JP4629154B1 - Copper alloy for electronic materials and manufacturing method thereof - Google Patents

Copper alloy for electronic materials and manufacturing method thereof Download PDF

Info

Publication number
JP4629154B1
JP4629154B1 JP2010066397A JP2010066397A JP4629154B1 JP 4629154 B1 JP4629154 B1 JP 4629154B1 JP 2010066397 A JP2010066397 A JP 2010066397A JP 2010066397 A JP2010066397 A JP 2010066397A JP 4629154 B1 JP4629154 B1 JP 4629154B1
Authority
JP
Japan
Prior art keywords
less
grain size
copper alloy
crystal grains
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010066397A
Other languages
Japanese (ja)
Other versions
JP2011195927A (en
Inventor
寛 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010066397A priority Critical patent/JP4629154B1/en
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP4629154B1 publication Critical patent/JP4629154B1/en
Application granted granted Critical
Priority to TW100109511A priority patent/TWI429763B/en
Priority to KR1020127020755A priority patent/KR101335201B1/en
Priority to EP11759455.6A priority patent/EP2551384A4/en
Priority to PCT/JP2011/057026 priority patent/WO2011118650A1/en
Priority to MX2012010887A priority patent/MX2012010887A/en
Priority to CN201180015302.0A priority patent/CN102803574B/en
Publication of JP2011195927A publication Critical patent/JP2011195927A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Abstract

【課題】本発明はめっき膜の均一性に優れた電子材料用銅合金を提供する。
【解決手段】圧延平行方向の断面をSIMで観察したときに、表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上0.2μm未満の結晶粒の占める面積率が50%以上である電子材料用銅合金。
【選択図】図1
An object of the present invention is to provide a copper alloy for electronic materials having excellent uniformity of a plating film.
When a cross section in the rolling parallel direction is observed with a SIM, an area ratio occupied by an amorphous structure and crystal grains having a grain size of less than 0.1 μm is within a depth of 0.5 μm or less from the surface layer. 1% or less, and the area ratio occupied by crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm is 50% or more when the depth from the surface layer is 0.2 to 0.5 μm. alloy.
[Selection] Figure 1

Description

本発明は優れためっき性が要求される電子材料として適した銅合金及びその製造方法に関する。   The present invention relates to a copper alloy suitable as an electronic material that requires excellent plating properties and a method for producing the same.

電子機器に使用される銅合金おいては、電気的性質や磁気的性質などのめっき膜自身の物性を利用した機能材料めっきのほか、ワイヤボンディングやプリント基板実装のための接合めっきが施される。例えば、端子、コネクタ、スイッチ、リレー等の導電性ばね材には接触抵抗、半田付け性及び挿抜性などの改善を目的としてNiめっき、Cuめっき及びSnめっきなどが施され、リードフレームにはワイヤボンディングのためのAgめっき及びCuめっき、基板実装のための半田めっきなどが施される。   Copper alloys used in electronic devices are plated with functional materials using the physical properties of the plating film itself such as electrical and magnetic properties, as well as bonding plating for wire bonding and printed circuit board mounting. . For example, conductive spring materials such as terminals, connectors, switches, and relays are subjected to Ni plating, Cu plating, Sn plating, etc. for the purpose of improving contact resistance, solderability, and insertion / extraction, and lead frames are made of wire. Ag plating and Cu plating for bonding, solder plating for substrate mounting, and the like are performed.

コルソン合金やリン青銅などのいくつかの種類の銅合金においては、表面にめっきを施したときにめっき膜が不均一に形成されることがある(図2)。このようなめっき膜表面を高倍率の顕微鏡で観察すると、めっき膜が薄い箇所において島状の窪み(以下、「島状めっき」という。)が見える(図3)。めっき膜が不均一だと外観上の問題の他、めっき膜によって与えられる各種機能が十分に発揮できないという問題が生じる。   In some types of copper alloys such as Corson alloy and phosphor bronze, a plating film may be formed unevenly when the surface is plated (FIG. 2). When such a plated film surface is observed with a high-power microscope, an island-shaped depression (hereinafter referred to as “island-shaped plating”) can be seen where the plated film is thin (FIG. 3). If the plating film is not uniform, there arises a problem in that various functions given by the plating film cannot be sufficiently exhibited in addition to problems in appearance.

ところで、一般に鋳造後、熱処理、熱間圧延、冷間圧延及びバフ研磨を適宜組み合わせて製造する銅合金においては表層に加工変質層と呼ばれる内部とは異なる層が存在する。加工変質層は最外部にある非晶質組織のルビー層と、その内側にある微細結晶層とで構成される。結晶粒は内部に行くに従い徐々に大きくなり、やがて母相の結晶粒と同等の大きさとなる。 By the way, generally in a copper alloy manufactured by appropriately combining heat treatment, hot rolling, cold rolling and buffing after casting, a surface layer called a work-affected layer different from the inside exists. Work-affected layer is composed of a base ruby layer of amorphous structure in the outermost, a fine crystalline layer on the inside. The crystal grains gradually increase as they go inside, and eventually become the same size as the crystal grains of the parent phase.

従来、加工変質層がめっき性に悪影響を及ぼすことが知られており、めっき前に予め加工変質層を除去することが行われてきた。   Conventionally, it is known that a work-affected layer has a bad influence on plating properties, and it has been performed to remove a work-affected layer in advance before plating.

例えば、特開平11−29894号公報(特許文献1)においては、加工変質層がめっき膜と母材の密着性を阻害することから、苛性ソーダ水などのアルカリ水溶液での電解エッチング処理によって表面の加工変質層(30〜40μm程度の厚み)を除去した後にニッケルめっきを行うべきことが記載されている。   For example, in Japanese Patent Application Laid-Open No. 11-29894 (Patent Document 1), since the work-affected layer inhibits the adhesion between the plating film and the base material, the surface is processed by electrolytic etching with an alkaline aqueous solution such as caustic soda water. It is described that nickel plating should be performed after removing the deteriorated layer (thickness of about 30 to 40 μm).

特開2006−2233号公報(特許文献2)には、曲げ加工などでめっき層に割れが生じない、成形加工性に優れた被めっき物を提供することを目的として、加工変質層を除去することが記載されており、加工変質層を除去する方法として硫酸、硝酸、塩酸、過酸化水素水、フッ酸などの酸による溶解法、電解液中での通電溶解法、スパッタリング法、エッチング法などが記載されている。   JP 2006-2233 A (Patent Document 2) removes a work-affected layer for the purpose of providing an object to be plated that is excellent in molding processability and does not cause cracks in a plating layer by bending or the like. As a method for removing the work-affected layer, sulfuric acid, nitric acid, hydrochloric acid, hydrogen peroxide solution, hydrofluoric acid and other acid dissolving methods, electrolysis dissolution method in an electrolytic solution, sputtering method, etching method, etc. Is described.

特開2007−39804号公報(特許文献3)には、めっきの異常析出や酸化膜密着性の低下を生じない、めっき性に優れた電子機器用銅合金の提供を目的として、表層の加工変質層(非晶質〜結晶粒径0.2μm未満の組織)の厚さを0.2μm以下に制御した電子機器用銅合金が記載されている。ここでの加工変質層の厚さは、拡大観察の視野内において加工変質層が最も厚い位置の厚さを計測し、5ヶ所の観察箇所における計測値の平均である。加工変質層は化学的な溶解処理や電気化学的な溶解処理、スパッタリングなどの物理的処理によって除去されることが記載されており、その実施例では硫酸と過酸化水素水の混酸への浸漬、水素還元雰囲気の加熱炉における熱処理、リン酸を含有する水溶液中での電解溶解によって加工変質層を除去したことが記載されている。   In JP 2007-39804 A (Patent Document 3), for the purpose of providing a copper alloy for electronic equipment having excellent plating properties that does not cause abnormal precipitation of plating and deterioration of oxide film adhesion, surface alteration of the surface layer is performed. A copper alloy for electronic devices is described in which the thickness of the layer (amorphous to a structure having a crystal grain size of less than 0.2 μm) is controlled to 0.2 μm or less. Here, the thickness of the work-affected layer is the average of the measured values at the five observation locations, where the thickness of the work-affected layer is the thickest in the field of magnification observation. It is described that the work-affected layer is removed by a chemical treatment such as a chemical dissolution treatment, an electrochemical dissolution treatment, or a physical treatment such as sputtering, and in that embodiment, immersion in a mixed acid of sulfuric acid and hydrogen peroxide water, It is described that the work-affected layer is removed by heat treatment in a heating furnace in a hydrogen reduction atmosphere and electrolytic dissolution in an aqueous solution containing phosphoric acid.

特開平11−29894号公報JP-A-11-29894 特開2006−2233号公報JP 2006-2233 A 特開2007−39804号公報JP 2007-39804 A

先行技術文献には、めっき膜と母材の密着性やめっきの異常析出を抑制する目的で加工変質層を除去することが記載されているが、めっき膜の均一性については未だ改善の余地がある。そこで、本発明はめっき膜の均一性に優れた電子材料用銅合金を提供することを課題とする。また、本発明はそのような電子材料用銅合金の製造方法を提供することを別の課題とする。   Prior art documents describe removing the work-affected layer for the purpose of suppressing adhesion between the plating film and the base material and abnormal deposition of the plating, but there is still room for improvement in the uniformity of the plating film. is there. Then, this invention makes it a subject to provide the copper alloy for electronic materials excellent in the uniformity of the plating film. Moreover, this invention makes it another subject to provide the manufacturing method of such a copper alloy for electronic materials.

本発明者は上記課題を解決するべく鋭意研究したところ、加工変質層を完全に除去するよりもむしろ加工変質層の内、ベルビー層だけを除去し、微細結晶層は所定厚さだけ残存させる方がめっき膜の均一性が向上することを見出した。具体的には、粒径が0.1μm以上0.2μm未満の結晶粒がめっき膜の均一性向上に寄与することから、この範囲の粒径を有する結晶粒を一定の比率以上有する層を所定の厚さだけ残存させることが重要であることを見出した。   The present inventor has intensively studied to solve the above-mentioned problems, but rather than completely removing the work-affected layer, only the Belby layer is removed from the work-affected layer, and the fine crystal layer remains with a predetermined thickness. Has found that the uniformity of the plating film is improved. Specifically, since the crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm contribute to the improvement of the uniformity of the plating film, a layer having a crystal grain having a grain size in this range of a certain ratio or more is predetermined. It has been found that it is important to leave only the thickness of.

上記知見を基礎として完成した本発明は一側面において、圧延方向に平行方向の断面をSIMで観察したときに、表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上である電子材料用銅合金である。 In one aspect of the present invention completed based on the above findings, when a cross section parallel to the rolling direction is observed by SIM, the amorphous structure and grain size are within a range of 0.5 μm or less from the surface layer. The area ratio occupied by the crystal grains of less than 0.1 μm is 1% or less, and the grain size is the entire grain size of 0.1 μm or more in the range of the depth from the surface layer of 0.2 to 0.5 μm. Is a copper alloy for electronic materials in which the number ratio of crystal grains of 0.1 μm or more and less than 0.2 μm is 47.5 % or more.

本発明に係る電子材料用銅合金の一実施形態においては、圧延方向に平行方向の断面をSIMで観察したときに、表層からの深さが0.2μm未満の範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が57.5%以上である。 In one embodiment of the copper alloy for electronic materials according to the present invention, when a cross section parallel to the rolling direction is observed by SIM, the particle diameter is 0.1 μm in a range where the depth from the surface layer is less than 0.2 μm. The number ratio of crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm to the whole crystal grains is 57.5 % or more.

本発明に係る電子材料用銅合金の別の一実施形態においては、銅合金はりん青銅、チタン銅又はコルソン合金である。   In another embodiment of the copper alloy for electronic materials according to the present invention, the copper alloy is phosphor bronze, titanium copper or a Corson alloy.

本発明は別の一側面において、銅合金基材の表面に対して、#600〜8000の番手を有する研磨材で研磨を実施して、工程2の後に圧延方向に平行方向の断面をSIMで観察したときに表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上となるほどに十分な厚みの加工変質層を形成する工程1と、次いで、圧延方向に平行方向の断面をSIMで観察したときに表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上となるように、0.01〜0.5μmの粒度(d50)をもつ研磨材で研磨を実施して加工変質層から非晶質組織及び粒径が0.1μm未満の微細結晶粒を除去する工程2とを含む電子材料用銅合金の製造方法である。 In another aspect of the present invention, the surface of the copper alloy base material is polished with an abrasive having a count of # 600 to 8000, and after step 2, a cross section parallel to the rolling direction is obtained by SIM. When observed, the crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm occupy the entire crystal grains having a grain size of 0.1 μm or more in the range of the depth from the surface layer of 0.2 to 0.5 μm. Step 1 for forming a work-affected layer having a sufficient thickness so that the number ratio is 47.5% or more, and then the depth from the surface layer is 0.5 μm when a cross section parallel to the rolling direction is observed by SIM In the following range, the area ratio occupied by the amorphous structure and crystal grains having a grain size of less than 0.1 μm is 1% or less, and the grain size is 0 in the range from 0.2 to 0.5 μm in depth from the surface layer. The grain size is 0.1 μm or more to the whole crystal grain of 1 μm or more As the number ratio of crystal grains occupy less than μm is 47.5% or more, amorphous structure from damaged layer by carrying out polishing with a polishing material having a particle size of 0.01 to 0.5 [mu] m (d50) And a process 2 for removing fine crystal grains having a grain size of less than 0.1 μm .

本発明に係る電子材料用銅合金の製造方法の一実施形態においては、工程1で使用する研磨材がシリコンカーバイド製であり、工程2で使用する研磨材が酸化アルミ又はコロイダルシリカ製である。   In one embodiment of the method for producing a copper alloy for electronic materials according to the present invention, the abrasive used in step 1 is made of silicon carbide, and the abrasive used in step 2 is made of aluminum oxide or colloidal silica.

本発明に係る電子材料用銅合金の製造方法の一実施形態においては、工程1及び工程2の研磨をバフ研磨により実施する。   In one embodiment of the method for producing a copper alloy for electronic materials according to the present invention, the polishing in step 1 and step 2 is performed by buffing.

本発明は更に別の一側面において、本発明に係る銅合金の表面にめっき膜を設けた被めっき物である。   In still another aspect of the present invention, there is provided an object to be plated in which a plating film is provided on the surface of the copper alloy according to the present invention.

本発明に係る被めっき物の一実施形態においては、めっき膜はNi、Sn及びAgの何れか一種以上を含有する。   In one embodiment of the object to be plated according to the present invention, the plating film contains one or more of Ni, Sn, and Ag.

本発明によれば、銅合金表面に施しためっき膜の均一性が向上し、島状めっきが低減される。   According to the present invention, the uniformity of the plating film applied to the copper alloy surface is improved, and island-like plating is reduced.

本発明に係る銅合金表面に施された均一なめっき膜のSEM写真の例である。It is an example of the SEM photograph of the uniform plating film given to the copper alloy surface concerning the present invention. 銅合金表面に施された不均一なめっき膜のSEM写真の例である。It is an example of the SEM photograph of the non-uniform plating film given to the copper alloy surface. 図1中の島状めっきの一部を拡大したSEM写真である。It is the SEM photograph which expanded a part of island-like plating in FIG. 本発明に係る銅合金断面の模式図である(出典:「金属表面技術便覧」、金属表面技術協会編 改訂新版)。It is a schematic diagram of a copper alloy cross section according to the present invention (Source: “Metal Surface Technology Handbook”, revised edition of Metal Surface Technology Association).

<1.銅合金の組成>
本発明は各種の組成を有する銅合金に対して適用でき、特に制限はないが、島状めっきが問題となりやすいりん青銅、コルソン合金、黄銅、洋白及びチタン銅に対して好適に適用できる。
<1. Composition of copper alloy>
The present invention can be applied to copper alloys having various compositions, and is not particularly limited, but can be suitably applied to phosphor bronze, corson alloy, brass, white and titanium copper, where island-like plating is likely to be a problem.

本発明においては、リン青銅とは銅を主成分としてSn及びこれよりも少ない質量のPを含有する銅合金のことをいう。一例として、りん青銅はSnを3.5〜11質量%、Pを0.03〜0.35質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。   In the present invention, phosphor bronze refers to a copper alloy containing Sn as a main component and Sn having a mass smaller than this. As an example, phosphor bronze contains Sn in an amount of 3.5 to 11% by mass and P in an amount of 0.03 to 0.35% by mass, and has a composition composed of the remaining copper and inevitable impurities.

本発明においては、コルソン合金とはSiと化合物を形成する元素(例えば、Ni,Co及びCrの何れか一種以上)が添加され、母相中に第二相粒子として析出する銅合金のことをいう。一例として、コルソン合金はNiを1.0〜4.0質量%、Siを0.2〜1.3質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。別の一例として、コルソン合金はNiを1.0〜4.0質量%、Siを0.2〜1.3質量%、Crを0.03〜0.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。更に別の一例として、コルソン合金はNiを1.0〜4.0質量%、Siを0.2〜1.3質量%、Coを0.5〜2.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。更に別の一例として、コルソン合金はNiを1.0〜4.0質量%、Siを0.2〜1.3質量%、Coを0.5〜2.5質量%、Crを0.03〜0.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。更に別の一例として、コルソン合金はSiを0.2〜1.3質量%、Coを0.5〜2.5質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
コルソン合金には随意にその他の元素(例えば、Mg、Sn、B、Ti、Mn、Ag、P、Zn、As、Sb、Be、Zr、Al及びFe)が添加されてもよい。これらその他の元素は総計で2.0質量%程度まで添加するのが一般的である。例えば、更に別の一例として、コルソン合金はNiを1.0〜4.0質量%、Siを0.2〜1.3質量%、Snを0.01〜2.0質量%、Znを0.01〜2.0質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。
In the present invention, the Corson alloy is a copper alloy in which an element that forms a compound with Si (for example, any one or more of Ni, Co, and Cr) is added and precipitates as second phase particles in the matrix. Say. As an example, the Corson alloy contains 1.0 to 4.0% by mass of Ni and 0.2 to 1.3% by mass of Si, and has a composition composed of the remaining copper and inevitable impurities. As another example, the Corson alloy contains 1.0 to 4.0% by mass of Ni, 0.2 to 1.3% by mass of Si, 0.03 to 0.5% by mass of Cr, and the balance copper and unavoidable The composition is composed of mechanical impurities. As yet another example, the Corson alloy contains 1.0 to 4.0 mass% Ni, 0.2 to 1.3 mass% Si, 0.5 to 2.5 mass% Co, the balance copper and It has a composition composed of inevitable impurities. As another example, the Corson alloy has a Ni content of 1.0 to 4.0 mass%, a Si content of 0.2 to 1.3 mass%, a Co content of 0.5 to 2.5 mass%, and a Cr content of 0.03. It has a composition composed of ˜0.5% by mass and remaining copper and inevitable impurities. As yet another example, the Corson alloy contains 0.2 to 1.3 mass% of Si and 0.5 to 2.5 mass% of Co, and has a composition composed of the balance copper and unavoidable impurities.
Optionally, other elements (eg, Mg, Sn, B, Ti, Mn, Ag, P, Zn, As, Sb, Be, Zr, Al, and Fe) may be added to the Corson alloy. These other elements are generally added up to about 2.0 mass% in total. For example, as yet another example, the Corson alloy has a Ni content of 1.0 to 4.0 mass%, a Si content of 0.2 to 1.3 mass%, a Sn content of 0.01 to 2.0 mass%, and a Zn content of 0. .01-2.0 mass%, and has a composition composed of the remaining copper and unavoidable impurities.

本発明においては、黄銅とは、銅と亜鉛との合金で、特に亜鉛が20質量%以上含有する銅合金のことをいう。   In the present invention, brass means an alloy of copper and zinc, and particularly a copper alloy containing 20% by mass or more of zinc.

本発明においては、洋白とは銅を主成分として、銅を60質量%から75質量%、ニッケルを8.5質量%から19.5質量%、亜鉛を10質量%から30質量%含有する銅合金のことをいう。   In the present invention, the term “white” refers to copper as a main component, copper from 60 mass% to 75 mass%, nickel from 8.5 mass% to 19.5 mass%, and zinc from 10 mass% to 30 mass%. Refers to copper alloy.

本発明においては、チタン銅とは銅を主成分としてTiを1.0質量%〜4.0質量%含有する銅合金のことをいう。一例として、チタン銅はTiを1.0〜4.0質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。別の一例として、チタン銅はTiを1.0〜4.0質量%、Feを0.01〜1.0質量%含有し、残部銅及び不可避的不純物から構成される組成を有する。   In the present invention, titanium copper means a copper alloy containing 1.0 mass% to 4.0 mass% of Ti containing copper as a main component. As an example, titanium copper contains 1.0 to 4.0% by mass of Ti and has a composition composed of the remaining copper and unavoidable impurities. As another example, titanium copper contains 1.0 to 4.0% by mass of Ti and 0.01 to 1.0% by mass of Fe, and has a composition composed of the remaining copper and inevitable impurities.

<2.断面組織>
本発明に係る銅合金の圧延方向に平行方向の断面をSIMで観察すると以下の特徴的な組織形態を有する。
<2. Cross-sectional structure>
When the cross section in the direction parallel to the rolling direction of the copper alloy according to the present invention is observed by SIM, it has the following characteristic structure.

まず、非晶質組織及び粒径が0.1μm未満の微細結晶粒は除去すべきである。このような組織は「島状めっき」の原因となり、めっき膜の均一性に悪影響を与えるからである。   First, the amorphous structure and fine crystal grains having a grain size of less than 0.1 μm should be removed. This is because such a structure causes “island plating” and adversely affects the uniformity of the plating film.

具体的には、表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、0.5%以下が好ましく、0%がより好ましい。表層から0.5μmまでの深さについて規定したのは、それよりも深い箇所ではめっき膜の均一性に対する影響が少ないからである。当該面積率は、以下の方法で測定する。具体的には、表層から深さ方向に0.5μm、幅方向に15μmの測定領域を設定し、粒径0.1μm以上の結晶粒にマーキングを行い、マーキングを行った結晶粒とそれ以外の組織、すなわち非晶質組織及び粒径0.1μm未満の結晶粒とを画像処理により2値化して区別する。これにより、測定視野面積全体に対する非晶質組織及び0.1μm未満の結晶粒が占める面積率を算出する。5視野の平均値を測定値とする。   Specifically, in the range where the depth from the surface layer is 0.5 μm or less, the area ratio occupied by the amorphous structure and the crystal grains having a grain size of less than 0.1 μm is 1% or less, and 0.5% or less is Preferably, 0% is more preferable. The reason why the depth from the surface layer to 0.5 μm is defined is that there is little influence on the uniformity of the plating film at a deeper position. The area ratio is measured by the following method. Specifically, a measurement region of 0.5 μm in the depth direction and 15 μm in the width direction is set from the surface layer, marking is performed on a crystal grain having a grain size of 0.1 μm or more, and the marked crystal grain and the others A structure, that is, an amorphous structure and a crystal grain having a particle diameter of less than 0.1 μm are distinguished by binarization by image processing. Thereby, the area ratio occupied by the amorphous structure and the crystal grains of less than 0.1 μm with respect to the entire measurement visual field area is calculated. The average value of 5 fields of view is taken as the measurement value.

一方、粒径が0.1μm以上0.2μm未満である結晶粒はめっき膜の均一性の向上に寄与するので積極的に残存させるべきである。当該範囲の粒径は従来の知見では微細結晶層を構成する結晶粒に属することから、除去することが望ましいとされていたが、本発明者の研究によれば、むしろめっき膜の均一性を高めるために積極的に形成させることが望ましい。また、このサイズの結晶粒まで除去してしまうと、残存するのは更に大きなサイズの結晶粒となるが、このような大きなサイズの結晶粒もやはりめっき膜の均一性にほとんど寄与しない。   On the other hand, crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm contribute to the improvement of the uniformity of the plating film and should be actively left. According to the knowledge of the present inventor, the uniformity of the plating film was rather improved, since the particle diameter in this range belongs to the crystal grains constituting the fine crystal layer in the conventional knowledge, and it was desirable to remove it. It is desirable to form it positively to enhance it. Further, if the crystal grains of this size are removed, what remains is larger crystal grains, but such large crystal grains also contribute little to the uniformity of the plating film.

そこで、本発明に係る銅合金の一実施形態においては、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒の占める個数割合が50%以上であり、この個数割合は更に高いことが望ましく、例えば50〜90%とすることができる。しかしながら、当該粒径範囲の結晶粒の残存割合を高めようとすると非晶質組織及び粒径が0.1μm未満の微細結晶粒の割合も徐々に高くなってしまい、めっき膜の均一性向上効果が薄れてくる。そこで、好ましい個数割合は80%以下であり、より好ましくは70%以下である。   Therefore, in one embodiment of the copper alloy according to the present invention, the grain size is set to be 0.1. The number ratio of the crystal grains of 1 μm or more and less than 0.2 μm is 50% or more, and it is desirable that this number ratio is higher, for example, 50 to 90%. However, when trying to increase the residual ratio of the crystal grains in the grain size range, the ratio of the amorphous structure and the fine crystal grains having a grain size of less than 0.1 μm gradually increases, which improves the uniformity of the plating film. Will fade. Therefore, the preferred number ratio is 80% or less, and more preferably 70% or less.

また、本発明に係る銅合金の別の一実施形態においては、表層からの深さが0.2μm未満の範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶の占める個数割合が60%以上であり、この個数割合は更に高いことが望ましく、例えば60〜90%とすることができる。しかしながら、上記と同様の理由により、あまり高くするとめっき膜の均一性向上効果が薄れてくるので、好ましい個数割合は90%以下であり、より好ましくは80%以下である。   In another embodiment of the copper alloy according to the present invention, the grain size is 0.1 μm with respect to the entire crystal grain having a grain size of 0.1 μm or more in a range where the depth from the surface layer is less than 0.2 μm. The number ratio of the crystals of less than 0.2 μm is 60% or more, and it is desirable that the number ratio is higher, for example, 60 to 90%. However, for the same reason as described above, if it is too high, the effect of improving the uniformity of the plating film is diminished, so the preferred number ratio is 90% or less, more preferably 80% or less.

本発明においては、各深さ範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶の占める個数割合を以下の方法で測定する。まず、測定対象となる銅合金の圧延方向に平行方向の断面をFIBにて切断することで、断面を露出した後、倍率を8000〜15000倍として断面をSIM観察する。次いで、表層から0.2μm未満の深さ範囲と、表層から0.2〜0.5μmの深さ範囲とに分けて、視野中に存在するすべての結晶粒の粒径を1個ずつ測定し、粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶の占める個数割合を算出する。これを合計で5視野について行う。視野の枠を横切って一部しか見えない粒子はカウントしない。5視野の平均値を測定値とする。
本発明において、結晶粒の個々の粒径は、結晶粒内を横断することのできる深さ方向に最も長い線分と、深さ方向に直角な方向に最も長い線分の平均値として定義する。
In the present invention, the ratio of the number of crystals having a particle diameter of 0.1 μm or more and less than 0.2 μm to the whole crystal grains having a particle diameter of 0.1 μm or more in each depth range is measured by the following method. First, the cross section in the direction parallel to the rolling direction of the copper alloy to be measured is cut by FIB to expose the cross section, and then the cross section is observed with SIM at a magnification of 8000 to 15000 times. Next, it is divided into a depth range of less than 0.2 μm from the surface layer and a depth range of 0.2 to 0.5 μm from the surface layer, and the grain sizes of all the crystal grains existing in the visual field are measured one by one. The ratio of the number of crystals having a particle diameter of 0.1 μm or more and less than 0.2 μm to the entire crystal grains having a particle diameter of 0.1 μm or more is calculated. This is done for a total of 5 fields of view. Particles that are only partially visible across the field frame are not counted. The average value of 5 fields of view is taken as the measurement value.
In the present invention, the individual grain size of a crystal grain is defined as the average value of the longest line segment in the depth direction that can traverse the crystal grain and the longest line segment in the direction perpendicular to the depth direction. .

また、本発明においては、上記個数割合は得られた測定値を端数処理し、5%刻みで表示することとする。例えば、測定値が47.5%以上52.5%未満のときは50%と表示する。従って、下限値が50%と設定されている場合に、測定値が48.2%、50.0%、51.2%であれば何れも本発明の範囲に入る。   In the present invention, the above-mentioned number ratio is rounded off and displayed in 5% increments. For example, when the measured value is 47.5% or more and less than 52.5%, 50% is displayed. Therefore, when the lower limit value is set to 50%, any measured value within the range of 48.2%, 50.0%, 51.2% falls within the scope of the present invention.

<3.製造方法>
本発明に係る銅合金は、鋳造後、熱処理、熱間圧延及び冷間圧延等の慣例の手段を組み合わせて所望の組成を有する銅合金基材を製造した後、所定の表面処理を実施することで製造することができる。
<3. Manufacturing method>
The copper alloy according to the present invention is subjected to a predetermined surface treatment after casting, after producing a copper alloy substrate having a desired composition by combining conventional means such as heat treatment, hot rolling and cold rolling. Can be manufactured.

表面処理の前には、素材表面に付着している油脂性の汚れを除去して清浄する理由により、脱脂及び酸洗を行うことが望ましい。脱脂方法としては、特に制限はないが、アルカリ脱脂、溶剤脱脂、電解脱脂の方法が挙げられる。酸洗の方法としては、特に制限はないが、硫酸を含有する酸洗槽に一定時間浸漬させる。   Prior to the surface treatment, it is desirable to perform degreasing and pickling for the reason of removing the oily dirt adhering to the material surface and cleaning it. Although there is no restriction | limiting in particular as a degreasing method, The method of alkali degreasing, solvent degreasing, and electrolytic degreasing is mentioned. The pickling method is not particularly limited, but it is immersed in a pickling tank containing sulfuric acid for a certain period of time.

表面処理は、銅合金基材の表面に対して、#600〜8000の番手を有する研磨材で研磨を実施する工程1と、次いで、0.01〜0.2μmの粒度を有する研磨材で研磨を実施する工程2とを含む。   In the surface treatment, the surface of the copper alloy substrate is polished with an abrasive having a count of # 600 to 8000, and then polished with an abrasive having a particle size of 0.01 to 0.2 μm. Step 2 of performing.

工程1は加工変質層を形成することを目的としている。加工変質層は慣例の手段によって銅合金を製造する過程でも多少は形成されるが、工程1によって十分な厚みの加工変質層を形成することが望ましい。粒径が0.1μm以上0.2μm未満の結晶粒を十分な深さ範囲で存在させるためである。加工変質層を形成するのに有効な研磨材の番手は、JIS6001(1998)に規定する#600〜#8000の範囲であり、#1200〜#4000の範囲が好ましく、#1500〜#3000の範囲がより好ましい。工程1で使用する研磨材の材質としては限定的ではないが、例えばシリコンカーバイド、酸化アルミ、ダイヤモンド等が挙げられ、上記番手の規定内であれば特に限定されない。   Step 1 aims to form a work-affected layer. Although the work-affected layer is somewhat formed even in the process of producing a copper alloy by conventional means, it is desirable to form a work-affected layer having a sufficient thickness by the step 1. This is because crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm are present in a sufficient depth range. The number of abrasives effective for forming the work-affected layer is in the range of # 600 to # 8000 defined in JIS6001 (1998), preferably in the range of # 1200 to # 4000, and in the range of # 1500 to # 3000. Is more preferable. The material of the abrasive used in step 1 is not limited, and examples thereof include silicon carbide, aluminum oxide, diamond, and the like.

工程2では工程1で作り込んだ加工変質層から最外部のベルビー層(本発明では非晶質組織及び粒径が0.1μm未満の微細結晶粒に相当する)を除去することを目的としている。加工変質層からベルビー層を選択的に除去するのに有効な研磨材の粒度は、レーザ回折散乱法により測定して、d50が0.01〜0.5μmの範囲であり、0.05〜0.4μmの範囲が好ましく、0.1〜0.3μmの範囲がより好ましい。0.1μmよりも大きな粒度では粒径が0.1μm以上0.2μm未満の結晶粒まで容易に除去されてしまう。工程2で使用する研磨材の材質としては限定的ではないが、小さい粒度を有することから酸化アルミニウム又はコロイダルシリカが好ましい。   In Step 2, the outermost Belby layer (corresponding to an amorphous structure and fine crystal grains having a grain size of less than 0.1 μm in the present invention) is removed from the work-affected layer formed in Step 1. . The particle size of the abrasive that is effective for selectively removing the Belby layer from the work-affected layer is measured by a laser diffraction scattering method, and d50 is in the range of 0.01 to 0.5 μm, and 0.05 to 0. The range of 0.4 μm is preferable, and the range of 0.1 to 0.3 μm is more preferable. If the particle size is larger than 0.1 μm, crystal grains having a particle size of 0.1 μm or more and less than 0.2 μm are easily removed. The material of the abrasive used in step 2 is not limited, but aluminum oxide or colloidal silica is preferable because it has a small particle size.

工程1及び工程2の研磨はバフ研磨により実施することが好ましい。本発明において、バフ研磨とは、研磨材をペースト状や懸濁液(スラリー)にして研磨布にしみ込ませて行う研磨のことを指し、バフの回転動作の有無を問わないが、研磨精度を高めて粒径が0.1μm以上0.2μm未満の結晶粒の分布を均一化する上ではバフを高速回転させながら銅合金基板に一定圧力で押し当てて行うことが望ましい。   The polishing in step 1 and step 2 is preferably performed by buffing. In the present invention, buffing refers to polishing performed by making an abrasive into a paste or suspension (slurry) and soaking into a polishing cloth, regardless of whether or not the buff is rotating, but the polishing accuracy is improved. In order to increase the uniformity of the distribution of crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm, it is desirable to press the copper alloy substrate with a constant pressure while rotating the buff at a high speed.

工程1及び工程2の間には、第2の研磨でベルビー層のみを除去しやすくするために酸洗を実施してもよい。ただし、この時点での酸洗は硫酸、好ましくは濃度10〜200g/Lの硫酸を使用することが望ましい。硫酸と過酸化水素の混酸だと、粒径が0.1μm以上0.2μm未満の結晶粒まで容易に除去してしまうからである。   Between Step 1 and Step 2, pickling may be performed to facilitate removal of only the Belby layer in the second polishing. However, it is desirable that pickling at this time use sulfuric acid, preferably sulfuric acid having a concentration of 10 to 200 g / L. This is because a mixed acid of sulfuric acid and hydrogen peroxide easily removes crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm.

<4.めっきの種類>
本発明に係る銅合金に対しては各種のめっきを施すことができ、その種類に特に制限はない。例えば、Ni、Sn、Ag等のめっきを施すことができる。中でも、Niは島状めっきが形成されやすいため、本発明を特に好適使用することができる。従って、本発明の一実施形態においては、めっき膜はNi、Sn及びAgの何れか一種以上を含有する。
<4. Types of plating>
Various types of plating can be applied to the copper alloy according to the present invention, and the type is not particularly limited. For example, plating of Ni, Sn, Ag or the like can be performed. Among these, since Ni is easily formed with island-like plating, the present invention can be particularly preferably used. Therefore, in one embodiment of the present invention, the plating film contains one or more of Ni, Sn, and Ag.

めっき方法としては、特に制限はないが、例えば電気めっきや無電解めっきのような湿式めっき、或いはCVDやPVDのような乾式めっきにより得ることができる。生産性、コストの観点から電気めっきが好ましい。   Although there is no restriction | limiting in particular as a plating method, For example, it can obtain by wet plating like electroplating and electroless plating, or dry plating like CVD and PVD. Electroplating is preferred from the viewpoint of productivity and cost.

<5.用途>
本発明に係る銅合金は種々の伸銅品、例えば板、条、管、棒及び線に加工された形態で提供されることができ、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に好適に使用することができる。
<5. Application>
The copper alloy according to the present invention can be provided in various forms of copper products, such as plates, strips, tubes, rods and wires, and can be provided as lead frames, connectors, pins, terminals, relays, switches, It can be suitably used for electronic parts such as foil materials for secondary batteries.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

表1に示す組成の銅合金を鋳造後、熱処理、熱間圧延及び冷間圧延を適宜繰り返して厚さ0.1mmの銅合金板をそれぞれ製造した。これらの銅合金板に対してアルカリ脱脂により脱脂し、次いで100g/Lの硫酸を含有する酸洗槽に浸漬することにより酸洗した後、表1に記載の手順で表面処理を行った。表1中、「バフ研磨(1)」では、研磨材としてシリコンカーバイドを使用した。「酸洗」における「硫酸」は濃度100g/Lの硫酸に試験板を10秒間浸漬させる処理であり、「混酸」は硫酸を100g/L、過酸化水素を10g/L含む水溶液に試験を10秒間浸漬させる処理である。「バフ研磨(2)」の「#3000」は研磨材としてシリコンカーバイドを使用した。バフ研磨(2)で使用した研磨材の粒度(d50)は、(株)島津製作所製レーザ回折式粒度分布測定装置SALD−2100を用いて測定した。
表面処理後の銅合金板に対して、先述した方法により、
A)表層からの深さが0.5μm以下の範囲における非晶質組織及び粒径が0.1μm未満の結晶粒の面積率、
B)表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合、及び
C)表層からの深さが0.2μm未満の範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合
を求めた。
表中、BとCの値に関しては、測定値を端数処理し、5%刻みとした値を記載してある。例えば、62.5%以上67.5%未満は65%として記載した。
その後、以下の条件でNiめっきを行った。
After casting the copper alloys having the compositions shown in Table 1, heat treatment, hot rolling and cold rolling were repeated as appropriate to produce 0.1 mm thick copper alloy plates. These copper alloy plates were degreased by alkaline degreasing and then pickled by immersing them in a pickling bath containing 100 g / L sulfuric acid, followed by surface treatment according to the procedure described in Table 1. In Table 1, “buffing (1)” used silicon carbide as an abrasive. “Sulfuric acid” in “Pickling” is a treatment in which a test plate is immersed in sulfuric acid having a concentration of 100 g / L for 10 seconds, and “mixed acid” is a test plate in an aqueous solution containing 100 g / L of sulfuric acid and 10 g / L of hydrogen peroxide. This is a treatment for immersion for 10 seconds. “# 3000” of “Buffing (2)” used silicon carbide as an abrasive. The particle size (d50) of the abrasive used in the buffing (2) was measured using a laser diffraction particle size distribution analyzer SALD-2100 manufactured by Shimadzu Corporation.
For the copper alloy plate after the surface treatment, by the method described above,
A) Area ratio of an amorphous structure in a range where the depth from the surface layer is 0.5 μm or less and a crystal grain having a particle size of less than 0.1 μm,
B) Number ratio of crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm to the whole crystal grains having a grain size of 0.1 μm or more in the range of the depth from the surface layer of 0.2 to 0.5 μm And C) Number ratio of crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm to the whole crystal grains having a grain size of 0.1 μm or more in a range where the depth from the surface layer is less than 0.2 μm < sought.
In the table, regarding the values of B and C, values obtained by rounding the measured values in increments of 5% are described. For example, 62.5% or more and less than 67.5% is described as 65%.
Thereafter, Ni plating was performed under the following conditions.

<Niめっき条件>
浴組成: NiSO4−6H2O 280g/L
めっき条件: 電流密度:5A/dm2
めっき時間:15s
<Ni plating conditions>
Bath composition: NiSO 4 -6H 2 O 280 g / L
Plating conditions: Current density: 5 A / dm 2
Plating time: 15s

その後、各めっき表面の光学顕微鏡写真(倍率:×100、視野面積0.15mm2)を撮影し、島状めっきの面積率を測定観察した。評価は下記の通りである。
S:島状めっきなし
A:島状めっきの面積率が10%以下
B:島状めっきの面積率が10%を超えて20%以下
C:島状めっきの面積率が20%を超えて50%以下
D:島状めっきの面積率が50%を越える
健全部と島状めっき部とを画像解析装置により2値化し、島状めっきの面積率を算出する。
Thereafter, an optical micrograph (magnification: × 100, field area 0.15 mm 2 ) of each plating surface was taken, and the area ratio of the island-shaped plating was measured and observed. Evaluation is as follows.
S: No island plating A: Area ratio of island plating is 10% or less B: Area ratio of island plating exceeds 10% and 20% or less C: Area ratio of island plating exceeds 50% 50 % Or less D: The area ratio of the island-shaped plating exceeds 50%. The sound portion and the island-shaped plating section are binarized by an image analyzer, and the area ratio of the island-shaped plating is calculated.

結果を表1に記載する。図1はNo.14のめっき表面のSEM写真である。   The results are listed in Table 1. FIG. 14 is a SEM photograph of 14 plating surfaces.

表1より、本発明に係る銅合金No.1〜27は島状めっきが低減され、均一めっき性に優れていることが分かる。
一方、比較例No.28、33、35、37、39、41、43、45、47、49、51及び53では、バフ研磨を行っていないため、加工変質層自体が形成されなかった。そのため、優れためっき性が得られなかった。
比較例No.29、34、36、38、40、42、44、46、48、50、52及び54では、一回目のバフ研磨は行ったため、加工変質層は形成されたものの、それを除去しなかったため、ベルビー層が残存した。その結果、優れためっき性が得られなかった。
比較例No.30は一回目のバフ研磨で形成した加工変質層を強力な酸洗で除去してしまったため、ベルビー層のみならず、粒径が0.1μm以上0.2μm未満の結晶粒までも過剰に除去されてしまった。その結果、発明例と比較してめっき性が劣った。
比較例No.31は一回目のバフ研磨で形成した加工変質層を強力な酸洗で除去した上、2回目のバフ研磨も行ったことから、ベルビー層のみならず、粒径が0.1μm以上0.2μm未満の結晶粒までも完全に除去されてしまった。その結果、発明例と比較してめっき性が劣った。
比較例No.32は一回目のバフ研磨で形成した加工変質層を強力な酸洗で除去し、改めて一回目と同様のバフ研磨を行った。その結果、比較例29と同様の特性となった。
From Table 1, the copper alloy no. 1 to 27 show that island-shaped plating is reduced and the uniform plating property is excellent.
On the other hand, Comparative Example No. In 28, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51 and 53, the work-affected layer itself was not formed because buffing was not performed. Therefore, excellent plating properties could not be obtained.
Comparative Example No. In 29, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52 and 54, because the first buffing was performed, a work-affected layer was formed, but it was not removed. The Belby layer remained. As a result, excellent plating properties were not obtained.
Comparative Example No. In No. 30, the work-affected layer formed by the first buffing was removed by strong pickling, so not only the Belby layer but also crystal grains with a grain size of 0.1 μm or more and less than 0.2 μm were removed excessively. It has been done. As a result, the plating property was inferior as compared with the inventive examples.
Comparative Example No. No. 31 was obtained by removing the work-affected layer formed by the first buffing by strong pickling and performing the second buffing, so that not only the Belby layer but also the particle size was 0.1 μm or more and 0.2 μm. Even less than the crystal grains have been completely removed. As a result, the plating property was inferior as compared with the inventive examples.
Comparative Example No. In No. 32, the work-affected layer formed by the first buffing was removed by strong pickling, and the same buffing as in the first was performed again. As a result, the same characteristics as in Comparative Example 29 were obtained.

Claims (8)

圧延方向に平行方向の断面をSIMで観察したときに、表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上である電子材料用銅合金。 When the cross section in the direction parallel to the rolling direction is observed with SIM, the area ratio occupied by the amorphous structure and crystal grains having a grain size of less than 0.1 μm is 1% when the depth from the surface layer is 0.5 μm or less. The crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm occupy the entire crystal grain having a grain size of 0.1 μm or more in the range of the depth from the surface layer of 0.2 to 0.5 μm. A copper alloy for electronic materials having a number ratio of 47.5 % or more. 圧延方向に平行方向の断面をSIMで観察したときに、表層からの深さが0.2μm未満の範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が57.5%以上である請求項1記載の電子材料用銅合金。 When a cross section parallel to the rolling direction is observed by SIM, the grain size is 0.1 μm or more to the whole crystal grain having a grain size of 0.1 μm or more in the range where the depth from the surface layer is less than 0.2 μm. 2. The copper alloy for electronic materials according to claim 1, wherein the number ratio of crystal grains less than 2 μm is 57.5 % or more. 銅合金はりん青銅、チタン銅又はコルソン合金である請求項1又は2記載の電子材料用銅合金。   The copper alloy for electronic materials according to claim 1 or 2, wherein the copper alloy is phosphor bronze, titanium copper or a Corson alloy. 銅合金基材の表面に対して、#600〜8000の番手を有する研磨材で研磨を実施して、工程2の後に圧延方向に平行方向の断面をSIMで観察したときに表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上となるほどに十分な厚みの加工変質層を形成する工程1と、次いで、圧延方向に平行方向の断面をSIMで観察したときに表層からの深さが0.5μm以下の範囲において非晶質組織及び粒径が0.1μm未満の結晶粒の占める面積率が1%以下であり、表層からの深さが0.2〜0.5μmの範囲において粒径が0.1μm以上の結晶粒全体に対して粒径が0.1μm以上0.2μm未満の結晶粒が占める個数割合が47.5%以上となるように、0.01〜0.5μmの粒度(d50)をもつ研磨材で研磨を実施して加工変質層から非晶質組織及び粒径が0.1μm未満の微細結晶粒を除去する工程2とを含む電子材料用銅合金の製造方法。 When the surface of the copper alloy base material is polished with an abrasive having a count of # 600 to 8000, and after step 2, the depth from the surface layer is observed by a cross section parallel to the rolling direction by SIM In the range of 0.2 to 0.5 μm, the ratio of the number of crystal grains having a grain size of 0.1 μm or more and less than 0.2 μm to the whole crystal grain having a grain size of 0.1 μm or more is 47.5% or more. Step 1 for forming a work-affected layer having a sufficient thickness, and then, when a cross section parallel to the rolling direction is observed with a SIM, an amorphous structure and a depth of 0.5 μm or less from the surface layer are observed. The area ratio occupied by crystal grains having a grain size of less than 0.1 μm is 1% or less, and the entire grain size is 0.1 μm or more in the range where the depth from the surface layer is 0.2 to 0.5 μm. Individual grains with a grain size of 0.1 μm or more and less than 0.2 μm Ratio such that 47.5% or more, amorphous structure and particle size less than 0.1μm from the damaged layer by carrying out polishing with a polishing material having a particle size of 0.01 to 0.5 [mu] m (d50) The manufacturing method of the copper alloy for electronic materials including the process 2 which removes the fine crystal grain of this . 工程1で使用する研磨材がシリコンカーバイド製であり、工程2で使用する研磨材が酸化アルミ又はコロイダルシリカ製である請求項4記載の製造方法。   The manufacturing method according to claim 4, wherein the abrasive used in step 1 is made of silicon carbide, and the abrasive used in step 2 is made of aluminum oxide or colloidal silica. 工程1及び工程2の研磨をバフ研磨により実施する請求項4又は5記載の製造方法。   The manufacturing method according to claim 4 or 5, wherein the polishing in step 1 and step 2 is performed by buffing. 請求項1〜3何れか一項記載の銅合金の表面にめっき膜を設けた被めっき物。   The to-be-plated object which provided the plating film on the surface of the copper alloy as described in any one of Claims 1-3. めっき膜がNi、Sn及びAgの何れか一種以上を含有する請求項7記載の被めっき物。   The plated object according to claim 7, wherein the plating film contains one or more of Ni, Sn, and Ag.
JP2010066397A 2010-03-23 2010-03-23 Copper alloy for electronic materials and manufacturing method thereof Active JP4629154B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010066397A JP4629154B1 (en) 2010-03-23 2010-03-23 Copper alloy for electronic materials and manufacturing method thereof
TW100109511A TWI429763B (en) 2010-03-23 2011-03-21 Copper alloy for electronic materials and method for manufacturing the same
CN201180015302.0A CN102803574B (en) 2010-03-23 2011-03-23 Copper alloy for electronic material and preparation method thereof
KR1020127020755A KR101335201B1 (en) 2010-03-23 2011-03-23 Copper alloy for electronic material and method of manufacture for same
EP11759455.6A EP2551384A4 (en) 2010-03-23 2011-03-23 Copper alloy for electronic material and method of manufacture for same
PCT/JP2011/057026 WO2011118650A1 (en) 2010-03-23 2011-03-23 Copper alloy for electronic material and method of manufacture for same
MX2012010887A MX2012010887A (en) 2010-03-23 2011-03-23 Copper alloy for electronic material and method of manufacture for same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010066397A JP4629154B1 (en) 2010-03-23 2010-03-23 Copper alloy for electronic materials and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP4629154B1 true JP4629154B1 (en) 2011-02-09
JP2011195927A JP2011195927A (en) 2011-10-06

Family

ID=43638543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066397A Active JP4629154B1 (en) 2010-03-23 2010-03-23 Copper alloy for electronic materials and manufacturing method thereof

Country Status (7)

Country Link
EP (1) EP2551384A4 (en)
JP (1) JP4629154B1 (en)
KR (1) KR101335201B1 (en)
CN (1) CN102803574B (en)
MX (1) MX2012010887A (en)
TW (1) TWI429763B (en)
WO (1) WO2011118650A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429388A (en) * 2011-03-28 2013-12-04 Jx日矿日石金属株式会社 Co-Si-based copper alloy sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961371B2 (en) * 2011-12-06 2016-08-02 Jx金属株式会社 Ni-Co-Si copper alloy sheet
JP6141708B2 (en) * 2013-07-09 2017-06-07 三菱伸銅株式会社 Plated copper alloy plate with excellent gloss
JP6085536B2 (en) * 2013-08-05 2017-02-22 株式会社Shカッパープロダクツ Copper strip, plated copper strip, lead frame and LED module
JP6265125B2 (en) 2013-08-14 2018-01-24 三菱ケミカル株式会社 Method for producing mold for nanoimprint, and method for producing antireflection article
JP6320759B2 (en) * 2014-01-06 2018-05-09 三菱伸銅株式会社 Method for producing Cu-Fe-P copper alloy sheet
JP6228941B2 (en) * 2015-01-09 2017-11-08 Jx金属株式会社 Titanium copper with plating layer
CN107849721B (en) * 2015-09-01 2020-11-17 古河电气工业株式会社 Plating material having excellent heat resistance and method for producing same
JP6662685B2 (en) * 2016-03-31 2020-03-11 Jx金属株式会社 Titanium copper foil with plating layer
JP6271626B2 (en) * 2016-03-31 2018-01-31 Jx金属株式会社 Titanium copper foil with plating layer
JP2016211078A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP6793005B2 (en) * 2016-10-27 2020-12-02 Dowaメタルテック株式会社 Copper alloy plate material and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356726A (en) * 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it
JP2007039804A (en) * 2005-07-05 2007-02-15 Furukawa Electric Co Ltd:The Copper alloy for electronic apparatus and method of producing the same
JP2008223106A (en) * 2007-03-14 2008-09-25 Furukawa Electric Co Ltd:The Copper alloy for lead frame superior in bare bondability and manufacturing method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516415A (en) * 1993-11-16 1996-05-14 Ontario Hydro Process and apparatus for in situ electroforming a structural layer of metal bonded to an internal wall of a metal tube
JP3550482B2 (en) 1997-07-09 2004-08-04 三島光産株式会社 Plating method of mold pieces used for continuous casting
FR2781922B1 (en) * 1998-07-31 2001-11-23 Clariant France Sa METHOD FOR THE MECHANICAL CHEMICAL POLISHING OF A LAYER OF A COPPER-BASED MATERIAL
JP2006002233A (en) 2004-06-18 2006-01-05 Furukawa Electric Co Ltd:The Object to be plated having excellent forming workability
US7946022B2 (en) * 2005-07-05 2011-05-24 The Furukawa Electric Co., Ltd. Copper alloy for electronic machinery and tools and method of producing the same
CN100560797C (en) * 2007-12-28 2009-11-18 天津大学 A kind of method for preparing the film surface of nano thickness at red copper surface
US20100316879A1 (en) * 2008-02-08 2010-12-16 Kuniteru Mihara Copper alloy material for electric/electronic components
CN101509850A (en) * 2009-03-20 2009-08-19 北京科技大学 Method for preparing electroforming copper metallographical example and display texture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356726A (en) * 2001-02-20 2002-12-13 Nippon Mining & Metals Co Ltd High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it
JP2007039804A (en) * 2005-07-05 2007-02-15 Furukawa Electric Co Ltd:The Copper alloy for electronic apparatus and method of producing the same
JP2008223106A (en) * 2007-03-14 2008-09-25 Furukawa Electric Co Ltd:The Copper alloy for lead frame superior in bare bondability and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103429388A (en) * 2011-03-28 2013-12-04 Jx日矿日石金属株式会社 Co-Si-based copper alloy sheet
EP2679341A1 (en) * 2011-03-28 2014-01-01 JX Nippon Mining & Metals Corporation Co-Si-BASED COPPER ALLOY SHEET
EP2679341A4 (en) * 2011-03-28 2014-12-24 Jx Nippon Mining & Metals Corp Co-Si-BASED COPPER ALLOY SHEET

Also Published As

Publication number Publication date
MX2012010887A (en) 2012-12-17
TWI429763B (en) 2014-03-11
CN102803574B (en) 2015-09-02
KR101335201B1 (en) 2013-11-29
WO2011118650A1 (en) 2011-09-29
EP2551384A4 (en) 2017-07-19
JP2011195927A (en) 2011-10-06
TW201139703A (en) 2011-11-16
KR20120114341A (en) 2012-10-16
CN102803574A (en) 2012-11-28
EP2551384A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4629154B1 (en) Copper alloy for electronic materials and manufacturing method thereof
KR101336495B1 (en) Method of Producing a Precipitate -type Copper Alloy Material for Electronic Machinery and Tools
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP2007039804A5 (en)
KR20090016485A (en) Cu-ni-si alloy
JP2009108389A (en) Sn-PLATED MATERIAL FOR ELECTRONIC PARTS
JP2011214066A (en) Glossy nickel plating material, electronic component comprising glossy nickel plating material, and process for production of glossy nickel plating material
JP6210910B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
US20130004793A1 (en) Copper alloy for electronic material and method of manufacture for same
JP5587935B2 (en) Sn plating material
JP2007254803A (en) Titanium-copper
TWI774682B (en) Copper alloy rolling material, method for producing the same, and electrical and electronic parts
WO2015125350A1 (en) Copper alloy material for connector terminals and method for producing copper alloy material for connector terminals
JP2015134955A (en) Fe-P-BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDABILITY
JP6767147B2 (en) Metallic material for thin film plating
JP2014141725A (en) Ni PLATING PROVIDED COPPER OR COPPER ALLOY SHEET
WO2023033038A1 (en) Terminal material having plating film and copper sheet for terminal material
TW202041687A (en) Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
KR100637870B1 (en) Metal substrate for semiconductor device and plating solution and plating method for the same
JP2006002233A (en) Object to be plated having excellent forming workability
JP2014145092A (en) METHOD OF PRODUCING Ni-PLATED COPPER OR COPPER ALLOY SHEET

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250