JP4641533B2 - Carbon composite material for reducing atmosphere furnace and method for producing the same - Google Patents

Carbon composite material for reducing atmosphere furnace and method for producing the same Download PDF

Info

Publication number
JP4641533B2
JP4641533B2 JP2007195540A JP2007195540A JP4641533B2 JP 4641533 B2 JP4641533 B2 JP 4641533B2 JP 2007195540 A JP2007195540 A JP 2007195540A JP 2007195540 A JP2007195540 A JP 2007195540A JP 4641533 B2 JP4641533 B2 JP 4641533B2
Authority
JP
Japan
Prior art keywords
composite material
carbon composite
atmosphere furnace
film
reducing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007195540A
Other languages
Japanese (ja)
Other versions
JP2008019163A (en
Inventor
楽年 何
信介 合田
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2007195540A priority Critical patent/JP4641533B2/en
Publication of JP2008019163A publication Critical patent/JP2008019163A/en
Application granted granted Critical
Publication of JP4641533B2 publication Critical patent/JP4641533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Description

本発明は、高温下における還元性ガスとの反応抑制効果に優れた炭素複合材料及びその製造方法、さらに詳しくは1000℃を超える高温の還元性ガス雰囲気中においても、炭素材料と還元性ガスとの反応抑制効果を十分に発揮することができる炭化タンタル被覆黒鉛系材料及びその製造方法に関するものである。   The present invention relates to a carbon composite material excellent in the effect of suppressing reaction with a reducing gas at a high temperature and a method for producing the same, and more specifically, even in a high-temperature reducing gas atmosphere exceeding 1000 ° C., the carbon material and the reducing gas The present invention relates to a tantalum carbide-coated graphite material capable of sufficiently exhibiting the reaction suppressing effect of and a method for producing the same.

従来、高温下におけるチッ素ガス、アンモニアガス等の還元性ガス雰囲気下に晒される黒鉛系材料は、当然ながら還元性ガスとの反応によって変質したり目減りし、その材料に求められている本来の機能が十分果たせなくなったとき、寿命が尽きたとして新しい部材と取り換えることが行われる。   Conventionally, graphite materials exposed to a reducing gas atmosphere such as nitrogen gas and ammonia gas at high temperatures are naturally altered or lost by the reaction with the reducing gas. When the function cannot be sufficiently performed, it is replaced with a new member because the lifetime is exhausted.

例えば、炉内に黒鉛系材料からなるヒーターを配置し、炉内にアンモニアガスを導入してアンモニア雰囲気を形成し、そのヒーターで炉内を1200℃程度に加熱保持されたアンモニア雰囲気炉の場合についていえば、ヒーターとしては一般には黒鉛基材の表面に炭化ケイ素を被覆した黒鉛系材料が使用される。これは、黒鉛基材そのものはアンモニアと非常に反応しやすいため、黒鉛製のヒーターでは短時間のうちに消耗が進行し穴が開き始める、つまり断線が生じるため、このような現象を回避して少しでもヒーターとしての寿命を長くできるように、アンモニアとの反応を緩和させる手段として、黒鉛基材の表面に炭化ケイ素を被覆したものである。   For example, in the case of an ammonia atmosphere furnace in which a heater made of graphite material is arranged in the furnace, ammonia gas is introduced into the furnace to form an ammonia atmosphere, and the furnace is heated and held at about 1200 ° C. by the heater. For example, as the heater, a graphite material in which silicon carbide is coated on the surface of a graphite substrate is generally used. This is because the graphite base material itself is very easy to react with ammonia, so in a graphite heater, consumption proceeds in a short time and holes begin to open, that is, disconnection occurs. As a means for relaxing the reaction with ammonia, the surface of the graphite base material is coated with silicon carbide so that the life as a heater can be extended as much as possible.

しかし、上記の炭化ケイ素の被覆という手段は、あくまでもヒーターとアンモニアとの反応を緩慢にしてヒーターの消耗を遅らせることを目的としており、黒鉛基材上の炭化ケイ素被膜とアンモニアとの反応が徐々に進行することに変わりはない。最大の理由は、炭化ケイ素の分解温度が約1400℃であって、その近辺の温度域での蒸気圧が高いことによる。そして、炭化ケイ素被膜がアンモニアとの反応により徐々に薄くなり、黒鉛基材の露出にまで至ると、黒鉛基材とアンモニアが一気に反応し、上述したように短時間のうちに消耗が進行し穴が開き始め、つまり断線が生じ、ヒーターとしての寿命が尽きることになる。   However, the above-mentioned means of coating silicon carbide is intended only to slow down the reaction between the heater and ammonia and delay the consumption of the heater, and the reaction between the silicon carbide coating on the graphite substrate and ammonia gradually There is no change in progress. The biggest reason is that the decomposition temperature of silicon carbide is about 1400 ° C., and the vapor pressure in the temperature range in the vicinity thereof is high. Then, when the silicon carbide coating is gradually thinned by the reaction with ammonia and the graphite base material is exposed, the graphite base material and ammonia react at once, and as described above, the consumption proceeds in a short time and the holes Begins to open, that is, breakage occurs, and the life as a heater is exhausted.

本発明者らは、かねてより還元性雰囲気炉用炭素複合材料の研究を進めており、上記の炭化ケイ素被覆炭素複合材料より優れた材料を開発するための糸口として、遷移金属炭化物では一番融点が高く、かつ化学的安定度が高いとされる炭化タンタル(以下「TaC」で表示する。)に着目した。そして、黒鉛基材(ヒーター)の上にTaCの被膜を形成するに際しては、まず特開平6−280117号公報に開示のプラズマ溶射による物理的蒸着法(いわゆるPVD法)及びCVD法を参考に実験を行った。その後、CVR(化学気相反応)法の実施による実験も行った。   The present inventors have been researching carbon composite materials for reducing atmosphere furnaces for a long time, and as the clue for developing materials superior to the above silicon carbide-coated carbon composite materials, transition metal carbides have the highest melting point. Attention has been focused on tantalum carbide (hereinafter referred to as “TaC”), which has high chemical stability. When a TaC film is formed on a graphite substrate (heater), an experiment is first conducted with reference to a physical vapor deposition method (so-called PVD method) and a CVD method by plasma spraying disclosed in JP-A-6-280117. Went. Thereafter, an experiment was also conducted by performing a CVR (Chemical Vapor Phase Reaction) method.

しかし、TaCの融点が約4000℃と非常に高いため、PVD法の実施は極めて困難であり、またいわゆるCVR法により得られるTaC被膜は多孔質となってしまうため、両法については実用的な成膜法として基本的に採用困難と判断した。結局、CVD法により得られたTaC被覆黒鉛基材を高温の還元性ガス雰囲気中で使用した所、わずか数回(約30時間)の使用でTaC被膜にクラックが生じ、黒鉛基材とTaC被膜との間に剥離が生じた。   However, since the melting point of TaC is about 4000 ° C., the PVD method is extremely difficult to perform, and the TaC film obtained by the so-called CVR method becomes porous. It was judged that it was basically difficult to adopt the film formation method. Eventually, when the TaC-coated graphite base material obtained by the CVD method was used in a high-temperature reducing gas atmosphere, cracks occurred in the TaC film when used only a few times (about 30 hours). Peeling occurred between.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、1000℃を超える高温の還元性ガス雰囲気中においても、優れた還元性ガス反応抑制効果を発揮し、製品寿命を大きく延ばすことができる還元性雰囲気炉用炭素複合材料及びその製造方法を提供する点にある。   The present invention has been made in view of the above circumstances, and its purpose is to exhibit an excellent reducing gas reaction suppression effect even in a high temperature reducing gas atmosphere exceeding 1000 ° C. The object of the present invention is to provide a carbon composite material for a reducing atmosphere furnace capable of greatly extending the life and a method for producing the same.

本発明者らは、従来法(CVD法)で得られたTaC被膜と黒鉛基材との間に簡単に生じるクラックや剥離の原因を解明すべく、特に結晶組織面から検討してきた。その結果、黒鉛基材上のTaC被膜の結晶組織は繊維柱状(図5(a)参照)又は柱状(図5(b)参照)をしており、さらにいずれの場合も黒鉛基材とTaC被膜との密着力に弱い構造をしていることが判明した。   The inventors of the present invention have studied especially from the crystal structure surface in order to elucidate the cause of cracks and peeling that easily occur between the TaC film obtained by the conventional method (CVD method) and the graphite substrate. As a result, the crystal structure of the TaC coating on the graphite substrate is fiber columnar (see FIG. 5A) or columnar (see FIG. 5B), and in either case, the graphite substrate and the TaC coating. It was found that it has a weak structure with respect to adhesion.

この結果、本発明者らは、TaC被膜の結晶組織が微粒子が緻密に積層した状態であれば被膜内のクラックの進行を著しく遅らせ、ひいては黒鉛基材とTaC被膜との剥離の発生の大幅な抑制につながるはず、との知見を得ることができ、この知見を基にそのような微粒子が緻密に積層した結晶組織のTaC被膜を黒鉛基材上に形成できる最適な反応性蒸着手段を見い出すべく、更に検討を重ね、本発明を完成した。   As a result, the inventors of the present invention significantly retarded the progress of cracks in the film when the crystal structure of the TaC film is in a state where fine particles are densely stacked, and consequently, the occurrence of peeling between the graphite substrate and the TaC film is greatly reduced. In order to find an optimum reactive vapor deposition method that can form a TaC film with a crystal structure in which such fine particles are densely layered on a graphite substrate based on this knowledge. The present invention was completed after further examination.

即ち、上記目的を達成し得た本発明の一つは、タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を積層してなる結晶組織のTaCの被膜が形成され、かつ該被膜の組成比(Ta/C)が0.8〜1.2であることを特徴とする還元性雰囲気炉用炭素複合材料である。また、第2の発明は、さらにTaC被膜の膜厚が5〜100μmであることを追加構成要件とする還元性雰囲気炉用炭素複合材料である。   That is, one of the present invention that has achieved the above object is to deposit tantalum carbide fine particles on the surface by adhering tantalum fine particles together with reactive gas particles containing carbon to the surface of the graphite substrate. A carbon composite material for a reducing atmosphere furnace, wherein a TaC film having a crystalline structure is formed and the composition ratio (Ta / C) of the film is 0.8 to 1.2. Moreover, 2nd invention is a carbon composite material for reducing atmosphere furnaces which makes it an additional structural requirement that the film thickness of a TaC film is further 5-100 micrometers.

さらに、第3の発明は、上記両発明をアンモニア雰囲気炉用炭素複合材料として利用する用途発明であり、また、第4の発明は、還元性雰囲気炉用炭素複合材料を半導体薄膜の成膜炉用ヒーターに利用する用途発明である。半導体薄膜としては、Si、GaAs、GaInP、GaN、InGaNなどが例示できる。さらに、第5の発明は、ターゲット材としての金属Ta及び炭素を含む反応ガスを使用してアークイオンプレーティング(AIP)式反応性蒸着法(以下単に「AIP法」という。)により黒鉛基材の表面にTaCの被膜を形成する還元性雰囲気炉用炭素複合材料の製造方法であって、前記金属タンタルの微粒子を前記反応ガスの粒子と共に前記黒鉛基材の表面に付着させて、前記表面に炭化タンタル微粒子を積層してなる前記被膜を形成すると共に、前記被膜の組成比(Ta/C)が0.8〜1.2となるように前記反応ガスの流量及びアーク放電電流を調節することを特徴とする還元性雰囲気炉用炭素複合材料の製造方法である。   Further, the third invention is a use invention in which both the above inventions are used as a carbon composite material for an ammonia atmosphere furnace, and the fourth invention is a semiconductor thin film forming furnace using a carbon composite material for a reducing atmosphere furnace. It is a use invention utilized for a heater. Examples of the semiconductor thin film include Si, GaAs, GaInP, GaN, and InGaN. Further, according to a fifth aspect of the present invention, a graphite substrate is prepared by an arc ion plating (AIP) type reactive vapor deposition method (hereinafter simply referred to as “AIP method”) using a reactive gas containing metal Ta and carbon as a target material. A method for producing a carbon composite material for a reducing atmosphere furnace in which a TaC film is formed on the surface of the substrate, wherein the fine particles of the metal tantalum are adhered to the surface of the graphite substrate together with the particles of the reaction gas, Forming the coating formed by laminating tantalum carbide fine particles, and adjusting the flow rate of the reaction gas and the arc discharge current so that the composition ratio (Ta / C) of the coating is 0.8 to 1.2. Is a method for producing a carbon composite material for a reducing atmosphere furnace.

本発明の効果を要約すると、次のとおりである。
本発明の複合材料は、微粒子状の緻密で均質な積層結晶組織を有するTaC被膜を黒鉛基材の表面に被覆した構成であるため、高温の還元性雰囲気下で黒鉛基材中の不純物(Fe、Al等)が拡散してTaC被膜の下層に到達しても、TaC被膜内からの抜け出しは非常に困難となる。また、高温でTaC被膜にピンホール及びクラックが生じるまでの時間を非常に長く延ばすことができる。従って、ピンホールが生じるまではTaCの本来有する好ましい特長である高耐熱性及び化学的安定性が有効に発揮され、複合材料からなる製品の寿命を従来品よりも大きく延ばすことができる。
The effects of the present invention are summarized as follows.
Since the composite material of the present invention has a structure in which a TaC film having a fine and dense laminated crystal structure is coated on the surface of a graphite substrate, impurities (Fe) in the graphite substrate under a high-temperature reducing atmosphere. , Al, etc.) diffuse and reach the lower layer of the TaC film, it is very difficult to escape from the TaC film. In addition, the time until pinholes and cracks are generated in the TaC film at a high temperature can be extended very long. Therefore, the high heat resistance and chemical stability, which are inherently preferable characteristics of TaC, are effectively exhibited until pinholes are generated, and the life of a product made of a composite material can be greatly extended as compared with a conventional product.

また、TaC被膜の厚みを5〜100μm、望ましくは10〜90μmとなるように形成しておくことにより、上記の効果を十分に発揮させつつも、必要以上の被膜形成に要するコストの無駄を省き、製品コストの上昇を防止することができる。   Further, by forming the TaC film so as to have a thickness of 5 to 100 μm, preferably 10 to 90 μm, it is possible to reduce the waste of cost required for forming a film more than necessary while sufficiently exhibiting the above effects. , Increase in product cost can be prevented.

また、本発明の複合材料を半導体薄膜の成膜炉用ヒーターに適用した場合には、このヒーターの著しい延命化により、半導体薄膜の成膜に要するコストの低減化を図ることができる。   Further, when the composite material of the present invention is applied to a heater for a semiconductor thin film deposition furnace, the cost required for the deposition of the semiconductor thin film can be reduced by significantly extending the life of the heater.

また、TaC被膜の形成には、コンパクトな汎用装置でもあるAIP装置を利用できるので、経済的である。   Further, the formation of the TaC film is economical because an AIP apparatus that is a compact general-purpose apparatus can be used.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明に係る還元性雰囲気炉用炭素複合材料を示す断面模式図であり、図2は、本発明の製造方法の一例を示す工程図、図3は、AIP処理を実施するためのAIP装置を示す原理説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a carbon composite material for a reducing atmosphere furnace according to the present invention, FIG. 2 is a process diagram showing an example of the production method of the present invention, and FIG. 3 is for carrying out an AIP process. It is a principle explanatory view showing an AIP device.

図1(a)において、本発明の複合材料1は、黒鉛基材2の表面にTaC被膜3が形成された構造をしている。図1(b)は、TaC被膜3の一部を拡大した模式図である。黒鉛基材2としては、高純度等方性黒鉛製のものが望ましい。また、TaC被膜3は、φ1〜10μm程度のTaC微粒子が均質かつ緻密に詰まって積層した状態の結晶組織からなる層であり、その場合嵩密度が14.30g/cm以上であるようなものが望ましい。アウトガスの少ない高純度等方性黒鉛基材を使うのは、高温で黒鉛基材から放出するガス(H、CH、CO、CO、HOなど)及び不純物が少なく、また電気抵抗率や熱膨張率が各方向における方向性が少ないためである。なお、TaC被膜が多孔質に形成されるのを防ぐため、TaC被膜の嵩密度が14.30g/cm以上とすることによって、外部からのガス侵入を抑制することができる。 In FIG. 1A, the composite material 1 of the present invention has a structure in which a TaC film 3 is formed on the surface of a graphite substrate 2. FIG. 1B is an enlarged schematic view of a part of the TaC film 3. The graphite substrate 2 is preferably made of high purity isotropic graphite. The TaC coating 3 is a layer composed of a crystal structure in which TaC fine particles having a diameter of about 1 to 10 μm are packed uniformly and densely, in which case the bulk density is 14.30 g / cm 3 or more. Is desirable. High purity isotropic graphite base material with low outgas is used because gas (H 2 , CH 4 , CO, CO 2 , H 2 O, etc.) and impurities released from the graphite base material at high temperatures are low, and electrical resistance This is because the rate and the coefficient of thermal expansion are less directional in each direction. In addition, in order to prevent the TaC film from being formed in a porous manner, gas penetration from the outside can be suppressed by setting the bulk density of the TaC film to 14.30 g / cm 3 or more.

また、TaC被膜の組成比(Ta/C)は、X線光電子分光計(ESCA)による測定値基準で0.8〜1.2であることが望ましい。(Ta/C)が0.8未満では、Taが本来有する高耐熱性が低下しやすく、その分、黒鉛基材2と高温還元性ガスが反応しやすくなるからであり、一方(Ta/C)が1.2を超える場合は、黒鉛基材2とTaC被膜3との熱膨張係数の差が両者の密着状態を保持し得る許容量を超え、両者が剥がれやすくなるからである。   Further, the composition ratio (Ta / C) of the TaC film is desirably 0.8 to 1.2 on the basis of a measurement value by an X-ray photoelectron spectrometer (ESCA). When (Ta / C) is less than 0.8, the high heat resistance inherent in Ta is likely to be lowered, and accordingly, the graphite substrate 2 and the high-temperature reducing gas are more likely to react, while on the other hand (Ta / C) ) Exceeds 1.2, the difference in coefficient of thermal expansion between the graphite substrate 2 and the TaC coating 3 exceeds the allowable amount capable of maintaining the close contact state between the two, and the two easily peel off.

上記の特性を有するTaC被膜3を形成するには、後に詳記するようにターゲット材としての金属タンタル及び反応ガスを使用したAIP法の実施が有効である。   In order to form the TaC film 3 having the above characteristics, it is effective to perform the AIP method using metal tantalum as a target material and a reactive gas as will be described in detail later.

従って、本発明の複合材料1を高温の還元性ガス、例えばアンモニア雰囲気下に晒しても、TaC被膜3としては微粒子が緻密に積層した結晶組織であるために、たとえ黒鉛基材2中の不純物(Fe、Al等)が拡散してTaC被膜3に到達しても、柱状又は繊維柱状結晶組織と異なり微粒子状結晶組織のTaC被膜3内の抜け出しは非常に困難となる。また、高温でTaC皮膜にピンホール及びクラックが生じるまでの時間を非常に長く延ばすことができる。   Therefore, even if the composite material 1 of the present invention is exposed to a high-temperature reducing gas, for example, in an ammonia atmosphere, the TaC film 3 has a crystal structure in which fine particles are densely laminated. Even if (Fe, Al, etc.) diffuses and reaches the TaC film 3, it is very difficult to pull out the fine crystal structure in the TaC film 3 unlike the columnar or fiber columnar crystal structure. In addition, the time until pinholes and cracks are generated in the TaC film at a high temperature can be extended very long.

従って、ピンホール及びクラックが生じるまではTaCの本来有する好ましい特長がそのまま生かされることになる。即ち、高耐熱性及び高温還元性ガスに対する化学的安定性(例えば、アンモニアガスの場合1500℃でも安定しており、水素ガスの場合2000℃でも安定している。)を有効に発揮して、複合材料1の寿命を従来品よりも大きく延ばすことができる。   Accordingly, the preferable characteristics inherent in TaC are utilized as they are until pinholes and cracks are generated. That is, it effectively exhibits chemical stability against high heat resistance and high temperature reducing gas (for example, it is stable at 1500 ° C. in the case of ammonia gas and stable at 2000 ° C. in the case of hydrogen gas), The lifetime of the composite material 1 can be extended more than the conventional product.

また、TaC被膜3は、その厚みが5〜100μm、望ましくは10〜90μmとなるように形成しておくことが望ましい。TaC被膜3を黒鉛基材2の表面に支承なく形成するためには、少なくとも5μmは必要となる一方、100μmを超えると、TaC被膜3と黒鉛基材2との剥離が生じやすくなるからである。TaC被膜3の厚みをこのように最適な範囲に設定することにより、還元性ガス反応抑制効果を十分に発揮させつつも、必要以上の被膜形成に要するコストの無駄を省き、製品コストの上昇を防止することができる。   Further, the TaC film 3 is desirably formed to have a thickness of 5 to 100 μm, preferably 10 to 90 μm. This is because, in order to form the TaC coating 3 on the surface of the graphite substrate 2 without any support, at least 5 μm is required, but when it exceeds 100 μm, the TaC coating 3 and the graphite substrate 2 are liable to be peeled off. . By setting the thickness of the TaC coating 3 in the optimal range in this manner, while reducing the reactive gas reaction sufficiently, the unnecessary cost for forming the coating is eliminated and the product cost is increased. Can be prevented.

次に、本発明の製造方法の一例を図2及び図3を参照しつつ説明する。まず、黒鉛基材2を洗浄部4へ導入して、有機溶剤で表面を清浄にする。清浄化した黒鉛基材2をAIP工程に導き該工程内で黒鉛基材2の表面にTaCを被覆する。AIP工程は通常図3に示すようなAIP装置を使用して図2の一点鎖線枠内に示すような手順(真空引き→加熱→下地処理→コーティング→冷却)で行う。即ち、清浄化した黒鉛基材2をチャンバ5内の回転テーブル6に1個又は複数個載置した後、チャンバ5内を10−5Torr程度まで真空引きし、次いでチャンバ5内を400〜600℃程度に加熱する。 Next, an example of the manufacturing method of this invention is demonstrated, referring FIG.2 and FIG.3. First, the graphite substrate 2 is introduced into the cleaning unit 4 and the surface is cleaned with an organic solvent. The cleaned graphite substrate 2 is guided to the AIP process, and the surface of the graphite substrate 2 is coated with TaC in the process. The AIP process is usually carried out by using an AIP apparatus as shown in FIG. 3 according to the procedure (evacuation → heating → base treatment → coating → cooling) as shown in a one-dot chain line in FIG. That is, after placing one or a plurality of cleaned graphite substrates 2 on the rotary table 6 in the chamber 5, the inside of the chamber 5 is evacuated to about 10 −5 Torr, and then the inside of the chamber 5 is 400-600. Heat to about ℃.

次に、供給口7からArガスをチャンバ5内に導入し、−600Vのバイアス電源8を負荷させながらArスパッタリングによるドライエッチングを行う。いわゆる下地処理である。この後、コーティング操作に入り、ターゲット材(金属Ta)10に通電するアーク電源11及びバイアス電源8をそれぞれ所定の電流及び電圧に設定すると共に、供給口7からCHガス等の反応ガスを所定の流量で供給し、ターゲット材10から飛び出したTa微粒子を反応ガス粒子と共に黒鉛基材2の表面にTaC微粒子として付着させる。このコーティング操作を所定の時間保持することにより、黒鉛基材2の表面にTaC微粒子が緻密かつ均質に積層した結晶組織のTaC被膜を5〜100μmの範囲で必要な厚みだけ形成することができる。 Next, Ar gas is introduced into the chamber 5 from the supply port 7, and dry etching by Ar sputtering is performed while a bias power supply 8 of −600 V is loaded. This is a so-called ground treatment. Thereafter, the coating operation is started, and the arc power source 11 and the bias power source 8 for energizing the target material (metal Ta) 10 are set to predetermined currents and voltages, respectively, and a reaction gas such as CH 4 gas is supplied from the supply port 7 to a predetermined level. The Ta fine particles jumping out from the target material 10 are attached to the surface of the graphite substrate 2 as TaC fine particles together with the reaction gas particles. By holding this coating operation for a predetermined time, a TaC film having a crystal structure in which TaC fine particles are densely and uniformly laminated on the surface of the graphite substrate 2 can be formed in a required thickness within a range of 5 to 100 μm.

コーティング操作が終了すれば、チャンバ5内を所定温度まで冷却した後、製品としてのTaC被膜黒鉛材料をチャンバ5から取り出す。   When the coating operation is completed, the inside of the chamber 5 is cooled to a predetermined temperature, and then the TaC-coated graphite material as a product is taken out from the chamber 5.

(実施例1、2、参考例1、2)
図4に示す円筒型スリット型(φ100mm×t5mm)の形状寸法からなる黒鉛製ヒーターであって、黒鉛の特性として嵩密度が1.82(g/cm)、熱膨張係数が7.1(10−6/K)のものに対してAIP処理を行い、黒鉛製ヒーターの表面にTaC被膜を形成した。TaC被膜の組成比(Ta/C)の変更はCHガスの流量及びアーク電流を調整することにより行い、TaC被膜の膜厚の変更は蒸着時間を調整することにより行った。AIP条件は、次の通りである。
(1)ターゲット材:金属Ta
(2)反応ガス :CH
(3)熱処理温度 :400〜600℃
(4)ベース圧力 :1×10−5Torr
(5)蒸着圧力 :20mTorr
(6)蒸着電流 :200A
(7)蒸着電圧 :43V
(8)バイアス電圧:−20V
(9)蒸着時間 :25分(5μm)〜500分(100μm)
得られたTaC被膜の嵩密度は14.30g/cm以上であった。
(Examples 1 and 2, Reference Examples 1 and 2)
A graphite heater consisting geometry of cylindrical slit type shown in FIG. 4 (φ100mm × t5mm), bulk density of 1.82 as a characteristic of the graphite (g / cm 3), the thermal expansion coefficient of 7.1 ( 10-6 / K) was subjected to AIP treatment to form a TaC film on the surface of the graphite heater. The composition ratio (Ta / C) of the TaC film was changed by adjusting the flow rate of the CH 4 gas and the arc current, and the film thickness of the TaC film was changed by adjusting the deposition time. The AIP conditions are as follows.
(1) Target material: Metal Ta
(2) Reaction gas: CH 4
(3) Heat treatment temperature: 400-600 ° C
(4) Base pressure: 1 × 10 −5 Torr
(5) Deposition pressure: 20 mTorr
(6) Vapor deposition current: 200A
(7) Vapor deposition voltage: 43V
(8) Bias voltage: -20V
(9) Deposition time: 25 minutes (5 μm) to 500 minutes (100 μm)
The bulk density of the obtained TaC coating was 14.30 g / cm 3 or more.

膜厚一定(30μm)の条件下で得られた製品としてのアンモニア雰囲気炉用ヒーターをそれぞれ使用して、1200℃のアンモニア雰囲気下にある半導体薄膜の成膜炉での成膜実験を順次、繰り返して行った。断線した時点をもってヒーターの寿命とした。その結果を、表1に示す。   Using a heater for an ammonia atmosphere furnace as a product obtained under the condition of a constant film thickness (30 μm), a film formation experiment in a film formation furnace for a semiconductor thin film in an ammonia atmosphere at 1200 ° C. was repeated sequentially. I went. The time when the wire was disconnected was regarded as the life of the heater. The results are shown in Table 1.

(比較例1)
実施例1、2、参考例1、2と同一の形状寸法及び特性からなる黒鉛製ヒーターに対してCVD処理を行い、ヒーターの表面にSiC被膜を30μmの厚みで形成した。得られた従来型製品としてのアンモニア雰囲気炉用ヒーターを使用して、実施例1と同様にして同一条件下にある半導体薄膜の成膜炉での成膜実験を繰り返し行い、断線した時点をもってヒーターの寿命とした。結果は、表1に併せて示す。表1からも明らかなように、従来型ヒーターの場合は50回の繰り返し使用で(延べ時間にして150時間の使用で)断線したのに対し、本発明に係るヒーターの場合は、500回繰り返し使用しても(延べ時間にして1500時間使用しても)、断線は起こらなかった。
(Comparative Example 1)
A CVD process was performed on the graphite heater having the same shape and characteristics as in Examples 1 and 2 and Reference Examples 1 and 2, and a SiC film was formed to a thickness of 30 μm on the surface of the heater. Using the heater for the ammonia atmosphere furnace as the conventional product thus obtained, the film formation experiment in the film forming furnace of the semiconductor thin film under the same conditions was repeated in the same manner as in Example 1, and when the wire was disconnected, the heater With a lifetime of. The results are also shown in Table 1. As is clear from Table 1, the conventional heater was disconnected 50 times (with a total use time of 150 hours), whereas the heater according to the present invention was repeated 500 times. Even when it was used (1500 hours in total), no disconnection occurred.

なお、熱処理(成膜実験)後における実施例2及び参考例2のそれぞれのTaC被膜について、走査型電子顕微鏡で観察した結果が図6(a)、(b)に示すSEM写真である。このSEM写真からも、TaC被膜の組成比(Ta/C)が本発明の要件を満たす場合は、クラックの発生が認められず、要件を外れる場合は、クラックが進行していることが分かる。   In addition, about the TaC film of Example 2 and the reference example 2 after heat processing (film-forming experiment), the result observed with the scanning electron microscope is a SEM photograph shown to Fig.6 (a), (b). From this SEM photograph, it can be seen that when the composition ratio (Ta / C) of the TaC film satisfies the requirements of the present invention, the occurrence of cracks is not recognized, and when the composition is outside the requirements, the cracks progress.

(実施例5〜8)
次に、(Ta/C)=1(一定)の条件下で実施例1、2、参考例1、2と同様にAIP処理してTaC被膜の膜厚が表2のように異にして得られた製品としてのアンモニア雰囲気炉用ヒーター(4種類)をそれぞれ使用して、実施例1、2、参考例1、2と同様に1200℃のアンモニア雰囲気下にある半導体薄膜の成膜炉での成膜実験を順次、繰り返して行った。断線した時点をもってヒーターの寿命とした。その結果を、表2に併せて示す。
(Examples 5 to 8)
Next, AIP treatment was performed in the same manner as in Examples 1 and 2 and Reference Examples 1 and 2 under the condition of (Ta / C) = 1 (constant), and the film thickness of the TaC film was different as shown in Table 2. As in Examples 1, 2 and Reference Examples 1 and 2, using the ammonia atmosphere furnace heaters (4 types) as the obtained products, respectively, in a semiconductor thin film deposition furnace in an ammonia atmosphere at 1200 ° C. The film formation experiment was repeated sequentially. The time when the wire was disconnected was regarded as the life of the heater. The results are also shown in Table 2.

(比較例2)
実施例1〜6、参考例1、2と同一の形状寸法及び特性からなる黒鉛製ヒーターに対してCVD処理を行い、ヒーターの表面にSiC被膜を100μmの厚みで形成した。得られた従来型製品としてのアンモニア雰囲気炉用ヒーターを使用して、実施例1〜6、参考例1、2と同様にして同一条件下にある半導体薄膜成膜炉での成膜実験を繰り返し行い、断線した時点をもってヒーターの寿命とした。結果は、表2に併せて示す。表2からも明らかなように、従来型ヒーターの場合は50回の繰り返し使用で(延べ時間にして150時間の使用で)断線したのに対し、本発明に係るヒーターの場合は、500回繰り返し使用しても(延べ時間にして1500時間使用しても)、断線は起こらなかった。
(Comparative Example 2)
CVD treatment was performed on the graphite heater having the same shape and characteristics as in Examples 1 to 6 and Reference Examples 1 and 2, and a SiC film was formed to a thickness of 100 μm on the surface of the heater. Using the heater for the ammonia atmosphere furnace as the conventional product thus obtained, the film formation experiment was repeated in the semiconductor thin film film formation furnace under the same conditions as in Examples 1 to 6 and Reference Examples 1 and 2. The heater life was determined at the time when the wire was disconnected. The results are also shown in Table 2. As is clear from Table 2, the conventional heater was disconnected 50 times (using a total time of 150 hours), whereas the heater according to the present invention was repeated 500 times. Even when it was used (1500 hours in total), no disconnection occurred.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明に係る還元性雰囲気炉用炭素複合材料を示す断面模式図である。It is a cross-sectional schematic diagram which shows the carbon composite material for reducing atmosphere furnaces concerning this invention. 本発明の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of this invention. AIP処理を実施するためのAIP装置を示す原理説明図である。It is principle explanatory drawing which shows the AIP apparatus for implementing AIP processing. 半導体薄膜の成膜炉用ヒーターの概略斜視図である。It is a schematic perspective view of the heater for film-forming furnaces of a semiconductor thin film. CVD法で成膜したTaC被膜の結晶組織を示す要部断面模式図であり、(a)は結晶組織が繊維柱状のもの、(b)は柱状のものを示す図である。It is a principal part cross-section figure which shows the crystal structure of the TaC film formed by CVD method, (a) is a figure where a crystal structure is a fiber column shape, (b) is a figure which shows a column shape. 実施例2及び参考例2のそれぞれのTaC被膜についてのSEM写真を示す図である。It is a figure which shows the SEM photograph about each TaC film of Example 2 and Reference Example 2.

符号の説明Explanation of symbols

1 本発明複合材料
2 黒鉛基材
3 TaC被膜
4 洗浄部
5 チャンバ
6 回転テーブル
7 供給口
8 バイアス電源
9 排気口
10 ターゲット材(金属Ta)
11 アーク電源
12 陽極
DESCRIPTION OF SYMBOLS 1 This invention composite material 2 Graphite base material 3 TaC film 4 Washing part 5 Chamber 6 Rotary table 7 Supply port 8 Bias power supply 9 Exhaust port 10 Target material (metal Ta)
11 Arc power supply 12 Anode

Claims (5)

タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を積層してなる結晶組織の炭化タンタルの被膜が形成され、かつ該被膜の組成比(Ta/C)が、0.8〜1.2であることを特徴とする還元性雰囲気炉用炭素複合材料。   By attaching the tantalum fine particles together with the reactive gas particles containing carbon to the surface of the graphite substrate, a tantalum carbide film having a crystalline structure formed by laminating the tantalum carbide fine particles on the surface is formed, and A carbon composite material for a reducing atmosphere furnace, wherein the composition ratio (Ta / C) is 0.8 to 1.2. 前記炭化タンタルの被膜の膜厚が5〜100μmである請求項1記載の還元性雰囲気炉用炭素複合材料。   The carbon composite material for a reducing atmosphere furnace according to claim 1, wherein the film thickness of the tantalum carbide film is 5 to 100 µm. 前記還元性雰囲気炉がアンモニア雰囲気炉である請求項1又は請求項2に記載の還元性雰囲気炉用炭素複合材料。   The carbon composite material for a reducing atmosphere furnace according to claim 1 or 2, wherein the reducing atmosphere furnace is an ammonia atmosphere furnace. 上記炭素複合材料が成膜炉用ヒーターである請求項1乃至請求項3のいずれか一項に記載の還元性雰囲気炉用炭素複合材料。   The carbon composite material for a reducing atmosphere furnace according to any one of claims 1 to 3, wherein the carbon composite material is a heater for a film forming furnace. ターゲット材としての金属タンタル及び炭素を含む反応ガスを使用してアークイオンプレーティング(AIP)式反応性蒸着法により黒鉛基材の表面に炭化タンタルの被膜を形成する還元性雰囲気炉用炭素複合材料の製造方法であって、前記金属タンタルの微粒子を前記反応ガスの粒子と共に前記黒鉛基材の表面に付着させ、前記表面に炭化タンタル微粒子を積層してなる前記被膜を形成すると共に、前記被膜の組成比(Ta/C)が、0.8〜1.2となるように前記反応ガスの流量及びアーク放電電流を調節することを特徴とする還元性雰囲気炉用炭素複合材料の製造方法。   Carbon composite material for a reducing atmosphere furnace in which a tantalum carbide film is formed on the surface of a graphite substrate by an arc ion plating (AIP) type reactive vapor deposition method using a reactive gas containing metal tantalum and carbon as a target material The metal tantalum fine particles are adhered to the surface of the graphite base material together with the reaction gas particles, and the film is formed by laminating the tantalum carbide fine particles on the surface. A method for producing a carbon composite material for a reducing atmosphere furnace, wherein the flow rate of the reaction gas and the arc discharge current are adjusted so that the composition ratio (Ta / C) is 0.8 to 1.2.
JP2007195540A 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same Expired - Fee Related JP4641533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195540A JP4641533B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195540A JP4641533B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05842197A Division JP4498476B2 (en) 1997-02-25 1997-02-25 Carbon composite material for reducing atmosphere furnace and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008019163A JP2008019163A (en) 2008-01-31
JP4641533B2 true JP4641533B2 (en) 2011-03-02

Family

ID=39075418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195540A Expired - Fee Related JP4641533B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Country Status (1)

Country Link
JP (1) JP4641533B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690367B2 (en) * 2007-07-27 2011-06-01 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace
JP5267709B2 (en) * 2011-09-14 2013-08-21 株式会社豊田中央研究所 High heat resistant member, method for producing the same, graphite crucible and method for producing single crystal ingot
KR20170133191A (en) * 2016-05-25 2017-12-05 주식회사 티씨케이 HIGH HARDNESS TaC COATED CARBON MATERIAL AND MANUFACTURING METHOD FOR SAME
KR102030007B1 (en) * 2018-05-15 2019-10-08 한국기계연구원 Method and apparatus for preparing tantalum carbide powder
JP7087762B2 (en) * 2018-07-18 2022-06-21 株式会社豊田中央研究所 TaC coated graphite member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617914A (en) * 1979-07-24 1981-02-20 Inoue Japax Res Inc Surface treated graphite material
JPH04325681A (en) * 1991-04-26 1992-11-16 Ngk Insulators Ltd Method and device for producing ceramic sintered body
JPH06300130A (en) * 1993-04-08 1994-10-28 Teikoku Piston Ring Co Ltd Hard coating material, sliding member coated with it, and its manufacture
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP2007332024A (en) * 2007-07-27 2007-12-27 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace
JP4498476B2 (en) * 1997-02-25 2010-07-07 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617914A (en) * 1979-07-24 1981-02-20 Inoue Japax Res Inc Surface treated graphite material
JPH04325681A (en) * 1991-04-26 1992-11-16 Ngk Insulators Ltd Method and device for producing ceramic sintered body
JPH06300130A (en) * 1993-04-08 1994-10-28 Teikoku Piston Ring Co Ltd Hard coating material, sliding member coated with it, and its manufacture
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP4498476B2 (en) * 1997-02-25 2010-07-07 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same
JP2007332024A (en) * 2007-07-27 2007-12-27 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace

Also Published As

Publication number Publication date
JP2008019163A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP5250321B2 (en) Method for producing seed crystal for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP5524213B2 (en) Wafer processing apparatus with adjustable electrical resistivity
KR101329414B1 (en) Etch resistant wafer processing apparatus and method for producing the same
JP4641533B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP2013004247A (en) Ceramic heater
CN103160928A (en) Seed crystal processing method for growing SiC monocrystal with high quality
JP4641536B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641535B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4498477B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4690367B2 (en) Carbon composite material for reducing atmosphere furnace
JP3680281B2 (en) Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
JP4641534B2 (en) Method for producing carbon composite material for reducing atmosphere furnace
KR101154416B1 (en) Single crystal method
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
TW202128558A (en) Tantalum carbonate-coated graphite member and method for producing same
JP2007254167A (en) Method for production of carbon nanotube
JP4907017B2 (en) Method for producing carbon nanotube film body
JP7315148B2 (en) CERAMICS, CERAMIC COATING METHOD, AND CERAMIC COATING APPARATUS
JP2012052235A (en) Manufacturing method of tantalum tube and pit carbon core, tantalum tube and pit carbon core, manufacturing method of tantalum carbide wiring, and tantalum carbide wiring
JP4386663B2 (en) Carbon composite material
JP3739507B2 (en) Manufacturing method of heat treatment jig
JP2011093772A (en) Graphite member provided with plasma resistance characteristic
JP5269920B2 (en) Manufacturing method of parts for vacuum film forming apparatus
KR20070032050A (en) Protective coating on a substrate and method of making thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees