the work area reference bit is 1, it indicates that the contents of the transmission buffer are used as EXT data. If the work area reference bit is 1, the other 7 bits may be configured to indicate an offset for designating an address of a table storing EXT data.
[0203]
FIG. 29B is an explanatory diagram illustrating a configuration example of INT data. Bit 0 in the INT data indicates whether or not a payout control command should be sent to the payout control board 37. If bit 0 is “1”, it indicates that a payout control command should be sent. Therefore, the CPU 56 sets “01 (H)” in the INT data, for example, in a prize ball process (step S32 of the main process). Bit 1 in the INT data indicates whether or not a display control command should be sent to the symbol output control board 80. If bit 1 is “1”, it indicates that a display control command should be sent. Accordingly, the CPU 56 sets “02 (H)” in the INT data, for example, in the special symbol command control process (step S28 of the main process).
[0204]
Bits 2 and 3 of the INT data are bits indicating whether or not a lamp control command and a sound control command should be sent, respectively, and the CPU 56 performs special symbol process processing when it is time to send those commands. Etc., INT data, command data 1 and command data 2 are set in the command transmission table pointed to by the pointer. When these commands are transmitted, the corresponding bit of the INT data is set to “1”, and MODE data and EXT data are set to the command data 1 and the command data 2.
[0205]
In this embodiment, for the payout control command, a ring buffer and a transmission buffer are prepared as shown in FIG. In the prize ball processing, when the prize ball payout condition is established, the number of prize balls according to the established condition is sequentially set in the ring buffer. Further, when a payout control command relating to the number of prize balls is sent, one piece of data is transferred from the ring buffer to the transmission buffer. In the example shown in FIG. 29C, data corresponding to 12 payout control commands can be stored in the ring buffer. That is, there are 12 buffers. Note that the number of buffers in the ring buffer may be a number corresponding to the number of winning openings for generating a prize ball. This is because even when simultaneous winnings occur, it is possible to store payout control command data based on each winning.
[0206]
FIG. 30 is an explanatory diagram showing an example of a command form of a control command sent from the main board 31 to another electrical component control board. In this embodiment, the control command has a 2-byte configuration, the first byte represents MODE (command classification), and the second byte represents EXT (command type). The first bit (bit 7) of the MODE data is always “1”, and the first bit (bit 7) of the EXT data is always “0”. As described above, the control command serving as a command to the electrical component control board is composed of a plurality of data and can be distinguished from each other by the first bit. The command form shown in FIG. 30 is an example, and other command forms may be used. For example, a control command composed of 1 byte or 3 bytes or more may be used. In addition, FIG. 30 illustrates a payout control command sent to the payout control board 37, but the control commands sent to other electrical component control boards have the same configuration.
[0207]
FIG. 31 is a timing chart showing the relationship between the 8-bit control signals CD0 to CD7 and the INT signal that constitute the control command for each electric component control means. As shown in FIG. 31, after the MODE or EXT data is output to the output port (any one of the output port 1 to the output port 4), when the period indicated by A elapses, the CPU 56 outputs the data. The INT signal, which is a signal indicating the above, is set to a high level (ON data). Further, when the period indicated by B elapses thereafter, the INT signal is set to low level (off data). Further, when there is data to be transmitted next, that is, after the MODE data is transmitted, the second byte of data is transmitted to the output port after a period indicated by C. Regarding the second byte data, the periods A and B are the same as in the first byte. In this way, the capture signal is output for each of the MODE and EXT data.
[0208]
The period A is a period required for the CPU 56 to prepare for sending a command, that is, a process required to set a send command in the buffer, and a period for stabilizing data on the control signal line. That is, after the control signals CD0 to CD7 are output on the control signal line, the INT signal as the capture signal is output after a predetermined period (period A: part of the off output period) has elapsed. The period B (ON output period) is a period for stabilizing the INT signal. The period C (a part of the off-output period) is a period set so that the electrical component control means can reliably capture data. During the period of B and C, the data on the signal line does not change. That is, the data output is maintained until the period of B and C elapses.
[0209]
In this embodiment, the payout control command to the payout control board 37, the display control command to the symbol control board 80, the lamp control command to the lamp control board 35, and the sound control command to the sound control board 70 are the same command. It is sent out using a transmission processing routine (common module). Therefore, the period of B and C, that is, the period from when the INT signal related to the first byte rises to when the second byte data starts to be transmitted is longer than the reception processing time in the electrical component control means that takes the longest time for command reception processing. Is set to be longer.
[0210]
Each electrical component control means detects that the INT signal has risen, and starts a 1-byte data capture process, for example, by an interrupt process.
[0211]
Since the period of B and C is longer than the reception processing time in the electrical component control means that takes the longest time for command reception processing, even if the game control means controls the command transmission process for each electrical component control means with the common module Any electric component control means can reliably receive a control command from the game control means.
[0212]
The CPU 56 is ready to send the next data after a predetermined period of time has elapsed after executing the INT signal output process. During the predetermined period (B and C periods), the data is sent before the INT signal output process. Is longer than the period (period A) from when the INT signal starts to be output. As described above, the period A is a stabilization period in the command signal line, and the periods B and C are periods for securing a time required for the receiving side to capture data. Therefore, by making the period A shorter than the periods B and C, it is possible to obtain the effect that the electric component control means on the receiving side can reliably receive the command, and the transmission of one command is completed. This also has the effect of shortening the time required for.
[0213]
FIG. 32 is an explanatory diagram showing an example of the contents of the payout control command. In the example shown in FIG. 32, the command FF00 (H) with MODE = FF (H) and EXT = 00 (H) is a payout control command (payable state designation command) for instructing that payout is possible. is there. A command FF01 (H) with MODE = FF (H) and EXT = 01 (H) is a payout control command (payout stop state designation command) for instructing that payout should be stopped. A command F0XX (H) with MODE = F0 (H) is a payout control command for designating the number of winning balls. “XX”, which is EXT, indicates the number of payouts.
[0214]
When the payout control means receives the payout control command of FF01 (H) from the game control means of the main board 31, the payout payout and ball lending are stopped, and when the payout control command of FF00 (H) is received, the payout ball payout And you can rent a ball. When a payout control command for designating the number of prize balls is received, prize ball payout control is performed according to the number designated by the received command.
[0215]
The payout control command is sent only once so that the payout control means can recognize it. In this example, “recognizable” means that the level of the INT signal changes. In this example, “recognizable only once” means that in each of the first and second bytes of the payout control signal. Accordingly, the INT signal is output in a pulse shape (rectangular wave shape) only once.
[0216]
When a control command for each electrical component control board is output to the corresponding output port (output ports 1 to 4), any one of the bits 0 to 3 of the output port 0 is “1” ( However, the bit arrangement in the INT data and the bit arrangement in the output port 0 correspond to each other. Accordingly, when a control command is sent to each electric component control board, the INT signal can be easily output based on the INT data.
[0217]
FIG. 33 is a flowchart illustrating a processing example of command set processing (steps S205, S209, and S251). The command set process is a process including a command output process and an INT signal output process. In the command set process, the CPU 56 first saves the address of the command transmission table (the contents of the pointer as the transmission signal instruction means) to the stack or the like (step S331). Then, the INT data of the command transmission table pointed to by the pointer is loaded into the argument 1 (step S332). The argument 1 is input information for a command transmission process to be described later. Also, the address indicating the command transmission table is incremented by 1 (step S333). Therefore, the address indicating the command transmission table matches the address of the command data 1.
[0218]
Therefore, the CPU 56 reads the command data 1 and sets it as the argument 2 (step S334). The argument 2 is also input information for a command transmission process to be described later. Then, the command transmission processing routine is called (step S335).
[0219]
FIG. 34 is a flowchart showing a command transmission processing routine. In the command transmission processing routine, the CPU 56 first sets the data set as the argument 1, that is, the INT data, in the work area determined as the comparison value (step S351). Next, the number of transmissions = 4 is set in the work area determined as the number of processes (step S352). Then, the port 1 address for outputting the payout control signal is set to the IO address (step S353). In this embodiment, the port 1 address is the output port address for outputting the payout control signal. The addresses of ports 2 to 4 are the addresses of output ports for outputting display control signals, lamp control signals, and audio control signals.
[0220]
Next, the CPU 56 shifts the comparison value to the right by 1 bit (step S354). As a result of the shift processing, it is confirmed whether or not the carry bit has become 1 (step S355). When the carry bit becomes 1, it means that the rightmost bit in the INT data is “1”. In this embodiment, four shift processes are performed. For example, when it is specified that a payout control command should be sent, the carry bit is set to 1 in the first shift process.
[0221]
When the carry bit becomes 1, the data set in the argument 2, in this case, the command data 1 (that is, MODE data) is output to the address set as the IO address (step S 356). Since the address of port 1 is set as the IO address when the first shift processing is performed, MODE data of the payout control command is output to port 1 at that time.
[0222]
Next, the CPU 56 adds 1 to the IO address (step S357) and subtracts 1 from the number of processes (step S358). If port 1 is indicated before addition, the address of port 2 is set as the IO address by the addition processing for the IO address. Port 2 is a port for outputting a display control command. Then, the CPU 56 confirms the value of the number of processes (step S359), and if the value is not 0, returns to step S354. In step S354, the shift process is performed again.
[0223]
In the second shift process, the value of bit 1 in the INT data is pushed out, and the carry flag is set to “1” or “0” depending on the value of bit 1. Therefore, it is checked whether or not it is specified that the display control command should be sent. Similarly, it is checked whether or not the lamp control command and the sound control command are to be sent by the third and fourth shift processes. Thus, when each shift process is performed, the IO address corresponding to the control command (payout control command, display control command, lamp control command, sound control command) checked by the shift process is included in the IO address. Is set.
[0224]
Therefore, when the carry flag becomes “1”, a control command is sent to the corresponding output port (port 1 to port 4). That is, a single common module can perform control command transmission processing for each electric component control means.
[0225]
In addition, since it is determined to which electrical component control means the control command should be output only by the shift processing, the process for determining to which electrical component control means the control command should be output is simplified. It has become.
[0226]
Next, the CPU 56 reads the content of the argument 1 in which the INT data before the start of the shift process is stored (step S360), and outputs the read data to the port 0 (step S361). In this embodiment, the address of port 0 is a port for outputting an INT signal for each control signal, and bits 0 to 4 of port 0 are a payout control INT signal, a display control INT signal, and a ramp, respectively. This is a port for outputting a control INT signal and a sound control INT signal. In the INT data, the bit corresponding to the output bit of the INT signal corresponding to the control command (payout control command, display control command, lamp control command, sound control command) output in the processing of steps S351 to S359 is “1”. It has become. Therefore, the INT signal corresponding to the control command (payout control command, display control command, lamp control command, sound control command) output to any of the ports 1 to 4 becomes high level.
[0227]
Next, the CPU 56 sets a predetermined value in the wait counter (step S362), and subtracts one by one until the value becomes 0 (steps S363 and S364). This process is a process for setting the period B shown in FIG. When the value of the wait counter becomes 0, clear data (00) is set (step S365), and the data is output to port 0 (step S366). Therefore, the INT signal becomes low level. Then, a predetermined value is set in the wait counter (step S362), and 1 is subtracted one by one until the value becomes 0 (steps S368 and S369). This process is a process for setting the period C shown in FIG. However, the actual period of C is the time taken in steps S367 to S369 to the subsequent processing time (the time required for the control to output EXT data if MODE data is output at this time). ) Is added. Thus, even if commands are sent continuously by setting the period C, there is a predetermined period after the completion of the output of one command until the next command transmission is started. As a result, it is possible to easily identify the breaks between successive commands on the side of the electric component control means that receives the commands, and each command is reliably received.
[0228]
Therefore, the value set in the wait counter in step S367 is a value such that the period C is sufficient to ensure that all electrical component control means that are the control command reception target perform the command reception process. is there. The value set in the wait counter is a value such that the period C is longer than the time required for the processing in steps S357 to S359 (corresponding to the period A). If it is desired to make the period A longer, wait processing for creating the period A (for example, processing for setting a predetermined value in the weight counter and performing subtraction until the value of the weight counter becomes 0) is performed. Do.
[0229]
As described above, the MODE data of the first byte of the control command is transmitted. Therefore, the CPU 56 adds 1 to the value indicating the command transmission table in step S336 shown in FIG. Therefore, the command data 2 area of the third byte is designated. The CPU 56 loads the contents of the indicated command data 2 into the argument 2 (step S337). Further, it is confirmed whether or not the value of bit 7 (work area reference bit) of the command data 2 is “0” (step S339). If not 0, the contents of the transmission buffer are loaded into the argument 2 (step S341). When the extension data is used when the value of the work area reference bit is “1”, the head address of the command extension data address table is set in the pointer, and the command data is set in the pointer. The address is calculated by adding 2 bits 6 to 0. Then, the data of the area pointed to by the address is loaded into the argument 2.
[0230]
Since data capable of specifying the number of winning balls is set in the transmission buffer, the data is set in the argument 2. If the extension data is used when the value of the work area reference bit is “1”, the command extension data address table contains EXT data that can be sent to the electrical component control means. Set sequentially. Therefore, if the value of the work area reference bit is “1”, the EXT data in the command extension data address table corresponding to the contents of the command data 2 is loaded into the argument 2.
[0231]
Next, the CPU 56 calls a command transmission processing routine (step S342). Therefore, the EXT data is transmitted at the same timing as the transmission of MODE data.
[0232]
As described above, the control command (payout control command, display control command, lamp control command, sound control command) having a 2-byte configuration is transmitted to the corresponding electrical component control means. The electrical component control means starts the capture process of the control command when the rising edge of the INT signal is detected. For any electrical component control means, a new signal from the game control means is signaled before the capture process is completed. There is no output on the line. That is, reliable command reception processing is performed in each electric component control means. In addition, each electric component control means may start taking in the control command at the falling edge of the INT signal. Further, the polarity of the INT signal may be reversed from that shown in FIG.
[0233]
In this embodiment, in the prize ball processing, when the prize ball payout condition is satisfied, data capable of specifying the number of prize balls is stored in a ring buffer capable of storing a plurality of data at the same time, and the number of prize balls is designated. When the payout control command is sent, the data in the ring buffer area pointed to by the read pointer is transferred to the transmission buffer. Therefore, even if a plurality of winning ball payout conditions are satisfied at the same time, data capable of specifying the number of winning balls based on the satisfaction of these conditions is stored in the ring buffer, so there is no problem in command output processing based on the satisfaction of each condition. Executed.
[0234]
Furthermore, in this embodiment, both a payout stop state designation command or a payout enable state designation command and a command indicating the number of prize balls can be sent out within one prize ball process. That is, a plurality of commands can be sent within one control period activated every 2 ms. In this embodiment, a plurality of ring buffers are prepared for each control command (display control command, lamp control command, sound control command, payout control command) to each control means. When data that can specify a control command is set in the ring buffer of the control command, lamp control command, and sound control command, a plurality of display control commands, lamp control commands, and sound control commands are performed in one command control process. It is also possible to configure so that That is, a plurality of control commands can be sent simultaneously (meaning in the start cycle of the game control process, that is, the 2 ms timer interrupt process). Since the sending timing of these control commands is generated at the same time in the progress of the game effect, it is convenient to have such a configuration. However, since the payout control command is generated regardless of the progress of the game effect, it is generally not sent simultaneously with the display control command, the lamp control command, and the sound control command.
[0235]
Next, payout control means will be described as an example of electrical component control means other than game control means.
[0236]
FIG. 35 is a block diagram showing a configuration example around the payout control CPU 371. As shown in FIG. 35, the power-off signal from the power supply monitoring circuit (power supply monitoring means) of the power supply board 910 is connected to the non-maskable interrupt terminal (XNMI terminal) of the payout control CPU 371 via the buffer circuit 960. Yes. Therefore, the payout control CPU 371 can confirm the occurrence of the stop of power supply to the gaming machine by the non-maskable interrupt process.
[0237]
The INT signal from the main board 31 is connected to the CLK / TRG2 terminal of the payout control CPU 371. When a clock signal is input to the CLK / TRG2 terminal, the value of the timer counter register CLK / TRG2 built in the payout control CPU 371 is down-counted. When the register value becomes 0, an interrupt occurs. Therefore, if the initial value of the timer counter register CLK / TRG2 is set to “1”, an interrupt is generated according to the input of the INT signal.
[0238]
Although the system reset circuit 975 is also mounted on the payout control board 37, in this embodiment, the reset IC 976 in the system reset circuit 975 outputs an output to the external capacitor for a predetermined time determined by the capacity when the power is turned on. The output is set to a low level, and the output is set to a high level when a predetermined time has elapsed. Further, the reset IC 976 monitors the power supply voltage of VSL, and when the voltage value becomes a predetermined value (for example, +9 V) or less, the reset IC 976 sets the output to a low level. Therefore, when the power supply to the gaming machine is stopped, the payout control CPU 371 is system reset by the signal from the reset IC 976 becoming low level.
[0239]
The predetermined value for the reset IC 976 to detect the stop of power supply is lower than the normal voltage, but is a voltage that allows the payout control CPU 371 to operate for a while. Further, since the reset IC 976 is configured to monitor a voltage higher than the voltage required by the payout control CPU 371 (in this example, +5 V), the monitoring range for the voltage required by the payout control CPU 371 is set. Can be spread. Therefore, more precise monitoring can be performed. The system reset circuit 975 corresponds to second power supply monitoring means.
[0240]
While power is not supplied from the + 5V power supply, at least a part of the built-in RAM of the payout control CPU 371 is backed up by connecting the backup power supply supplied from the power supply board to the backup terminal, and is used for a gaming machine such as a power failure. The contents are preserved even if the power supply is stopped. When the +5 V power supply is restored, a reset signal is issued from the system reset circuit 975, so that the payout control CPU 371 returns to a normal operation state. At that time, since necessary data is backed up, it is possible to restore the payout control state at the time of the power failure when recovering from the power failure.
[0241]
In the configuration shown in FIG. 35, the system reset circuit 975 outputs a low level during a period determined by the capacitance of the capacitor when power is turned on, and then outputs a high level. That is, the reset release timing is only once. However, as in the case of the main board 31 shown in FIG. 9, a circuit configuration that generates a plurality of reset release timings may be used.
[0242]
FIG. 36 is an explanatory diagram showing bit assignment of input ports in this embodiment. As shown in FIG. 36, the input port A (address 06H) is an input port for taking in an 8-bit payout control signal of the payout control command sent from the main board 31. In addition, detection signals of the winning ball count switch 301A and the ball lending count switch 301B are input to bits 0 to 1 of the input port B (address 07H), respectively. Bits 2 to 5 are supplied with a BRDY signal, a BRQ signal, a VL signal, and a clear switch 921 detection signal from the card unit 50.
[0243]
FIG. 37 is a flowchart showing the main processing of the payout control means (the payout control CPU 371 and peripheral circuits such as ROM and RAM). In the main process, the payout control CPU 371 first performs necessary initial settings. That is, the payout control CPU 371 first sets the interruption prohibition (step S701). Next, the interrupt mode is set to interrupt mode 2 (step S702), and a stack pointer designation address is set to the stack pointer (step S703). The payout control CPU 371 initializes the built-in device register (step S704), initializes the CTC and PIO (step S705), and then sets the RAM in an accessible state (step S706).
[0244]
In this embodiment, one channel of the built-in CTC is used in the timer mode. Accordingly, in the built-in device register setting process in step S704 and the process in step S705, register setting for setting the channel to be used to timer mode, register setting for permitting interrupt generation, and setting an interrupt vector. The register is set. The interrupt by the channel is used as a timer interrupt. For example, when it is desired to generate a timer interrupt every 2 ms, a value corresponding to 2 ms is set as an initial value in a predetermined register (time constant register).
[0245]
The interrupt vector set for the channel set to the timer mode (channel 3 in this embodiment) corresponds to the start address of the timer interrupt process. Specifically, the start address of the timer interrupt process is specified by the value set in the I register and the interrupt vector. In the timer interrupt process, a payout control process is executed.
[0246]
Further, another channel (channel 2 in this embodiment) of the built-in CTC is used as an interrupt generation channel for receiving a payout control command from the game control means, and this channel is used in the counter mode. Used in. Accordingly, in the built-in device register setting process in step S704 and the process in step S705, register setting for setting the channel to be used to the counter mode, register setting for permitting interrupt generation, and setting an interrupt vector. The register is set.
[0247]
The interrupt vector set in the channel (channel 2) set in the counter mode corresponds to the head address of the command reception interrupt process described later. Specifically, the start address of the command reception interrupt process is specified by the value set in the I register and the interrupt vector.
[0248]
In this embodiment, the interruption mode 2 is also set in the payout control CPU 371. Therefore, an interrupt process based on counting up the built-in CTC can be used. Also, an interrupt processing start address can be set according to the interrupt vector sent by the CTC.
[0249]
The interrupt based on the count-up of the CTC channel 2 (CH2) is an interrupt that occurs when the value of the timer counter register CLK / TRG2 described above becomes “0”. Therefore, for example, in step S705, the initial value “1” is set in the timer counter register CLK / TRG2 as the specific register. Further, the count value of the timer counter register CLK / TRG2 as the specific register is decremented by 1 at the rise or fall of the signal input to the CLK / TRG2 terminal. Decrease selection can be made. In this embodiment, setting is made such that the count value of the timer counter register CLK / TRG2 is -1 at the rising edge of the signal input to the CLK / TRG2 terminal.
[0250]
An interrupt based on the count-up of CTC channel 3 (CH3) is an interrupt that occurs when the internal clock (system clock) of the CPU is counted down and the register value becomes “0”. Used as an interrupt. Specifically, a clock obtained by dividing the operation clock of the CPU 371 is given to the CTC, the register value is subtracted by the input of the clock, and when the register value becomes 0, a timer interrupt occurs. For example, the register value of CH3 is subtracted at 1/256 period of the system clock. Since the subtraction is performed based on the divided clock, the initial value of the register does not increase. In step S705, the CH3 register is set to a value corresponding to 2 ms as an initial value.
[0251]
Interrupts based on CTC CH2 count-up have a higher priority than interrupts based on CH3 count-up. Therefore, when the count-up occurs simultaneously, the interrupt based on the CH2 count-up, that is, the interrupt that triggers the execution of the command reception interrupt process is given priority.
[0252]
Next, the payout control CPU 371 checks the state of the output signal of the clear switch 921 input via the input port B (see FIG. 36) only once (step S707). In the confirmation, when ON is detected, the payout control CPU 371 executes normal initialization processing (steps S711 to S713). When the clear switch 921 is on (when pressed), a low-level clear switch signal is output. Note that in the input port 372, the ON state of the clear switch signal is at a high level. Further, the payout control means does not have to make the determination in step S707.
[0253]
As with the CPU 56 of the main board 31, the payout control CPU 371 also determines that the switch detection signal is on, for example, when the on state is at least 2 ms (the first process of the process activated every 2 ms). If the detection signal is turned on immediately before the detection in (1), the switch is not considered to be turned on unless it is continued. That is, the initialization request detection determination period for the payout control CPU 371 to determine whether or not the clear switch 921 as the initialization operation means is in a predetermined operation state is a prize ball count switch as the game medium detection means or the like Is a period different from the game medium detection determination period for determining that the game medium has been detected.
[0254]
If the clear switch 921 is not in the ON state, the payout control CPU 371 checks whether backup data exists in the payout control backup RAM area (step S708). For example, as with the processing of the CPU 56 of the main board 31, whether or not backup data exists is confirmed by whether or not the backup flag that is set when power supply to the gaming machine is stopped is set. If the backup flag is set, it is determined that there is backup data.
[0255]
After confirming that there is a backup, the payout control CPU 371 performs a data check (parity check in this example) in the backup RAM area. If the power supply is restored after a power outage such as an unexpected power failure, the data in the backup RAM area should have been stored, so the check result is normal. If the check result is not normal, the internal state cannot be returned to the state at the time of stopping the power supply, and therefore the initialization process that is executed at the time of power-on is executed instead of the recovery from an insufficient power failure.
[0256]
If the check result is normal (step S709), the payout control CPU 371 performs a payout state recovery process for returning the internal state to the state when the power supply is stopped (step S710). Then, it returns to the address indicated by the PC (program counter) stored in the backup RAM area.
[0257]
In the initialization process, the payout control CPU 371 first performs a RAM clear process (step S711). Then, the CTC register provided in the payout control CPU 371 is set so that a timer interrupt is periodically generated every 2 ms (step S712). That is, a value corresponding to 2 ms is set in a predetermined register (time constant register) as an initial value. Since the interruption is prohibited in step S701 of the initial setting process, the interruption is permitted before the initialization process is finished (step S713).
[0258]
In this embodiment, the built-in CTC of the payout control CPU 371 is set to repeatedly generate a timer interrupt. In this embodiment, the repetition period is set to 2 ms. When a timer interrupt occurs, a timer interrupt flag indicating that a timer interrupt has occurred is set as shown in FIG. 38 (step S792). If it is detected in the main process that the timer interrupt flag is set (step S714), the timer interrupt flag is reset (step S751), and the payout control process (steps S751 to S760) is executed. The
[0259]
In the timer interrupt, as shown in FIG. 38, the interrupt permission state is first set (step S791). Therefore, the interrupt is permitted during the timer interrupt process, and the payout control command receiving process based on the input of the INT signal can be preferentially executed.
[0260]
In the payout control process, the payout control CPU 371 first determines whether or not a switch such as the prize ball count switch 301A or the ball lending count switch 301B input to the input port 372b is turned on (switch process: step S752). .
[0261]
Next, the payout control CPU 371 sets the payout stop state when the payout stop state designation command is received from the main board 31, and cancels the payout stop state when the payout possible state designation command is received (payout stop state). State setting process: Step S753). Also, the received payout control command is analyzed, and processing according to the analysis result is executed (command analysis execution processing: step S754). Further, a prepaid card unit control process is performed (step S755).
[0262]
Next, the payout control CPU 371 performs control for paying out the rental balls in response to the ball rental request (step S756). At this time, the payout control CPU 371 sets the ball sorting member 311 to the ball lending side by the sorting solenoid 310.
[0263]
Further, the payout control CPU 371 performs prize ball control processing for paying out the number of prize balls stored in the total number memory (step S757). At this time, the payout control CPU 371 sets the ball sorting member 311 to the prize ball side by the sorting solenoid 310. Then, a drive signal is output to the payout motor 289 in the payout mechanism portion of the ball payout device 97 via the output port 372c and the relay board 72, and a payout motor control process for rotating the payout motor 289 by a predetermined number of rotations is performed. (Step S758).
[0264]
In this embodiment, a stepping motor is used as the payout motor 289, and a 1-2 phase excitation method is used to control them. Therefore, specifically, eight types of excitation pattern data are repeatedly output to the payout motor 289 in the payout motor control process. In this embodiment, each excitation pattern data is output by 4 ms.
[0265]
Next, error detection processing is performed, and predetermined display is performed on the error display LED 374 according to the result (error processing: step S759). In addition, processing for outputting a ball lending number signal output to the outside of the gaming machine is performed (output processing: step S760).
[0266]
FIG. 39 is a flowchart illustrating an example of the payout state recovery process in step S710. In the payout state recovery process, the payout control CPU 371 first performs a stack pointer return process (step S731). The value of the stack pointer is saved in a predetermined RAM area (power backed up) in a power supply stop process described later. Therefore, in step S731, the RAM area value is set in the stack pointer to return. Note that the register value and the value of the program counter (PC) when the power supply is stopped are saved in the area pointed to by the restored stack pointer (that is, the stack area).
[0267]
Next, the payout control CPU 371 clears the backup flag (step S732), that is, resets a flag indicating that a predetermined storage protection process has been executed when the previous power supply was stopped. Also, the saved values of various registers are read from the stack area and set in the various registers (step S733). That is, register restoration processing is performed. If the parity flag is not turned on, an interrupt permission state is set (steps S734 and S735). Finally, the AF register (accumulator and flag register) is restored from the stack area (step S736).
[0268]
Then, the RET instruction is executed, but the return destination here is not the part that called out the payout state recovery process. This is because, in step S731, the stack pointer is restored, and the return address stored in the stack area pointed to by the restored stack pointer is the address where the NMI occurred when the power supply was last stopped in the program. Therefore, in response to the RET instruction subsequent to step S736, the process returns to the address where the NMI occurred when the power supply was stopped. That is, the recovery control is executed based on the address saved in the stack area.
[0269]
40 to 42 are flowcharts showing a processing example of non-maskable interrupt processing (NMI processing: power supply stop processing) executed in response to the power-off signal from the power supply board 910.
[0270]
In the power supply stop process, the payout control CPU 371 saves the AF register in a predetermined backup RAM area (step S801). Further, the interrupt flag is copied to the parity flag (step S802). The parity flag is formed in the backup RAM area. The interrupt flag is a flag indicating whether the interrupt is permitted or interrupt disabled, and is in a control register built in the payout control CPU 371. The on state of the interrupt flag indicates that the interrupt is prohibited. As described above, the parity flag is referred to in the gaming state restoration process. In the payout state recovery process, if the parity flag is in the on state, the interrupt permission state is not set.
[0271]
Further, the BC register, DE register, HL register, IX register, and stack pointer are saved in the backup RAM area (steps S804 to S808).
[0272]
Next, the drive signal output to the dispensing motor 289 is turned off (step S761). Accordingly, the driving of the ball dispensing device 97 is stopped. Thereafter, in this embodiment, detection signals of the award ball count switch 301A (corresponding to the award game medium payout detecting means) and the ball lending count switch 301B (corresponding to the rented game medium payout detecting means) as the payout detecting means for a predetermined period. Check. Then, when the prize ball count switch 301A is turned on, the content of the total number memory is reduced by one. Further, when the ball lending count switch 301B is turned on, the content of the lending ball number storage is reduced by one.
[0273]
In this embodiment, a predetermined period measuring counter is used to measure the predetermined period. The value of the counter for measuring the predetermined period is changed from the initial value m (set in step S762) to the switch detection processing loop described below (the loop starting from S763 and returning to S763) once every time. -1 and when the value becomes 0, it is assumed that the predetermined period has ended. Since there is an exception in the detection processing loop, almost constant processing is performed, and therefore, m times the time required for one round of the loop corresponds to a predetermined period.
[0274]
In order to measure the predetermined period, an internal timer of the payout control CPU 371 may be used. That is, a predetermined value (corresponding to a predetermined period) is set in the built-in timer at the start of the switch detection process. Each time the switch detection processing loop is executed once, the count value of the built-in timer is checked. When the count value reaches 0, it is assumed that the predetermined period has ended. An interrupt by the internal timer can be used to detect that the value of the internal timer has reached 0, but at this stage, the control content (such as each value stored in the RAM) should not be changed. A program configuration is preferred in which the count value of the built-in timer is read and checked instead of using a program. Further, the predetermined period is set to be equal to or longer than the time from when the game ball falls from the ball dispensing device 97 until it reaches the prize ball count switch 301A or the ball lending count switch 301B.
[0275]
At least during a predetermined period in which the switch detection process is executed, the prize ball count switch 301A and the ball lending count switch 301B must be in a state in which a game ball can be detected. Therefore, in this embodiment, as shown in FIG. 8, a capacitor 923 serving as a relatively large capacity auxiliary drive power supply is connected to the input side of the converter IC 922 in the power supply substrate 910. Therefore, even when the power supply to the gaming machine is stopped, the + 12V power supply voltage is maintained in a range in which the switch can be driven for a certain period, and the winning ball count switch 301A and the ball lending count switch 301B can be operated. The capacitance of the capacitor is determined so that the period is equal to or longer than the predetermined period.
[0276]
Since the input port and the payout control CPU 371 are also driven by the + 5V power source created by the converter IC 922, they can operate for a relatively long period even when the power supply is stopped.
[0277]
Furthermore, in this embodiment, the sorting solenoid 310 is used to switch between the award ball path and the rental ball path. Therefore, the capacity of the capacitor 923 shown in FIG. 8 is such that the sorting solenoid 310 can be driven at least for the predetermined period. The capacitor 923 is connected in parallel with the power line of the VSL, but the game control means turns off the drive signal of other solenoids (for opening / closing the big prize opening etc.) according to the power-off signal. After the power-off signal is generated, the capacitor 923 only needs to drive only the sorting solenoid 310 among the solenoids.
[0278]
Note that the capacitor 923 used in this embodiment is an example of an auxiliary driving power supply, but another auxiliary driving power supply may be used. At least during the above-mentioned predetermined period, auxiliary driving of other modes is possible as long as it can drive the payout control means such as the prize ball count switch 301A, the ball lending count switch 301B, the sorting solenoid 310, and the CPU 371 for payout control. A power supply can be used.
[0279]
In the detection signal input process (switch detection process) from the payout detection means, the payout control CPU 371 first sets a value m corresponding to the predetermined period in the predetermined period measurement counter (step S762). Then, the payout control CPU 371 decrements the value of the predetermined period measurement counter by 1 (step S763), and confirms the value of the predetermined period measurement counter (step S764). If the value is 0, the switch detection process is terminated, and the process proceeds to a power supply stop process, which is a process for saving the control state.
[0280]
If the value of the counter for measuring the predetermined period is not 0, it is confirmed whether or not the prize ball count switch is on (step S765). If it is ON, the value of the detection period counter is decremented by 1 (step S766), and then it is confirmed whether or not the value of the detection period counter becomes 0 (step S767). If it is 0, the detection signal of the prize ball count switch 301A is confirmed via the input port (step S768), and if the on state is indicated, it is determined that the prize ball count switch 301A is surely turned on. The value of the memory and the number of payouts is reduced by 1 (step S769).
[0281]
If it is confirmed in step S765 that the prize ball count switch is not on, the detection signal of the prize ball count switch 301A is confirmed via the input port (step S770). An intermediate flag is set (step S771), and an initial value n is set in the detection period counter (step S772).
[0282]
If the prize ball count switch 301A is turned on within the predetermined period by the above processing, the values of the total number storage and the payout number storage are decreased by one. Since the processing for saving the contents of the backup RAM is performed after such switch detection processing, the total number storage and the payout number storage are always decremented by 1 for the award ball that has been paid out. Therefore, it is possible to prevent a contradiction in the stored control state with respect to the game ball payout. In the above switch detection process, a timer process using a detection period counter is performed. That is, once it is detected that the prize ball count switch 301A is turned on, it is not detected even after a predetermined time (n times the processing time in the loop from S763 to S767 and back to S763: game medium detection determination period). Not considered to be switched on. In other words, after the first ON detection, when the ON detection is performed even after the predetermined game medium detection determination period has elapsed, it is considered that the payout of one prize ball has been completed. Therefore, erroneous switch-on detection is prevented.
[0283]
In this case, for example, if n is set so that the game medium detection determination period is approximately 2 ms, the game medium detection determination period is changed to the normal game medium detection determination period (the normal game state that is not the process in the power supply stop process). The period of time for determining whether or not there is a game medium can be set to the same period. With this configuration, it is possible to determine whether or not the prize ball count switch 301A is turned on under substantially the same conditions as in normal control.
[0284]
Note that a timer process for preventing erroneous detection is also performed in the normal switch process (step S752 in FIG. 37). Therefore, such normal switch processing may be called. Here, the timer process using the counter for the detection period is performed, but the timer in the switch detection process using the CPU built-in timer is the same as in the case of measuring the predetermined period. Processing may be realized.
[0285]
When the winning ball count switch is not on and the ON state of the winning ball count switch 301A cannot be detected, a switch detection process is performed for the ball lending count switch 301B. That is, the payout control CPU 371 checks whether or not the ball lending count switch is on (step S775). If it is ON, the value of the detection period counter is decremented by 1 (step S776), and then it is confirmed whether or not the value of the detection period counter is 0 (step S777). If it is 0, the detection signal of the ball lending count switch 301B is confirmed via the input port (step S778), and if the on state is indicated, it is determined that the ball lending count switch 301B has been turned on, and the lending ball The number storage value is decreased by 1 (step S779).
[0286]
If it is confirmed in step S775 that the ball lending count switch is not on, the detection signal of the ball lending count switch 301B is confirmed via the input port (step S780). If the on-state is indicated, the ball lending count switch is turned on. An intermediate flag is set (step S781), and an initial value n is set in the detection period counter (step S782).
[0287]
If the ball lending count switch 301B is turned on within the predetermined period by the above processing, the value of the lending ball number storage is decremented by 1. Since the processing for saving the contents of the backup RAM is performed after such switch detection processing, the lending ball number storage is always decremented by 1 for the lending balls that have been paid out. Therefore, it is possible to prevent a contradiction in the stored control state with respect to the game ball payout. In the above switch detection process, a timer process using a detection period counter is performed. That is, the ball lending count switch 301B is not considered to be switched on unless the ball lending count switch 301B is turned on for a predetermined time (game medium detection determination period). In other words, as in the case of detecting the payout of a prize ball, it is considered that the payout of one lending ball is completed when the ON is detected even after the predetermined game medium detection determination period has elapsed after the first ON detection. Therefore, erroneous switch-on detection is prevented.
[0288]
As in the case of detection of award ball payout, for example, if n is set so that the game medium detection determination period is approximately 2 ms, the game medium detection determination period is set as the normal game medium detection determination period (when power supply is stopped). It is possible to set the same period as the period of time for determining whether or not there is a game medium in a normal gaming state, which is not a process in the process. With this configuration, it is possible to determine whether or not the ball lending count switch 301B is turned on under substantially the same conditions as in normal control.
[0289]
When the predetermined period has elapsed (step S764), the payout control CPU 371 stores the backup specified value ("55H" in this example) in the backup flag (step S809). The backup flag is formed in the backup RAM area. Next, processing similar to that of the CPU 56 of the main board 31 is performed to create parity data and store it in the backup RAM area (steps S810 to S819). Then, an access prohibition value is set in the RAM access register (step S820). Thereafter, the built-in RAM cannot be accessed.
[0290]
In this way, processing for saving the control state (in this example, checksum generation and RAM access prevention) is executed. A checksum generation process indicating whether or not the stored contents are correctly stored, and a RAM access prevention process for preventing the contents from being rewritten correspond to a process for storing the payout control state.
[0291]
When the RAM access prevention process is completed, the payout control CPU 371 enters a standby state (loop state). Therefore, nothing is done until the system is reset.
[0292]
FIG. 43 is an explanatory diagram showing an example of use of the RAM built in the payout control CPU 371. In this example, a total number storage (for example, 2 bytes), a lending ball number storage, and a payout number storage are formed in the backup RAM area. The total number storage stores the total number of prize balls paid out instructed from the main board 31 side. The rented ball number storage stores the number of balls that have not been paid out. The payout number storage stores the number of unpaid award balls among the award ball numbers set as the planned payout number from the total number of award ball payouts. Note that all RAM areas in which data used in the payout control process are stored may be backed up. In addition, the planned number of payouts may mean the number of unpaid ball lending.
[0293]
For example, when the payout control CPU 371 receives a payout control command indicating the number of prize balls from the game control means in the prize ball control process (step S757), the contents are increased in the total number memory by the indicated number. In addition, in the ball lending control process (step S756), every time a ball lending request signal is received from the card unit 50, the content is increased in the lending ball number storage by the number of one unit (for example, 25). Further, when the prize ball count switch 301A detects one prize ball payout in the prize ball control process, the payout control CPU 371 decrements the values of the total number memory and the payout quantity memory by 1, and the ball rental count switch in the ball rental control process. When 301B detects one lending ball payout, the value in the lending ball number storage is decreased by one.
[0294]
Accordingly, the number of unpaid winning balls (the total number of unpaid prize balls stored in the total number memory and the planned number of payouts stored in the paid-out number memory) and the number of lent balls (the number of unpaid balls stored in the rented-ball number memory) The total number of balls to be paid out (= scheduled number of payouts: in this example, since the number of balls to be rented is not increased until one unit of payout is completed), a backup RAM area capable of holding the contents for a predetermined period Will be remembered. Therefore, even if an unexpected power supply stop such as a power failure occurs, the award ball processing and the ball lending processing can be resumed based on the stored contents of the backup RAM area if the power supply is restored within a predetermined period. That is, even if the power supply to the gaming machine is stopped, if the power supply is restarted, the payout is performed based on the number of unpaid prize balls and the number of rented balls at the time of the power supply stop, and given to the player The disadvantage can be reduced. In addition, since the expected number of payout balls or rental balls will be stored in the backup RAM area for a predetermined period, even if power supply is stopped in the middle of payout of one unit of prize balls or rental balls, If the power supply is restored within a predetermined period, the award ball process and the ball lending process can be resumed based on the stored contents of the backup RAM area, and the remaining game balls being paid out can be paid out.
[0295]
FIG. 44 is an explanatory diagram showing a configuration example of a reception buffer for storing a payout control command received from the main board 31. In this example, a ring buffer type reception buffer capable of storing six 2-byte payout control commands is used. Therefore, the reception buffer is configured by a 12-byte area of reception command buffers 1 to 12. A command reception number counter indicating in which area the received command is stored is used. The command reception number counter takes a value from 0 to 11.
[0296]
FIG. 45 is a flowchart showing a payout control command reception process by an interrupt process. The payout control INT signal from the main board 31 is input to the CLK / TRG2 terminal of the payout control CPU 371. Therefore, when the INT signal from the main board 31 rises, the payout control CPU 371 is interrupted, and the payout control command receiving process shown in FIG. 45 is started. The payout control CPU 371 is a CPU having a structure such that when an interrupt occurs, a maskable interrupt does not occur unless the interrupt is permitted by software.
[0297]
Although the command reception process of the payout control unit will be described here, the same command reception process is executed in the display control unit, the lamp control unit, and the sound control unit. In this embodiment, the initial setting is made such that the value of the timer counter register CLK / TRG2 is decremented by 1 when the input of the CLK / TRG2 terminal rises. That is, an interrupt is generated at the rise of the INT signal. However, the initial setting may be performed such that the value of the timer counter register CLK / TRG2 is set to -1 when the input of the CLK / TRG2 terminal falls. In other words, initial settings may be made such that an interrupt occurs at the falling edge of the INT signal.
[0298]
In other words, if an interrupt is generated at the level change timing (edge) of a pulsed (rectangular wave) INT signal as an acquisition signal, the edge may be a rising edge or a falling edge. Good. In any case, the interrupt is generated at the level change timing (edge) of the pulsed (rectangular wave) INT signal as the capture signal. By doing so, it becomes possible to receive a command promptly at the stage where command fetch is instructed. Since the output of the INT signal is on standby until the period A (FIG. 31) elapses, the output state of the command data on the lines of the control signals CD0 to CD7 is stable when the INT signal is output. Therefore, the payout control means receives the payout control command satisfactorily.
[0299]
In the payout control command reception process, the payout control CPU 371 first saves each register in the stack (step S850). Next, data is read from the input port 372a (see FIG. 7) assigned to the input of the payout control command data (step S851). Then, it is confirmed whether or not it is the first byte of the 2-byte payout control command (step S852). Whether or not it is the first byte is confirmed by whether or not the first bit of the received command is “1”. The first bit is “1”, which should be the MODE byte (first byte) in the payout control command having a 2-byte configuration (see FIG. 30). Therefore, if the first bit is “1”, the payout control CPU 371 determines that the valid first byte has been received, and stores the received command in the reception command buffer indicated by the command reception number counter in the reception buffer area (step S31). S853).
[0300]
If it is not the first byte of the payout control command, it is confirmed whether or not the first byte has already been received (step S854). Whether or not it has already been received is confirmed by whether or not valid data is set in the reception buffer (reception command buffer).
[0301]
If the first byte has already been received, it is confirmed whether or not the first bit of the received 1 byte is “0”. If the first bit is “0”, it is determined that the valid second byte has been received, and the received command is stored in the reception command buffer indicated by the command reception number counter + 1 in the reception buffer area (step S855). The leading bit “0” should be the EXT byte (second byte) of the payout control command having a two-byte configuration (see FIG. 30). If the confirmation result in step S854 indicates that the first byte has already been received, the process ends unless the first bit of the data received as the second byte is “0”. If “N” is determined in step S854, the process in step S856 is not performed, so the next received command is stored in the buffer area where the command received this time should have been stored. The
[0302]
When the second byte of command data is stored in step S855, 2 is added to the command reception number counter (step S856). Then, it is confirmed whether or not the command reception counter is 12 or more (step S857). If it is 12 or more, the command reception number counter is cleared (step S858). Thereafter, the saved register is restored (step S859), and finally, interrupt permission is set (step S859).
[0303]
Interrupts are disabled during command reception interrupt processing. As described above, since the interrupt is enabled during the 2 ms timer interrupt processing, if a command reception interrupt occurs during the 2 ms timer interrupt, the command reception interrupt processing is executed with priority. The Even if a 2 ms timer interrupt occurs during command reception interrupt processing, the interrupt processing is awaited. Thus, in this embodiment, the processing priority of command reception processing from the main board 31 is high. Further, since no other interrupt processing is executed during command reception processing, the maximum time required for command reception processing is determined. If the configuration is such that another interrupt process can be executed during the command reception process, it is difficult to estimate the longest time required for the command reception process. Since the longest time required for the command reception process is determined, it is possible to accurately determine how long the period C (see FIG. 31) in the command transmission process of the game control means should be.
[0304]
The payout control command has a 2-byte configuration, and the first byte (MODE) and the second byte (EXT) can be immediately distinguished on the receiving side. In other words, the reception side can immediately detect whether the data as MODE or the data as EXT has been received by the first bit. Therefore, as described above, it can be easily determined whether or not appropriate data has been received.
[0305]
In this embodiment, in the command reception interrupt process, the received command is controlled to be stored in the reception buffer, but a payout stop state setting process (see FIG. 47) and a command analysis execution process (FIG. 48) described later are performed. May be executed in the command reception interrupt process. As such, in the case of executing the command reception interrupt process up to the command determination process for determining the command in the reception buffer, the determination of the command is also executed quickly.
[0306]
FIG. 46 is a flowchart illustrating an example of the switch process in step S752. In the switch process, the payout control CPU 371 checks whether or not the prize ball count switch 301A indicates the on state (step S752a). If the on state is indicated, the payout control CPU 371 increments the prize ball count switch on counter by 1 (step S752b). The prize ball count switch on counter is a counter for counting the number of times the on state of the prize ball count switch 301A is detected.
[0307]
Then, the value of the prize ball count switch-on counter is checked (step S752c). If the value is 2, it is determined that one prize ball has been paid out. If it is determined that one prize ball has been paid out, the payout control CPU 371 decrements the total prize ball non-payout counter (the number of prize balls stored in the total number memory) by -1 (step S752d). . Further, the payout control CPU 371 decrements the prize ball non-payout counter (the number of prize balls stored in the quantity to be paid out) by -1 (step S752k).
[0308]
When it is confirmed in step S752a that the prize ball count switch 301A is not in the on state, the payout control CPU 371 clears the prize ball count switch on counter (step S752e). In this embodiment, it is checked whether or not the ball lending count switch 301B indicates the on state (step S752f). If the on state is indicated, the payout control CPU 371 increments the ball lending count switch on counter by 1 (step S752g). The ball lending count switch on counter is a counter for counting the number of times that the ball lending count switch 301B is turned on.
[0309]
Then, the value of the ball lending count switch-on counter is checked (step S752h). If the value is 2, it is determined that one lending ball has been paid out. If it is determined that one lending ball has been paid out, the payout control CPU 371 decrements the lending ball unpaid-out number counter (the number of lending balls stored in the lending ball number storage) (step S752i). ).
[0310]
When it is confirmed in step S751f that the ball lending count switch 301B is not in the on state, the payout control CPU 371 clears the ball lending count switch on counter (step S752j).
[0311]
FIG. 47 is a flowchart showing an example of the payout stop state setting process in step S753. In the payout stop state setting process, the payout control CPU 371 checks whether or not there is a reception command in the reception buffer (step S753a). If there is a reception command in the reception buffer, it is checked whether or not the received payout control command is a payout stop state designation command (step S753b). If it is a payout stop state designation command, the payout control CPU 371 sets the payout stop state (step S753c). However, even if the payout stop state is set, in this example, the payout process is not always stopped immediately, and when a unit of a lending ball or prize ball that is continuously paid out is being paid out. The payout is stopped after the payout of one unit of the game ball is completed (see FIGS. 50 to 53). The setting of the payout stop state is performed in this example by setting a payout stop state flag.
[0312]
If it is confirmed in step S753b that the received command is not a payout stop state designation command, it is confirmed whether or not the received payout control command is a payout enable state designation command (step S753d). If it is a payout enable state designation command, the payout stop state is canceled (step S753e).
[0313]
FIG. 48 is a flowchart illustrating an example of the command analysis execution process in step S754. In the command analysis execution process, the payout control CPU 371 checks whether or not there is a reception command in the reception buffer (step S754a). If there is a received command, it is checked whether or not the received payout control command is a payout control command for designating the number of winning balls (step S754b). The payout control CPU 371 determines in step S754b for the received command stored at the address in the receiving buffer pointed to by the read pointer as the command instruction means. Further, after the determination, the value of the read pointer is incremented by one. When the address pointed to by the read pointer exceeds the address of the reception command buffer 12 (see FIG. 44), the value of the read pointer is updated to indicate the reception command buffer 1.
[0314]
If the received payout control command is a payout control command for designating the number of winning balls, the number instructed by the payout control command is added to the total number memory (step S754c). That is, the payout control CPU 371 stores the number of prize balls included in the payout control command sent from the CPU 56 of the main board 31 in the backup RAM area (total number memory).
[0315]
The payout control CPU 371 performs subtraction of the command reception number counter and reception command shift processing in the reception buffer, if necessary. Further, the payout stop state setting process and the command analysis execution process may be repeated until the value of the read pointer matches the latest command storage position in the reception buffer. For example, if the difference between the value of the read pointer and the latest command storage position in the reception buffer is “3”, there are three unprocessed received commands, but the process is repeated until they match. , There are no outstanding received commands. That is, all received commands stored in the reception buffer are read and processed in a single process.
[0316]
FIG. 49 is a flowchart showing an example of the prepaid card unit control process in step S755. In the prepaid card unit control process, the payout control CPU 371 checks whether or not a VL signal input from the card unit control microcomputer has been detected (step S755a). If the VL signal is not detected, the VL signal non-detection counter is incremented by 1 (step S755b). Also, the payout control CPU 371 checks whether or not the value of the VL signal non-detection counter is 125 in this example (step S755c). If the value of the VL signal non-detection counter is 125, the payout control CPU 371 stops the emission control signal output to the emission control board 91 and stops the drive motor 94 (step S755d).
[0317]
If the VL signal is detected to be off 125 times (2 ms × 125 = 250 ms) continuously by the above processing, the ball firing prohibited state is set.
[0318]
If the VL signal is detected in step S755a, the payout control CPU 371 clears the VL signal non-detection counter (step S755e). If the discharge control CPU 371 stops outputting the firing control signal (step S755f), the payout control CPU 371 starts outputting the firing control signal to the firing control board 91 to enable the drive motor 94 (step S755g). .
[0319]
50 and 51 are flowcharts showing an example of the ball lending control process in step S756. In this embodiment, the maximum value of the continuous payout number is set as one unit (for example, 25) of the lending ball, but the maximum value of the continuous payout number may be another number. The maximum value of the continuous payout number is 25, which corresponds to the number stored between the ball payout device 97 and the ball break switch 187, and at least when the ball break detection is detected. This is the number secured as the number that can be paid out. In addition, 25 is the minimum number of loans (generally 100 yen), and such numbers can be paid out without interrupting the payout on the way.
[0320]
In the ball lending control process, the payout control CPU 371 checks whether or not the lending ball is being paid out (step S511). Whether or not the lending ball is being paid out is determined by the state of a ball lending process flag which will be described later. If the lending ball is being paid out, it is confirmed whether or not the payout motor 289 is turned on (step S520). If it is turned on, the process proceeds to the ball lending process shown in FIG. If the payout motor 289 is not turned on, the payout control CPU 371 pays out the payout motor until paying out the game balls for the number of rented balls (number of unpaid rented balls) set in the rented ball number storage in the backup RAM area. In order to output a drive signal to the payout motor 289 so as to rotate 289, the payout operation of the number of lent balls set in the rented ball number storage is set (step S521).
Specifically, a period for outputting a drive signal to the payout motor 289 is set in order to pay out the set payout planned number (lending ball number). The drive signal is an ON signal output from the payout control CPU 371 to the payout motor via the output port. Since the ON signal is output during the set period, the payout motor 289 is driven during the period. When the payout motor 289 is a stepping motor, the number of steps corresponding to the payout of the planned payout number may be set. Also, the setting of the payout operation (period or number of steps) varies depending on the set payout planned number. Thus, by controlling the drive of the motor based on the operation period and the number of steps, it is possible to pay out faster than in the case where the motor drive signal is output while detecting each payout. The same applies to the setting of the award ball number payout operation.
Then, the payout control CPU 371 turns on the payout motor 289 (step S519), and shifts to the ball lending process shown in FIG. In this example, the on / off state of the payout motor 289 is not backed up when the power supply is stopped, and is not restored in the recovery process (FIG. 39) when the power supply is subsequently restored. To do. Therefore, if the payout motor 289 is not turned on even though the ball lending process flag is set, the payout control CPU 371 supplies power during the payout of one unit of lending balls to be paid out continuously. Is stopped, the processing of step S521 and step S519 is executed. Further, when the sorting solenoid 310 is not driven, the sorting solenoid 310 is driven.
[0321]
If the rental ball is not being paid out, it is confirmed whether or not the prize ball is being paid out (step S512). Whether or not a prize ball is being paid out is determined based on a state of a prize ball processing flag to be described later. The ball lending process flag and the winning ball process flag are stored in the backup RAM area.
[0322]
If neither the lending ball payout nor the prize ball payout is found, the payout control CPU 371 checks whether or not the payout is stopped (step S513). This confirmation is performed by a payout stop state flag that is set in step S753c and cleared in step S753e. The payout stop state flag is stored in the backup RAM area. If the payout is not stopped, the payout control CPU 371 checks whether or not there is a ball lending request from the card unit 50 (step S514). If there is a request, the ball lending process flag is turned on (step S515), and 25 (number of ball lending units: here 100 yen) is set in the lending ball number storage in the backup RAM area (step S516). Then, the payout control CPU 371 turns on the EXS signal (step S517). Further, the sorting solenoid 310 is driven to set the ball sorting member 311 below the ball dispensing device 97 to the ball lending side (step S518). Further, the payout motor 289 is turned on (step S519), and the process proceeds to the ball lending process shown in FIG.
[0323]
As described above, since the confirmation of the ball lending process flag (step S511) is performed before the confirmation of whether or not the payout is stopped (step S513), the ball lending process flag is set when the power supply is restored. If it is, the ball lending process is resumed, and the lending ball payout process for the planned number of payouts is continued.
[0324]
Strictly speaking, the payout motor 289 is turned on after the BRQ signal is turned off to indicate that the card unit 50 has recognized acceptance. The ball lending process flag is set in the backup RAM area.
[0325]
FIG. 51 is a flowchart showing a ball lending process in the payout control process by the payout control CPU 371. In this embodiment, in the switch process of step S752, it is confirmed whether or not a game ball has been paid out based on the detection signal of the ball lending count switch 301B. Is not done.
[0326]
In the ball lending control process, the payout control CPU 371 checks whether or not it is during the lending ball passage waiting time (step S522). If it is not during the lending ball passage waiting time, the lending ball is paid out (step S523), and it is confirmed whether or not the driving of the payout motor 289 should be finished (whether the payout operation of one unit has been finished) (step S524). ). Specifically, it is confirmed whether or not the rotation corresponding to the predetermined number of payouts has been completed. When the rotation corresponding to the predetermined number of payouts is completed, the payout control CPU 371 stops driving the payout motor 289 (step S525) and sets the lending ball passage waiting time (step S526).
[0327]
If it is during the lending ball passage waiting time in step S522, the payout control CPU 371 checks whether or not the lending ball passage waiting time has ended (step S527). The rental ball passage waiting time is the time from when the last payout ball is paid out by the payout motor 289 until it passes through the ball lending count switch 301B. When confirming the end of the lending ball passage waiting time, all lending balls of one unit have been paid out, so that the card unit 50 can accept the next lending request. The EXS signal is turned off (step S528). Further, the distribution solenoid is turned off (step S529), and the ball lending process flag is turned off (step S530). That is, in the ball lending process, when it is confirmed that the rotation corresponding to the predetermined number of payouts is completed, the payout motor 289 is driven without confirming whether or not the predetermined number of payable balls has been paid out. finish. If the last payout ball does not pass the ball lending count switch 301B before the lending ball passage waiting time elapses, a ball lending route error may be set. In this embodiment, the winning ball and the lending are performed by the same payout device.
[0328]
After turning off the EXS signal indicating acceptance of a ball lending request, if the BRQ signal, which is a ball lending request signal, is turned on again within a predetermined period, the ball lending process is continued without turning off the sorting solenoid and the dispensing motor. You may make it do. That is, instead of performing the ball lending process for each predetermined unit (100 yen unit in this example), the ball lending process may be executed continuously.
[0329]
As described above, during the execution of payout of one unit of lending balls, it is not confirmed whether or not the payout is stopped, and it is checked whether or not the payout is stopped after one unit of payout is completed (step S513). Since it is configured, even when the payout is stopped in the middle of payout, one unit of payout can be completed with certainty, and the payout stop state can be established with good separation.
[0330]
Further, as described above, when the payout motor is not in the on state despite the payout of the rented ball, as many as the number of unpaid rented balls stored in the rented ball number storage in the payout motor 289. With the configuration for setting the payout operation, even if the power supply is stopped during the payout of one unit of rental balls, when the power supply is restored during a predetermined period, the payout control CPU 371 stores the number of rental balls. The ball lending process can be resumed based on the content.
[0331]
From the above, even if the power supply was stopped during the execution of payout of one unit of rental balls and the payout was stopped when the power supply was restored, The payout control for the unpaid portion can be resumed, and the payout stop state can be set after completing the ball lending process for the unpaid portion. Therefore, it is possible to prevent the payout stop state from being unnecessarily badly divided despite the fact that rentable game balls are secured.
[0332]
52 and 53 are flowcharts showing an example of the prize ball control process in step S757. In this example, the maximum value of the continuous payout number is the same as the unit of the lending ball (for example, 25), but the maximum value of the continuous payout number may be another number.
[0333]
In the winning ball control process, the payout control CPU 371 checks whether or not the lending ball is being paid out (step S531). Whether or not the ball lending is being paid out is determined by the state of the ball lending process flag. If the rental ball is not being paid out, it is confirmed whether or not the prize ball is being paid out (step S532). Whether or not a prize ball is being paid out is determined based on a state of a prize ball processing flag to be described later. If the payout ball is being paid out, it is confirmed whether or not the payout motor 289 is turned on (step S541). If it is turned on, the process proceeds to the process during the winning ball shown in FIG. If the payout motor 289 is not turned on, the payout control CPU 371 determines the number of award balls set in the payout number storage in the backup RAM area (the number of unpaid award balls out of the set number of payouts). ) In order to output a drive signal to the payout motor 289 so as to rotate the payout motor 289 until the game balls are paid out, the payout operation for the number of prize balls set in the payout number memory is set ( Step S542). Then, the payout control CPU 371 turns on the payout motor 289 (step S540), and proceeds to the processing in the winning ball shown in FIG. In this example, the on / off state of the payout motor 289 is not backed up when the power supply is stopped, and is not restored in the recovery process (FIG. 39) when the power supply is subsequently restored. To do. Accordingly, the payout control CPU 371 supplies power during the payout of one unit of winning balls that are continuously paid out if the payout motor 289 is not turned on even though the award ball processing flag is set. As a result, the processing of step S542 and step S540 is executed.
[0334]
If neither the lending ball payout nor the prize ball payout is found, the payout control CPU 371 checks whether or not the payout is stopped (step S533). This confirmation is performed by confirming whether or not the payout stop state flag is set. If the payout is not stopped, it is confirmed whether or not there is a ball lending preparation request from the card unit 50 (step S534). Whether or not there is a ball lending preparation request is determined by confirming whether the BRDY signal input from the card unit 50 is on (requested) or off (no request).
[0335]
As described above, the confirmation of the winning ball processing flag (step S532) is performed before the confirmation of whether or not the payout is stopped (step S533), so that the winning ball processing flag is set when the power supply is restored. If it is, the prize ball processing is resumed, and the payout process for the number of prize balls to be paid out is continued.
[0336]
If there is no ball lending preparation request from the card unit 50, the payout control CPU 371 checks whether or not the number of winning balls (the number of unpaid winning balls) stored in the total number storage is 0 (step S535). . If the number of prize balls stored in the total number memory is not 0, the prize ball control CPU 371 turns on the award ball processing flag (step S536), and whether or not the value of the total number memory is 25 or more. Confirmation is made (step S537). The prize ball processing flag is set in the backup RAM area.
[0337]
In this embodiment, the maximum number of payouts in one continuous payout operation is 25. 25 is the number secured between the ball dispensing device 97 and the ball break switch 187 as described above. In this embodiment, five, ten, and fifteen three-stage prize balls are paid out depending on the winning place of the game ball. It is possible to pay out in a single continuous payout operation for a single winning or a plurality of winnings such as 10 winnings and 15 winnings. If the upper limit is set to a larger number, it is possible to further increase the payout efficiency. However, in this example, it is impossible to recognize whether 25 or more game balls are actually secured, so the upper limit is set to 25. Yes.
[0338]
When the number of prize balls stored in the total number memory is 25 or more, the payout control CPU 371 drives the payout motor 289 to rotate the payout motor 289 until paying out 25 game balls. In order to output 25, the payout operation of 25 pieces is set (step S538). In step S538, 25 as the number of payouts is set in the payout number storage. If the number of prize balls stored in the total number memory is not 25 or more, the payout control CPU 371 drives the payout motor 289 to rotate until all the game balls stored in the total number memory are paid out. In order to output the total number delivery operation (step S539). In step S539, the total number of game balls stored in the total number storage is set as the planned number of payouts in the payout number storage. Next, the payout motor 289 is turned on (step S540). Since the distribution solenoid is in the off state, the ball distribution member below the ball dispensing device 97 is set to the prize ball side. Then, the process proceeds to a process during payout of prize balls in the prize ball control process shown in FIG.
[0339]
FIG. 53 is a flowchart showing an example of processing during a prize ball in the payout control processing by the payout control CPU 371. In the winning ball control process, if the payout motor 289 is not turned on, it is turned on. In this embodiment, in the switch process in step S752, it is confirmed whether or not a game ball has been paid out based on the detection signal from the prize ball count switch 301A. No memory subtraction is performed.
[0340]
In the processing during the winning ball, the payout control CPU 371 checks whether or not it is during the waiting time for winning ball passing (step S543). If it is not during the waiting time for passing the prize ball, the prize ball is paid out (step S544), and whether or not the driving of the payout motor 289 should be terminated (whether or not a predetermined number of payout operations of 25 or less than 25 has been completed). Is confirmed (step S545). Specifically, it is confirmed whether or not the rotation corresponding to the predetermined number of payouts has been completed. When the rotation corresponding to the predetermined number of payouts is completed, the payout control CPU 371 stops driving the payout motor 289 (step S546), and sets the prize ball passage waiting time (step S547). The award ball passing waiting time is a time from when the last payout ball is paid out by the payout motor 289 until it passes through the prize ball count switch 301A.
[0341]
If it is during the winning ball passage waiting time in step S543, the payout control CPU 371 checks whether or not the winning ball passage waiting time has ended (step S548). When the prize ball passing waiting time ends, all the prize balls set in step S538 or step S539 have been paid out. Accordingly, the payout control CPU 371 turns off the prize ball processing flag if the prize ball passage waiting time has ended (step S549). In the prize ball process, when it is confirmed that the rotation corresponding to the predetermined number of payouts has been completed, the driving of the payout motor 289 is terminated without confirming whether or not the predetermined number of prize balls have been paid out. . If the last payout ball does not pass the prize ball count switch 301A until the prize ball passage waiting time elapses, a prize ball path error may be set.
[0342]
In this embodiment, the ball lending is prioritized over the winning ball processing according to the determinations in steps S511 and S531, but the winning ball processing may be prioritized over the ball lending.
[0343]
As described above, during the execution of payout of one unit winning ball, it is not confirmed whether or not the payout is stopped, but it is checked whether or not the payout is stopped when one unit of payout is completed (step S533). Since it is configured, even when the payout is stopped in the middle of payout, one unit of payout can be completed with certainty, and the payout stop state can be established with good separation.
[0344]
If the payout motor 289 is not in the on state even though the prize ball is being paid out, the payout motor 289 sets the payout operation for the number of unpaid prize balls stored in the payout number memory. With this configuration, even if the power supply is stopped in the middle of paying out one unit of award ball, when the power supply is restored during a predetermined period, the payout control CPU 371 determines the prize ball based on the content of the payout number memory. The payout process can be resumed.
[0345]
From the above, even if the power supply is stopped during the execution of the payout of one unit of prize ball and the payout is stopped when the power supply is restored, The payout control for the unpaid portion can be resumed, and the payout stop state can be set after completing the payout process for the unpaid prize ball. Therefore, it is possible to prevent a payout stop state from being unnecessarily badly divided even though a payable game ball is secured.
[0346]
Next, refer to FIG. 50 and FIG. 51 for the lending ball payout process when the power supply is stopped at the timing shown in FIG. 54 and then recovered, and the payout is stopped at the timing shown in FIG. To explain. Here, the case where the ball is in a broken state will be described as an example of the cause of the payout stop, but the cause of the payout stop may be another cause such as a lower pan full.
[0347]
As shown in FIG. 54, when there is a ball lending request, the payout control CPU 371 turns on the ball lending process flag (step S514, step S515) and 25 (number of ball lending units: 100 yen here) ) Is set in the rental ball number storage of the backup RAM area (step S516). Then, the payout control CPU 371 turns on the EXS signal (step S517). Further, the sorting solenoid 310 is driven to set the ball sorting member 311 below the ball dispensing device 97 to the ball lending side (step S518). Further, the payout motor 289 is turned on (step S519), and the ball lending process shown in FIG. 51 is started.
[0348]
In this example, the ball lending process is continued even when, for example, a ball break occurs during the ball lending process (step S511, Y in step S520, FIG. 51). Here, it is assumed that the power supply is stopped in a state where 15 lending balls are paid out. In this example, even if the power supply is stopped, the lending ball number storage (the stored contents of the lending ball unpaid counter) in which 10 lending balls that have not been paid out are stored in the backup RAM area for a predetermined period. Being held.
[0349]
When the power supply is restored, the state of the ball lending process flag stored in the backup RAM area is restored, so that the payout control CPU 371 stores the unpaid out amount stored in the lending ball number storage in the payout motor 289. A payout operation for paying out the number of lent balls (here, 10) is set (step S511, N in step S520, step S521), and the payout motor 289 is turned on to restart the ball lending process (step S519, FIG. 51). When the unpaid lending balls (here, 10 balls) out of the lending balls of one unit that are continuously paid out are finished, the payout is stopped, so that the payout is not performed (step S513). Step S533).
[0350]
Note that in FIG. 54 described above, the payout stop condition is satisfied (the ball is out of place or the lower pan is full), and the payout stop state (the out of ball state, An example in which the power supply is stopped after receiving a payout stop state instruction command based on the detection (the payout stop state flag is turned on) has been described. For example, as shown in FIG. When the power supply is stopped, the payout stop state flag is off (the payout stop condition is satisfied, but even if the payout stop instruction command is not received on the payout control board 37 side, the payout stop condition is satisfied. If the payout status flag is turned on when the power supply is restored (for example, the payout stop condition is set when the power supply is stopped). If the payout stop state instruction command output in step S83 is received by the CPU 56, or if the payout stop condition is satisfied when the power supply is stopped. Even when the payout stop state instruction command is received from the CPU 56 immediately after the recovery of the power supply (in this case, the payout permission state instruction command is output in S83), the power supply is recovered similarly. The payout process for the planned payout number is resumed. In addition, when the payout stop condition is satisfied when the power supply is stopped, for example, when the game store clerk performs the work of removing the game ball while the power supply is stopped, and the ball is out of ball Etc.
[0351]
Next, refer to FIG. 52 and FIG. 53 for the lending ball payout process in the case where the power supply is stopped at the timing shown in FIG. 56 and then recovered, and the payout is stopped at the timing shown in FIG. To explain. Here, the case where the ball is in a broken state will be described as an example of the cause of the payout stop, but the cause of the payout stop may be another cause such as a lower pan full.
[0352]
First, the payout control CPU 371 determines the number of winning balls stored in the total number memory if there is no ball lending preparation request from the card unit 50 when neither the lending ball payout, the prize ball payout, or the payout is stopped. It is checked whether (the number of unpaid prize balls) is not 0 (steps S531 to S535).
[0353]
In this example, as shown in FIG. 56, since the number of prize balls stored in the total number storage (total prize ball number unpaid counter) is 30 (not 0), the payout control CPU 371 The award ball processing flag is turned on (steps S535 and S536). Next, the payout control CPU 371 sets 25 as the payout number in the payout number storage because the total number memory value is 25 or more in this example, and pays out the payout motor until paying out 25 game balls. In order to output a drive signal to the payout motor 289 so as to rotate 289, 25 payout operations are set (steps S537 and S538). Next, after the payout motor 289 is turned on, processing for paying out a prize ball is started (step S540, FIG. 53).
[0354]
In this example, for example, even when a ball break occurs during the prize ball process and the payout is stopped, the prize ball process is continued (Y in step S532, step S541, FIG. 53). Here, it is assumed that the power supply is stopped in a state where 15 prize balls are paid out. In this example, even if the power supply is stopped, out of a unit of award balls that are continuously paid out, 10 unpaid award balls are stored for a predetermined period. The stored contents of the payout counter) are stored and held in the backup RAM area. Note that the total number storage storing the total number of unpaid prize balls (15 in this example) is also stored and held in the backup RAM area.
[0355]
When the power supply is restored, the award ball processing flag stored in the backup RAM area is restored, so that the payout control CPU 371 stores the unpaid award stored in the payout number memory in the payout motor 289. A payout operation for paying out the number of balls (here, 10) is set (step S531, step S5322, N in step S541, step S542), and the payout motor 289 is turned on to restart the ball lending process (step S540). , FIG. 53). When paying out the unpaid number (in this case, 10) of one unit of prize balls to be continuously paid out, the payout is stopped, so that no payout is performed (steps S533 and S513). ).
[0356]
In FIG. 56 described above, a payout stop condition is satisfied (out of ball, full of bottom pan, etc.), and the payout stop state (out of ball state, An example in which the power supply is stopped after receiving a payout stop state instruction command based on the detection (the payout stop state flag is turned on) has been described. For example, as shown in FIG. When the power supply is stopped, the payout stop state flag is off (the payout stop condition is satisfied, but even if the payout stop instruction command is not received on the payout control board 37 side, the payout stop condition is satisfied. If the payout status flag is turned on when the power supply is restored (for example, the payout stop condition is set when the power supply is stopped). If the payout stop state instruction command output in step S83 is received by the CPU 56, or if the payout stop condition is satisfied when the power supply is stopped. Even when the payout stop state instruction command is received from the CPU 56 immediately after the recovery of the power supply (in this case, the payout permission state instruction command is output in S83), the power supply is recovered similarly. The payout process for the planned payout number is resumed. In addition, when the payout stop condition is satisfied when the power supply is stopped, for example, when the game store clerk performs the work of removing the game ball while the power supply is stopped, and the ball is out of ball Etc.
[0357]
Also, in FIG. 56 described above, the case where the number of game balls to be paid out is paid out during the driving period of the payout motor 289 has been described. However, for example, as shown in FIG. With the payout operation set in the above, only a part of the number of award balls (here, 5) out of the number of unpaid prize balls (here, 10) stored in the payout number memory is actually paid out. Even if not, in this example, the payout control CPU 371 stops driving the payout motor 289 when the payout operation period ends (step S545, step S546, etc.). Since the payout is stopped, no payout is performed (step S533, step S513).
[0358]
In this example, as shown in FIG. 58, when the payout stop state is resolved (when the ball-out state or the lower pan full state is resolved), the payout control CPU 371 stores the total number (total Since the number of prize balls stored in the prize ball number unpaid counter is 10 (not 0), the prize ball processing flag is turned on (step S535, step S536), and the number of prize balls is paid out. 10 is set as the planned number (note that the five prize balls set up to now are not included in the total number storage number, and need not be considered) and In order to output a drive signal to the payout motor 289 so as to rotate the payout motor 289 until the game ball is paid out, 10 payout operations are set (steps S537 and S539). Then, the payout operation of 10 prize balls is executed.
[0359]
As described above, even if the number of unpaid prize balls is stored in the payout number memory when the payout stop state is resolved, the payout scheduled number is set according to the stored contents of the total number memory, so that Can be paid out. That is, in the example of FIG. 58, after the payout stop state is resolved, control is performed to pay out five prize balls stored in the payout number memory, and then the unpaid prizes stored in the total number memory are performed. Compared to the control for paying out the award balls (in this case, 5 balls), when the payout stop state is resolved as in this example, the payout is made according to the stored contents of the total number memory. You will be able to pay out quickly.
[0360]
In the above embodiment, the RAM is used as the fluctuation data storage means. However, as the fluctuation data storage means, a storage means other than the RAM may be used as long as it is an electrically rewritable storage means. Good.
[0361]
Furthermore, in the above embodiment, the power supply monitoring means is provided on the power supply board 910, and the circuit for generating a signal for system reset is provided on the electrical component control board. It may be done.
[0362]
As described above, when one unit of payout is completed, it is checked whether or not the payout is stopped, and if the payout motor is not in an on state during the payout of the loaned ball, the number of balls lent is stored in the payout motor 289. When the power supply is stopped during the execution of one unit of rental balls, and the power supply is restored. Even if it is in the payout suspended state, it is possible to resume the payout control for the unpaid out of one unit of rental balls, and after completing the unpaid ball lending process, the payout stopped state It can be. Therefore, it is possible to prevent the payout stop state from being unnecessarily badly divided despite the fact that rentable game balls are secured.
[0363]
Further, as described above, it is confirmed whether or not the payout is stopped when one unit of payout is completed, and if the payout motor is not in the on state during the payout, the payout motor 289 stores the number of payouts. When the power supply is stopped during the execution of payout of one unit of prize balls and the power supply is restored. Even when the payout is stopped, the payout control for unpaid out of one unit of prize balls can be resumed, and the payout after completing the payout process for the unpaid prize balls is completed. It can be in a stopped state. Therefore, it is possible to prevent a payout stop state from being unnecessarily badly divided even though a payable game ball is secured.
[0364]
That is, in the above-described embodiment, when the power supply is stopped in the middle of paying out one unit of game balls that are continuously paid out, and then the power supply is restored, even if the payout is stopped. The payout control is started immediately after the recovery, and a payout process for paying out a predetermined number of game balls is executed.
[0365]
Further, as described above, in the game state recovery process, the main board 31 outputs a payout stop state designation command or a payable state designation command to the payout control board 37. It is possible to avoid a discrepancy in recognition of the current situation between the board 31 and the payout control board 37. As a result, appropriate game control can be performed.
[0366]
In the above embodiment, at the start of power supply, the game control means transmits a payout stop state designation command or a payable state designation command to the payout control means, but other commands may be transmitted. . For example, notification of whether or not a hitting ball can be fired by the hitting operation handle 5, information on error and error cancellation, etc. With such a configuration, it is possible to avoid a discrepancy in recognition of the current situation between the game control means and the payout control means after the start of power supply. As a result, appropriate game control can be performed.
[0367]
In the above embodiment, when the payout control means receives the payout stop state designation command, both the ball lending and the prize ball payout are stopped, and both the ball lending and the prize ball payout are possible according to the payable state designation command. Although the state has been returned to the state, the payout stop instruction for the winning ball and the payout stop instruction for the ball lending may be separate commands, and the payout stop canceling instruction for the prize ball and the payout stop canceling instruction regarding the ball lending may be separate commands. In such a configuration, after the start of power supply, there is a discrepancy in the recognition of the current situation regarding the award ball stop / stop release and the ball lending stop / stop release between the game control means and the payout control means. Can be avoided.
[0368]
In this embodiment, when a power-off signal is output in response to the occurrence of a power failure or the like, first, after the driving of the ball dispensing device 97 is stopped, detection signal input processing from the dispensing detection means is performed for a predetermined period. After that, a process for saving the payout control state is performed. Therefore, the game ball that was being paid out when the power failure occurred is also reflected in the saved contents of the backup RAM.
[0369]
In other words, in this embodiment, when the control state is stored in the backup storage means when the power supply to the gaming machine is stopped, it is possible to prevent a control contradiction or the like from occurring.
[0370]
Further, in this embodiment, when the game medium detecting means detects ON continuously twice before and after a predetermined game medium detection determination period, it is considered that the payout of one prize ball or rental ball is completed. Therefore, it is possible to prevent erroneous switch-on detection. Therefore, it is possible to optimize the control when the power is turned off.
[0371]
In the above-described embodiment, if it is confirmed that the rotation corresponding to the payout of the planned payout amount is completed in the ball lending process and the winning ball process, whether the game ball of the expected payout number has been paid out. Since it is configured to finish driving the payout motor 289 without confirming whether or not the payout control for the game ball being paid out is resumed after the power supply is restored, for example, it is prepared. The number of game balls to be paid out is not paid out due to a shortage of game balls (for example, when a game clerk removes a prepared game ball when power supply is stopped). In addition, it is possible to prevent the payout control from being continued. That is, since the payout of the planned payout number is not completed, it is possible to prevent useless control in which the motor drive control is continued endlessly.
[0372]
In the above embodiment, the payout means is configured to execute both ball lending and prize ball payout. However, the present invention can be applied even if the mechanism for lending the ball and the mechanism for paying the prize ball are independent. Can be applied. In that case, even if the mechanism that lends the ball and the mechanism that pays out the prize ball are independent, if the payout control means is configured to control both mechanisms, 1 as in the above embodiment. One command can be configured to instruct stop / release of both ball lending and prize ball payout.
[0373]
In the above embodiment, the number of game balls that have not been paid out of the number of game balls that are continuously paid out is stored in the backup storage area. For example, the number of game balls that have not been paid out. When the power supply is restored so that the operation content (operation pattern, operation time) of the payout motor 289 for paying out the power is restored, the setting of the payout motor 289 is set based on the operation content stored in the backup. You may make it perform.
[0374]
Further, in the above embodiment, as a case where the payout stop condition is satisfied, a case where the ball is in a broken state or a case where the lower plate is full is given as an example. When the glass door frame 2 (or the hitting ball supply tray 3 when only the hitting ball supply tray 3 can be opened and closed) is opened (in this case, it is preferable to immediately stop paying out), the count switch 23 When an abnormality of each part related to payout control such as a short circuit is detected, when it is determined that the card unit 50 is not connected due to the input state of the VL signal, or when a game ball is clogged, etc. When it becomes a failure or when it is better not to execute the payout, it may be determined that the payout stop condition is satisfied.
[0375]
Further, the present invention is not limited to pachinko gaming machines but can be applied to other gaming machines such as slot machines. Hereinafter, an example of the external configuration of a slot machine that is an example of another gaming machine will be described.
FIG. 59 is a front view of the slot machine 500 as viewed from the front. As shown in FIG. 59, in the slot machine 500, a game panel 501 is detachably attached near the center. In addition, a variable display area 502 in which a plurality of types of symbols are variably displayed is provided near the center of the front surface of the game panel 501. On the left side of the variable display area 502, a one-bet lamp 503, a two-bet lamp 504, and a three-bet lamp 505 are provided. On the right side of the variable display area 502, a game over lamp 506, a replay lamp 507, a weight lamp 508, a start lamp 509, and a medal insertion instruction lamp 510 are provided.
[0376]
Below the variable display area 502, there are provided a credit display 511, a game number display 512, and a payout display 513, each of which is composed of 7-segment LEDs and digitally displays the corresponding numerical values. In this embodiment, the variable display area 502 has three symbol display areas of “left”, “middle”, and “right”, and the symbol display reels 514a, 514b, and 514c correspond to the symbol display areas, respectively. Is provided.
[0377]
An operation table 520 in which various input switches and the like for the player to perform various operations is provided at the bottom of the game panel 501. Behind the operation table 520 is a BET switch 521 for betting (betting) one coin at a time, and a MAXBET switch for betting one coin at the maximum number (three in this example) that can be bet on one game. A checkout switch 523 and a coin insertion slot 524 are provided. Coins inserted into the coin insertion slot 524 are detected by an inserted coin sensor (not shown). In this example, every time a coin is inserted from the coin insertion slot 524, the numerical value displayed on the credit indicator 511 is increased by one, with the upper limit being 50, for example. Then, each time the BET switch 521 is pressed and one coin is bet, the numerical value displayed on the credit indicator 511 is decreased by one. Further, every time the MAXBET switch 522 is pressed and three coins are bet, the numerical value displayed on the credit display 511 is reduced by three.
[0378]
On the front side of the operation table 520, a start switch 525, a left reel stop switch 526a, a middle reel stop switch 526b, a right reel stop switch 526c, and a coin jam elimination switch 527 are provided. Lamps 528a and 528b are provided on the left and right sides of the operation table 520, respectively. A title panel 530 that is detachably attached is provided below the operation table 520. On the title panel 530, the model name of the slot machine is drawn. Below the title panel 530, a speaker 531 for outputting sound effects and the like is provided. In addition, a coin storage tray 532 that stores coins exceeding the amount that can be stored internally (50 in this example) is provided below the title panel 530.
[0379]
At the upper part of the game panel 501, a panel 540 that is detachably attached is provided. In the vicinity of the center of the panel 540, an LCD (Liquid Crystal Display) 541 for notifying the player of a game method and a game state is provided. For example, when a winning occurs, an image in which the character performs a predetermined action is displayed on the LCD 541 to notify the player that a winning flag described later is set. On the upper part of the panel 540, lamps 542, 543, and 544 for notifying various information are provided. Two speakers 545a and 545b that emit sound effects are provided on the left and right sides of the panel 540. Further, game effect lamps 550, 551, 552, and 553 are provided around the outside of the game panel 501.
[0380]
Also in the slot machine 500 as described above, coin payout can be prohibited in accordance with detection of the payout stop state, and the number of coins to be paid out can be backed up and stored in a payout prohibited state. However, if it is configured to continue paying out the number of coins to be paid out, the present invention can be applied and the same effect as the present invention can be obtained.
[0381]
【The invention's effect】
As described above, according to the first aspect of the present invention, even when the gaming machine is in a detection state in which it is determined that the state detection means prohibits the gaming medium from being dispensed when power supply is started. Since the control means is configured to start control for paying out a predetermined number of game media held in the storage means, even in a detection state in which it is determined to prohibit game media payout, It is possible to perform control for paying out a predetermined number of game media when power supply starts.
[0382]
According to the second aspect of the present invention, the payout preparation state detecting means is configured to make a determination to prohibit the payout of the game medium on condition that the game medium is in a detection state where a predetermined amount or more is not secured. Therefore, when a shortage of game media occurs, it can be determined to prohibit the payout of game media.
[0383]
According to the third aspect of the present invention, the determination that the payout of the game medium is prohibited is made on condition that the storage state detection means is in a detection state in which a predetermined amount or more of the game medium is stored in the storage unit. Thus, when a predetermined amount or more of game media is stored in the storage unit, it is possible to determine to prohibit the payout of game media.
[0384]
According to the fourth aspect of the present invention, even when the state detection unit is in a detection state in which it is determined that the game medium is prohibited to be paid out immediately before the power supply is stopped, Since the control of the payout means for paying out the expected number of game media held in the storage means can be started, the game media is paid out immediately before the power supply is stopped. Even in a detection state in which a determination to prohibit is made, it is possible to start payout control of the number of game media to be paid out when power supply is started.
[0385]
According to the fifth aspect of the present invention, when the power supply is started and the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out, the payout control means has the number of games to be paid out. Since it is configured to be in a payout prohibition state after performing the medium payout control, even when the power supply starts even in the detection state in which it is determined that the game medium payout is prohibited It is possible to set the payout stop state with a good separation.
[0386]
According to the sixth aspect of the present invention, when the payout control means determines the payout scheduled drive period for driving the payout means to pay out the expected number of game media to be paid out, and when the power supply starts, the state detection means In the detection state in which it is determined to prohibit the payout of game media, after the payout control means has finished the payout drive period, the game medium detection means has detected the number of game media to be paid out. Since the payout prohibition state is set regardless of whether or not the game medium is not paid out, it is possible to prevent the payout control from being continued unnecessarily.
[0387]
According to the seventh aspect of the present invention, the payout control means is configured to control the payout means in response to reception of the payout permission state signal or the payout prohibition state signal, so that the game control means and the payout control means Can prevent discrepancies in perception.
[0388]
According to the invention described in claim 8, the game control means stores a payout state memory for storing whether or not the payout is prohibited when the power supply is stopped even if the power supply to the gaming machine is stopped. When the power supply is started, it is configured to transmit a payout permission state signal or a payout prohibition state signal to the payout control means based on the stored contents of the payout state memory. Even when started, it is possible to prevent a discrepancy in recognition between the game control means and the payout control means.
[0389]
According to the ninth aspect of the invention, the payout control means stores a payout control state memory for storing whether or not the payout control means is in a payable state when the power supply is stopped even if the power supply to the gaming machine is stopped. Since it is configured to be able to hold, it is possible to restore the payout control state in accordance with the stored contents of the payout control state memory when power supply is started.
[0390]
According to the tenth aspect of the present invention, the expected payout number is the unallocated number out of the total number of game media to be paid out by the payout means, as the number of payout means set out by one continuous payout operation. Since it is configured to be the number of payouts, it is possible to pay out well when the power supply starts.
[0390]
According to the eleventh aspect of the present invention, the scheduled payout amount is the number of unpaid award game media set in accordance with the occurrence of a prize, so appropriate control related to payout of award game media is performed. Can be done.
[0392]
According to the twelfth aspect of the invention, since the payout control means is configured to determine the payout planned number in response to the reception of the award game medium number data, it is possible to easily determine the payout planned number. It becomes.
[0393]
According to the thirteenth aspect of the present invention, the number of payouts set according to the occurrence of a winning can be set to a number corresponding to a plurality of winnings. Speed can be achieved.
[0394]
According to the fourteenth aspect of the present invention, since the planned payout number is the number of unpaid game media set according to the loan request, appropriate control related to payout of the loan game media is performed. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a front view of a pachinko gaming machine as viewed from the front.
FIG. 2 is a front view showing the front surface of the game board with the glass door frame removed.
FIG. 3 is a rear view of the gaming machine as seen from the back side.
FIG. 4 is a rear view of the mechanism plate to which various members are attached as viewed from the back side of the gaming machine.
FIG. 5 is an exploded perspective view showing a configuration example of a ball dispensing device.
FIG. 6 is a block diagram showing a circuit configuration example of a game control board (main board).
FIG. 7 is a block diagram illustrating a circuit configuration example of a payout control board.
FIG. 8 is a block diagram illustrating a circuit configuration example of a power supply substrate.
FIG. 9 is a block diagram showing an example of a configuration around a CPU for power monitoring and power backup.
FIG. 10 is an explanatory diagram illustrating an example of bit assignment of an input port.
FIG. 11 is a flowchart showing main processing executed by a CPU on the main board.
FIG. 12 is an explanatory diagram showing an example of a relationship between a backup flag and whether or not to execute a game state recovery process.
FIG. 13 is a flowchart showing a gaming state recovery process.
FIG. 14 is a flowchart showing a 2 ms timer interrupt process.
FIG. 15 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 16 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 17 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 18 is a timing diagram illustrating an example of how detection signal input processing is performed;
FIG. 19 is an explanatory diagram for explaining an example of a checksum creation method;
FIG. 20 is a timing chart showing a power supply drop and an NMI signal when power supply to a gaming machine is stopped.
FIG. 21 is an explanatory diagram showing an example of forming a switch timer in a RAM.
FIG. 22 is a flowchart illustrating an example of switch processing.
FIG. 23 is a flowchart illustrating an example of a switch check process.
FIG. 24 is a flowchart showing an example of a prize ball process.
FIG. 25 is a flowchart illustrating an example of a prize ball process.
FIG. 26 is a flowchart showing an example of a prize ball process.
FIG. 27 is a flowchart showing a switch-on check process.
FIG. 28 is an explanatory diagram of a configuration example of an input determination value table.
FIG. 29 is an explanatory diagram showing a configuration example of a command transmission table and the like.
FIG. 30 is an explanatory diagram showing an example of a command form of a control command.
FIG. 31 is a timing chart showing the relationship between an 8-bit control signal and an INT signal that constitute a control command;
FIG. 32 is an explanatory diagram showing an example of the contents of a payout control command.
FIG. 33 is a flowchart illustrating a processing example of command set processing;
FIG. 34 is a flowchart showing a command transmission processing routine.
FIG. 35 is a block diagram showing a configuration example around a payout control CPU for power supply monitoring and power supply backup.
FIG. 36 is an explanatory diagram showing an example of bit assignment of an input port.
FIG. 37 is a flowchart showing main processing executed by the CPU in the payout control board.
FIG. 38 is a flowchart showing a 2 ms timer interrupt process.
FIG. 39 is a flowchart showing a payout state recovery process.
FIG. 40 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 41 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 42 is a flowchart showing a non-maskable interrupt process (power supply stop process).
FIG. 43 is an explanatory diagram showing a configuration example of a RAM in the payout control unit.
FIG. 44 is an explanatory diagram of a configuration example of a reception command buffer.
FIG. 45 is a flowchart illustrating an example of command reception processing of a payout control CPU.
FIG. 46 is a flowchart illustrating an example of switch processing.
FIG. 47 is a flowchart illustrating an example of a payout stop state setting process.
FIG. 48 is a flowchart illustrating an example of command analysis execution processing.
FIG. 49 is a flowchart showing an example of a prepaid card unit control process.
FIG. 50 is a flowchart illustrating an example of a ball lending control process.
FIG. 51 is a flowchart illustrating an example of a ball lending control process.
FIG. 52 is a flowchart showing an example of a winning ball control process.
FIG. 53 is a flowchart showing an example of a prize ball control process.
FIG. 54 is a timing chart showing an example of lending ball payout processing;
FIG. 55 is a timing chart showing another example of lending ball payout processing.
FIG. 56 is a timing chart showing an example of prize ball payout processing.
FIG. 57 is a timing chart showing another example of prize ball payout processing.
FIG. 58 is a timing chart showing still another example of prize ball payout processing.
FIG. 59 is a front view showing an example of a configuration of the slot machine viewed from the front.
[Explanation of symbols]
1 Pachinko machine
31 Main board
37 Dispensing control board
53 Basic circuit
55 RAM (variable data storage means)
56 CPU
371 CPU for payout control

Claims (14)

遊技媒体を用いて所定の遊技を行うことが可能な遊技機であって、
遊技媒体を払い出すことが可能な払出手段と、
所定の払出条件が成立したことにもとづいて、前記払出手段により遊技媒体を払い出す制御を行う払出制御手段と、
遊技媒体の払い出しを禁止するか否かの判定に用いられる検出信号を出力する状態検出手段と、
遊技機への電力供給が停止しても所定期間は記憶内容が保持される記憶手段とを含み、
前記記憶手段の記憶内容には、前記払出手段により払い出されるべき遊技媒体の払出予定数が含まれ、
電力供給が開始したときに、前記状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、前記払出制御手段は、前記記憶手段に保持されている払出予定数の遊技媒体を払い出すための制御を開始する
ことを特徴とする遊技機。
A gaming machine capable of performing a predetermined game using a game medium,
A payout means capable of paying out game media;
A payout control means for performing control of paying out the game medium by the payout means based on a predetermined payout condition being satisfied;
State detecting means for outputting a detection signal used for determining whether or not to prohibit the payout of game media;
Storage means for holding the stored contents for a predetermined period even when power supply to the gaming machine is stopped,
The storage content of the storage means includes the planned payout number of game media to be paid out by the payout means,
Even if the state detection means is in a detection state in which it is determined that the game medium is prohibited from being paid out when the power supply is started, the payout control means has a predetermined number of games to be held in the storage means. A gaming machine characterized by starting control for paying out a medium.
状態検出手段として、払出手段が払出可能な遊技媒体が所定量以上確保されているか否かを検出するための払出準備状態検出手段を含み、
前記払出準備状態検出手段が遊技媒体が所定量以上確保されていない検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされる
請求項1記載の遊技機。
The state detection means includes a payout preparation state detection means for detecting whether or not a predetermined amount or more of game media that can be paid out by the payout means is secured,
2. The gaming machine according to claim 1, wherein a determination is made to prohibit the payout of game media on condition that the payout preparation state detection means is in a detection state in which a predetermined amount or more of game media is not secured.
状態検出手段として、払出手段から払い出された遊技媒体が貯留される貯留部に所定量以上の遊技媒体が貯留されているか否かを検出するための貯留状態検出手段を含み、
前記貯留状態検出手段が前記貯留部に所定量以上の遊技媒体が貯留されている検出状態であることを条件に、遊技媒体の払い出しを禁止する判定がなされる
請求項1または請求項2記載の遊技機。
As the state detection means, including a storage state detection means for detecting whether or not a predetermined amount or more of game media is stored in a storage part in which the game media paid out from the payout means is stored,
3. The game machine according to claim 1, wherein a determination is made to prohibit payout of game media on condition that the storage status detection unit is in a detection status in which a predetermined amount or more of game media is stored in the storage unit. Gaming machine.
電力供給が停止する直前に状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態であっても、払出制御手段は、電力供給が開始したときには記憶手段に保持されている払出予定数の遊技媒体を払い出すための払出手段の制御を開始することが可能である
請求項1ないし請求項3記載の遊技機。
Even if the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out immediately before the power supply is stopped, the payout control means is the estimated payout number held in the storage means when the power supply is started. 4. The gaming machine according to claim 1, wherein control of a payout means for paying out the game medium can be started.
電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、払出制御手段は、払出予定数の遊技媒体の払出制御を行ったあと払出禁止状態とする
請求項1ないし請求項4記載の遊技機。
When the power supply is started, if the state detection means is in a detection state in which it is determined that the game medium is prohibited to be paid out, the payout control means prohibits payout after performing the payout control of the number of game media to be paid out. The gaming machine according to claim 1, wherein the gaming machine is in a state.
払出手段により払い出された遊技媒体を検出可能な遊技媒体検出手段を備え、
払出制御手段は、払出予定数の遊技媒体を払い出すために前記払出手段を駆動する払出予定駆動期間を決定し、
電力供給が開始したときに、状態検出手段が遊技媒体の払い出しを禁止する判定がなされる検出状態である場合に、前記払出制御手段は、前記払出予定駆動期間を終了したあとは、払出予定数分の遊技媒体が前記遊技媒体検出手段によって検出されたか否かに関わらず払出禁止状態とする
請求項1ないし請求項5記載の遊技機。
A game medium detecting means capable of detecting the game medium paid out by the payout means;
The payout control means determines a payout driving period for driving the payout means to pay out the expected number of game media to be paid out,
When the power supply is started and the state detection means is in a detection state in which it is determined that the game medium is prohibited from being paid out, the payout control means determines the number of payouts after the scheduled payout drive period is over. 6. A gaming machine according to claim 1, wherein said game medium is set in a payout prohibited state regardless of whether or not game media is detected by said game medium detecting means.
遊技の進行を制御する遊技制御手段を備え、
状態検出手段の検出信号は前記遊技制御手段に入力され、
前記遊技制御手段は、前記状態検出手段の検出信号の入力にもとづいて、払い出しを許可することを示す払出許可状態信号または払い出しを禁止することを示す払出禁止状態信号を送信し、
払出制御手段は、前記払出許可状態信号または前記払出禁止状態信号の受信に応じて払出手段を制御する
請求項1ないし請求項6記載の遊技機。
Game control means for controlling the progress of the game,
The detection signal of the state detection means is input to the game control means,
The game control means transmits a payout permission state signal indicating permission of payout or a payout prohibition state signal indicating prohibition of payout based on an input of a detection signal of the state detection means,
7. The gaming machine according to claim 1, wherein the payout control means controls the payout means in response to reception of the payout permission state signal or the payout prohibition state signal.
遊技制御手段は、遊技機への電力供給が停止していても電力供給が停止する際に払い出しを禁止する状態であったか否かを記憶する払出状態記憶を保持可能であり、電力供給が開始した場合には、前記払出状態記憶の記憶内容にもとづいて払出許可状態信号または払出禁止状態信号を払出制御手段に送信する
請求項7記載の遊技機。
The game control means can hold a payout state memory for storing whether or not the payout is prohibited when the power supply is stopped even if the power supply to the gaming machine is stopped, and the power supply has started. In this case, the gaming machine according to claim 7, wherein a payout permission state signal or a payout prohibition state signal is transmitted to the payout control means based on the stored contents of the payout state memory.
払出制御手段は、遊技機への電力供給が停止していても電力供給が停止する際に払出可能な状態であったか否かを記憶する払出制御状態記憶を保持可能である
請求項1ないし請求項8記載の遊技機。
The payout control means is capable of holding a payout control state memory for storing whether or not the power supply to the gaming machine is in a payable state when the power supply is stopped even if the power supply to the gaming machine is stopped. 8. The gaming machine according to 8.
払出予定数は、払出手段により払い出されるべき遊技媒体の総数のうち、前記払出手段が一回の連続した払出動作により払い出す数として設定した数のうちの未払出数である
請求項1ないし請求項9記載の遊技機。
The number of payouts is the number of unpaid out of the total number of gaming media to be paid out by the payout means, the number set as the number of payout means paid out by one continuous payout operation. Item 10. The gaming machine according to Item 9.
払出予定数は、入賞の発生に応じて設定された賞遊技媒体の未払出数である
請求項1ないし請求項10記載の遊技機。
11. The gaming machine according to claim 1, wherein the scheduled payout number is an unpaid number of award game media set according to the occurrence of winning.
遊技の進行を制御するとともに、入賞の発生に応じて払い出すべき賞遊技媒体数データを払出制御手段に送信する遊技制御手段を備え、
払出制御手段は、前記賞遊技媒体数データの受信に応じて払出予定数を決定する
請求項11記載の遊技機。
Game control means for controlling the progress of the game and for transmitting award game medium number data to be paid out in accordance with the occurrence of a prize to the payout control means,
12. The gaming machine according to claim 11, wherein the payout control means determines a payout planned number in response to receiving the award game medium number data.
入賞の発生に応じて設定された払出予定数は、複数の入賞に対応した数に設定可能である
請求項11または請求項12記載の遊技機。
The gaming machine according to claim 11 or 12, wherein the scheduled payout number set according to the occurrence of a winning can be set to a number corresponding to a plurality of winnings.
払出予定数は、貸出要求に応じて設定された貸出遊技媒体の未払出数である
請求項1ないし請求項13記載の遊技機。
The gaming machine according to any one of claims 1 to 13, wherein the scheduled payout number is an unpaid number of loaned game media set in response to a loan request.
JP2001032959A 2001-02-08 2001-02-08 Game machine Expired - Fee Related JP4642248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032959A JP4642248B2 (en) 2001-02-08 2001-02-08 Game machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032959A JP4642248B2 (en) 2001-02-08 2001-02-08 Game machine

Publications (2)

Publication Number Publication Date
JP2002233637A JP2002233637A (en) 2002-08-20
JP4642248B2 true JP4642248B2 (en) 2011-03-02

Family

ID=18896798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032959A Expired - Fee Related JP4642248B2 (en) 2001-02-08 2001-02-08 Game machine

Country Status (1)

Country Link
JP (1) JP4642248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5561342B2 (en) * 2012-10-31 2014-07-30 株式会社三洋物産 Game machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029612A (en) * 1999-07-22 2001-02-06 Sophia Co Ltd Game machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029612A (en) * 1999-07-22 2001-02-06 Sophia Co Ltd Game machine

Also Published As

Publication number Publication date
JP2002233637A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
JP3647752B2 (en) Game machine
JP3907926B2 (en) Game machine
JP5095773B2 (en) Game machine
JP3647778B2 (en) Game machine
JP4642248B2 (en) Game machine
JP4772206B2 (en) Game machine
JP3828367B2 (en) Game machine
JP4302330B2 (en) Game machine
JP4919551B2 (en) Game machine
JP4166803B2 (en) Game machine
JP5095772B2 (en) Game machine
JP4875178B2 (en) Game machine
JP4919550B2 (en) Game machine
JP3907928B2 (en) Game machine
JP3640613B2 (en) Game machine
JP3670216B2 (en) Game machine
JP4130304B2 (en) Game machine
JP4233770B2 (en) Game machine
JP3677209B2 (en) Game machine
JP4166800B2 (en) Game machine
JP4166802B2 (en) Game machine
JP4166797B2 (en) Game machine
JP4166801B2 (en) Game machine
JP4170346B2 (en) Game machine
JP4166799B2 (en) Game machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees