JP4638931B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP4638931B2
JP4638931B2 JP2008234817A JP2008234817A JP4638931B2 JP 4638931 B2 JP4638931 B2 JP 4638931B2 JP 2008234817 A JP2008234817 A JP 2008234817A JP 2008234817 A JP2008234817 A JP 2008234817A JP 4638931 B2 JP4638931 B2 JP 4638931B2
Authority
JP
Japan
Prior art keywords
substrate
stage
levitation
floating
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008234817A
Other languages
Japanese (ja)
Other versions
JP2010067896A (en
Inventor
義広 川口
一騎 元松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008234817A priority Critical patent/JP4638931B2/en
Priority to KR1020090072817A priority patent/KR20100031453A/en
Publication of JP2010067896A publication Critical patent/JP2010067896A/en
Application granted granted Critical
Publication of JP4638931B2 publication Critical patent/JP4638931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、浮上ステージ上で被処理基板を浮かせ、ステージと基板間の伝熱によって基板に所定の加熱処理を施す浮上式の基板処理装置に係り、特に基板搬送ラインに沿って複数段に分割された浮上ステージを有する基板処理装置に関する。   The present invention relates to a floating substrate processing apparatus that floats a substrate to be processed on a floating stage and performs predetermined heat treatment on the substrate by heat transfer between the stage and the substrate, and in particular, is divided into a plurality of stages along the substrate transfer line. The present invention relates to a substrate processing apparatus having a floating stage.

近年、フラットパネルディスプレイ(FPD)製造のためのフォトリソグラフィーで用いられているレジスト塗布現像処理システムでは、被処理基板(たとえばガラス基板)の大型化に安全で効率的に対応できるように、水平な一方向に設定した基板搬送ライン上で基板を移動させながら基板の被処理面に所定の液、ガス、光、熱等を与えて所要の処理を行う平流し方式が様々な処理工程で導入されてきている。   In recent years, a resist coating and developing processing system used in photolithography for manufacturing a flat panel display (FPD) is horizontal so that it can safely and efficiently cope with an increase in the size of a substrate to be processed (for example, a glass substrate). A flat flow method is introduced in various processing steps in which a predetermined liquid, gas, light, heat, etc. are applied to the surface to be processed while moving the substrate on a substrate transfer line set in one direction. It is coming.

この種の平流し方式としては、たとえば特許文献1に記載されるようにコロを一定ピッチで並べて敷設したコロ搬送路上で基板を水平移動させるコロ搬送方式や、たとえば特許文献2に記載されるように浮上ステージ上で基板を浮かせて水平移動させる浮上搬送方式が知られている。   As this type of flat flow system, for example, as described in Patent Document 1, a roller transport system in which a substrate is horizontally moved on a roller transport path in which rollers are arranged at a constant pitch, and as described in Patent Document 2, for example. In addition, a levitation transport method is known in which a substrate is floated and moved horizontally on a levitation stage.

浮上搬送方式においては、空気中に浮いている基板に水平移動の推力を与える搬送手段を浮上ステージの周囲に設ける必要があり、かかる搬送手段にモータ等の回転駆動源に接続された駆動コロからなるコロ搬送路を用いる案が検討されている。   In the levitation conveyance method, it is necessary to provide a conveyance means for applying a thrust for horizontal movement to the substrate floating in the air around the levitation stage. From the driving roller connected to the rotation drive source such as a motor to the conveyance means. A proposal using a roller conveyance path is being studied.

浮上ステージとコロ搬送路とを組み合わせる場合、典型的には、搬送ラインにおいて浮上ステージの上流側および下流側に各々個別のコロ駆動部に作動接続されたコロ搬送路がそれぞれ設置される。このような浮上ステージ/コロ搬送方式において、基板は、上流側コロ搬送路上を平流しで水平移動しながら浮上ステージの上に搬入され、浮上ステージ上を浮いた状態で通過し、下流側コロ搬送路に乗り移って浮上ステージから搬出される。その際、基板は、基板前端が浮上ステージ上に在る間は後方の上流側コロ搬送路のみの推力によって前進移動し、基板前端が下流側コロ搬送路上に乗ってからは上流側および下流側双方のコロ搬送路の推力によって前進移動し、基板後端が浮上ステージ上に在る間は下流側コロ搬送路のみの推力によって前進移動する。
特開2007−158088 特開2005−244155
When combining the levitation stage and the roller conveyance path, typically, roller conveyance paths that are operatively connected to individual roller driving units are respectively installed on the upstream side and the downstream side of the levitation stage in the conveyance line. In such a levitation stage / roller transport system, the substrate is carried on the levitation stage while moving horizontally on the upstream roller transport path, passing through the levitation stage in a floating state, and being transported downstream. Transfer to the road and take out from the levitation stage. At that time, the substrate moves forward only by the thrust of the upstream upstream roller conveyance path while the front edge of the substrate is on the floating stage, and the upstream side and the downstream side after the front edge of the substrate rides on the downstream roller conveyance path. It moves forward by the thrust of both roller transport paths, and moves forward by the thrust of only the downstream roller transport path while the rear end of the substrate is on the floating stage.
JP2007-158088 JP-A-2005-244155

たとえばベーキングユニットのように基板を加熱処理する基板処理装置において、上記のような平流し方式の浮上ステージを採用し、かつ浮上ステージを加熱処理のための加熱板に用いる場合、伝熱または熱交換の効率を高めるために、基板浮上高(ステージ浮上面から基板の裏面までの距離)は50μm程度の微小なギャップに設定される。   For example, in a substrate processing apparatus that heats a substrate such as a baking unit, when the above-described flat-flow type levitation stage is employed and the levitation stage is used as a heating plate for heat treatment, heat transfer or heat exchange is performed. In order to increase the efficiency, the substrate flying height (distance from the stage flying surface to the back surface of the substrate) is set to a small gap of about 50 μm.

このような加熱板を兼ねる浮上ステージを一台で済まし、浮上ステージの上面をステージ始端から終端まで一様な温度(たとえば120℃)にヒータで熱するステージ構造を採る場合は、基板が浮上ステージ上に搬入された時に基板に反りが発生し、これによって基板浮上高が一定にならずに、浮上ステージ上を平流しで移動する基板の温度の履歴特性や熱処理の面内均一性が想定通りにならないという問題がある。   When a floating stage that also serves as a heating plate is used as a single unit, and the stage structure is used in which the upper surface of the floating stage is heated with a heater at a uniform temperature (for example, 120 ° C.) from the beginning to the end of the stage, the substrate is As the substrate is warped, the substrate is warped, and the flying height of the substrate does not become constant. As expected, the hysteresis characteristics of the temperature of the substrate moving on the floating stage and the in-plane uniformity of heat treatment are as expected. There is a problem of not becoming.

上記のように基板に反りが発生するのは、高温に熱せられている浮上ステージの上に基板が平流しで搬入されると、浮上ステージ上で急速加熱される基板前部と、まだ浮上ステージ上に搬入されていない常温下の基板後部との間で大きな温度差が生じて、基板各部の熱膨張(伸び量)が搬送方向で急勾配を持つためである。   As described above, the warpage of the substrate occurs when the substrate is carried in a flat flow onto the levitation stage heated to a high temperature, and the front portion of the substrate that is rapidly heated on the levitation stage, and the levitation stage This is because a large temperature difference occurs between the rear portion of the substrate at room temperature that is not carried in, and the thermal expansion (elongation amount) of each portion of the substrate has a steep slope in the transport direction.

そこで、基板搬送ラインに沿って浮上ステージを複数段に分割し、下流側にいくほどステージ温度を段階的に高くする分割式の浮上ステージ構造が好適に採用される傾向にある。たとえば、浮上ステージを2段に分割し、加熱処理の最終到達温度を120℃とする場合は、前段の浮上ステージの温度を中間のたとえば70℃に設定し、後段の浮上ステージの温度を最終到達温度の120℃に設定すればよい。そうすると、浮上ステージ上に基板が平流しで搬入される際に、基板の前部と後部との間に生じる温度差ないし熱膨張差が緩和されるので、基板の反りを抑制することができる。   Therefore, there is a tendency that a split type floating stage structure in which the floating stage is divided into a plurality of stages along the substrate transfer line and the stage temperature is increased stepwise toward the downstream side is preferably employed. For example, if the levitation stage is divided into two stages and the final temperature of the heat treatment is 120 ° C, the temperature of the previous levitation stage is set at an intermediate level, for example, 70 ° C, and the temperature of the subsequent levitation stage is finally reached. What is necessary is just to set to 120 degreeC of temperature. As a result, the temperature difference or thermal expansion difference generated between the front portion and the rear portion of the substrate when the substrate is carried in a flat flow onto the levitation stage is alleviated, so that the warpage of the substrate can be suppressed.

しかしながら、分割式浮上ステージにおいては、浮上ステージ自体の熱膨張によるステージ浮上面の高さ変動(上昇)が前段のステージ(70℃)よりも後段のステージ(120℃)の方で大きくなり、前段のステージ浮上面よりも後段のステージ浮上面の方が高くなる形態で両ステージの間に望ましくない段差、つまり基板浮上高を超えるような段差が生じる。ステージ浮上面にこのような段差が生じると、浮上搬送で基板が前段のステージから後段のステージに移る際に基板の前端が後段ステージの始端に干渉(衝突)して、基板の浮上搬送が途切れたり、基板が破損するなどの支障が出る。   However, in the split levitation stage, the height fluctuation (rise) of the stage air bearing surface due to the thermal expansion of the levitation stage itself is greater in the rear stage (120 ° C.) than in the previous stage (70 ° C.). An undesired step between the two stages, that is, a step exceeding the substrate flying height, occurs in the form in which the stage floating surface in the subsequent stage is higher than the stage floating surface. When such a level difference occurs on the stage floating surface, the front edge of the substrate interferes (collises) with the start edge of the subsequent stage when the substrate moves from the previous stage to the subsequent stage in the floating conveyance, and the floating transportation of the substrate is interrupted. Or the board may be damaged.

この問題に対して、作動時のステージ温度(たとえば前段70℃/後段120℃)の下で前段および後段のステージ浮上面が面一(同一の高さ)に揃うように、非作動時の常温下で前段のステージ浮上面よりも後段のステージ浮上面の方を十分低くしておく対処法も考えられる。   In response to this problem, the normal temperature during non-operation so that the front and rear stage air bearing surfaces are flush with each other under the stage temperature during operation (for example, front stage 70 ° C./back stage 120 ° C.). A possible countermeasure is to keep the rear stage air bearing surface sufficiently lower than the front stage air bearing surface below.

しかし、この方法は、非作動時の常温下で行われる高さ調整が非常に厳しく、マージンがとれない。作動時の設定温度下で前段のステージ浮上面よりも後段のステージ浮上面が高い場合は、上記のように基板と後段ステージとの干渉(衝突)が発生するが、その逆の場合でも支障が出る。つまり、作動時の設定温度下で前段のステージ浮上面よりも後段のステージ浮上面が低い場合は、浮上搬送で基板が前段のステージから後段のステージに移る際に基板の裏面が前段ステージ浮上面の後端(角)を擦ってしまい、基板の損傷や浮上搬送の乱調ないし加熱処理の品質低下を来たす。   However, in this method, the height adjustment performed at room temperature during non-operation is very strict and a margin cannot be taken. If the air bearing surface of the rear stage is higher than the air bearing surface of the previous stage under the set temperature at the time of operation, interference (collision) between the substrate and the rear stage occurs as described above. Get out. In other words, if the rear stage air bearing surface is lower than the previous stage air bearing surface at the set temperature during operation, the back surface of the substrate will be the front stage air bearing surface when the substrate moves from the previous stage to the rear stage during the flotation transfer. Rubbing the rear edge (corner) of the substrate, causing damage to the substrate, turbulence of levitation conveyance, and deterioration of the quality of the heat treatment.

本発明は、上記のような従来技術の問題点を解決するものであり、搬送方向の下流側にいくほどステージ温度が段階的に高くなる分割式浮上ステージの上で被処理基板を浮上搬送する際に基板と浮上ステージとの干渉(衝突・摺接等)を確実に防止して浮上搬送式の加熱処理の安全性および品質安定性をはかる基板処理装置を提供することを目的とする。   The present invention solves the problems of the prior art as described above, and floats and conveys a substrate to be processed on a split levitation stage in which the stage temperature gradually increases toward the downstream side in the transport direction. It is an object of the present invention to provide a substrate processing apparatus that reliably prevents interference (collision, sliding contact, etc.) between the substrate and the floating stage, thereby improving the safety and quality stability of the floating conveyance type heat treatment.

上記の目的を達成するために、本発明の基板処理装置は、作動中に、第1の温度に熱せられ、被処理基板を気体の圧力により浮かせる第1の浮上ステージと、基板搬送ラインにおいて前記第1の浮上ステージの下流側隣に配置され、前記第1の浮上ステージに向かって次第に低くなる傾斜面をステージ上面の始端部に有し、作動中に、前記第1の温度よりも高い第2の温度に熱せられ、前記基板を気体の圧力により浮かせる第2の浮上ステージと、基板搬送ラインにおいて前記基板が前記第1および第2の浮上ステージの上を浮上しながら通過するように、前記基板を平流しで搬送する平流し搬送部とを有し、前記基板が前記第1および第2の浮上ステージ上を浮上搬送で移動する間に、前記第1および第2の浮上ステージと前記基板との間の伝熱により前記基板に所定の加熱処理を施す。   In order to achieve the above object, a substrate processing apparatus of the present invention is heated to a first temperature during operation, and a first levitation stage that floats a substrate to be processed by gas pressure; An inclined surface, which is disposed adjacent to the downstream side of the first levitation stage and gradually decreases toward the first levitation stage, is provided at the start end of the upper surface of the stage and is higher than the first temperature during operation. A second levitation stage that is heated to a temperature of 2 and floats the substrate by a gas pressure, and the substrate passes through the first and second levitation stages in a substrate transport line while floating above the first and second levitation stages. A flat flow transport unit that transports the substrate in a flat flow, and the first and second levitation stages and the substrate while the substrate moves by levitation transport on the first and second levitation stages. Between Performing predetermined heat treatment on the substrate by heat transfer.

上記の装置構成において、基板は、平流しで最初に第1の浮上ステージの上に搬入され、この浮上ステージ上で浮上圧力を受けると同時に第1の温度の放射熱を受け、浮上搬送で前進しながら加熱処理を受ける。そして、基板は、第1の浮上ステージを抜けると、第2の浮上ステージの始端部傾斜面に差し掛かり、ここで浮上圧力を受けて姿勢を変えながらその上を通過し、その先も浮上圧力を受けると同時に第2の温度の放射熱を受け、浮上搬送で前進しながら加熱処理を受ける。そして、基板が第2の浮上ステージを抜け出た時点で加熱処理が終了する。   In the above apparatus configuration, the substrate is first carried on the first levitation stage in a flat flow, receives the levitation pressure on the levitation stage, and simultaneously receives the radiant heat of the first temperature, and advances by levitation conveyance. While undergoing heat treatment. Then, when the substrate passes through the first levitation stage, it approaches the inclined surface of the starting end of the second levitation stage, passes through it while changing the posture in response to the levitation pressure, and further increases the levitation pressure. At the same time, it receives radiant heat of the second temperature and undergoes heat treatment while moving forward by levitation conveyance. Then, the heat treatment ends when the substrate exits the second levitation stage.

本発明においては、第1の浮上ステージと第2の浮上ステージとの間に温度差または熱膨張差等に起因して高低差が生じても、基板は第2の浮上ステージの始端部傾斜面に沿ってその上を通過するので、衝突や擦れ等の干渉を起こさずに浮上搬送を安定に行うことができる。   In the present invention, even if a height difference occurs due to a temperature difference or a thermal expansion difference between the first levitation stage and the second levitation stage, the substrate is inclined at the starting end portion of the second levitation stage. Therefore, the levitation conveyance can be stably performed without causing interference such as collision or rubbing.

本発明の好適な一態様においては、作動中に、第2の浮上ステージの始端部傾斜面の下端が第1の浮上ステージの終端部上面よりも高くはならないような構成が採られる。かかる構成により、急峻な段差の発生を防止し、両ステージ間の乗り継ぎをより安定にすることができる。   In a preferred aspect of the present invention, a configuration is adopted in which the lower end of the inclined surface of the start end portion of the second levitation stage does not become higher than the upper surface of the end portion of the first levitation stage during operation. With this configuration, it is possible to prevent the occurrence of a steep step and to make the connection between both stages more stable.

また、好適な一態様においては、非作動時の常温状態で、第1の浮上ステージの終端部上面と第2の浮上ステージの始端部傾斜面の上端とが略同じ高さになるような構成が採られる。また、第1および第2の浮上ステージが熱伝導率の高い同種の金属からなる構成が採られる。かかる構成により、両浮上ステージの製作を容易にすることができる。   In a preferred embodiment, the upper surface of the terminal end portion of the first levitation stage and the upper end of the inclined surface of the start end portion of the second levitation stage are substantially at the same height in the normal temperature state when not operating. Is taken. Moreover, the structure which the 1st and 2nd floating stage consists of the same kind of metal with high heat conductivity is taken. With this configuration, it is possible to easily manufacture both floating stages.

また、好適な一態様においては、第2の浮上ステージの始端部傾斜面の傾斜角が0.5°〜1.0°に選定される。   Moreover, in a suitable one aspect | mode, the inclination | tilt angle of the start-end part inclined surface of a 2nd levitation | floating stage is selected as 0.5 degree-1.0 degree.

また、好適な一態様においては、第1の浮上ステージにおいて、そのステージ浮上の少なくとも始端部を除く部分の略全域に、気体を噴出する第1の噴射孔と気体を吸引する第1の吸引孔とが混在して多数設けられる。かかる構成によれば、第1の噴射孔からの垂直上向きの力と第1の吸引孔からの垂直下向きの力との相対抗する双方向の力のバランスによって、第1の浮上ステージ上の基板浮上高を安定かつ高精度に保つことができる。   In a preferred embodiment, in the first levitation stage, a first injection hole for ejecting gas and a first suction hole for sucking gas are provided over substantially the entire area excluding at least the starting end on the stage levitation. Are provided in a mixture. According to such a configuration, the substrate on the first levitation stage is obtained by the balance between the two forces that oppose the vertical upward force from the first injection hole and the vertical downward force from the first suction hole. The flying height can be kept stable and highly accurate.

また、好適な一態様においては、第2の浮上ステージにおいて、ステージ浮上面の始端部傾斜面を除く部分の略全域に、気体を噴出する第2の噴射孔と気体を吸引する第2の吸引孔とが混在して多数設けられる。かかる構成によれば、第1の噴射孔からの垂直上向きの力と第2の吸引孔からの垂直下向きの力との相対抗する双方向の力のバランスによって、第2の浮上ステージ上の基板浮上高を安定かつ高精度に保つことができる。   In a preferred embodiment, in the second levitation stage, the second suction hole for ejecting the gas and the second suction for sucking the gas over substantially the entire area of the stage floating surface excluding the inclined surface at the start end. A large number of holes are mixed and provided. According to such a configuration, the substrate on the second levitation stage is obtained by the balance between the two forces that oppose the vertical upward force from the first injection hole and the vertical downward force from the second suction hole. The flying height can be kept stable and highly accurate.

また、好適な一観点によれば、第2の浮上ステージにおいて、始端部傾斜面に気体を噴出する第3の噴射孔が複数設けられる。これら第3の噴射孔に他の噴射孔から独立して正圧の気体を供給する正圧気体供給部を備えるのが好ましい。かかる構成によれば、基板が第2の浮上ステージに搬入されると第3の噴射孔から垂直上向きの力を受けることで安全確実に始端部傾斜面の上をスムースに通過することができる。   According to a preferred aspect, the second levitation stage is provided with a plurality of third injection holes for injecting gas to the inclined surface of the start end. It is preferable to provide a positive pressure gas supply unit that supplies a positive pressure gas to these third injection holes independently from the other injection holes. According to such a configuration, when the substrate is carried into the second levitation stage, the substrate can pass smoothly over the inclined surface of the start end by receiving a vertical upward force from the third injection hole.

また、好適な一態様においては、平流し搬送部が、基板に平流し搬送の推力を与えるために基板搬送ライン上に所定の間隔を置いて配置される複数の駆動コロからなる第1のコロ搬送路を有する。あるいは、平流し搬送部は、浮上ステージの上から基板を平流しで搬出するために基板搬送ラインにおいて浮上ステージの下流側に所定の間隔を置いて配置される複数の駆動コロからなる第2のコロ搬送路を有する。   In a preferred aspect, the flat flow transport unit includes a first roller composed of a plurality of drive rollers arranged at predetermined intervals on the substrate transport line in order to provide a flat flow transport thrust to the substrate. It has a conveyance path. Alternatively, the flat flow transport unit includes a second driving roller including a plurality of driving rollers arranged at a predetermined interval on the downstream side of the levitation stage in the substrate transport line in order to carry the substrate out of the levitation stage in a flat flow. It has a roller transport path.

また、好適な一態様として、第1および第2の浮上ステージをそれぞれ加熱するための発熱体が第1および第2の浮上ステージの中または裏面に設けられる。   As a preferred embodiment, heating elements for heating the first and second levitation stages, respectively, are provided in or on the back surface of the first and second levitation stages.

本発明の基板処理装置によれば、上記のような構成および作用により、分割式浮上ステージの上で被処理基板を浮上搬送する際に基板と浮上ステージとの干渉(衝突・摺接等)を確実に防止することができる。   According to the substrate processing apparatus of the present invention, when the substrate to be processed is levitated and conveyed on the split type levitation stage, interference (collision, sliding contact, etc.) between the substrate and the levitation stage is achieved. It can be surely prevented.

以下、添付図を参照して本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の基板処理装置を適用できる一構成例としての塗布現像処理システムを示す。この塗布現像処理システム10は、クリーンルーム内に設置され、たとえばガラス基板を被処理基板とし、LCD製造プロセスにおいてフォトリソグラフィー工程の中の洗浄、レジスト塗布、プリベーク、現像およびポストベーク等の一連の処理を行うものである。露光処理は、このシステムに隣接して設置される外部の露光装置12で行われる。   FIG. 1 shows a coating and developing treatment system as one configuration example to which the substrate processing apparatus of the present invention can be applied. This coating and developing processing system 10 is installed in a clean room, for example, using a glass substrate as a substrate to be processed, and performing a series of processing such as cleaning, resist coating, pre-baking, developing and post-baking in the photolithography process in the LCD manufacturing process. Is what you do. The exposure process is performed by an external exposure apparatus 12 installed adjacent to this system.

この塗布現像処理システム10は、中心部に横長のプロセスステーション(P/S)16を配置し、その長手方向(X方向)両端部にカセットステーション(C/S)14とインタフェースステーション(I/F)18とを配置している。   In the coating and developing system 10, a horizontally long process station (P / S) 16 is disposed at the center, and a cassette station (C / S) 14 and an interface station (I / F) are disposed at both ends in the longitudinal direction (X direction). ) 18.

カセットステーション(C/S)14は、システム10のカセット搬入出ポートであり、基板Gを多段に積み重ねるようにして複数枚収容可能なカセットCを水平な一方向(Y方向)に4個まで並べて載置できるカセットステージ20と、このステージ20上のカセットCに対して基板Gの出し入れを行う搬送機構22とを備えている。搬送機構22は、基板Gを1枚単位で保持できる搬送アーム22aを有し、X,Y,Z,θの4軸で動作可能であり、隣接するプロセスステーション(P/S)16側と基板Gの受け渡しを行えるようになっている。   The cassette station (C / S) 14 is a cassette loading / unloading port of the system 10, and arranges up to four cassettes C that can accommodate a plurality of substrates C in a horizontal direction (Y direction) by stacking substrates G in multiple stages. A cassette stage 20 that can be placed, and a transport mechanism 22 that takes in and out the substrate G to and from the cassette C on the stage 20 are provided. The transport mechanism 22 has a transport arm 22a that can hold the substrate G in units of one sheet, can be operated with four axes of X, Y, Z, and θ, and is adjacent to the adjacent process station (P / S) 16 side and the substrate. G can be delivered.

プロセスステーション(P/S)16は、水平なシステム長手方向(X方向)に延在する平行かつ逆向きの一対のラインA,Bに各処理部をプロセスフローまたは工程の順に配置している。   In the process station (P / S) 16, the processing units are arranged in the order of the process flow or the process on a pair of parallel and opposite lines A and B extending in the horizontal system longitudinal direction (X direction).

より詳細には、カセットステーション(C/S)14側からインタフェースステーション(I/F)18側へ向う上流部のプロセスラインAには、搬入ユニット(IN−PASS)24、洗浄プロセス部26、第1の熱的処理部28、塗布プロセス部30および第2の熱的処理部32が第1の基板搬送ライン34に沿って上流側からこの順序で一列に配置されている。   More specifically, the upstream process line A from the cassette station (C / S) 14 side to the interface station (I / F) 18 side includes a carry-in unit (IN-PASS) 24, a cleaning process unit 26, The first thermal processing unit 28, the coating process unit 30, and the second thermal processing unit 32 are arranged in a line in this order from the upstream side along the first substrate transfer line 34.

より詳細には、搬入ユニット(IN−PASS)24はカセットステーション(C/S)14の搬送機構22から未処理の基板Gを受け取り、所定のタクトで第1の基板搬送ライン34に投入するように構成されている。洗浄プロセス部26は、第1の平流し搬送路34に沿って上流側から順にエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38を設けている。第1の熱的処理部28は、上流側から順にアドヒージョンユニット(AD)40および冷却ユニット(COL)42を設けている。塗布プロセス部30は、上流側から順にレジスト塗布ユニット(COT)44および減圧乾燥ユニット(VD)46を設けている。第2の熱的処理部32は、上流側から順にプリベークユニット(PRE−BAKE)48および冷却ユニット(COL)50を設けている。第2の熱的処理部32の下流側隣に位置する第1の基板搬送ライン34の終点には搬出ユニット(OUT−PASS)52が設けられている。第1の基板搬送ライン34上を平流しで搬送されてきた基板Gは、この終点の搬出ユニット(OUT−PASS)52からインタフェースステーション(I/F)18へ渡されるようになっている。   More specifically, the carry-in unit (IN-PASS) 24 receives an unprocessed substrate G from the transport mechanism 22 of the cassette station (C / S) 14 and inputs it to the first substrate transport line 34 at a predetermined tact. It is configured. The cleaning process section 26 is provided with an excimer UV irradiation unit (E-UV) 36 and a scrubber cleaning unit (SCR) 38 in order from the upstream side along the first flat flow path 34. The first thermal processing unit 28 includes an adhesion unit (AD) 40 and a cooling unit (COL) 42 in order from the upstream side. The coating process unit 30 is provided with a resist coating unit (COT) 44 and a vacuum drying unit (VD) 46 in order from the upstream side. The second thermal processing unit 32 includes a pre-bake unit (PRE-BAKE) 48 and a cooling unit (COL) 50 in order from the upstream side. A carry-out unit (OUT-PASS) 52 is provided at the end point of the first substrate transfer line 34 located on the downstream side of the second thermal processing unit 32. The substrate G that has been transported in a flat flow on the first substrate transport line 34 is transferred from the unloading unit (OUT-PASS) 52 at the end point to the interface station (I / F) 18.

一方、インタフェースステーション(I/F)18側からカセットステーション(C/S)14側へ向う下流部のプロセスラインBには、搬入ユニット(図示せず)、現像ユニット(DEV)54、ポストベークユニット(POST−BAKE)56、冷却ユニット(COL)58、検査ユニット(AP)60および搬出ユニット(OUT−PASS)62が第2の基板搬送ライン64に沿って上流側からこの順序で一列に配置されている。ここで、上記搬入ユニット(図示せず)は、周辺装置(TITLER/EE)76の階下に、つまり現像ユニット(DEV)54と同じ階に設けられている。   On the other hand, in the downstream process line B from the interface station (I / F) 18 side to the cassette station (C / S) 14 side, a carry-in unit (not shown), a developing unit (DEV) 54, a post-bake unit. (POST-BAKE) 56, cooling unit (COL) 58, inspection unit (AP) 60, and carry-out unit (OUT-PASS) 62 are arranged in a line in this order from the upstream side along the second substrate transfer line 64. ing. The carry-in unit (not shown) is provided below the peripheral device (TITLER / EE) 76, that is, on the same floor as the developing unit (DEV) 54.

なお、ポストベークユニット(POST−BAKE)56および冷却ユニット(COL)58は第3の熱的処理部66を構成する。搬出ユニット(OUT−PASS)62は、第2の平流し搬送路64から処理済の基板Gを1枚ずつ受け取って、カセットステーション(C/S)14の搬送機構22に渡すように構成されている。   The post bake unit (POST-BAKE) 56 and the cooling unit (COL) 58 constitute a third thermal processing unit 66. The carry-out unit (OUT-PASS) 62 is configured to receive the processed substrates G one by one from the second flat flow transfer path 64 and pass them to the transfer mechanism 22 of the cassette station (C / S) 14. Yes.

両プロセスラインA,Bの間には補助搬送空間68が設けられており、基板Gを1枚単位で水平に載置可能なシャトル70が図示しない駆動機構によってプロセスライン方向(X方向)で双方向に移動できるようになっている。   An auxiliary transfer space 68 is provided between the process lines A and B, and a shuttle 70 capable of placing the substrate G horizontally in units of one sheet is both in the process line direction (X direction) by a drive mechanism (not shown). You can move in the direction.

インタフェースステーション(I/F)18は、上記第1および第2の基板搬送ライン34,64や隣接する露光装置12と基板Gのやりとりを行うための搬送装置72を有し、この搬送装置72の周囲にロータリステージ(R/S)74および周辺装置76を配置している。ロータリステージ(R/S)74は、基板Gを水平面内で回転させるステージであり、露光装置12との受け渡しに際して長方形の基板Gの向きを変換するために用いられる。周辺装置76は、たとえばタイトラー(TITLER)や周辺露光装置(EE)等を第2の平流し搬送路64に接続している。   The interface station (I / F) 18 includes a transfer device 72 for exchanging the substrate G with the first and second substrate transfer lines 34 and 64 and the adjacent exposure device 12. A rotary stage (R / S) 74 and a peripheral device 76 are arranged around the periphery. The rotary stage (R / S) 74 is a stage that rotates the substrate G in a horizontal plane, and is used to change the orientation of the rectangular substrate G when it is transferred to the exposure apparatus 12. The peripheral device 76 connects, for example, a titler (TITLER), a peripheral exposure device (EE), and the like to the second flat flow path 64.

ここで、この塗布現像処理システムにおける1枚の基板Gに対する全工程の処理手順を説明する。先ず、カセットステーション(C/S)14において、搬送機構22が、ステージ20上のいずれか1つのカセットCから基板Gを1枚取り出し、その取り出した基板Gをプロセスステーション(P/S)16のプロセスラインA側の搬入ユニット(IN−PASS)24に搬入する。搬入ユニット(IN−PASS)24から基板Gは第1の基板搬送ライン34上に移載または投入される。   Here, the processing procedure of all the steps for one substrate G in the coating and developing processing system will be described. First, in the cassette station (C / S) 14, the transport mechanism 22 takes out one substrate G from any one of the cassettes C on the stage 20, and removes the taken substrate G in the process station (P / S) 16. Carry in to the carry-in unit (IN-PASS) 24 on the process line A side. The substrate G is transferred or loaded onto the first substrate transport line 34 from the carry-in unit (IN-PASS) 24.

第1の基板搬送ライン34に投入された基板Gは、最初に洗浄プロセス部26においてエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38により紫外線洗浄処理およびスクラビング洗浄処理を順次施される。スクラバ洗浄ユニット(SCR)38は、平流し搬送路34上を水平に移動する基板Gに対して、ブラッシング洗浄やブロー洗浄を施すことにより基板表面から粒子状の汚れを除去し、その後にリンス処理を施し、最後にエアーナイフ等を用いて基板Gを乾燥させる。スクラバ洗浄ユニット(SCR)38における一連の洗浄処理を終えると、基板Gはそのまま第1の平流し搬送路34を下って第1の熱的処理部28を通過する。   The substrate G put into the first substrate transfer line 34 is first subjected to an ultraviolet cleaning process and a scrubbing cleaning process by the excimer UV irradiation unit (E-UV) 36 and the scrubber cleaning unit (SCR) 38 in the cleaning process section 26 first. Applied. The scrubber cleaning unit (SCR) 38 removes particulate dirt from the substrate surface by performing brushing cleaning and blow cleaning on the substrate G that moves horizontally on the flat flow path 34, and then rinses. Finally, the substrate G is dried using an air knife or the like. When a series of cleaning processes in the scrubber cleaning unit (SCR) 38 is completed, the substrate G passes through the first thermal processing section 28 as it is down the first flat flow path 34.

第1の熱的処理部28において、基板Gは、最初にアドヒージョンユニット(AD)40で蒸気状のHMDSを用いるアドヒージョン処理を施され、被処理面を疎水化される。このアドヒージョン処理の終了後に、基板Gは冷却ユニット(COL)42で所定の基板温度まで冷却される。この後も、基板Gは第1の平流し搬送路34を下って塗布プロセス部30へ搬入される。   In the first thermal processing unit 28, the substrate G is first subjected to an adhesion process using vapor HMDS in the adhesion unit (AD) 40, and the surface to be processed is hydrophobized. After the completion of the adhesion process, the substrate G is cooled to a predetermined substrate temperature by a cooling unit (COL) 42. Thereafter, the substrate G is carried into the coating process unit 30 along the first flat flow path 34.

塗布プロセス部30において、基板Gは最初にレジスト塗布ユニット(COT)44で平流しのままスリットノズルを用いるスピンレス法により基板上面(被処理面)にレジスト液を塗布され、直後に下流側隣の減圧乾燥ユニット(VD)46で減圧乾燥処理を受ける。   In the coating process section 30, the substrate G is first coated with a resist solution on the upper surface (surface to be processed) by a spinless method using a slit nozzle while being flown flat in a resist coating unit (COT) 44, and immediately after that, adjacent to the downstream side. A vacuum drying unit (VD) 46 receives a vacuum drying process.

塗布プロセス部30を出た基板Gは、第1の基板搬送ライン34を下って第2の熱的処理部32を通過する。第2の熱的処理部32において、基板Gは、最初にプリベークユニット(PRE−BAKE)48でレジスト塗布後の熱処理または露光前の熱処理としてプリベーキングを受ける。このプリベーキングによって、基板G上のレジスト膜中に残留していた溶剤が蒸発して除去され、基板に対するレジスト膜の密着性が強化される。次に、基板Gは、冷却ユニット(COL)50で所定の基板温度まで冷却される。しかる後、基板Gは、第1の平流し搬送路34の終点の搬出ユニット(OUT−PASS)52からインタフェースステーション(I/F)18の搬送装置72に引き取られる。   The substrate G exiting the coating process unit 30 passes through the second thermal processing unit 32 along the first substrate transfer line 34. In the second thermal processing unit 32, the substrate G is first subjected to pre-baking by a pre-bake unit (PRE-BAKE) 48 as a heat treatment after resist coating or a heat treatment before exposure. By this pre-baking, the solvent remaining in the resist film on the substrate G is evaporated and removed, and the adhesion of the resist film to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by a cooling unit (COL) 50. Thereafter, the substrate G is picked up by the transfer device 72 of the interface station (I / F) 18 from the unloading unit (OUT-PASS) 52 at the end point of the first flat flow transfer path 34.

インタフェースステーション(I/F)18において、基板Gは、ロータリステージ74でたとえば90度の方向変換を受けてから周辺装置76の周辺露光装置(EE)に搬入され、そこで基板Gの周辺部に付着するレジストを現像時に除去するための露光を受けた後に、隣の露光装置12へ送られる。   In the interface station (I / F) 18, the substrate G is subjected to, for example, a 90-degree direction change by the rotary stage 74 and then carried into the peripheral exposure device (EE) of the peripheral device 76, where it adheres to the peripheral portion of the substrate G. After receiving the exposure for removing the resist to be developed, the resist is sent to the adjacent exposure apparatus 12.

露光装置12では基板G上のレジストに所定の回路パターンが露光される。パターン露光を終えた基板Gは、露光装置12からインタフェースステーション(I/F)18に戻されると、先ず周辺装置76のタイトラー(TITLER)に搬入され、そこで基板上の所定の部位に所定の情報が記される。しかる後、基板Gは、搬送装置72より周辺装置72の階下の搬入ユニット(図示せず)に搬入される。   In the exposure device 12, a predetermined circuit pattern is exposed to the resist on the substrate G. When the substrate G that has undergone pattern exposure is returned from the exposure apparatus 12 to the interface station (I / F) 18, it is first carried into a titler (TITLER) of the peripheral device 76, where predetermined information is transferred to a predetermined portion on the substrate. Is marked. Thereafter, the substrate G is carried into the carry-in unit (not shown) below the peripheral device 72 from the transfer device 72.

こうして、基板Gは、今度は第2の基板搬送ライン64上をプロセスラインBの下流側に向けて搬送される。最初の現像ユニット(DEV)54において、基板Gは平流しで搬送される間に現像、リンス、乾燥の一連の現像処理を施される。   In this way, the substrate G is now transported on the second substrate transport line 64 toward the downstream side of the process line B. In the first development unit (DEV) 54, the substrate G is subjected to a series of development processes of development, rinsing and drying while being transported in a flat flow.

現像ユニット(DEV)54で一連の現像処理を終えた基板Gは、そのまま第2の基板搬送ラインに乗せられたまま第3の熱的処理部66および検査ユニット(AP)60を順次通過する。第3の熱的処理部66において、基板Gは、最初にポストベークユニット(POST−BAKE)56で現像処理後の熱処理としてポストベーキングを受ける。このポストベーキングによって、基板G上のレジスト膜に残留していた現像液や洗浄液が蒸発して除去され、基板に対するレジストパターンの密着性が強化される。次に、基板Gは、冷却ユニット(COL)58で所定の基板温度に冷却される。検査ユニット(AP)60では、基板G上のレジストパターンについて非接触の線幅検査や膜質・膜厚検査等が行われる。   The substrate G that has undergone a series of development processing in the development unit (DEV) 54 sequentially passes through the third thermal processing unit 66 and the inspection unit (AP) 60 while being placed on the second substrate transport line. In the third thermal processing section 66, the substrate G is first subjected to post-baking as a heat treatment after development processing by a post-bake unit (POST-BAKE) 56. By this post-baking, the developing solution and the cleaning solution remaining in the resist film on the substrate G are removed by evaporation, and the adhesion of the resist pattern to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by a cooling unit (COL) 58. In the inspection unit (AP) 60, the resist pattern on the substrate G is subjected to non-contact line width inspection, film quality / film thickness inspection, and the like.

搬出ユニット(OUT−PASS)62は、第2の基板搬送ライン64から全工程の処理を終えてきた基板Gを受け取って、カセットステーション(C/S)14の搬送機構22へ渡す。カセットステーション(C/S)14側では、搬送機構22が、搬出ユニット(OUT−PASS)62から受け取った処理済の基板Gをいずれか1つ(通常は元)のカセットCに収容する。   The carry-out unit (OUT-PASS) 62 receives the substrate G that has been processed in all steps from the second substrate transfer line 64 and transfers it to the transfer mechanism 22 of the cassette station (C / S) 14. On the cassette station (C / S) 14 side, the transport mechanism 22 stores the processed substrate G received from the carry-out unit (OUT-PASS) 62 in any one (usually the original) cassette C.

この塗布現像処理システム10においては、平流し方式の加熱用浮上ステージを有する基板処理装置として、たとえば第2の熱的処理部32のプリベークユニット(PRE−BAKE)48に本発明を適用することができる。   In this coating and developing processing system 10, the present invention can be applied to, for example, a pre-bake unit (PRE-BAKE) 48 of the second thermal processing unit 32 as a substrate processing apparatus having a floating flow heating stage. it can.

以下、図2〜図8につき、本発明の一実施形態におけるプリベークユニット(PRE−BAKE)48の構成および作用を詳細に説明する。   Hereinafter, the configuration and operation of the pre-bake unit (PRE-BAKE) 48 according to an embodiment of the present invention will be described in detail with reference to FIGS.

図2〜図4に、この実施形態におけるプリベークユニット(PRE−BAKE)48およびその前後に設けられる駆動コロ搬送路の構成を示す。図2は略平面図、図3は非作動時の側面図、図4の作動時の側面図である。   2 to 4 show the configuration of a pre-bake unit (PRE-BAKE) 48 and driving roller conveyance paths provided before and after the pre-bake unit 48 in this embodiment. 2 is a schematic plan view, FIG. 3 is a side view when not in operation, and a side view when in operation in FIG.

図2〜図4に示すように、プリベークユニット(PRE−BAKE)48内には、X方向に、つまり第1の基板搬送ライン34(図1)に沿って、第1のコロ搬送路80、2段式の浮上ステージ82,84および第2のコロ搬送路86が設置されている。   As shown in FIGS. 2 to 4, in the pre-bake unit (PRE-BAKE) 48, the first roller transport path 80 in the X direction, that is, along the first substrate transport line 34 (FIG. 1), Two-stage levitation stages 82 and 84 and a second roller conveyance path 86 are provided.

第1および第2のコロ搬送路80、86は、X方向に所定の間隔を置いて敷設された複数本の長尺形駆動コロ88を有し、モータ等からなる専用のコロ駆動部90,92により駆動ベルトや歯車等からなる伝動機構94,96を介してそれぞれの駆動コロ88を回転駆動するように構成されている。   The first and second roller transport paths 80 and 86 have a plurality of long drive rollers 88 laid at predetermined intervals in the X direction, and dedicated roller drive units 90 and 90 made of a motor or the like. Each drive roller 88 is rotationally driven by a transmission mechanism 94, 96 composed of a drive belt, gears, and the like.

減圧乾燥ユニット(VD)46の上流側にも第3のコロ搬送路98が設置されている。この第3のコロ搬送路98も、X方向に所定の間隔を置いて敷設された複数本の長尺形駆動コロ88を有し、モータ等からなる専用のコロ駆動部100により駆動ベルトや歯車等からなる伝動機構102を介して駆動コロ88を回転駆動するように構成されている。   A third roller conveyance path 98 is also installed on the upstream side of the vacuum drying unit (VD) 46. The third roller conveyance path 98 also has a plurality of long drive rollers 88 laid at predetermined intervals in the X direction, and a drive belt and gears by a dedicated roller drive unit 100 made of a motor or the like. The drive roller 88 is rotationally driven through a transmission mechanism 102 composed of, for example.

図示省略するが、減圧乾燥ユニット(VD)46にも外部のコロ搬送路98,80と連続する内部コロ搬送路が設けられている。外部コロ搬送路98および内部駆動コロ搬送路上の平流し搬送で基板Gがチャンバ104の中に搬入され、密閉状態のチャンバ104内で減圧乾燥処理が行われた後に、内部コロ搬送路および外部コロ搬送路80上の平流し搬送で基板Gがチャンバ104の外(下流側)に搬出されるようになっている。   Although not shown, the reduced pressure drying unit (VD) 46 is also provided with an internal roller conveyance path continuous with the external roller conveyance paths 98 and 80. After the substrate G is carried into the chamber 104 by the flat flow conveyance on the outer roller conveyance path 98 and the internal driving roller conveyance path, and the reduced-pressure drying process is performed in the sealed chamber 104, the inner roller conveyance path and the outer roller conveyance path are transferred. The substrate G is carried out to the outside (downstream side) of the chamber 104 by the flat flow conveyance on the conveyance path 80.

なお、図示の長尺形駆動コロ88は、丸棒の回転軸88aにこま形のローラ88bを一定間隔で複数個取り付けている。   In the illustrated long drive roller 88, a plurality of top rollers 88b are attached to a rotary shaft 88a of a round bar at regular intervals.

図2〜図4に示すように、プリベークユニット(PRE−BAKE)48において、前段の浮上ステージ82の上面つまり浮上面82aは、隅から隅まで平坦になっている。このステージ浮上面82aには、その略全域に亘って、高圧または正圧の気体たとえば圧縮空気を噴き出す噴射孔106と、バキュームで空気を吸い込む吸引孔108とが適当な配列パターンで混在して多数設けられている。   As shown in FIGS. 2 to 4, in the pre-bake unit (PRE-BAKE) 48, the upper surface of the floating stage 82, that is, the floating surface 82 a is flat from corner to corner. The stage air bearing surface 82a has a large number of injection holes 106 for jetting high-pressure or positive-pressure gas, for example, compressed air, and suction holes 108 for sucking air by vacuum in an appropriate arrangement pattern over almost the entire area. Is provided.

浮上ステージ82の上で基板Gを搬送するときは、噴射孔106から圧縮空気による垂直上向きの力を加えると同時に、吸引孔108よりバキューム吸引力による垂直下向きの力を加えて、相対抗する双方の力のバランスを制御することで、基板浮上高Jを浮上搬送およびプリベーキング処理に適した設定値(50μm)付近に維持するようにしている。   When the substrate G is transported on the levitation stage 82, a vertical upward force due to compressed air is applied from the injection hole 106, and at the same time, a vertical downward force due to a vacuum suction force is applied from the suction hole 108 to oppose each other. By controlling the balance of the force, the substrate flying height J is maintained in the vicinity of a set value (50 μm) suitable for flying conveyance and pre-baking processing.

後段の浮上ステージ84は、前段の浮上ステージ82の下流側隣に配置されている。この後段浮上ステージ84の上面つまり浮上面84aは、その始端部が前段浮上ステージ82に向かって次第に低くなる傾斜面110になっており、この始端部傾斜面110を除く部分112は平坦な面になっている。   The rear stage levitation stage 84 is arranged adjacent to the downstream side of the front stage levitation stage 82. The upper surface of the subsequent levitation stage 84, that is, the levitation surface 84a, has an inclined surface 110 whose starting end portion gradually decreases toward the preceding levitation stage 82, and a portion 112 excluding the starting end inclined surface 110 is a flat surface. It has become.

ステージ浮上面84aの平坦部112には、その略全域に亘って、圧縮空気を噴き出す噴射孔114と、バキュームで空気を吸い込む吸引孔116とが適当な配列パターンで混在して多数設けられている。ステージ浮上面84aの始端部傾斜面110には、圧縮空気を噴き出す噴射孔118が吸引孔を伴わずに多数設けられている。   The flat portion 112 of the stage air bearing surface 84a is provided with a large number of injection holes 114 for jetting compressed air and suction holes 116 for sucking air by vacuum in an appropriate arrangement pattern over substantially the entire area. . A large number of injection holes 118 for discharging compressed air are provided on the inclined surface 110 of the start end of the stage air bearing surface 84a without any suction holes.

後段の浮上ステージ84の上で基板Gを搬送するときは、噴射孔114から圧縮空気による垂直上向きの力を加えると同時に、吸引孔116よりバキューム吸引力による垂直下向きの力を加えて、相対抗する双方向の力のバランスを制御することで、ステージ浮上面84aの平坦面領域112において基板浮上高Jを浮上搬送およびプリベーキング処理に適した設定値(50μm)付近に維持するようにしている。   When the substrate G is transported on the subsequent floating stage 84, a vertical upward force due to compressed air is applied from the injection hole 114, and simultaneously, a vertical downward force due to a vacuum suction force is applied from the suction hole 116, thereby increasing the relative resistance. By controlling the balance of the two-way forces, the substrate flying height J is maintained in the vicinity of a set value (50 μm) suitable for the floating transportation and pre-baking processing in the flat surface region 112 of the stage floating surface 84a. .

さらに、後段の浮上ステージ84において、ステージ浮上面84aの始端部傾斜面110の噴射孔118からその上を通過する基板Gに向けて圧縮空気による垂直上向きの力を加えることにより、基板Gが両浮上ステージ82,84のいずれとも干渉を起こさずに前段の浮上ステージ82から後段の浮上ステージ84へスムースに乗り移れるようになっている。   Further, in the subsequent levitation stage 84, a vertical upward force by compressed air is applied to the substrate G passing through the injection hole 118 of the starting end inclined surface 110 of the stage floating surface 84a toward the substrate G. It is possible to smoothly transfer from the preceding levitation stage 82 to the subsequent levitation stage 84 without causing any interference with the levitation stages 82 and 84.

後段浮上ステージ84において、始端部傾斜面110のプロファイル、特に区間長Lおよび傾斜角θ(図5)は、基板寸法、基板浮上高J、ステージ寸法、ステージ温度等に応じて任意に選定されてよいが、好適な一態様として区間長L=40〜60mm、傾斜角θ=0.5〜1.0°に選定される。   In the subsequent levitation stage 84, the profile of the inclined surface 110 of the starting end, in particular, the section length L and the inclination angle θ (FIG. 5) are arbitrarily selected according to the substrate dimensions, substrate levitation height J, stage dimensions, stage temperature, and the like. However, as a preferred embodiment, the section length L = 40 to 60 mm and the inclination angle θ = 0.5 to 1.0 ° are selected.

また、後段の浮上ステージ84においては、好適な一形態として、ステージ浮上面84aの平坦部112に設けられる噴射孔114と始端部傾斜面110に設けられる噴射孔118とが、それぞれ個別の圧縮空気供給部(図示せず)に接続され、それぞれの噴射圧力または浮上圧力が独立に調整されてよい。   In the subsequent levitation stage 84, as a preferred embodiment, the injection hole 114 provided in the flat portion 112 of the stage floating surface 84a and the injection hole 118 provided in the start end inclined surface 110 are individually compressed air. It is connected to a supply part (not shown), and each injection pressure or levitation pressure may be adjusted independently.

前段の浮上ステージ82の噴射孔106も、個別の圧縮空気供給部(図示せず)に接続され、その噴射圧力または浮上圧力が独立に調整されてよい。また、前段浮上ステージ82の吸引孔108と後段浮上ステージ84の吸引孔116も別々のバキューム源(図示せず)に接続され、それぞれの吸引力が独立に調整されてよい。   The injection hole 106 of the preceding levitation stage 82 is also connected to an individual compressed air supply unit (not shown), and the injection pressure or the levitation pressure may be adjusted independently. Further, the suction hole 108 of the upstream levitation stage 82 and the suction hole 116 of the rear levitation stage 84 may be connected to separate vacuum sources (not shown), and the respective suction forces may be adjusted independently.

両浮上ステージ82,84は、熱伝導率の高い金属たとえばアルミニウムからなる肉厚(たとえば板厚200mm)の板体として構成され、1個または複数個の発熱体たとえばシーズヒータ120,122をそれぞれ内蔵し、または裏面に貼り付けている。作動時には、たとえばSSR(ソリッド・ステート・リレー)を有する各専用の電源回路(図示せず)よりそれぞれ個別に供給される電力でシーズヒータ120,122が発熱し、浮上ステージ82,84のステージ浮上面をそれぞれ設定温度に熱くするようにしている。たとえば、プリベーク処理の最終到達温度を120℃とする場合は、前段の浮上ステージ82の温度を中間のたとえば70℃に設定し、後段の浮上ステージの温度を最終到達温度の120℃に設定してよい。   Both levitation stages 82 and 84 are configured as a plate having a thickness (for example, a plate thickness of 200 mm) made of a metal having high thermal conductivity, for example, aluminum, and one or a plurality of heating elements such as sheathed heaters 120 and 122 are incorporated therein. Or pasted on the back. In operation, for example, the sheathed heaters 120 and 122 generate heat with electric power individually supplied from dedicated power circuits (not shown) having SSRs (solid state relays), and the floating stages 82 and 84 are floated. Each surface is heated to a set temperature. For example, when the final reached temperature of the pre-baking process is set to 120 ° C., the temperature of the preceding levitation stage 82 is set to, for example, 70 ° C., and the temperature of the subsequent levitation stage is set to 120 ° C., the final reached temperature. Good.

基板Gは、浮上搬送で浮上ステージ82,84上を通過する際に、それらの浮上面82a,84aから浮上圧力を受けるだけでなく基板浮上高J(たとえば50μm)の至近距離で放射熱も受ける。この伝熱式または熱交換式の基板加熱により、浮上ステージ82,84上を浮上搬送で水平移動する間に基板Gの温度は所定の温度履歴で最大値(120℃)まで上昇し、基板上のレジスト塗布膜中の残留溶媒の大部分が蒸発して膜が一層薄く固くなり、基板Gとの密着性が高められる。なお、好ましくは、浮上ステージ82,84の上方に、基板G上のレジスト塗布膜から蒸発した溶剤を吸い込んで排気するための排気機構(図示せず)が設置されてよい。   When the substrate G passes over the levitation stages 82 and 84 by levitation conveyance, it receives not only the levitation pressure from the levitation surfaces 82a and 84a but also radiant heat at a close distance of the substrate levitation height J (for example, 50 μm). . By this heat transfer type or heat exchange type substrate heating, the temperature of the substrate G rises to the maximum value (120 ° C.) with a predetermined temperature history while horizontally moving on the floating stages 82 and 84 by the floating conveyance. Most of the residual solvent in the resist coating film evaporates to make the film thinner and harder, and the adhesion to the substrate G is improved. Preferably, an exhaust mechanism (not shown) for sucking and exhausting the solvent evaporated from the resist coating film on the substrate G may be installed above the floating stages 82 and 84.

図3および図4に示すように、浮上ステージ82,84は、床に固定された頑丈なフレーム124の上に高さ寸法一定の支持ブロック126を介して水平に設置されている。支持ブロック126は、両浮上ステージ82,84の基準面HS(図5〜図8)を規定するベース部材であり、熱膨張率の低い剛体で形成されてよい。 As shown in FIGS. 3 and 4, the levitation stages 82 and 84 are horizontally installed on a sturdy frame 124 fixed to the floor via a support block 126 having a constant height. The support block 126 is a base member that defines the reference plane H S (FIGS. 5 to 8) of both the floating stages 82 and 84, and may be formed of a rigid body having a low coefficient of thermal expansion.

第1および第2のコロ搬送路80,86も、個別のフレーム128,130の上にアジャスタ132,134付きの脚部136,138を介してそれぞれ設置されており、コロ搬送路80,86の高さ位置をそれぞれ独立に調整できるようになっている。   The first and second roller conveyance paths 80 and 86 are also installed on the individual frames 128 and 130 via legs 136 and 138 with adjusters 132 and 134, respectively. The height position can be adjusted independently.

次に、図2〜図8につき、この実施形態のプリベークユニット(PRE−BAKE)48における作用を説明する。   Next, the operation of the pre-bake unit (PRE-BAKE) 48 of this embodiment will be described with reference to FIGS.

まず、プリベークユニット(PRE−BAKE)48が作動していない時の常温(通常23℃)下で、第1および第2のコロ搬送路80,86の高さ位置調整が行われる。両浮上ステージ82,84は、製作上の容易性およびコストの面から、好ましくは、同じ材質(アルミニウム)で、常温下の厚みが同じ値(D)になるように構成される。この場合、図3および図5に示すように、前段浮上ステージ82のステージ浮上面82aと、後段浮上ステージ84の浮上面84a(正確には平坦領域112)とは、同じ高さ位置H0で揃って、面一になる。 First, the height positions of the first and second roller conveyance paths 80 and 86 are adjusted at room temperature (normally 23 ° C.) when the pre-bake unit (PRE-BAKE) 48 is not operating. Both levitation stages 82 and 84 are preferably made of the same material (aluminum) and have the same thickness (D) at room temperature from the standpoint of manufacturing ease and cost. In this case, as shown in FIGS. 3 and 5, the stage floating surface 82a of the former floating stage 82 and the floating surface 84a (precisely the flat region 112) of the latter floating stage 84 are at the same height position H 0 . All together, it will be the same.

ここで、後段浮上ステージ84の始端部傾斜面110は前段浮上ステージ82のステージ浮上面82aよりも低く、特に始端部傾斜面110の下端110aは相当の段差ができるほど低い位置にある。   Here, the starting end inclined surface 110 of the rear stage levitation stage 84 is lower than the stage floating surface 82a of the front stage levitation stage 82, and in particular, the lower end 110a of the starting end part inclined surface 110 is at a position that is low enough to produce a considerable step.

なお、非作動(休止)中は、両浮上ステージ82,84および周囲の関連装置は全てオフ状態になっている。したがって、シーズヒータ120,122に電力は供給されず、噴射孔106,114,118に圧縮空気は供給されず、吸引口108,116にバキューム力は供給されない。第1および第2のコロ搬送路80,86も動かない。   During non-operation (pause), both the floating stages 82 and 84 and the related devices in the surroundings are all off. Therefore, power is not supplied to the sheathed heaters 120 and 122, compressed air is not supplied to the injection holes 106, 114, and 118, and vacuum force is not supplied to the suction ports 108 and 116. The first and second roller conveyance paths 80 and 86 also do not move.

プリベークユニット(PRE−BAKE)48が作動する時または期間中は、両浮上ステージ82,84および周囲の関連装置が全てオン状態になる。すなわち、第1および第2のコロ搬送路80,86は、平流し駆動用のコロ88を回転させる。両浮上ステージ82,84の各噴射孔106,114,118には浮上圧力を与えるための圧縮空気が供給され、吸引口108,116には引き込み圧力を与えるためのバキュームが供給される。そして、各個別の電源回路より電力の供給を受けてシーズヒータ120,122がそれぞれ発熱し、前段の浮上ステージ82の浮上面82aはプリベーキングの中間温度である第1の温度(70℃)に熱せられ、後段の浮上ステージ84の浮上面84aはプリベーキングの最終到達温度である第2の温度(120℃)に熱せられる。   When the pre-bake unit (PRE-BAKE) 48 is operated or during the period, both the floating stages 82 and 84 and the related devices are all turned on. That is, the first and second roller conveyance paths 80 and 86 rotate the flat-flow driving roller 88. Compressed air for applying a floating pressure is supplied to the injection holes 106, 114, and 118 of both the floating stages 82 and 84, and a vacuum for applying a drawing pressure is supplied to the suction ports 108 and 116. Then, the sheathed heaters 120 and 122 generate heat by receiving power from each individual power supply circuit, and the floating surface 82a of the previous floating stage 82 has a first temperature (70 ° C.) that is an intermediate temperature of pre-baking. Heated and the air bearing surface 84a of the subsequent levitation stage 84 is heated to a second temperature (120 ° C.) that is the final temperature of pre-baking.

このように両浮上ステージ82,84がそれぞれ第1の温度(70℃)および第2の温度(120℃)に熱せられることで、両浮上ステージ82,84が熱膨張して非作動時(常温状態)とは違った寸法になる。たとえば、両浮上ステージ82,84の熱膨張の対象となる熱板部の厚みが200mmで、その熱板部の材質がアルミニウム(線膨張率0.237×10-4/K)の場合は、両浮上ステージ82,84の高さ位置の上昇量δh1,δh2はそれぞれ下記の式(1),(2)で求められる。
δh1=200(mm)×70(℃)×0.237×10-4/K ・・(1)
δh2=200(mm)×120(℃)×0.237×10-4/K ・・(2)
As described above, both the floating stages 82 and 84 are heated to the first temperature (70 ° C.) and the second temperature (120 ° C.), respectively. It becomes a dimension different from the state. For example, when the thickness of the hot plate part that is the target of thermal expansion of both the floating stages 82 and 84 is 200 mm and the material of the hot plate part is aluminum (linear expansion coefficient 0.237 × 10 −4 / K), The rising amounts δh 1 and δh 2 at the height positions of the levitation stages 82 and 84 are obtained by the following equations (1) and (2), respectively.
δh 1 = 200 (mm) × 70 (° C.) × 0.237 × 10 −4 / K (1)
δh 2 = 200 (mm) × 120 (° C.) × 0.237 × 10 −4 / K (2)

すなわち、前段の浮上ステージ82の浮上面82aに対して後段の浮上ステージ84の浮上面84a(正確には平坦部領域112)がδh2−δh1(0.237mm)だけ高くなる。この段差(0.237mm)は、基板浮上高J(50μm)を優に超える。したがって、仮に後段の浮上ステージ84に始端部傾斜面110が設けられていなければ、基板Gは後段浮上ステージ84の始端に衝突することになる。 That is, the air bearing surface 84a (more precisely, the flat portion region 112) of the subsequent air surfacing stage 84 is higher than the air surfacing surface 82a of the air surfacing stage 82 by δh 2 −δh 1 (0.237 mm). This step (0.237 mm) well exceeds the substrate flying height J (50 μm). Therefore, if the starting-end inclined surface 110 is not provided on the subsequent floating stage 84, the substrate G collides with the starting end of the subsequent floating stage 84.

しかし、この実施形態では、図6〜図8に示すように、作動時に前段の浮上ステージ82の浮上面82aよりも後段の浮上ステージ84の浮上面84a(正確には平坦部領域112)が高くなっても、後段の浮上ステージ84の始端部傾斜面110の下端110aは前段の浮上ステージ82の浮上面82aより高くはならない構成になっている。別な見方をすれば、非作動時の常温下で、後段の浮上ステージ84の始端部傾斜面110の下端110aが、前段の浮上ステージ82の浮上面82aより少なくとも熱膨張差(δh2−δh1)の分だけ低い位置になるように設計される。 However, in this embodiment, as shown in FIGS. 6 to 8, the floating surface 84 a (more precisely, the flat portion region 112) of the subsequent floating stage 84 is higher than the floating surface 82 a of the previous floating stage 82 during operation. Even so, the lower end 110 a of the starting end inclined surface 110 of the subsequent floating stage 84 is configured not to be higher than the floating surface 82 a of the previous floating stage 82. From another viewpoint, the lower end 110a of the starting inclined surface 110 of the subsequent levitation stage 84 is at least a difference in thermal expansion (δh 2 −δh) from the levitation surface 82a of the previous levitation stage 82 at room temperature when not operating. Designed to be lower by 1 ).

上記のように減圧乾燥ユニット(VD)46で減圧乾燥処理を受けた基板Gは、チャンバ104内の内部コロ搬送路および第1のコロ搬送路80上の平流し搬送で減圧乾燥ユニット(VD)46からプリベークユニット(PRE−BAKE)48に移送される。   The substrate G that has been subjected to the vacuum drying process in the vacuum drying unit (VD) 46 as described above is subjected to the flat flow transport on the internal roller transport path and the first roller transport path 80 in the chamber 104 and the vacuum drying unit (VD). 46 to a pre-bake unit (PRE-BAKE) 48.

プリベークユニット(PRE−BAKE)48において、基板Gは、第1のコロ搬送路80上を平流しで前進して、最初に前段浮上ステージ82の上に搬入される。前段浮上ステージ82の上に搬入されると、基板Gは、ステージ浮上面82aから浮上圧力を受けると同時に放射熱も受け、浮上搬送で前進しながら中間加熱温度(70℃)で加熱される。   In the pre-bake unit (PRE-BAKE) 48, the substrate G moves forward on the first roller transport path 80 in a flat flow, and is first transported onto the previous levitation stage 82. When the substrate G is carried onto the previous levitation stage 82, the substrate G receives the levitation pressure from the stage levitation surface 82a and simultaneously receives radiant heat, and is heated at an intermediate heating temperature (70 ° C.) while moving forward by levitation conveyance.

その際、基板Gの前部が前段浮上ステージ82の上に搬入されて加熱された時に、まだ浮上ステージ82上に搬入されていない基板Gの後部との間で温度差が生じる。しかし、加熱温度が中間温度(70℃)であるため、さほどの温度差ではなく、基板内の熱膨張(伸び量)の勾配は緩やかであり、浮上搬送式のベーキング処理に支障が出るほどの基板の反りは発生しない。   At that time, when the front part of the substrate G is carried onto the front floating stage 82 and heated, a temperature difference is generated between the rear part of the substrate G not yet carried on the floating stage 82. However, since the heating temperature is an intermediate temperature (70 ° C.), the gradient of thermal expansion (elongation amount) in the substrate is not so much, and the gradient of thermal expansion (elongation amount) in the substrate is so gentle that it hinders the floating transfer type baking process. There is no warping of the substrate.

こうして、基板Gは、前段浮上ステージ82上で略平坦な水平姿勢および所定の基板浮上高Jを保ったまま、平流しの浮上搬送で前進しながら基板温度を常温から中間加熱温度(70℃)まで上げていく。その間に、基板G上のレジスト膜中に残留していた溶剤の一部が蒸発して除去され、プリベーキング処理が進行する。   In this way, the substrate G is moved from the normal temperature to the intermediate heating temperature (70 ° C.) while advancing in a flat flow while maintaining a substantially flat horizontal posture and a predetermined substrate flying height J on the previous flying stage 82. I will raise it. Meanwhile, a part of the solvent remaining in the resist film on the substrate G is evaporated and removed, and the pre-baking process proceeds.

そして、基板Gは、基板搬送ライン(X方向)において前段浮上ステージ82を抜けると、後段浮上ステージ84の始端部傾斜面110に差し掛かり(図6)、ここで噴射孔118より圧縮空気の浮上圧力(垂直上向きの力)を受けることにより、水平姿勢から斜め上方向きの傾斜姿勢に姿勢を変えながら始端部傾斜面110の上を通過する(図7)。そして、後段浮上ステージ84の平坦部領域112の上に来ると、基板Gは、噴射孔114からの圧縮空気による垂直上向きの力と吸引孔116よりバキューム吸引力による垂直下向きの力を同時に受け、相対抗する双方向の力の均衡の中で姿勢を水平に戻す(図8)。   Then, when the substrate G passes through the front levitation stage 82 in the substrate transport line (X direction), the substrate G reaches the inclined surface 110 at the start end portion of the rear levitation stage 84 (FIG. 6), where the floating pressure of the compressed air from the injection hole 118 is reached. By receiving the (vertical upward force), it passes over the start end inclined surface 110 while changing the posture from the horizontal posture to the obliquely upward inclined posture (FIG. 7). And when it comes on the flat part area | region 112 of the back | latter stage levitation | floating stage 84, the board | substrate G receives simultaneously the vertical upward force by the compressed air from the injection hole 114, and the vertical downward force by the vacuum suction force from the suction hole 116, The posture is returned to a horizontal position in a balance of opposing forces against each other (FIG. 8).

こうして、基板Gは、後段浮上ステージ84の平坦部領域112上で略平坦な水平姿勢および所定の基板浮上高Jを保ったまま、平流しの浮上搬送で前進しながら基板温度を最終到達温度(120℃)まで上げていく。その間に、基板G上のレジスト膜中に残留していた溶剤の殆どが蒸発して除去される。そして、基板Gが後段の浮上ステージ84を抜け出た時点でプリベーキング処理が終了する。   In this way, the substrate G moves the substrate temperature to the final reached temperature (while the substrate G moves forward in a flat flow, while maintaining a substantially flat horizontal posture and a predetermined substrate flying height J on the flat portion region 112 of the subsequent floating stage 84. 120 ° C). In the meantime, most of the solvent remaining in the resist film on the substrate G is evaporated and removed. Then, the pre-baking process ends when the substrate G exits the subsequent floating stage 84.

なお、基板Gの前端が浮上ステージ82,84上に在る間は第1のコロ搬送路80のみの推力によって前進移動し、基板Gの前端が第2のコロ搬送路86上に乗ってからは第1および第2のコロ搬送路80,86の推力によって前進移動し、基板Gの後端が浮上ステージ82,84上に在る間は第2のコロ搬送路86のみの推力によって前進移動する。   Note that while the front end of the substrate G is on the floating stages 82 and 84, the substrate G is moved forward by the thrust of only the first roller transport path 80, and after the front end of the substrate G is on the second roller transport path 86. Is moved forward by the thrust of the first and second roller transport paths 80 and 86 and moved forward by the thrust of only the second roller transport path 86 while the rear end of the substrate G is on the floating stages 82 and 84. To do.

このように、基板Gは、両浮上ステージ82,84との干渉を起こさずに、つまり前段の浮上ステージ82の終端を擦ることもなければ、後段の浮上ステージ84の始端に衝突することもなく、安定して所定の基板浮上高Jを保ちながら、平流しのプリベーキングを設定通りの温度履歴特性で基板全面均一に受けることができる。   In this way, the substrate G does not interfere with both the floating stages 82 and 84, that is, does not rub the end of the preceding floating stage 82, or does not collide with the starting end of the subsequent floating stage 84. Thus, while maintaining a predetermined substrate flying height J stably, flat-flow pre-baking can be uniformly received over the entire surface with the temperature history characteristics as set.

以上本発明の好適な実施形態について説明したが、本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内で他の実施形態あるいは種々の変形が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and other embodiments or various modifications can be made within the scope of the technical idea.

たとえば、上記実施形態では浮上ステージを2段(82,84)に分割したが、3段以上に分割することも可能である。たとえば、3段分割式でプリベーキング処理の最終到達温度を120℃とする場合は、第1段の浮上ステージ温度をたとえば40℃、第2段の浮上ステージ温度をたとえば80℃、第3段(最終段)の浮上ステージ温度を最終到達温度の120℃に選定してよい。そして、第2段の浮上ステージだけでなく、第3の浮上ステージにも上述したような始端部傾斜面(110)を設けてよい。かかる構成により、第3段の浮上ステージにおいても、その始端部傾斜面110の噴射孔118からその上を通過する基板Gに向けて圧縮空気による垂直上向きの力を加えることができる。これにより、浮上搬送において基板Gが干渉を起こさずに第2段の浮上ステージから第3段の浮上ステージへスムースに乗り移れることができる。   For example, although the levitation stage is divided into two stages (82, 84) in the above embodiment, it can be divided into three or more stages. For example, when the final temperature of the pre-baking process is 120 ° C. in the three-stage division type, the first stage floating stage temperature is, for example, 40 ° C., the second stage floating stage temperature is, for example, 80 ° C., and the third stage ( The final stage levitation stage temperature may be selected to be 120 ° C., the final temperature reached. Further, not only the second levitation stage but also the third levitation stage may be provided with the start end inclined surface (110) as described above. With this configuration, even in the third levitation stage, a vertically upward force by compressed air can be applied from the injection hole 118 of the starting end inclined surface 110 toward the substrate G passing thereabove. Accordingly, the substrate G can smoothly move from the second floating stage to the third floating stage without causing interference in the floating conveyance.

また、平流し搬送部のコロ搬送路80,86を他の平流し搬送路(たとえばベルト式搬送路)に置き換えることも可能である。   It is also possible to replace the roller transport paths 80 and 86 of the flat transport section with other flat transport paths (for example, belt-type transport paths).

上記塗布現像処理システム10(図1)においては、第1の熱的処理部28のアドヒージョンユニット(AD)40や第3の熱的処理部66のポストベークユニット(POST−BAKE)56にも本発明を適用することができる。   In the coating and developing processing system 10 (FIG. 1), the adhesion unit (AD) 40 of the first thermal processing unit 28 and the post-bake unit (POST-BAKE) 56 of the third thermal processing unit 66 are used. The present invention can also be applied.

さらに、本発明は、平流し用の浮上ステージに加熱板を兼用させる任意の基板処理装置に適用可能である。   Furthermore, the present invention can be applied to any substrate processing apparatus in which a floating plate for flat flow is also used as a heating plate.

本発明における被処理基板はLCD用のガラス基板に限るものではなく、他のフラットパネルディスプレイ用基板や、半導体ウエハ、CD基板、フォトマスク、プリント基板等も可能である。   The substrate to be processed in the present invention is not limited to a glass substrate for LCD, and other flat panel display substrates, semiconductor wafers, CD substrates, photomasks, printed substrates and the like are also possible.

本発明の基板処理装置を好適に組み込める塗布現像処理システムのレイアウト構成を示す平面図である。It is a top view which shows the layout structure of the coating and developing processing system which can incorporate the substrate processing apparatus of this invention suitably. 図1の塗布現像処理システムに組み込まれている一実施形態によるプリベークユニットの全体構成を示す略平面図である。FIG. 2 is a schematic plan view showing an overall configuration of a pre-bake unit according to an embodiment incorporated in the coating and developing treatment system of FIG. 1. 上記プリベークユニットの全体構成(非作動時)を示す側面図である。It is a side view which shows the whole structure (at the time of non-operation) of the said prebaking unit. 上記プリベークユニットの全体構成(作動時)を示す側面図である。It is a side view which shows the whole structure (at the time of operation | movement) of the said prebaking unit. 上記プリベークユニット内の要部の構成(非作動時)を示す斜視図である。It is a perspective view which shows the structure (at the time of non-operation) of the principal part in the said prebaking unit. 上記プリベークユニット内の要部の構成(作動時)およびベーキング処理の一段階を示す斜視図である。It is a perspective view which shows the structure (at the time of operation | movement) of the principal part in the said prebaking unit, and one step of a baking process. 上記プリベークユニット内の要部の構成(作動時)およびベーキング処理の一段階を示す斜視図である。It is a perspective view which shows the structure (at the time of operation | movement) of the principal part in the said prebaking unit, and one step of a baking process. 上記プリベークユニット内の要部の構成(作動時)およびベーキング処理の一段階を示す斜視図である。It is a perspective view which shows the structure (at the time of operation | movement) of the principal part in the said prebaking unit, and one step of a baking process.

符号の説明Explanation of symbols

10 塗布現像処理システム
16 プロセスステーション(P/S)
40 アドヒージョンユニット(AD)
48 プリベークユニット(PRE−BAKE)
56 ポストベークユニット(P0ST−BAKE)
80 第1のコロ搬送路
82 前段の浮上ステージ
84 後段の浮上ステージ
86 第2のコロ搬送路
88 コロ
90,92 コロ駆動部
94,96 伝動機構
106 噴射孔
108 吸引孔
110 ステージ浮上面の始端部傾斜面
112 ステージ浮上面の平坦部
114 噴射孔
116 吸引孔
118 噴射孔
120,122 シーズヒータ
10 Coating Development System 16 Process Station (P / S)
40 Adhesion Unit (AD)
48 Pre-bake unit (PRE-BAKE)
56 Post Bake Unit (P0ST-BAKE)
Reference Signs List 80 First roller transport path 82 First stage floating stage 84 Second stage floating stage 86 Second roller transport path 88 Roller 90, 92 Roller drive unit 94, 96 Transmission mechanism 106 Injection hole 108 Suction hole 110 Start end of stage floating surface Inclined surface 112 Flat portion of stage air bearing surface 114 Injection hole 116 Suction hole 118 Injection hole 120, 122 Seed heater

Claims (13)

作動中に、第1の温度に熱せられ、被処理基板を気体の圧力により浮かせる第1の浮上ステージと、
基板搬送ラインにおいて前記第1の浮上ステージの下流側隣に配置され、前記第1の浮上ステージに向かって次第に低くなる傾斜面をステージ浮上面の始端部に有し、作動中に、前記第1の温度よりも高い第2の温度に熱せられ、前記基板を気体の圧力により浮かせる第2の浮上ステージと、
基板搬送ラインにおいて前記基板が前記第1および第2の浮上ステージの上を浮上しながら通過するように、前記基板を平流しで搬送する平流し搬送部と
を有し、
前記基板が前記第1および第2の浮上ステージ上を浮上搬送で移動する間に、前記第1および第2の浮上ステージと前記基板との間の伝熱により前記基板に所定の加熱処理を施す基板処理装置。
A first levitation stage that is heated to a first temperature during operation and levitates the substrate to be processed by gas pressure;
An inclined surface which is arranged next to the downstream side of the first levitation stage in the substrate transfer line and gradually decreases toward the first levitation stage is provided at the starting end of the stage levitation surface. A second levitation stage that is heated to a second temperature that is higher than the temperature of the substrate and that floats the substrate by gas pressure;
A flat flow transfer unit for transferring the substrate in a flat flow so that the substrate passes while floating above the first and second levitation stages in a substrate transfer line;
While the substrate moves on the first and second levitation stages by levitation conveyance, the substrate is subjected to predetermined heat treatment by heat transfer between the first and second levitation stages and the substrate. Substrate processing equipment.
作動中に、前記第2の浮上ステージの前記始端部傾斜面の下端が前記第1の浮上ステージの終端部よりも高くはならない、請求項1に記載の基板処理装置。   2. The substrate processing apparatus according to claim 1, wherein during operation, a lower end of the inclined surface of the start end portion of the second levitation stage is not higher than an end portion of the first levitation stage. 非作動時の常温状態で、前記第1の浮上ステージの終端部と前記第2の浮上ステージの前記始端部傾斜面の上端とが略同じ高さである、請求項1または請求項2に記載の基板処理装置。   The end part of the first levitation stage and the upper end of the inclined surface of the start end part of the second levitation stage are substantially the same height in a normal temperature state when not operating. Substrate processing equipment. 非作動時の常温から作動時の第1の温度への温度変化によって前記第1の浮上ステージの熱膨張に基づくステージ浮上面の高さ位置の上昇と、非作動時の常温から作動時の前記第2の温度への温度変化によって前記第2の浮上ステージの熱膨張に基づくステージ浮上面の高さ位置の上昇との差が、前記第1および第2の浮上ステージにおける前記基板の浮上高よりも大きい、請求項1〜3のいずれか一項に記載の基板処理装置。   The temperature change from the normal temperature during non-operation to the first temperature during operation causes an increase in the height position of the stage floating surface based on the thermal expansion of the first levitation stage, and the normal operation from the normal temperature during non-operation. The difference from the rise in the height position of the stage flying surface based on the thermal expansion of the second flying stage due to the temperature change to the second temperature is higher than the flying height of the substrate in the first and second flying stages. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is large. 前記第2の浮上ステージの前記始端部傾斜面の傾斜角が0.5°〜1.0°である、請求項1〜4のいずれか一項に記載の基板処理装置。   5. The substrate processing apparatus according to claim 1, wherein an inclination angle of the inclined surface of the start end of the second levitation stage is 0.5 ° to 1.0 °. 前記第1の浮上ステージにおいて、そのステージ浮上面の少なくとも始端部を除く部分の略全域に、気体を噴出する第1の噴射孔と気体を吸引する第1の吸引孔とが混在して多数設けられている、請求項1〜5のいずれか一項に記載の基板処理装置。   In the first levitation stage, a large number of first injection holes for ejecting gas and first suction holes for sucking gas are provided in substantially the entire area of the stage floating surface excluding at least the start end. The substrate processing apparatus as described in any one of Claims 1-5. 前記第2の浮上ステージにおいて、前記ステージ浮上面の前記始端部傾斜面を除く部分の略全域に、気体を噴出する第2の噴射孔と気体を吸引する第2の吸引孔とが混在して多数設けられている、請求項1〜6のいずれか一項に記載の基板処理装置。   In the second levitation stage, a second injection hole for ejecting gas and a second suction hole for sucking gas are mixed in substantially the entire region of the stage floating surface excluding the inclined surface at the start end. The substrate processing apparatus as described in any one of Claims 1-6 provided with many. 前記第2の浮上ステージにおいて、前記始端部傾斜面に気体を噴出する第3の噴射孔が複数設けられている、請求項1〜7のいずれか一項に記載の基板処理装置。   8. The substrate processing apparatus according to claim 1, wherein the second levitation stage is provided with a plurality of third injection holes for injecting gas on the inclined surface of the starting end. 前記第3の噴射孔に他の噴射孔から独立して正圧の気体を供給する正圧気体供給部を有する、請求項8に記載の基板処理装置。   The substrate processing apparatus according to claim 8, further comprising a positive pressure gas supply unit configured to supply a positive pressure gas to the third injection holes independently from other injection holes. 前記平流し搬送部が、前記基板に平流し搬送の推力を与えるために基板搬送ライン上に所定の間隔を置いて配置される複数の駆動コロからなる第1のコロ搬送路を有する、請求項1〜9のいずれか一項に記載の基板処理装置。   The said flat flow conveyance part has a 1st roller conveyance path which consists of a several drive roller arrange | positioned at predetermined intervals on a board | substrate conveyance line in order to give the thrust of a flat flow conveyance to the said board | substrate. The substrate processing apparatus as described in any one of 1-9. 前記平流し搬送部が、前記浮上ステージの上から前記基板を平流しで搬出するために基板搬送ラインにおいて前記浮上ステージの下流側に所定の間隔を置いて配置される複数の駆動コロからなる第2のコロ搬送路を有する、請求項1〜10のいずれか一項に記載の基板処理装置。   The flat flow transport unit includes a plurality of driving rollers arranged at a predetermined interval on the downstream side of the levitation stage in the substrate transport line in order to carry the substrate out of the levitation stage by flat flow. The substrate processing apparatus as described in any one of Claims 1-10 which has two roller conveyance paths. 前記第1および第2の浮上ステージが熱伝導率の高い同種の金属からなる、請求項1〜11のいずれか一項に記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the first and second levitation stages are made of the same metal having high thermal conductivity. 前記第1および第2の浮上ステージをそれぞれ加熱するための発熱体を前記第1および第2の浮上ステージの中または裏面に設ける、請求項1〜12のいずれか一項に記載の基板処理装置。   The substrate processing apparatus as described in any one of Claims 1-12 which provides the heat generating body for heating the said 1st and 2nd levitation | floating stage in the said 1st and 2nd levitation | floating stage or a back surface, respectively. .
JP2008234817A 2008-09-12 2008-09-12 Substrate processing equipment Expired - Fee Related JP4638931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008234817A JP4638931B2 (en) 2008-09-12 2008-09-12 Substrate processing equipment
KR1020090072817A KR20100031453A (en) 2008-09-12 2009-08-07 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234817A JP4638931B2 (en) 2008-09-12 2008-09-12 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2010067896A JP2010067896A (en) 2010-03-25
JP4638931B2 true JP4638931B2 (en) 2011-02-23

Family

ID=42181124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234817A Expired - Fee Related JP4638931B2 (en) 2008-09-12 2008-09-12 Substrate processing equipment

Country Status (2)

Country Link
JP (1) JP4638931B2 (en)
KR (1) KR20100031453A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611747B2 (en) * 2010-09-30 2014-10-22 ラピスセミコンダクタ株式会社 Substrate transfer arm and substrate transfer device
JP2012151258A (en) * 2011-01-19 2012-08-09 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP5502788B2 (en) * 2011-03-16 2014-05-28 東京エレクトロン株式会社 Floating coating device
JP6312959B2 (en) * 2013-07-17 2018-04-18 セーレン株式会社 Inkjet recording device
JP2015162487A (en) * 2014-02-26 2015-09-07 オイレス工業株式会社 Non-contact floating and carrying device
JP7171360B2 (en) 2018-10-19 2022-11-15 伸和コントロールズ株式会社 AIR CONDITIONING DEVICE, SUBSTRATE FLOATING TRANSFER UNIT INCLUDING AIR CONDITIONING DEVICE, AND SUBSTRATE FLOATING TRANSFER AIR SUPPLY METHOD

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233452A (en) * 2000-02-24 2001-08-28 Toray Eng Co Ltd Constant point carrying device for thin plate
JP2005244155A (en) * 2004-01-30 2005-09-08 Tokyo Electron Ltd Uplift substrate conveyance processor
JP2006019396A (en) * 2004-06-30 2006-01-19 Tokyo Electron Ltd Substrate processing device
JP2006324510A (en) * 2005-05-19 2006-11-30 Shinko Electric Co Ltd Gas-levitated carrying apparatus
JP2007019340A (en) * 2005-07-08 2007-01-25 Tokyo Electron Ltd Substrate processor
JP2007158005A (en) * 2005-12-05 2007-06-21 Tokyo Electron Ltd Substrate transport apparatus and substrate processing apparatus
JP2007158088A (en) * 2005-12-06 2007-06-21 Tokyo Electron Ltd Heat-treating apparatus, heat-treatment method, control program, and computer-readable storage medium
JP2007182304A (en) * 2006-01-06 2007-07-19 Tokyo Electron Ltd Substrate carrying device and its method, and computer program
JP2008016543A (en) * 2006-07-04 2008-01-24 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2008159782A (en) * 2006-12-22 2008-07-10 Tokyo Electron Ltd Vacuum dryer
JP2010064857A (en) * 2008-09-11 2010-03-25 Tokyo Electron Ltd Substrate treating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062831A1 (en) * 2006-11-22 2008-05-29 Sinfonia Technology Co., Ltd. Air floatation conveyance device and method of conveyance using air

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233452A (en) * 2000-02-24 2001-08-28 Toray Eng Co Ltd Constant point carrying device for thin plate
JP2005244155A (en) * 2004-01-30 2005-09-08 Tokyo Electron Ltd Uplift substrate conveyance processor
JP2006019396A (en) * 2004-06-30 2006-01-19 Tokyo Electron Ltd Substrate processing device
JP2006324510A (en) * 2005-05-19 2006-11-30 Shinko Electric Co Ltd Gas-levitated carrying apparatus
JP2007019340A (en) * 2005-07-08 2007-01-25 Tokyo Electron Ltd Substrate processor
JP2007158005A (en) * 2005-12-05 2007-06-21 Tokyo Electron Ltd Substrate transport apparatus and substrate processing apparatus
JP2007158088A (en) * 2005-12-06 2007-06-21 Tokyo Electron Ltd Heat-treating apparatus, heat-treatment method, control program, and computer-readable storage medium
JP2007182304A (en) * 2006-01-06 2007-07-19 Tokyo Electron Ltd Substrate carrying device and its method, and computer program
JP2008016543A (en) * 2006-07-04 2008-01-24 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2008159782A (en) * 2006-12-22 2008-07-10 Tokyo Electron Ltd Vacuum dryer
JP2010064857A (en) * 2008-09-11 2010-03-25 Tokyo Electron Ltd Substrate treating device

Also Published As

Publication number Publication date
JP2010067896A (en) 2010-03-25
KR20100031453A (en) 2010-03-22

Similar Documents

Publication Publication Date Title
JP4592787B2 (en) Substrate processing equipment
JP4753313B2 (en) Substrate processing equipment
JP4755233B2 (en) Substrate processing equipment
JP4542577B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4384685B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4341978B2 (en) Substrate processing equipment
JP4554397B2 (en) Stage device and coating treatment device
JP4954162B2 (en) Processing system
JP4407970B2 (en) Substrate processing apparatus and substrate processing method
JP4384686B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4638931B2 (en) Substrate processing equipment
JP2011124342A (en) Substrate processing device, substrate processing method, and recording medium recording program for implementing the substrate processing method
JP4813583B2 (en) Substrate processing equipment
JP4804332B2 (en) Baking apparatus and substrate processing apparatus
JP4450825B2 (en) Substrate processing method, resist surface processing apparatus, and substrate processing apparatus
JP4805384B2 (en) Substrate processing equipment
JP4620536B2 (en) Substrate processing equipment
KR20110066864A (en) Substrate processing apparatus, substrate processing method and recording medium storing program for executing the substrate processing method
JP2008060113A (en) Development processing apparatus and method
JP4763763B2 (en) Resist coating development system
JP4589986B2 (en) Substrate heating device
JP5010019B2 (en) stage
KR20150076848A (en) Apparatus and method for treating substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees