JP4637325B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP4637325B2
JP4637325B2 JP2000197384A JP2000197384A JP4637325B2 JP 4637325 B2 JP4637325 B2 JP 4637325B2 JP 2000197384 A JP2000197384 A JP 2000197384A JP 2000197384 A JP2000197384 A JP 2000197384A JP 4637325 B2 JP4637325 B2 JP 4637325B2
Authority
JP
Japan
Prior art keywords
terminal
electric double
sealing member
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197384A
Other languages
Japanese (ja)
Other versions
JP2002015954A (en
Inventor
誠 東別府
健児 島津
真也 松野
和雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197384A priority Critical patent/JP4637325B2/en
Publication of JP2002015954A publication Critical patent/JP2002015954A/en
Application granted granted Critical
Publication of JP4637325B2 publication Critical patent/JP4637325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a long service life electric double-layer capacitor which can suppress heating terminals of a collector and cells, even when charging/ discharging is made with a large current. SOLUTION: The capacitor 1 comprises cells 5, each composed of a laminate of two polarizable electrodes 2 containing active carbon, a separator 3 interposed between the electrodes 2, 2, and collectors 4, 4 laminated on the opposite surfaces of the electrodes 2 to the surfaces at the separator 3, a sealing member 7 for sealing the cell 5, and sheet-like terminals 4a a part of them projecting out from the sealing member 7. The main surface of the terminal 4a is formed with a rough surface and/or rugged notches are formed into the side ends of the terminals 4a.

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサに関し、特に高電圧用電源として好適な電気二重層コンデンサに関するものである。
【0002】
【従来技術】
電気二重層コンデンサは、電極と電解液との界面においてイオンの分極によりできる電気二重層を利用したコンデンサであり、コンデンサと電池の両方の機能を兼ね備えたものであり、従来のコンデンサと比較して大容量の静電容量を充電できるとともに、急速充放電が可能であることから、小型のメモリーバックアップ電源や自動車の駆動源等、大容量モータなどの補助電源として注目されている。
【0003】
かかる電気二重層コンデンサの一般的な例としては、活性炭および電解液を含有する2枚の分極性電極間に絶縁性の多孔質体からなるセパレータを介装し、前記分極性電極の前記セパレータ側の面とは反対の表面それぞれに金属箔等からなる集電体を配設した積層体からなるセルが複数層積層されてプラスチックや熱可塑性樹脂等の絶縁体からなる封止部材内に収納、封止された構成からなる積層型の電気二重層コンデンサが知られている。
【0004】
一方、上記構成の電気二重層コンデンサとして、特に起動時等の瞬時に非常に大きなエネルギーが必要な部品へのエネルギー供給用電源として注目されており、例えば、数A〜数百Aという大電流を急速充放電できることが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の電気二重層コンデンサでは、封止部材内に密封された構造になっているため、数A〜数百Aという大電流で急速充放電させた場合、特に集電体および端子に発生するジュール熱がセル積層体内部に蓄積されてしまい、電解液が分解して静電容量が低下し、電気二重層コンデンサの信頼性が低下するという問題があった。
【0006】
本発明は、上記課題に対してなされたもので、その目的は、大容量の充放電に際しても効率的に放熱して電気二重層コンデンサ内部の発熱を抑制でき、電気二重層コンデンサの信頼性を高めることができるとともに、小型で生産性の高い高寿命の積層型の電気二重層コンデンサを提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題に対して検討した結果、集電体と連結する端子の表面および側端部を凹凸状に形成して端子の表面積を増すことにより、簡単な構造で電気二重層コンデンサ内に発生した熱を効率よく外部へ放熱でき、小型で、生産性が高く信頼性の高い電気二重層コンデンサとなることを知見した。
【0008】
すなわち、本発明の電気二重層コンデンサは、活性炭を含有する2枚の分極性電極と、該分極性電極間に介装されるセパレータと、前記分極性電極の前記セパレータ側の面とは反対の表面それぞれに積層される集電体との積層体からなるセルと、該セルを封止する封止部材と、前記集電体の周縁部の一部に一体的に設けられ、その一部が前記封止部材の外部に突出するシート状の端子とを具備するものであって、前記シート状の端子は、側端部側から見たときに、主平面がジグザグ状または波状となるように形成されている、および/または側端部が切り欠きを設けて凹凸状に形成されているとともに、前記封止部材内に前記セルが複数層積層されているとともに、複数の前記セルを構成する前記集電体の周縁部に一体的に設けられた前記シート状の端子が、前記封止部材の外面に形成された、側端部に凹凸状の切り欠きを有する導体層を介して一つおきに前記封止部材の外部で連結されてなることを特徴とする。
【0010】
【発明の実施の形態】
本発明の電気二重層コンデンサの一例についての概略断面図を図1に示す。
図1によれば、電気二重層コンデンサ1は、正極および負極をなす平面が矩形のシート状の分極性電極2、2間に、平面が矩形のシート状のセパレータ3が配設、介在しており、また、分極性電極2、2のセパレータが配設された面の反対面には、正極および負極をなす平面が矩形のシート状の集電体4、4がそれぞれ積層、接着され、分極性電極2、2、セパレータ3、集電体4、4の積層体が一単位のセル5を構成している。
【0011】
ここで、分極性電極2を構成する活性炭質構造体は、高い比表面積を有する活性炭を含有し、前記活性炭を結合するための結合剤を配合したものが好適に使用でき、静電容量向上、内部抵抗低減、放熱性向上の点でこれを炭化処理したものであってもよい。また、電気二重層コンデンサ1の高静電容量を維持し、構造体として必要な強度を得るためには、前記活性炭の比表面積が1000〜3000m2/gであることが望ましい。
【0012】
なお、前記結合剤として添加される炭素成分は、前記活性炭粒子間に存在するが、前記炭化処理を施す場合には、前記活性炭質構造体に占める割合が5〜50重量%であることが好ましく、これにより前記活性炭粒子間の焼結性及び結合性を高めることができる。
【0013】
さらに、分極性電極2は円板、矩形状(図1では矩形状)の板状体等であることが好ましく、電気二重層コンデンサ1の製造時の取り扱いや使用時の振動、衝撃等に耐えうる機械的強度という信頼性の点でJISR1601に準じた室温における3点曲げ強度が30kPa以上、特に60kPa以上であることが好ましい。また、分極性電極2の厚みは、内部抵抗の低減の観点から1.5mm以下、特に0.6mm以下であることが好ましい。
【0014】
また、セパレータ3は、パルプやポリエチレン、ポリプロピレン、ポリビニリデンフロライド(PVdF)等の有機フィルムまたはガラス繊維不織布及びセラミックスなどを用いることができ、分極性電極2間を絶縁するために形成されるものであるが、分極性電極2内に含有される電解液中のイオンを透過させることができる多孔質体により形成される。なお、セパレータ3の厚みは、ショート等を防止し、内部抵抗を低減するために0.02〜0.15mmの厚みが好ましい。
【0015】
さらに、分極性電極2およびセパレータ3内部には、硫酸や硝酸等の水溶液や、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(γ−BL)、N,N−ジメチルホルムアミド、スルホラン、3−メチルスルホラン等の非水溶媒とテトラエチルアンモニウムテトラフルオロボレート等の4級アンモニウム塩、4級スルホニウム塩、4級ホスホニウム塩等の電解質を組み合わせた非水系電解液等の電解液が含浸されるが、本発明において分解電圧の高い非水系電解液を用いることが望ましい。なお、前記電解質の前記非水系溶媒に対する溶解量は、安定して高い静電容量を得るために0.5〜2mol/lであることが望ましい。
【0016】
また、集電体4は、導電性を有するアルミニウム、チタン、タンタル、白金、金等の金属箔、ステンレス鋼などにより形成され、分極性電極2、2間で電荷をやり取りするが、特に放熱性および分解電圧の高い非水系電解液に対する耐食性の点でアルミニウムを主体とする金属箔からなることが望ましい。また、集電体4の厚みは内部抵抗を低減するためには薄いものが好ましいが組立時の取り扱いなどによる破損を考慮すると0.02〜0.10mm程度が望ましい。
【0017】
そして、本発明によれば、集電体4の周縁部(一辺)の一部(図1では隅部)には、シート状の端子4aが集電体4と一体的に形成されているが、本発明によれば、端子4aの主平面を凹凸面によって形成するか、および/または前記シート状の端子4aの側端部に凹凸状の切り欠きを形成したことが大きな特徴であり、これによって、電気二重層コンデンサ1から大電流を放電する際にも端子4aでの発熱を効率よく放熱でき、電気二重層コンデンサ1内部の温度上昇を抑制して電解液の劣化及び分極性電極の部分的な破壊を防止できる結果、電気二重層コンデンサ1の寿命を長くできるとともに、信頼性を高めることができる。
【0018】
ここで、端子4aの形状は、図2の集電体4と端子4aの側面図及び平面図に示すように、(a)側端部側から見たときに、端子4aの主平面がジグザグ状に形成されたもの、(側端部側から見たときに、端子4aの主平面が波状に形成されたもの、()端子4aの側端部切り欠きを設けて凹凸状に形成されたものの1種または2種以上が好適に使用できる。なお、端子4aの抵抗の上昇を防止しつつ端子4aの比表面積を高めて放熱性を高めるためには、前記凹凸の凸部の高さが1〜3mmであることが望ましく、また、前記凹凸の頂部間のピッチが1〜5mmであることが望ましい。
【0019】
また、上記構造のうち、(b)〜(d)によれば、端子4aを別の部材に接続する場合や後述するように端子4a同士を収束する際に集電体4と端子4aとの界面に発生する応力集中を緩和して端子4aの短絡を防止できる効果もある。
【0020】
なお、図1によれば、複数の集電体4のそれぞれの端子4aは積層体の同じ辺に設け、かつ隣接する集電体4の端子4aが同一辺内の異なる位置に設けられている。すなわち、一層おきに同じ部位(図面では隅部)に設け、集電体4の端子4aが交互に正極用端子および負極用端子を構成するようにセル5が複数層積層されてセル積層体6を形成している。そして、同じ部位に設けられた2組の端子同士をそれぞれ接触または接合して、それぞれ正極用端子および負極用端子を形成している。なお、正極用端子と負極用端子は短絡を防止するために接触しない位置に配設されている。
【0021】
また、図1においては、セル積層体6は電解液を封止、保持するため、セル積層体6の外周部に形成される封止部材7によって封止固定されている。封止部材7の形状は、放熱性、衝撃緩衝性および電気二重層コンデンサ1の小型化の点で、厚み0.5〜3mmであることが望ましい。
【0022】
また、封止部材7としては、熱伝導率が高い絶縁体、具体的には、シリコンゴム、ウレタンゴム、ブタジエンゴム等のゴム、またはアルミナ、ムライト、窒化アルミニウム、窒化ケイ素、炭化ケイ素等のセラミックスの群から選ばれる少なくとも1種からなることが望ましく、また、これらが2層以上積層されたものであってもよい。中でもセル積層体6を封止部材7電解液注入口9内に収納する組立工程においてセル積層体6中の分極性電極2が破損することなく容易に組立できる点で、弾性体であるシリコンゴム、ウレタンゴム、ブタジエンゴムが望ましく、特に、高熱伝導性、高絶縁性および機械的強度の向上の点で熱伝導率が1W/m・K以上のシリコンゴムが最適である。なお、熱伝導率を高める上では、熱伝導率が3W/m・K以上の上述したセラミックスからなることが望ましい。
【0023】
さらに、封止部材7のうち、セル積層体6の上下面に位置する封止部材7は、セル積層体6をかしめてセル積層体6の保形性を高めるとともに、分極性電極2、セパレータ3および集電体4間の接触状態を良好にして電気二重層コンデンサ1の内部抵抗を低減する作用をなすために、剛性の高い、鉄、ステンレス、アルミニウム、銅、チタン等の金属等他の部材にて形成してもよく、この場合、他の部材は封止部材7にねじ止め等により固定、封止される。
【0024】
また、封止部材7の外周面には電解液を分極性電極2およびセパレータ3内に注入、含浸せしめるための電解液注入口9を形成し、例えば、電解液注入口9からセル積層体6内に付着した水分を除去した後、非水系電解液を注入して封止することにより、電気二重層コンデンサ1内の水分量を低減して電解液の劣化を防止し、電気二重層コンデンサ1の信頼性を高めることができる。
【0025】
さらに、図1によれば、複数の端子4aが1つおきに封止部材7内で収束され、封止部材7から端子4aの収束体の先端部が突出して形成されている。本発明によれば、放熱性を高めるために端子4aの先端部が、特に5mm以上、さらに10mm以上封止部材7壁面に設けられた貫通孔から外部へ突出するように形成されている。
【0026】
また、本発明によれば、端子4aの取り出し方法はこれに限られるものではなく、例えば、図3に示す電気二重層コンデンサ10のように、複数の端子4aを封止部材7に形成した複数の貫通孔内にそれぞれ挿入し、端子4aの先端を封止部材7の壁面内または外面に形成した導体層11に封止部材7の外部で連結して接続してもよく、これによって封止部材7の外面に位置する導体層11での放熱性を高めて電気二重層コンデンサ10全体の放熱性を高めることができる。
【0027】
また、導体層11は、放熱性を高めるために、上述した端子4aのように側端部に凹凸状の切り欠きを形成したものであることが望ましい。
【0028】
【実施例】
(実施例)
BET値が2000m2/gの活性炭粉末試料100重量部に対して、ポリビニルブチラール(PVB)を50重量部混合して高速混合攪拌機にて攪拌し、得られた粉体を40メッシュでメッシュパスを行った後、ロール成形によってシート状成形体を作製した。前記シートから所定の形状にカットして固形状活性炭電極を形成するための成形体を作製した後、真空中、900℃で熱処理を行い、50mm×50mm、厚み0.5mmの活性炭質構造体を作製した。
【0029】
一方、パルプ製の50mm×50mm、厚み50μmのセパレータと、50mm×50mmで、その一辺の端部に幅10mmの端子を備えた厚み50μmのアルミニウム箔からなる集電体とを準備し、集電体−分極性電極−セパレータ−分極性電極(−集電体)を一単位セルとしてセル9層を積層したセル積層体を作製した。なお、アルミニウム集電体は表1に示すような形状のものを使用した。セル積層体は両端面それぞれに集電体が位置するように配設し、セル積層体は集電体10枚、分極性電極18枚、セパレータ9枚にて構成されるものとした。また、セルの積層時には端子がセル積層体の同じ側面から突出し、かつ隣接する各端子が反対の隅部に交互に配設されるようにして積層した。
【0030】
次に、該セル積層体の端子突出面以外の側面に厚み1mmのシリコンゴム製で、8つの隅部には長手方向に貫通する貫通孔を形成し枠状の封止部材を配設した。そして、セル積層体の外周表面に突出した同じ隅部に位置する各端子同士をそれぞれ超音波溶接によって接続して、正極用端子および負極用端子とした後、それぞれガスケットの外周側面へ7mm長さ突出させた。(ガスケット内部の端子長さ3mm)。
【0031】
さらに、セル積層体およびガスケットの両端面に60mm×60mm×8mmのアルミニウム製で隅部に貫通孔を有する封止部材の一部である加圧板を積層するとともに、該加圧板および前記ガスケットを貫通する貫通孔を位置合わせして、該貫通孔内にステンレスからなるネジ部材を挿入し、ネジ止めによって加圧板およびセル積層体をかしめ圧0.2MPaとなるようにかしめ、封止した。
【0032】
そして、ガスケットを真空雰囲気下で100℃で乾燥した後、ガスケットの外周部に設けた電解液注入口から1mol/lのテトラエチルアンモニウムテトラフルオロボレート(Et4NBF4)の炭酸プロピレン(PC)溶液からなる非水系電解液を注入して、分極性電極およびセパレータ内に電解液を含浸させた後、電解液注入口を封止した。
【0033】
得られた電気二重層コンデンサ100個に対して、端子の断線不良が発生した個数を求め、良品率(%)を算出した。また、70℃、3.0Vで、電流50Aにて充放電をそれぞれ50時間づつ行い、ガスケット内壁面に挿入した熱電対にてセル積層体の温度を測定した。さらに、上記重放電を1000時間続けた前後の静電容量の変化率を測定した。結果は表1に示した。
【0034】
【表1】

Figure 0004637325
【0035】
表1から、端子を平板状に形成し、端子の側端部に凹凸を形成しない試料No.1では、端子の集電体との界面にクラックが生じやすく良品率が低く、セル積層体の温度が上昇して静電容量の低下が大きかった。
【0036】
これに対して、本発明範囲内のシート状の端子を、側端部側から見たときに主平面がジグザグ状または波状となるように形成したもの、および側端部が切り欠きを設けて凹凸状に形成されている試料No.2〜15では、いずれも良品率が80%以上と高く、また、1000時間後の静電容量の低下率が30%以下と長寿命となることが示唆された。
【0037】
(実施例2)
実施例1の試料No.4の端子それぞれを厚み1mmのアルミナセラミックスからなる枠状のガスケットに設けられた貫通孔に挿入し、ガスケット外面に形成した主平面の表面粗さ(Ra)が100μm、側端部にピッチ2mm、高さ2mmの凹凸面を形成した導体層と接続する以外は実施例1と同様に電気二重層コンデンサを作製し、評価した結果、良品率90%、温度70℃、静電容量の変化率が−10%であり、端子の放熱性が向上していることがわかった。
【0038】
【発明の効果】
以上詳述した通り、本発明の電気二重層コンデンサでは、集電体の周縁部に一体的に設けられシート状の端子の主平面を凹凸面によって形成するか、および/または前記シート状の端子の側端部に凹凸状の切り欠きを形成することによって、端子に発生する熱の放熱性を高めて電気二重層コンデンサ内部の加熱を防止することができることから、電気二重層コンデンサの温度上昇に伴う電解液の分解を抑制して長寿命化することができる。
【図面の簡単な説明】
【図1】本発明の電気二重層コンデンサの一例を示す概略断面図である。
【図2】本発明の電気二重層コンデンサの集電体と端子の形状を説明するための平面図および側面図である。
【図3】本発明の他の電気二重層コンデンサの一例を示す概略断面図である。
【符号の説明】
1、10・・・電気二重層コンデンサ
2・・・分極性電極
3・・・セパレータ
4・・・集電体
4a・・端子
5・・・セル
6・・・セル積層体
7・・・封止部材
9・・・電解液注入口
11・・導体層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor suitable as a high voltage power source.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer formed by the polarization of ions at the interface between the electrode and the electrolyte, and combines the functions of both a capacitor and a battery. Since it can charge a large capacitance and can be rapidly charged and discharged, it has been attracting attention as an auxiliary power source for large-capacity motors such as small memory backup power sources and automobile drive sources.
[0003]
As a general example of such an electric double layer capacitor, a separator made of an insulating porous body is interposed between two polarizable electrodes containing activated carbon and an electrolytic solution, and the separator side of the polarizable electrode A plurality of layers of cells in which a current collector made of metal foil or the like is disposed on each surface opposite to the surface is housed in a sealing member made of an insulator such as plastic or thermoplastic resin, A multilayer electric double layer capacitor having a sealed configuration is known.
[0004]
On the other hand, as an electric double layer capacitor having the above-described structure, it has been attracting attention as a power supply for supplying energy to parts that require a very large amount of energy instantly at the time of start-up. It is known that it can be charged and discharged quickly.
[0005]
[Problems to be solved by the invention]
However, since the above-described conventional electric double layer capacitor has a structure sealed in a sealing member, when it is rapidly charged and discharged with a large current of several A to several hundred A, the current collector and the terminal in particular The Joule heat generated in the cell stack is accumulated inside the cell stack, and the electrolytic solution is decomposed to lower the electrostatic capacity, thereby reducing the reliability of the electric double layer capacitor.
[0006]
The present invention has been made to solve the above problems, and its purpose is to efficiently dissipate heat even when charging and discharging a large capacity, thereby suppressing the heat generation inside the electric double layer capacitor, and improving the reliability of the electric double layer capacitor. Another object of the present invention is to provide a multi-layer electric double layer capacitor that can be increased and that is small in size and has high productivity.
[0007]
[Means for Solving the Problems]
As a result of studying the above problems, the present inventors have formed an electric double layer with a simple structure by forming the surface and side edges of the terminal connected to the current collector in an uneven shape to increase the surface area of the terminal. It was discovered that the heat generated in the capacitor can be efficiently dissipated to the outside, making it an electric double layer capacitor that is compact, productive and highly reliable.
[0008]
That is, the electric double layer capacitor of the present invention includes two polarizable electrodes containing activated carbon, a separator interposed between the polarizable electrodes, and a surface opposite to the separator side of the polarizable electrode. A cell composed of a laminate of current collectors laminated on each surface, a sealing member for sealing the cell, and a part of a peripheral edge of the current collector, and a part of the cell A sheet-like terminal protruding to the outside of the sealing member, and the sheet-like terminal has a zigzag shape or a wave shape when viewed from the side end portion side. Formed and / or formed with a notch in the side edge portion , and a plurality of the cells are stacked in the sealing member, and a plurality of the cells are formed. The shim provided integrally on the peripheral edge of the current collector. DOO-like terminals, formed in said outer surface of the sealing member, to become coupled outside of the sealing member every other via a conductive layer having an uneven notches in the side edges Features.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A schematic cross-sectional view of an example of the electric double layer capacitor of the present invention is shown in FIG.
According to FIG. 1, an electric double layer capacitor 1 includes a sheet-like separator 3 having a rectangular plane disposed between and interposed between sheet-shaped polarizable electrodes 2 and 2 having a rectangular plane that forms a positive electrode and a negative electrode. In addition, sheet-like current collectors 4 and 4 each having a rectangular positive electrode and a negative electrode are laminated and bonded to the opposite surface of the polarizable electrodes 2 and 2 on which the separators are disposed, respectively. A laminated body of the polar electrodes 2, 2, the separator 3, and the current collectors 4, 4 constitutes one unit cell 5.
[0011]
Here, the activated carbon structure constituting the polarizable electrode 2 contains activated carbon having a high specific surface area, and can be suitably used in combination with a binder for binding the activated carbon. This may be carbonized for reducing internal resistance and improving heat dissipation. Moreover, in order to maintain the high electrostatic capacitance of the electric double layer capacitor 1 and to obtain the strength required as a structure, it is desirable that the specific surface area of the activated carbon is 1000 to 3000 m 2 / g.
[0012]
The carbon component added as the binder is present between the activated carbon particles, but when the carbonization treatment is performed, the proportion of the carbon component in the activated carbon structure is preferably 5 to 50% by weight. As a result, the sinterability and bondability between the activated carbon particles can be enhanced.
[0013]
Furthermore, the polarizable electrode 2 is preferably a disc, a rectangular plate (rectangular shape in FIG. 1) or the like, and can withstand vibrations, shocks, etc. during manufacture and use of the electric double layer capacitor 1. From the viewpoint of the reliability of mechanical strength, the three-point bending strength at room temperature according to JIS R1601 is preferably 30 kPa or more, particularly preferably 60 kPa or more. The thickness of the polarizable electrode 2 is preferably 1.5 mm or less, particularly 0.6 mm or less from the viewpoint of reducing internal resistance.
[0014]
The separator 3 can be made of an organic film such as pulp, polyethylene, polypropylene, polyvinylidene fluoride (PVdF), a glass fiber nonwoven fabric, ceramics, or the like, and is formed to insulate between the polarizable electrodes 2. However, it is formed of a porous body that can transmit ions in the electrolytic solution contained in the polarizable electrode 2. In addition, the thickness of the separator 3 is preferably 0.02 to 0.15 mm in order to prevent a short circuit and reduce internal resistance.
[0015]
Further, in the polarizable electrode 2 and the separator 3, an aqueous solution such as sulfuric acid or nitric acid, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-BL), N, Non-aqueous electrolytes that combine non-aqueous solvents such as N-dimethylformamide, sulfolane, 3-methylsulfolane, etc. and electrolytes such as quaternary ammonium salts such as tetraethylammonium tetrafluoroborate, quaternary sulfonium salts, and quaternary phosphonium salts. Although the electrolyte is impregnated, it is desirable to use a non-aqueous electrolyte having a high decomposition voltage in the present invention. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2 mol / l in order to stably obtain a high capacitance.
[0016]
The current collector 4 is formed of conductive aluminum, titanium, tantalum, platinum, gold or other metal foil, stainless steel, etc., and exchanges electric charges between the polarizable electrodes 2 and 2. In addition, it is desirable to use a metal foil mainly composed of aluminum from the viewpoint of corrosion resistance against a non-aqueous electrolyte having a high decomposition voltage. The current collector 4 is preferably thin in order to reduce the internal resistance, but is preferably about 0.02 to 0.10 mm in consideration of damage due to handling during assembly.
[0017]
And according to this invention, although the sheet-like terminal 4a is integrally formed with the electrical power collector 4 in a part (corner part in FIG. 1) of the peripheral part (one side) of the electrical power collector 4. FIG. According to the present invention, the main feature is that the main plane of the terminal 4a is formed by a concavo-convex surface and / or a concavo-convex notch is formed at the side end of the sheet-like terminal 4a. Thus, even when a large current is discharged from the electric double layer capacitor 1, the heat generated at the terminal 4a can be efficiently dissipated, the temperature inside the electric double layer capacitor 1 is suppressed, and the electrolyte is deteriorated and the polarizable electrode portion As a result, the life of the electric double layer capacitor 1 can be extended and the reliability can be improved.
[0018]
Here, as shown in the side view and plan view of the current collector 4 and the terminal 4a in FIG. 2, the shape of the terminal 4a is such that the main plane of the terminal 4a is zigzag when viewed from the side end side. ( B ) the main plane of the terminal 4a is formed in a wave shape when viewed from the side end , ( c ) the side end of the terminal 4a is notched and provided with a notch 1 type or 2 types or more of what was formed in can be used conveniently. In order to increase the specific surface area of the terminal 4a and increase the heat dissipation while preventing the resistance of the terminal 4a from increasing, it is desirable that the height of the concavo-convex protrusion is 1 to 3 mm. It is desirable that the pitch between the tops of each is 1 to 5 mm.
[0019]
Moreover, according to (b)-(d) among the said structures, when connecting the terminal 4a to another member, or when converging terminals 4a so that it may mention later, between the collector 4 and the terminal 4a. There is also an effect that stress concentration generated at the interface can be alleviated to prevent a short circuit of the terminal 4a.
[0020]
In addition, according to FIG. 1, each terminal 4a of the some electrical power collector 4 is provided in the same edge | side of a laminated body, and the terminal 4a of the adjacent electrical power collector 4 is provided in the different position in the same edge | side. . That is, every other layer is provided in the same part (corner in the drawing), and a plurality of cells 5 are laminated so that the terminals 4a of the current collector 4 alternately constitute positive electrode terminals and negative electrode terminals. Is forming. And two sets of terminals provided in the same part are contacted or joined, respectively, to form a positive terminal and a negative terminal, respectively. Note that the positive electrode terminal and the negative electrode terminal are disposed at positions where they do not contact to prevent a short circuit.
[0021]
In FIG. 1, the cell stack 6 is sealed and fixed by a sealing member 7 formed on the outer periphery of the cell stack 6 in order to seal and hold the electrolytic solution. The shape of the sealing member 7 is preferably 0.5 to 3 mm from the viewpoint of heat dissipation, shock absorbing properties and miniaturization of the electric double layer capacitor 1.
[0022]
Further, as the sealing member 7, an insulator having high thermal conductivity, specifically, rubber such as silicon rubber, urethane rubber, butadiene rubber, or ceramics such as alumina, mullite, aluminum nitride, silicon nitride, silicon carbide, etc. It is desirable to consist of at least one selected from the group described above, and these may be laminated two or more layers. In particular, silicon, which is an elastic body, can be easily assembled without damaging the polarizable electrode 2 in the cell laminate 6 in the assembly process of housing the cell laminate 6 in the electrolyte inlet 9 of the sealing member 7. Rubber, urethane rubber, and butadiene rubber are desirable, and silicon rubber having a thermal conductivity of 1 W / m · K or more is particularly optimal in terms of improving high thermal conductivity, high insulation, and mechanical strength. In order to increase the thermal conductivity, it is desirable to be made of the above-mentioned ceramic having a thermal conductivity of 3 W / m · K or more.
[0023]
Further, among the sealing members 7, the sealing members 7 positioned on the upper and lower surfaces of the cell stack 6 are used to crimp the cell stack 6 to improve the shape retention of the cell stack 6, as well as the polarizable electrode 2 and the separator. 3 and the current collector 4 in order to improve the contact state and reduce the internal resistance of the electric double layer capacitor 1, other metals such as iron, stainless steel, aluminum, copper, titanium, etc. having high rigidity, etc. In this case, the other members are fixed and sealed to the sealing member 7 by screwing or the like.
[0024]
Further, an electrolyte injection port 9 for injecting and impregnating the electrolyte into the polarizable electrode 2 and the separator 3 is formed on the outer peripheral surface of the sealing member 7. For example, the cell laminate 6 is formed from the electrolyte injection port 9. After removing the moisture adhering to the inside, the non-aqueous electrolyte solution is injected and sealed, thereby reducing the amount of moisture in the electric double layer capacitor 1 and preventing deterioration of the electrolyte solution. Can improve the reliability.
[0025]
Further, according to FIG. 1, every other plurality of terminals 4 a are converged in the sealing member 7, and the leading end portion of the converging body of the terminal 4 a is formed to protrude from the sealing member 7. According to the present invention, in order to improve heat dissipation, the tip end portion of the terminal 4a is formed so as to protrude to the outside from a through hole provided in the wall surface of the sealing member 7, particularly 5 mm or more, further 10 mm or more.
[0026]
Further, according to the present invention, the method of taking out the terminal 4a is not limited to this, and for example, a plurality of terminals 4a formed on the sealing member 7 as in the electric double layer capacitor 10 shown in FIG. The tip of the terminal 4a may be connected to and connected to the conductor layer 11 formed on the wall surface or the outer surface of the sealing member 7 outside the sealing member 7, thereby sealing. The heat dissipation of the conductor layer 11 located on the outer surface of the member 7 can be increased, and the heat dissipation of the entire electric double layer capacitor 10 can be increased.
[0027]
In addition, the conductor layer 11 is preferably formed by forming concave and convex cutouts at the side end portions like the terminal 4a described above in order to improve heat dissipation.
[0028]
【Example】
(Example)
50 parts by weight of polyvinyl butyral (PVB) is mixed with 100 parts by weight of activated carbon powder sample having a BET value of 2000 m 2 / g and stirred with a high-speed mixing stirrer. After performing, the sheet-like molded object was produced by roll forming. After forming a molded body for forming a solid activated carbon electrode by cutting into a predetermined shape from the sheet, heat treatment is performed at 900 ° C. in vacuum to obtain an activated carbon structure having a size of 50 mm × 50 mm and a thickness of 0.5 mm. Produced.
[0029]
On the other hand, a 50 mm × 50 mm pulp separator and a 50 μm thick separator, and a current collector made of 50 μm 50 mm thick aluminum foil having a terminal of 10 mm width at one end of the 50 mm × 50 mm A cell laminate was prepared by laminating nine layers of cells using the body-polarizable electrode-separator-polarizable electrode (-current collector) as one unit cell. The aluminum current collector had a shape as shown in Table 1. The cell stack was arranged so that the current collectors were positioned on both end faces, and the cell stack was composed of 10 current collectors, 18 polarizable electrodes, and 9 separators. Further, when the cells were stacked, the terminals were stacked so that the terminals protruded from the same side surface of the cell stack, and the adjacent terminals were alternately arranged at opposite corners.
[0030]
Next, on the side surface of the cell laminate other than the terminal projecting surface, a silicon rubber having a thickness of 1 mm was formed, and through holes penetrating in the longitudinal direction were formed at eight corners, and a frame-shaped sealing member was disposed. And after connecting each terminal located in the same corner protruding on the outer peripheral surface of the cell laminate by ultrasonic welding to form a positive electrode terminal and a negative electrode terminal, each of the terminals is 7 mm long to the outer peripheral side surface of the gasket. Protruded. (Terminal length 3 mm inside gasket).
[0031]
Further, a pressure plate which is a part of a sealing member made of aluminum of 60 mm × 60 mm × 8 mm and having a through hole in a corner is laminated on both end faces of the cell laminate and the gasket, and the pressure plate and the gasket are penetrated. The through holes to be aligned were aligned, screw members made of stainless steel were inserted into the through holes, and the pressure plate and the cell laminate were caulked to a pressure of 0.2 MPa by screwing and sealed.
[0032]
Then, after the gasket was dried at 100 ° C. in a vacuum atmosphere, 1 mol / l of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) in a propylene carbonate (PC) solution was supplied from an electrolyte inlet provided on the outer periphery of the gasket. A non-aqueous electrolyte solution was injected and the polarizable electrode and the separator were impregnated with the electrolyte solution, and then the electrolyte solution inlet was sealed.
[0033]
With respect to 100 electric double layer capacitors obtained, the number of defective terminal breakage was determined, and the yield rate (%) was calculated. In addition, charging and discharging were performed for 50 hours at 70 ° C. and 3.0 V with a current of 50 A, respectively, and the temperature of the cell stack was measured with a thermocouple inserted in the inner wall surface of the gasket. Furthermore, the change rate of the capacitance before and after the heavy discharge was continued for 1000 hours was measured. The results are shown in Table 1.
[0034]
[Table 1]
Figure 0004637325
[0035]
From Table 1, a sample No. in which the terminal is formed in a flat plate shape and no unevenness is formed on the side end portion of the terminal. In No. 1, cracks were likely to occur at the interface between the terminal and the current collector, the yield rate was low, the temperature of the cell stack increased, and the capacitance decreased greatly.
[0036]
On the other hand, the sheet-like terminal within the scope of the present invention is formed so that the main plane is zigzag or corrugated when viewed from the side end, and the side end is provided with a notch. samples are formed in an uneven shape No. In 2 to 15, it was suggested that the yield rate was as high as 80% or more, and the rate of decrease in capacitance after 1000 hours was as long as 30% or less.
[0037]
(Example 2)
Sample No. 1 of Example 1 4 terminals are inserted into through-holes provided in a frame-shaped gasket made of alumina ceramics having a thickness of 1 mm, the surface roughness (Ra) of the main plane formed on the outer surface of the gasket is 100 μm, the pitch is 2 mm on the side edges, An electrical double layer capacitor was prepared and evaluated in the same manner as in Example 1 except that it was connected to a conductor layer having a 2 mm high uneven surface. As a result, the yield rate was 90%, the temperature was 70 ° C., and the capacitance change rate was It was -10%, and it was found that the heat dissipation of the terminal was improved.
[0038]
【The invention's effect】
As described in detail above, in the electric double layer capacitor of the present invention, the main plane of the sheet-like terminal provided integrally with the peripheral portion of the current collector is formed by an uneven surface and / or the sheet-like terminal. By forming concave and convex notches on the side edges of the capacitor, it is possible to increase the heat dissipation of the heat generated in the terminals and prevent the internal heating of the electric double layer capacitor, thereby increasing the temperature of the electric double layer capacitor. It is possible to extend the life by suppressing the decomposition of the accompanying electrolyte.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of an electric double layer capacitor of the present invention.
FIGS. 2A and 2B are a plan view and a side view for explaining the shapes of a current collector and terminals of an electric double layer capacitor of the present invention. FIGS.
FIG. 3 is a schematic cross-sectional view showing an example of another electric double layer capacitor of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10 ... Electric double layer capacitor 2 ... Polarizable electrode 3 ... Separator 4 ... Current collector 4a ... Terminal 5 ... Cell 6 ... Cell laminated body 7 ... Sealing Stop member 9 ... Electrolyte injection port 11 ... Conductor layer

Claims (1)

活性炭を含有する2枚の分極性電極と、該分極性電極間に介装されるセパレータと、前記分極性電極の前記セパレータ側の面とは反対の表面それぞれに積層される集電体との積層体からなるセルと、該セルを封止する封止部材と、前記集電体の周縁部の一部に一体的に設けられ、その一部が前記封止部材の外部に突出するシート状の端子とを具備する電気二重層コンデンサであって、前記シート状の端子は、側端部側から見たときに、主平面がジグザグ状または波状となるように形成されている、および/または側端部が切り欠きを設けて凹凸状に形成されているとともに、前記封止部材内に前記セルが複数層積層されているとともに、複数の前記セルを構成する前記集電体の周縁部に一体的に設けられた前記シート状の端子が、前記封止部材の外面に形成された、側端部に凹凸状の切り欠きを有する導体層を介して一つおきに前記封止部材の外部で連結されてなることを特徴とする電気二重層コンデンサ。Two polarizable electrodes containing activated carbon, a separator interposed between the polarizable electrodes, and a current collector stacked on each surface opposite to the separator-side surface of the polarizable electrode A cell formed of a laminate, a sealing member that seals the cell, and a sheet that is provided integrally with a part of the peripheral portion of the current collector, and a part of which protrudes outside the sealing member The sheet-like terminal is formed such that the main plane is zigzag or wave-like when viewed from the side end side, and / or The side end portion is provided with a notch and is formed in a concavo-convex shape, and a plurality of the cells are stacked in the sealing member, and the peripheral portion of the current collector that constitutes the plurality of cells The sheet-like terminal provided integrally is the sealing portion. The outer surface formed, at the side end portion uneven shaped notch electric double-layer capacitor characterized by comprising coupled outside of the sealing member every other via a conductive layer having a.
JP2000197384A 2000-06-29 2000-06-29 Electric double layer capacitor Expired - Fee Related JP4637325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197384A JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197384A JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002015954A JP2002015954A (en) 2002-01-18
JP4637325B2 true JP4637325B2 (en) 2011-02-23

Family

ID=18695717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197384A Expired - Fee Related JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4637325B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695361A4 (en) * 2003-10-29 2009-11-11 Showa Denko Kk Electrolytic capacitor
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
CN102709054B (en) 2008-10-01 2015-11-18 太阳诱电株式会社 Electrochemical device
JP5026544B2 (en) 2009-07-17 2012-09-12 太陽誘電株式会社 Electrochemical devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159808A (en) * 1991-12-06 1993-06-25 Yuasa Corp Layered thin-type battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JPH09251926A (en) * 1996-03-14 1997-09-22 Kansai Coke & Chem Co Ltd Electric double layer capacitor
JPH11162443A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Assembled battery
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547959B2 (en) * 1997-11-21 2004-07-28 三洋電機株式会社 Lithium battery and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159808A (en) * 1991-12-06 1993-06-25 Yuasa Corp Layered thin-type battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JPH09251926A (en) * 1996-03-14 1997-09-22 Kansai Coke & Chem Co Ltd Electric double layer capacitor
JPH11162443A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Assembled battery
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device

Also Published As

Publication number Publication date
JP2002015954A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
KR100309634B1 (en) Electric Double Layer Capacitors
US7198654B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP3070486B2 (en) Electric double layer capacitor
US20100214721A1 (en) Electric double layer capacitor package
JP2002246269A (en) Electrochemical element
JP4637325B2 (en) Electric double layer capacitor
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
US20220320591A1 (en) Electrochemical device and electronic device that applies same
JP4627874B2 (en) Electric double layer capacitor
JP2001284172A (en) Electric double-layer capacitor
JPH065467A (en) Electric double layer capacitor
WO2021171811A1 (en) Coin-shaped secondary cell
JP4514275B2 (en) Electric double layer capacitor
JP2002043180A (en) Electrical double layer capacitor
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode
KR102013994B1 (en) Super capacitor and manufacturing method thereof
JP4518625B2 (en) Electric double layer capacitor
JPH1140467A (en) Electric double layer capacitor
JP3784205B2 (en) Electric double layer capacitor
CN1841600A (en) Electrochemical device
KR100644528B1 (en) Method for manufacturing stack type electric double layer capacitor
JP2001284177A (en) Electric double-layer capacitor
JP2001244156A (en) Electrochemical capacitor
JP3766562B2 (en) Electric double layer capacitor
JP2010114365A (en) Electric double layer capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees