JP4635069B2 - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP4635069B2
JP4635069B2 JP2008080526A JP2008080526A JP4635069B2 JP 4635069 B2 JP4635069 B2 JP 4635069B2 JP 2008080526 A JP2008080526 A JP 2008080526A JP 2008080526 A JP2008080526 A JP 2008080526A JP 4635069 B2 JP4635069 B2 JP 4635069B2
Authority
JP
Japan
Prior art keywords
wiring
pillar
semiconductor
memory device
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008080526A
Other languages
English (en)
Other versions
JP2009238871A (ja
Inventor
高志 前田
佳久 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008080526A priority Critical patent/JP4635069B2/ja
Priority to US12/408,183 priority patent/US8084809B2/en
Publication of JP2009238871A publication Critical patent/JP2009238871A/ja
Application granted granted Critical
Publication of JP4635069B2 publication Critical patent/JP4635069B2/ja
Priority to US13/275,436 priority patent/US8853766B2/en
Priority to US14/466,620 priority patent/US9412756B2/en
Priority to US15/190,921 priority patent/US9859211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Description

本発明は、不揮発性半導体記憶装置に関し、特に、基板上に複数の絶縁膜及び電極膜が交互に積層された不揮発性半導体記憶装置に関する。
近年、フラッシュメモリの高密度化を図るために、セルを多層化する技術が開発されている。この技術は、基板上に絶縁膜と電極膜とを交互に積層した後、一括で貫通ホールを形成し、この貫通ホールの内面上に電荷を保持する電荷蓄積層を形成し、貫通ホールの内部に柱状の半導体ピラーを埋め込むというものである。これにより、各半導体ピラーと電極膜との交差部分にメモリセルが形成される。そして、最上層の電極膜を分断して一方向に延びる複数本の選択ゲート線とし、電極膜の上方に他方向に延びる複数本のビット線を設けて半導体ピラーの上端部に接続することにより、任意の半導体ピラーを選択できるようにする。一方、基板の上層部分に拡散領域を形成することにより、半導体ピラーの下端に接続されたソース電極を形成する。これにより、メモリセルを3次元的に積層したフラッシュメモリを作製することができる(例えば、特許文献1参照。)。
しかしながら、このような積層型のフラッシュメモリにおいては、各導電部分が3次元的に配置されているため、最上層配線層以外の部分に配置された導電部分、すなわち、ソース電極を構成する拡散領域及び選択ゲート線やワード線を構成する電極膜には、それぞれの端部からしか電位を印加できない。このため、積層型フラッシュメモリにおいて、容量を大きくするために面積を大きくすると、これらの導電部分も大型化し、抵抗が大きくなるという問題がある。この結果、各導電部分を速やかに所定の電位とすることが困難になり、データの書き込み、読み出し、消去の各動作の所要時間が長くなったり、誤動作が生じたりする。また、導電部分の大型化を避けるために、メモリセルアレイを複数に分割する方法が考えられるが、この場合は、メモリセルアレイごとにロウデコーダ等の回路が必要になり、チップ面積が大きくなってしまう。
特開2007−266143号公報
本発明の目的は、動作の所要時間が短い不揮発性半導体記憶装置を提供することである。
本発明の一態様によれば、基板と、前記基板の上層部分に形成された半導体領域と、前記基板上に交互に積層され、積層方向に延びる複数の貫通ホールが前記積層方向から見てマトリクス状に形成されたそれぞれ複数の絶縁膜及び電極膜と、前記半導体領域に接続されたコンタクトと、前記複数の貫通ホールのうちの一部であって第1の方向に配列された貫通ホールの内部に埋設され、前記半導体領域に接続された導電体ピラーと、残りの前記貫通ホールの内部に埋設され前記半導体領域に接続された半導体ピラーと、前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記コンタクトに接続されたセルソース配線と、前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記導電体ピラーに接続されたシャント配線と、前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記半導体ピラーに接続されたビット配線と、少なくとも前記半導体ピラーと一部の前記電極膜との間に設けられた電荷蓄積層と、を備え、前記導電体ピラーの抵抗率は、前記半導体ピラーの抵抗率よりも低く、前記半導体領域には、前記セルソース配線及び前記コンタクトを介して電位が印加されると共に、前記シャント配線及び前記導電体ピラーを介して電位が印加されることを特徴とする不揮発性半導体記憶装置が提供される。
本発明によれば、動作の所要時間が短い不揮発性半導体記憶装置を実現することができる。
以下、図面を参照しつつ、本発明の実施形態について説明する。
先ず、本発明の第1の実施形態について説明する。
図1は、本実施形態に係る不揮発性半導体記憶装置を例示する斜視図であり、
図2は、本実施形態に係る不揮発性半導体記憶装置を例示する平面図であり、
図3は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図であり、
図4は、本実施形態に係る不揮発性半導体記憶装置の1本のメモリストリングを例示する斜視図であり、
図5は、本実施形態に係る不揮発性半導体記憶装置の1つのメモリセルを例示する断面図である。
なお、図1乃至図4においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。また、図1及び図2においては、シリコン基板11も図示を省略している。後述する他の実施形態においても同様に、図を適宜簡略化している。
図1乃至図3に示すように、本実施形態に係る不揮発性半導体記憶装置1(以下、単に「装置1」ともいう)においては、例えば単結晶シリコンからなるシリコン基板11が設けられている。そして、このシリコン基板11の上層部分及びその上方に、1つのメモリセルアレイが設けられている。シリコン基板11の上層部分における矩形の領域には、不純物が導入されて半導体領域が形成されており、セルソースCSとなっている。シリコン基板11上におけるセルソースCSの直上域には、例えば酸化シリコン(SiO)からなる複数の絶縁膜12(図5参照)と、例えば多結晶シリコンからなる複数の電極膜13とが、交互に積層されて、積層体14が形成されている。電極膜13の膜厚は、例えば50ナノメートル(nm)以上であり、積層数は例えば6層である。
以下、本明細書においては、説明の便宜上、XYZ直交座標系を導入する。この座標系においては、シリコン基板11の上面に平行な方向であって相互に直交する2方向をX方向及びY方向とし、X方向及びY方向の双方に対して直交する方向をZ方向とする。
電極膜13は、上層に配置された電極膜13ほどX方向における長さが短くなっており、上方(+Z方向)から見て、各電極膜13は、それより下方に配置された電極膜13及びセルソースCSの内側に配置されている。一方、電極膜13におけるY方向の長さは同一である。なお、電極膜13から見て±X方向及び±Y方向の領域には、絶縁膜(図示せず)が設けられている。そして、最下層に配置された電極膜13は、下側選択ゲートLSGとなっており、最上層に配置された電極膜13は、上側選択ゲートUSGとなっており、それ以外の電極膜13は、ワード線WLとなっている。上述の如く、電極膜13の積層数は例えば6層であるため、上側の電極膜13から順に、上側選択ゲートUSG、4層のワード線WL、下側選択ゲートLSGとなっている。積層体14は、Y方向に沿って複数個設けられている。
上側選択ゲートUSGは、Y方向に沿って分断されており、X方向に延びる複数本の配線状の導電部材となっている。これに対して、ワード線WL及び下側選択ゲートLSGは、単一の積層体14内では分断されておらず、それぞれがXY平面に平行な1枚の板状の導電部材となっている。なお、本実施形態においては、セルソースCSも分断されておらず、複数の積層体14の直下域をつなぐように、XY平面を構成する1枚の板状の導電部材となっている。
各絶縁膜12及び各電極膜13には、積層方向(Z方向)に延びる複数本の貫通ホール15が形成されている。貫通ホール15は、X方向及びY方向に沿ってマトリクス状に配列されており、X方向及びY方向のそれぞれにおいて、貫通ホール15の配列周期は一定である。また、各貫通ホール15は積層体14全体を貫いている。なお、各上側選択ゲートUSGにおいては、複数の貫通ホール15がX方向に沿って一列に配列されている。
複数の貫通ホール15のうちの一部であって、Y方向に一列に配列された貫通ホール15内には、導電体ピラー16が埋設されている。導電体ピラー16は、例えばタングステン(W)若しくはアルミニウム(Al)等の金属、又は、不純物が高濃度にドープされた半導体、例えば、多結晶シリコン若しくは非晶質シリコンによって形成されている。なお、本明細書において「金属」というときは、純金属の他に合金も含むものとする。
一方、残りの貫通ホール15内には、半導体ピラー17が埋設されている。半導体ピラー17は、不純物がドープされた半導体、例えば、多結晶シリコン又は非晶質シリコンによって形成されている。導電体ピラー16及び半導体ピラー17の形状は、共にZ方向に延びる同形状の円柱形である。また、本実施形態においては、導電体ピラー16及び半導体ピラー17の下端部は、いずれもセルソースCSに接続されている。
一例では、導電体ピラー16は、導電体ピラー16及び半導体ピラー17からなるマトリクスにおいて、X方向中央部付近に配置されている。但し、本発明はこれには限定されず、例えば、導電体ピラー16は、導電体ピラー16及び半導体ピラー17からなるマトリクスの−X方向側の端部に配置されていてもよい。
そして、上側選択ゲートUSGが配置されている領域の直上域には、Y方向に延びる複数本のビット配線BLが設けられている。また、ビット配線BLに混じって、例えば1本のシャント配線SLが設けられている。ビット配線BL及びシャント配線SLは、同じ高さに配置されており、金属、例えば、タングステン、アルミニウム又は銅(Cu)によって形成されている。シャント配線SLは、導電体ピラー16の直上域に設けられており、各導電体ピラー16の上端部に接続されている。一方、ビット配線BLは、半導体ピラー17の直上域に設けられており、各ビット配線BLは、Y方向に沿って配列された各列の半導体ピラー17の上端部に接続されている。すなわち、半導体ピラー17は、Y方向に延びる列ごとに、異なるビット配線BLに接続されている。本実施形態においては、ビット配線BL及びシャント配線SLは、Y方向に配列された複数の積層体14の直上域を通過するように連続的に配設されており、各積層体14の半導体ピラー17及び導電体ピラー16に共通接続されている。
上述の如く、導電体ピラー16及び半導体ピラー17は、形状が同じであり、いずれも下端部はセルソースCSに接続されている。しかし、両ピラーはその機能が異なっている。導電体ピラー16は、シャント配線SLをセルソースCSに接続するための接続部材として機能する。一方、半導体ピラー17は、ワード線WLを貫通する部分において、メモリセルとなるトランジスタを構成するために、このトランジスタの半導体領域として機能する。従って、導電体ピラー16の抵抗率は、半導体ピラー17の抵抗率よりも低い。
また、ビット配線BL及びシャント配線SLが配置されている領域の−X方向側には、X方向に延びる複数本の上側選択ゲート配線USLが設けられている。上側選択ゲート配線USLは、金属、例えば、タングステン、アルミニウム又は銅によって形成されている。上側選択ゲート配線USLの本数は、上側選択ゲートUSGの本数と同じであり、各上側選択ゲート配線USLが各ビア18を介して各上側選択ゲートUSGに接続されている。
更に、ビット配線BL及びシャント配線SLが配置されている領域の+X方向側には、1つの積層体14ごとに、X方向に延びる複数本のワード配線WLL、X方向に延びる1本の下側選択ゲート配線LSL、及びX方向に延びる1本のセルソース配線CSLが設けられている。ワード配線WLL、下側選択ゲート配線LSL、及びセルソース配線CSLは、金属、例えば、タングステン、アルミニウム又は銅によって形成されている。1つの積層体14に対応するワード配線WLLの本数は、ワード線WLの枚数と同じであり、各ワード配線WLLがビア19を介して各ワード線WLに接続されている。また、下側選択ゲート配線LSLはビア20を介して下側選択ゲートLSGに接続されており、セルソース配線CSLはコンタクト21を介してセルソースCSに接続されている。ビア19、20及びコンタクト21は、それらが接続される電極膜13の直上域であって、それより上層の電極膜13から見て+X方向側に外れた領域に形成されている。
ビット配線BL、シャント配線SL、上側選択ゲート配線USL、ワード配線WLL、下側選択ゲート配線LSL及びセルソース配線CSLは、高さ方向(Z方向)の位置、厚さ、材料が同一であり、例えば、1枚の金属膜がパターニングされて形成されたものである。各配線間は、層間絶縁膜(図示せず)によって絶縁されている。
図4に示すように、各半導体ピラー17は、ビット配線BLとセルソースCSとの間に接続されており、上方から下方に向かって、すなわち、ビット配線BLとの接続部分からセルソースCSとの接続部分に向かって、上側選択ゲートUSG、複数本のワード線WL、下側選択ゲートLSGを貫通している。
図5に示すように、半導体ピラー17とワード線WLとの間の円筒状の部分には、内側、すなわち、半導体ピラー17側から順に、絶縁層25、電荷蓄積層26、絶縁層27がこの順に積層されている。絶縁層25及び27は、例えばシリコン酸化物(SiO)からなり、電荷蓄積層26は、例えばシリコン窒化物(SiN)からなる。これにより、半導体ピラー17とワード線WLとの交差部分に、メモリセルとなるSGT(Surrounding Gate Transistor:サラウンディングゲートトランジスタ)が形成され、電荷蓄積層26におけるこのSGT内に配置された部分に、電荷が蓄積される。これにより、1本の半導体ピラー17及びその周囲には、ワード線WLと同数のメモリセルがZ方向に一列に配列され、1本のメモリストリングが構成されている。また、装置1においては、複数本の半導体ピラー17がX方向及びY方向に沿ってマトリクス状に配列されていることにより、複数のメモリセルが、X方向、Y方向、Z方向に沿って、3次元的に配列されている。
一方、半導体ピラー17と上側選択ゲートUSG及び下側選択ゲートLSGとの間の円筒状の部分には、ゲート絶縁膜(図示せず)が設けられている。これにより、半導体ピラー17と上側選択ゲートUSGとの交差部分、及び半導体ピラー17と下側選択ゲートLSGとの交差部分にも、それぞれSGTが形成される。このSGTはメモリセルとしては機能せず、半導体ピラー17を選択する機能を果たしている。
同様に、導電体ピラー16とワード線WLとの間の円筒状の部分にも、絶縁層25、電荷蓄積層26、絶縁層27がこの順に積層されている。これにより、導電体ピラー16は電極膜13、すなわち、上側選択ゲートUSG、ワード線WL及び下側選択ゲートLSGからは絶縁されており、シャント配線SL及びセルソースCSのみに接続されている。なお、導電体ピラー16の周囲には、少なくとも絶縁層25及び27のうちの一方が設けられていればよく、電荷蓄積層26は設けられていなくてもよい。また、導電体ピラー16と上側選択ゲートUSG及び下側選択ゲートLSGとの間には、ゲート絶縁膜(図示せず)が設けられている。このように、電荷蓄積層26は、少なくとも、半導体ピラー17と一部の電極膜13との間、すなわち、メモリセルを構成する部分に設けられていればよい。
また、装置1においては、ビット配線BLを介して半導体ピラー17の上端部に電位を印加するドライバ回路、セルソースCSを介して半導体ピラー17の下端部に電位を印加するドライバ回路、上側選択ゲート配線USLを介して上側選択ゲートUSGに電位を印加するドライバ回路、下側選択ゲート配線LSLを介して下側選択ゲートLSGに電位を印加するドライバ回路、ワード配線WLLを介して各ワード線WLに電位を印加するドライバ回路(いずれも図示せず)が設けられている。
次に、本実施形態に係る装置1の製造方法の例について説明する。
先ず、シリコン基板11の上層部分の矩形領域に不純物を導入し、セルソースCSを形成する。次に、シリコン基板11上にそれぞれ1層の絶縁膜12及び電極膜13を形成する。そして、これらの電極膜13及び絶縁膜12に貫通ホールを形成する。このとき、例えば、後の工程で導電体ピラー16が形成される予定の領域と、半導体ピラー17が形成される予定の領域とに、同時にマトリクス状に貫通ホールを形成する。次に、この貫通ホールの内面上にゲート絶縁膜を形成し、貫通ホール内に半導体材料、例えば、ドナーがドープされたN型の多結晶シリコン又は非晶質シリコンを埋め込む。これにより、下側選択ゲートLSGと、貫通ホール15の下部及び半導体ピラー17の下部が形成される。
次に、複数層、例えば4層の絶縁膜12と例えば4層の電極膜13とを交互に積層する。そして、積層させた電極膜13及び絶縁膜12に貫通ホールを形成する。このときにも、例えば、後の工程で導電体ピラー16が埋設される予定の貫通ホールと、半導体ピラー17が埋設される予定の貫通ホールとを、同時にマトリクス状に形成する。次に、この貫通ホールの内面上に、絶縁層27、電荷蓄積層26及び絶縁層25をこの順に形成する。次に、全ての貫通ホール内に半導体材料、例えば、ドナーがドープされたN型の多結晶シリコン又は非晶質シリコンを埋め込む。これにより、4層の電極膜13がワード線WLとなり、貫通ホール15の中央部及び半導体ピラー17の中央部が形成される。
次に、1層の絶縁膜12、1層の電極膜13、1層の絶縁膜12をこの順に形成する。そして、これらに貫通ホールを形成し、貫通ホールの内面上にゲート絶縁膜を形成し、内部に半導体材料を埋め込む。これにより、形成された電極膜13が上側選択ゲートUSGとなり、貫通ホール15の上部及び半導体ピラー17の上部が形成される。この結果、貫通ホール15及び半導体ピラー17が完成する。
そして、導電体ピラー16を埋め込む予定の貫通ホール15のみを露出させ、他の貫通ホール15を覆うようにレジスト膜(図示せず)を形成し、このレジスト膜をマスクとしてエッチングを施すことにより、導電体ピラー16を埋め込む予定の貫通ホール15内から半導体ピラー17を除去する。その後、この貫通ホール15内に改めて導電体材料、例えば、導電体ピラー16よりも高濃度にドナーがドープされたN型の多結晶シリコン若しくは非晶質シリコン、又はタングステン若しくはアルミニウム等の金属を埋め込み、導電体ピラー16を形成する。
そして、ビア19、20及びコンタクト21を形成する。次に、全面に金属膜を形成し、パターニングすることにより、ビット配線BL、シャント配線SL、上側選択ゲート配線USL、ワード配線WLL、下側選択ゲート配線LSL及びセルソース配線CSLを形成する。これにより、装置1を製造する。この方法によれば、X方向及びY方向のそれぞれについて一定の周期で配列された貫通ホール15を同時に形成しているため、貫通ホール15のサイズのばらつきを抑えることができる。
又は、以下の方法によっても、装置1を製造することができる。
上述の貫通ホール15を形成する各段階において、導電体ピラー16を形成する予定の領域を覆い、半導体ピラー17を形成する予定の領域を露出させるようにレジスト膜(図示せず)を形成し、このレジスト膜をマスクとしてエッチングを行い、半導体ピラー17が埋設される予定の貫通ホール15のみを先に形成する。そして、この貫通ホール15内に半導体材料を埋設し、半導体ピラー17を形成する。次に、積層体14を形成した後、導電体16が埋設される予定の領域に貫通ホール15を形成し、導電材料を埋め込み、導電体ピラー16を形成する。以後、同様に、ビア19、20及びコンタクト21を形成し、ビット配線BL、シャント配線SL、上側選択ゲート配線USL、ワード配線WLL及びセルソース配線CSLを形成する。
次に、本実施形態の動作及び効果について説明する。
図1に示すように、装置1においては、ビット線BLを選択することにより、メモリセルのX座標を選び、上側選択ゲートUSGを選択することにより、メモリセルのY座標を選び、ワード線WLを選択することにより、メモリセルのZ座標を選ぶ。これにより、装置1内から1つのメモリセルを選択し、このメモリセルに対して電荷を注入又は引き出すことにより、データを記憶又は消去する。また、このメモリセルを通過するように、ビット線BLとセルソースCSとの間にセンス電流を流すことにより、記憶されたデータを読み出す。
そして、本実施形態においては、シャント配線SLが導電体ピラー16を介してセルソースCSに接続されている。このため、シャント配線SLに印加した電位を、セルソースCSに印加することができる。これにより、セルソースCSの電位を所定の電位に調整する際には、セルソース配線CSL及びコンタクト21を介してセルソースCSの+X方向側の端部に電位を印加すると共に、シャント配線SL及び導電体ピラー16を介してセルソースCSのX方向中央部にも電位を印加することができる。この結果、装置1を大型化しても、セルソースCSを素早く充放電し、その電位を速やかに所定の電位に調整することができる。これにより、データの書き込み、読み出し、消去の各動作の所要時間を短縮し、また、誤動作の発生を防止することができる。従って、装置1の記憶容量を増大させるために、小さなメモリセルアレイを複数設ける必要がなく、1つの大きなメモリセルアレイを形成することができる。これにより、周辺回路を複数組設ける必要がなくなり、チップ面積を低減することができる。
これに対して、仮に、シャント配線SL及び導電体ピラー16が設けられていないと、セルソースCSの電位を所定の電位に調整する際に、セルソースCSの端部からしか電位を印加できない。また、セルソースCSはシリコン基板11の上層部分に形成された不純物拡散層であるため、金属部分と比較して抵抗率が大きい。従って、シャント配線SL及び導電体ピラー16を設けた場合と比較して、セルソースCSの電位を所定の電位に調整するために要する時間が長くなる。このため、メモリセルアレイを大型化すると、各動作の所要時間が長くなり、また、誤動作が発生しやすくなる。従って、装置1の大容量化を図るためには、小さなメモリセルアレイを複数個設けざるを得なくなり、周辺回路が増え、チップ面積が増大する。
また、本実施形態によれば、マトリクス状に配列された貫通ホール15のうち、X方向中央部に位置する一列の貫通ホール15内に導電体ピラー16を埋設しているため、導電体ピラー16をセルソースCSのX方向中央部分に接続させることができる。
次に、本発明の第2の実施形態について説明する。
図6は、本実施形態に係る不揮発性半導体記憶装置を例示する平面図であり、
図7は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図6及び図7に示すように、本実施形態に係る不揮発性半導体記憶装置2においては、シャント配線SLよりも上層に、X方向に延びる上部配線Mが設けられている。上部配線Mは、積層体14ごとに、セルソース配線CSLの直上域からシャント配線SLの直上域にわたって配設されており、上部配線Mの+X方向側の端部は、ビア32を介してセルソース配線CSLに接続されており、−X方向側の端部は、ビア33を介してシャント配線SLに接続されている。上部配線Mは、例えば、タングステン、アルミニウム又は銅等の金属により形成されている。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
セルソースCSに電位を印加するためには、セルソース用のドライバ回路が必要である。前述の第1の実施形態において、コンタクト21及びシャント配線SLの双方を介してセルソースCSに電位を印加するためには、積層体14から見て+X方向側の領域と+Y方向側若しくは−Y方向側の領域の双方にセルソース用のドライバ回路を設けるか、又は、積層体14から見て+X方向側の領域のみにドライバ回路を設け、このドライバ回路から+Y方向側若しくは−Y方向側の領域まで配線を引き回す必要がある。
これに対して、本実施形態によれば、シャント配線SLよりも上層にX方向に延びる上部配線Mを設けることにより、セルソース配線CSLを、上部配線Mを介してシャント配線SLに接続することができる。このため、積層体14から見てY方向側の領域にドライバ回路を設ける必要がなく、配線を引き回す必要もない。これにより、装置全体の構成を簡略化し、より一層の小型化を図ることができる。本実施形態における上記以外の動作及び効果は、前述の第1の実施形態と同様である。
次に、本発明の第3の実施形態について説明する。
図8は、本実施形態に係る不揮発性半導体記憶装置を例示する平面図である。
図8に示すように、本実施形態に係る不揮発性半導体記憶装置3においては、シャント配線SLが積層体14ごとに分断されている。また、上部配線Mは、積層体14ごとに設けられている。従って、装置3においては、積層体14と同数の上部配線Mが設けられている。更に、セルソースCSも、Y方向に沿って積層体14ごとに複数の部分に分断されている。セルソースCSの複数の部分は、Y方向に沿って配列されており、電気的に相互に分離されている。そして、各積層体14において、上部配線Mは、シャント配線SL及び導電体ピラー16を介して、セルソースCSの各部分に接続されている。本実施形態における上記以外の構成は、前述の第2の実施形態と同様である。
本実施形態においては、シャント配線SL、セルソースCSが積層体14ごとに分断されており、積層体14ごとに上部配線Mが設けられているため、半導体ピラー17の上下端間に印加する電圧を、積層体14ごとに制御することができる。これにより、メモリセルに記憶されているデータを、積層体14ごとに消去することができる。すなわち、装置3においては、1つの積層体14に属する一定数のメモリセルが1つのブロックを構成し、ブロック単位でデータの消去を行うことができる。本実施形態における上記以外の動作及び効果は、前述の第2の実施形態と同様である。
次に、本発明の第4の実施形態について説明する。
図9は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図9に示すように、本実施形態に係る不揮発性半導体記憶装置4においては、前述の第1の実施形態に係る不揮発性半導体記憶装置1(図3参照)と比較して、導電体ピラー16がセルソースCSではなく下側選択ゲートLSGに接続されている点が異なっている。なお、導電体ピラー16は、上側選択ゲートUSG、ワード線WL及びセルソースCSには接続されていない。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
本実施形態においては、シャント配線SLが導電体ピラー16を介して下側選択ゲートLSGに接続されている。このため、下側選択ゲート配線LSLがビア20を介して下側選択ゲートLSGの端部に電位を印加すると共に、シャント配線SL及び導電体ピラー16を介して下側選択ゲートLSGの中央部にも電位を印加することができる。この結果、下側選択ゲートLSGの電位を速やかに調整することができる。
本実施形態に係る装置4は、例えば、以下の方法によって製造することができる。すなわち、1層目の絶縁膜12及び1層目の電極膜13を形成し、これらの膜に貫通ホールを形成する際に、導電体ピラー16の直下域となる予定の領域には貫通ホールを形成しない。そして、貫通ホール内に半導体材料を埋め込む。次に、2層目以降の絶縁膜12及び電極膜13を形成し、これらの膜に貫通ホールを形成する際に、導電体ピラー16が埋設される予定の貫通ホール15と、半導体ピラー17が埋設される予定の貫通ホール15とを、同時に形成する。これにより、半導体ピラー17が埋設される予定の貫通ホール15はセルソースCSまで到達するが、導電体ピラー16が埋設される予定の貫通ホール15は1層目の電極膜13、すなわち、下側選択ゲートLSGまでしか到達しない。そして、全ての貫通ホール内に半導体材料を埋め込む。次に、最上層の絶縁膜12及び電極膜13を形成し、貫通ホールを形成し、半導体材料を埋め込む。これにより、半導体ピラー17が埋設される。その後、導電体ピラー16を形成する予定の貫通ホール15内から半導体材料を除去し、この貫通ホール15内に導電体ピラー16を改めて埋設する。この方法によれば、シャント配線SLと下側選択ゲートLSGとの間にのみ、導電体ピラー16を設けることができる。
次に、本発明の第5の実施形態について説明する。
図10は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図10に示すように、本実施形態は、前述の第4の実施形態に前述の第2の実施形態を組み合わせた例である。すなわち、本実施形態に係る不揮発性半導体記憶装置5においては、シャント配線SLは導電体ピラー16を介して下側選択ゲートLSGに接続されており、シャント配線SLと下側選択ゲート配線LSLとの間に、上部配線Mが接続されている。本実施形態における上記以外の構成は、前述の第4の実施形態と同様である。
本実施形態によれば、積層体14から見て±Y方向側の領域に下側選択ゲートLSGを駆動するためのドライバ回路を設けることなく、また、これらの領域内で配線を引き回すことなく、シャント配線SL及び導電体ピラー16を介して下側選択ゲートLSGに電位を印加することができる。本実施形態における上記以外の動作及び効果は、前述の第4の実施形態と同様である。
次に、本発明の第6の実施形態について説明する。
図11は、本実施形態に係る不揮発性半導体記憶装置を例示する平面図であり、
図12は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図11及び図12に示すように、本実施形態に係る不揮発性半導体記憶装置6は、前述の第2の実施形態に係る不揮発性半導体記憶装置2(図6及び図7参照)と比較して、以下の点が異なっている。すなわち、導電体ピラー16はセルソースCSではなく上側選択ゲートUSGに接続されている。なお、導電体ピラー16は、ワード線WL、下側選択ゲートLSG及びセルソースCSには接続されていない。また、シャント配線SLは上側選択ゲート配線USLごとに分断されている。更に、上部配線Mは積層体14ごとではなく上側選択ゲート配線USLごとに設けられており、上側選択ゲート配線USLをシャント配線SLに接続している。本実施形態における上記以外の構成は、前述の第2の実施形態と同様である。なお、装置6の製造方法は、前述の第4の実施形態で説明した方法と同様である。
本実施形態においては、上側選択ゲート配線USLがビア18を介して上側選択ゲートUSGの端部に電位を印加すると共に、上部配線M、シャント配線SL及び導電体ピラー16を介して上側選択ゲートUSGの中央部にも電位を印加することができる。この結果、上側選択ゲートUSGの電位を速やかに調整することができる。
次に、本発明の第7の実施形態について説明する。
図13は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図13に示すように、本実施形態に係る不揮発性半導体記憶装置7においては、前述の第1の実施形態に係る不揮発性半導体記憶装置1(図3参照)と比較して、導電体ピラー16がセルソースCSではなくワード線WLの1つに接続されている点が異なっている。なお、導電体ピラー16は、上側選択ゲートUSG、他のワード線WL、下側選択ゲートLSG及びセルソースCSには接続されていない。本実施形態における上記以外の構成は、前述の第1の実施形態と同様である。
なお、導電体ピラー16の直下域には、貫通ホールが形成されていてもいなくてもよく、貫通ホールが形成されている場合には、この貫通ホール内には、絶縁材料が埋め込まれていてもよく、上方の導電体ピラー16に接続されない限り、導電材料が埋め込まれていてもよく、半導体材料が埋め込まれていてもよい。但し、半導体材料が埋め込まれていても、メモリセルとしては機能しない。
本実施形態においては、ワード配線WLLがビア19を介してワード線WLの+X方向側の端部に電位を印加すると共に、シャント配線SL及び導電体ピラー16を介してワード線WLのX方向中央部にも電位を印加することができる。この結果、このワード線WLの電位を速やかに調整することができる。
次に、本発明の第8の実施形態について説明する。
図14は、本実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
図14に示すように、本実施形態は、前述の第7の実施形態に前述の第2の実施形態を組み合わせた例である。すなわち、本実施形態に係る不揮発性半導体記憶装置8においては、シャント配線SLは導電体ピラー16を介して1つのワード線WLに接続されており、シャント配線SLとこのワード線WLに接続されたワード配線WLLとの間に、上部配線Mが接続されている。本実施形態における上記以外の構成は、前述の第7の実施形態と同様である。
本実施形態によれば、積層体14から見て±Y方向側の領域にワード線WLを駆動するためのドライバ回路を設けることなく、また、これらの領域内で配線を引き回すことなく、シャント配線SL及び導電体ピラー16を介してワード線WLに電位を印加することができる。本実施形態における上記以外の動作及び効果は、前述の第7の実施形態と同様である。
以上、実施形態を参照して本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。例えば、前述の各実施形態は、相互に組み合わせて実施することができる。また、前述の各実施形態に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
本発明の第1の実施形態に係る不揮発性半導体記憶装置を例示する斜視図である。 第1の実施形態に係る不揮発性半導体記憶装置を例示する平面図である。 第1の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 第1の実施形態に係る不揮発性半導体記憶装置の1本のメモリストリングを例示する斜視図である。 第1の実施形態に係る不揮発性半導体記憶装置の1つのメモリセルを例示する断面図である。 本発明の第2の実施形態に係る不揮発性半導体記憶装置を例示する平面図である。 第2の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 本発明の第3の実施形態に係る不揮発性半導体記憶装置を例示する平面図である。 本発明の第4の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 本発明の第5の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 本発明の第6の実施形態に係る不揮発性半導体記憶装置を例示する平面図である。 第6の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 本発明の第7の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。 本発明の第8の実施形態に係る不揮発性半導体記憶装置を例示する断面図である。
符号の説明
1、2、3、4、5、6、7、8 不揮発性半導体記憶装置、11 シリコン基板、12 絶縁膜、13 電極膜、14 積層体、15 貫通ホール、16 導電体ピラー、17 半導体ピラー、18、19、20 ビア、21 コンタクト、25 絶縁層、26 電荷蓄積層、27 絶縁層、32、33 ビア、BL ビット配線、CS セルソース、CSL セルソース配線、LSG 下側選択ゲート、LSL 下側選択ゲート配線、M 上部配線、SL シャント配線、USG 上側選択ゲート、USL 上側選択ゲート配線、WL ワード線、WLL ワード配線

Claims (5)

  1. 基板と、
    前記基板の上層部分に形成された半導体領域と、
    前記基板上に交互に積層され、積層方向に延びる複数の貫通ホールが前記積層方向から見てマトリクス状に形成されたそれぞれ複数の絶縁膜及び電極膜と、
    前記半導体領域に接続されたコンタクトと、
    前記複数の貫通ホールのうちの一部であって第1の方向に配列された貫通ホールの内部に埋設され、前記半導体領域に接続された導電体ピラーと、
    残りの前記貫通ホールの内部に埋設され前記半導体領域に接続された半導体ピラーと、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記コンタクトに接続されたセルソース配線と、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記導電体ピラーに接続されたシャント配線と、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記半導体ピラーに接続されたビット配線と、
    少なくとも前記半導体ピラーと一部の前記電極膜との間に設けられた電荷蓄積層と、
    を備え、
    前記導電体ピラーの抵抗率は、前記半導体ピラーの抵抗率よりも低く、
    前記半導体領域には、前記セルソース配線及び前記コンタクトを介して電位が印加されると共に、前記シャント配線及び前記導電体ピラーを介して電位が印加されることを特徴とする不揮発性半導体記憶装置。
  2. 前記シャント配線及び前記ビット配線よりも上方に設けられ、前記第1の方向に交差する第2の方向に延び、前記セルソース配線及び前記シャント配線に接続された上部配線をさらに備えたことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 記半導体領域は、前記第1の方向に沿って配列され相互に分離された複数の部分に分断されており、
    前記シャント配線及び前記上部配線は前記部分ごとに設けられている
    ことを特徴とする請求項2記載の不揮発性半導体記憶装置。
  4. 基板と、
    前記基板の上層部分に形成された半導体領域と、
    前記基板上に交互に積層され、積層方向に延びる複数の貫通ホールが前記積層方向から見てマトリクス状に形成されたそれぞれ複数の絶縁膜及び電極膜と、
    一の前記電極膜に接続されたビアと、
    前記複数の貫通ホールのうちの一部であって第1の方向に配列された貫通ホールの内部に埋設され、前記一の電極膜に接続された導電体ピラーと、
    残りの前記貫通ホールの内部に埋設され前記半導体領域に接続された半導体ピラーと、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記ビアに接続された配線と、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記導電体ピラーに接続されたシャント配線と、
    前記それぞれ複数の絶縁膜及び電極膜よりも上層に設けられ、前記半導体ピラーに接続されたビット配線と、
    少なくとも前記半導体ピラーと一部の前記電極膜との間に設けられた電荷蓄積層と、
    を備え、
    前記導電体ピラーの抵抗率は、前記半導体ピラーの抵抗率よりも低く、
    前記一の電極膜には、前記配線及び前記ビアを介して電位が印加されると共に、前記シャント配線及び前記導電体ピラーを介して電位が印加されることを特徴とする不揮発性半導体記憶装置。
  5. 前記シャント配線及び前記ビット配線よりも上方に設けられ、前記第1の方向に交差する第2の方向に延び、前記配線及び前記シャント配線に接続された上部配線をさらに備えたことを特徴とする請求項記載の不揮発性半導体記憶装置。
JP2008080526A 2008-03-26 2008-03-26 不揮発性半導体記憶装置 Expired - Fee Related JP4635069B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008080526A JP4635069B2 (ja) 2008-03-26 2008-03-26 不揮発性半導体記憶装置
US12/408,183 US8084809B2 (en) 2008-03-26 2009-03-20 Nonvolatile semiconductor memory device including pillars buried inside through holes
US13/275,436 US8853766B2 (en) 2008-03-26 2011-10-18 Nonvolatile semiconductor memory device including pillars buried inside through holes
US14/466,620 US9412756B2 (en) 2008-03-26 2014-08-22 Nonvolatile semiconductor memory device including pillars buried inside through holes same
US15/190,921 US9859211B2 (en) 2008-03-26 2016-06-23 Nonvolatile semiconductor memory device including pillars buried inside through holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080526A JP4635069B2 (ja) 2008-03-26 2008-03-26 不揮発性半導体記憶装置

Publications (2)

Publication Number Publication Date
JP2009238871A JP2009238871A (ja) 2009-10-15
JP4635069B2 true JP4635069B2 (ja) 2011-02-16

Family

ID=41115776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080526A Expired - Fee Related JP4635069B2 (ja) 2008-03-26 2008-03-26 不揮発性半導体記憶装置

Country Status (2)

Country Link
US (4) US8084809B2 (ja)
JP (1) JP4635069B2 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635069B2 (ja) * 2008-03-26 2011-02-16 株式会社東芝 不揮発性半導体記憶装置
JP2009238874A (ja) * 2008-03-26 2009-10-15 Toshiba Corp 半導体メモリ及びその製造方法
KR101660944B1 (ko) 2009-07-22 2016-09-28 삼성전자 주식회사 수직형의 비휘발성 메모리 소자 및 그 제조 방법
US8541832B2 (en) 2009-07-23 2013-09-24 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
KR101624975B1 (ko) * 2009-11-17 2016-05-30 삼성전자주식회사 3차원 반도체 기억 소자
KR101623547B1 (ko) * 2009-12-15 2016-05-23 삼성전자주식회사 재기입가능한 3차원 반도체 메모리 장치의 제조 방법
KR101738533B1 (ko) 2010-05-24 2017-05-23 삼성전자 주식회사 적층 메모리 장치 및 그 제조 방법
KR20120003351A (ko) 2010-07-02 2012-01-10 삼성전자주식회사 3차원 비휘발성 메모리 장치 및 그 동작방법
JP2012038865A (ja) * 2010-08-05 2012-02-23 Toshiba Corp 不揮発性半導体記憶装置および不揮発性半導体記憶装置の製造方法
KR101763420B1 (ko) 2010-09-16 2017-08-01 삼성전자주식회사 3차원 반도체 기억 소자 및 그 제조 방법
KR101825539B1 (ko) 2010-10-05 2018-03-22 삼성전자주식회사 3차원 반도체 장치 및 그 제조 방법
KR101855324B1 (ko) 2011-05-04 2018-05-09 삼성전자주식회사 3차원 반도체 기억 소자 및 그 제조 방법
JP2013131580A (ja) * 2011-12-20 2013-07-04 Toshiba Corp 半導体装置及びその製造方法
US8987787B2 (en) * 2012-04-10 2015-03-24 Macronix International Co., Ltd. Semiconductor structure and method for manufacturing the same
US9281029B2 (en) 2012-06-15 2016-03-08 Sandisk 3D Llc Non-volatile memory having 3D array architecture with bit line voltage control and methods thereof
US8895437B2 (en) 2012-06-15 2014-11-25 Sandisk 3D Llc Method for forming staircase word lines in a 3D non-volatile memory having vertical bit lines
KR101989514B1 (ko) 2012-07-11 2019-06-14 삼성전자주식회사 반도체 소자 및 그 제조 방법
KR102003529B1 (ko) 2012-08-22 2019-07-25 삼성전자주식회사 적층된 전극들을 형성하는 방법 및 이를 이용하여 제조되는 3차원 반도체 장치
US9595533B2 (en) * 2012-08-30 2017-03-14 Micron Technology, Inc. Memory array having connections going through control gates
US8969945B2 (en) * 2012-09-05 2015-03-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
KR102031187B1 (ko) 2012-10-05 2019-10-14 삼성전자주식회사 수직형 메모리 장치
US9287167B2 (en) 2012-10-05 2016-03-15 Samsung Electronics Co., Ltd. Vertical type memory device
US9129861B2 (en) 2012-10-05 2015-09-08 Samsung Electronics Co., Ltd. Memory device
KR102045249B1 (ko) 2013-01-18 2019-11-15 삼성전자주식회사 3차원 반도체 소자의 배선 구조물
JP6031394B2 (ja) * 2013-03-29 2016-11-24 旺宏電子股▲ふん▼有限公司 3dnandフラッシュメモリ
JP2015026674A (ja) * 2013-07-25 2015-02-05 株式会社東芝 不揮発性記憶装置およびその製造方法
US20150171321A1 (en) 2013-12-13 2015-06-18 Micron Technology, Inc. Methods of forming metal on inhomogeneous surfaces and structures incorporating metal on inhomogeneous surfaces
JP2015170692A (ja) * 2014-03-06 2015-09-28 株式会社東芝 半導体装置及びその製造方法
US9263461B2 (en) * 2014-03-07 2016-02-16 Micron Technology, Inc. Apparatuses including memory arrays with source contacts adjacent edges of sources
KR102339740B1 (ko) * 2015-03-10 2021-12-15 삼성전자주식회사 수직형 메모리 장치
US9570392B2 (en) * 2015-04-30 2017-02-14 Kabushiki Kaisha Toshiba Memory device and method for manufacturing the same
KR102373542B1 (ko) 2015-07-09 2022-03-11 삼성전자주식회사 반도체 메모리 장치
US9911749B2 (en) * 2015-09-09 2018-03-06 Toshiba Memory Corporation Stacked 3D semiconductor memory structure
JP2017054573A (ja) * 2015-09-11 2017-03-16 株式会社東芝 半導体記憶装置
US9818759B2 (en) * 2015-12-22 2017-11-14 Sandisk Technologies Llc Through-memory-level via structures for a three-dimensional memory device
KR102607825B1 (ko) * 2016-01-18 2023-11-30 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
JP6515046B2 (ja) 2016-03-10 2019-05-15 東芝メモリ株式会社 半導体記憶装置
US9717674B1 (en) 2016-04-06 2017-08-01 The Procter & Gamble Company Skin cleansing compositions comprising biodegradable abrasive particles
US10806692B2 (en) 2016-10-03 2020-10-20 The Procter & Gamble Company Skin cleansing compositions comprising color stable abrasive particles
JP2018160303A (ja) * 2017-03-23 2018-10-11 東芝メモリ株式会社 半導体記憶装置
JP2018170447A (ja) * 2017-03-30 2018-11-01 東芝メモリ株式会社 半導体装置及びその製造方法
CN110914991B (zh) * 2018-12-18 2021-04-27 长江存储科技有限责任公司 具有转移的互连层的三维存储器件以及其形成方法
CN110896668B (zh) 2018-12-18 2021-07-20 长江存储科技有限责任公司 多堆栈三维存储器件以及其形成方法
CN110896669B (zh) 2018-12-18 2021-01-26 长江存储科技有限责任公司 多堆叠三维存储器件以及其形成方法
TWI685949B (zh) * 2019-05-15 2020-02-21 力晶積成電子製造股份有限公司 非揮發性記憶體結構
KR102650428B1 (ko) 2019-11-06 2024-03-25 에스케이하이닉스 주식회사 반도체 메모리 장치
US11217523B2 (en) 2020-01-17 2022-01-04 SK Hynix Inc. Semiconductor memory device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223867A (ja) * 1997-02-10 1998-08-21 Toshiba Corp 半導体装置及びその製造方法
JP2001203286A (ja) * 2000-01-17 2001-07-27 Samsung Electronics Co Ltd Nand型フラッシュメモリ素子及びその製造方法
JP2007180389A (ja) * 2005-12-28 2007-07-12 Toshiba Corp 半導体記憶装置及びその製造方法
JP2007266143A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004510A (ja) 2007-06-20 2009-01-08 Toshiba Corp 不揮発性半導体記憶装置
JP4635069B2 (ja) * 2008-03-26 2011-02-16 株式会社東芝 不揮発性半導体記憶装置
JP5283960B2 (ja) 2008-04-23 2013-09-04 株式会社東芝 三次元積層不揮発性半導体メモリ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223867A (ja) * 1997-02-10 1998-08-21 Toshiba Corp 半導体装置及びその製造方法
JP2001203286A (ja) * 2000-01-17 2001-07-27 Samsung Electronics Co Ltd Nand型フラッシュメモリ素子及びその製造方法
JP2007180389A (ja) * 2005-12-28 2007-07-12 Toshiba Corp 半導体記憶装置及びその製造方法
JP2007266143A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
US20070252201A1 (en) * 2006-03-27 2007-11-01 Masaru Kito Nonvolatile semiconductor memory device and manufacturing method thereof

Also Published As

Publication number Publication date
US20090242968A1 (en) 2009-10-01
JP2009238871A (ja) 2009-10-15
US20120043601A1 (en) 2012-02-23
US8853766B2 (en) 2014-10-07
US20160307838A1 (en) 2016-10-20
US20140361357A1 (en) 2014-12-11
US9859211B2 (en) 2018-01-02
US9412756B2 (en) 2016-08-09
US8084809B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
JP4635069B2 (ja) 不揮発性半導体記憶装置
JP5430890B2 (ja) 半導体記憶装置
JP5364336B2 (ja) 半導体記憶装置
KR100975681B1 (ko) 반도체 기억 장치
JP5112201B2 (ja) 不揮発性半導体記憶装置
JP2010010596A (ja) 不揮発性半導体記憶装置及びその製造方法
TWI723737B (zh) 半導體記憶裝置
TWI712162B (zh) 半導體記憶裝置
JP2011023464A (ja) 半導体記憶装置
TW202123436A (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
US20130248975A1 (en) Non-volatile semiconductor memory device and its manufacturing method
US10790229B2 (en) Semiconductor memory device
US11889689B2 (en) Semiconductor memory device
CN112510047B (zh) 半导体存储装置
JP2010016214A (ja) 不揮発性半導体記憶装置及びその製造方法
US10515997B2 (en) Memory device and method for manufacturing the same
US10762956B2 (en) Semiconductor memory device
CN217955859U (zh) 半导体存储装置
TWI844821B (zh) 半導體記憶裝置
TWI768642B (zh) 半導體記憶裝置
US20230276627A1 (en) Semiconductor device and manufacturing method thereof
TW202232728A (zh) 半導體記憶裝置
JP2023038689A (ja) 半導体記憶装置
TW202301649A (zh) 半導體記憶裝置及其製造方法
TW202337011A (zh) 半導體裝置及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees