JP2007039804A5 - - Google Patents

Download PDF

Info

Publication number
JP2007039804A5
JP2007039804A5 JP2006184940A JP2006184940A JP2007039804A5 JP 2007039804 A5 JP2007039804 A5 JP 2007039804A5 JP 2006184940 A JP2006184940 A JP 2006184940A JP 2006184940 A JP2006184940 A JP 2006184940A JP 2007039804 A5 JP2007039804 A5 JP 2007039804A5
Authority
JP
Japan
Prior art keywords
mass
copper alloy
plating
work
electronic devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184940A
Other languages
Japanese (ja)
Other versions
JP2007039804A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2006184940A priority Critical patent/JP2007039804A/en
Priority claimed from JP2006184940A external-priority patent/JP2007039804A/en
Publication of JP2007039804A publication Critical patent/JP2007039804A/en
Publication of JP2007039804A5 publication Critical patent/JP2007039804A5/ja
Pending legal-status Critical Current

Links

Description

電子機器用銅合金及びその製造方法Copper alloy for electronic equipment and manufacturing method thereof

本発明はめっき性に優れた銅合金及びその製造方法に関し、特に半導体リードフレーム、端子、コネクタ等の電子機器用部材に適した電子機器用銅合金及びその製造方法に関する。   The present invention relates to a copper alloy having excellent plating properties and a method for manufacturing the same, and more particularly to a copper alloy for electronic devices suitable for electronic device members such as semiconductor lead frames, terminals and connectors, and a method for manufacturing the same.

電子機器に使用される銅合金は機能性を付与するために各種のめっきが施されており、例えばリードフレーム用に用いられる場合にはワイヤボンディングのための銀めっきやその下地となる銅めっき、基板実装のための半田めっきなどが施される。
また、近年ではエッチングやプレスによりリード加工した後にあらかじめリードフレーム全面にめっきを施すめっきリードフレームも使用されており、この場合にはパラジウムめっきやその下地となるニッケルめっきが施される。
The copper alloy used in electronic devices has been subjected to various types of plating to provide functionality. For example, when used for lead frames, silver plating for wire bonding and copper plating as its base, Solder plating for board mounting is performed.
In recent years, a lead frame in which the entire surface of the lead frame is plated in advance after lead processing by etching or pressing is also used. In this case, palladium plating or nickel plating serving as the base is applied.

近年、電子機器に用いられる電子部品のさらなる高集積化や小型化・薄型化が要求されており、これに対応してリードフレーム、端子、コネクタにおいては多ピン化や狭ピッチ化が進んでいる。また、環境問題の観点から基板実装の際に使用する半田の鉛フリー化が要求されているが、多くの鉛フリー半田の場合には基板実装時の半田付け温度が上昇している。   In recent years, there has been a demand for further integration, miniaturization and thinning of electronic components used in electronic equipment, and lead frames, terminals, and connectors are becoming increasingly multi-pin and narrow in pitch. . In addition, from the viewpoint of environmental problems, it is required to use lead-free solder for board mounting. However, in the case of many lead-free solders, the soldering temperature at the time of board mounting increases.

狭ピッチ化に伴い、リードフレームの製造工程において、銀めっきを施すとめっきの異常析出が起こり突起状に成長してワイヤボンディングの接合強度の低下や、隣接するリード間でのショートが発生するという問題を生じることがある。   Along with the narrowing of the pitch, when silver plating is applied in the lead frame manufacturing process, abnormal deposition of the plating occurs and grows into a protrusion shape, resulting in a decrease in the bonding strength of wire bonding and a short circuit between adjacent leads. May cause problems.

また、銀めっきを施さない部分では下地の銅めっきが露出し、パッケージング工程で加熱されてリードフレーム表面に酸化膜が形成される。ここでも、銅めっきの異常、例えばポーラス状の析出が起こるとリードフレーム表面に密着性の劣る酸化膜が形成され、モールド樹脂とリードフレームの密着性が低下して、基板へのはんだ付けを行うとき、リフロー炉内でパッケージクラックが発生するという問題点がある。   In addition, the underlying copper plating is exposed at the portion where silver plating is not applied, and is heated in the packaging process to form an oxide film on the lead frame surface. Again, when copper plating abnormalities occur, for example, when porous deposition occurs, an oxide film with poor adhesion is formed on the surface of the lead frame, and the adhesion between the mold resin and the lead frame decreases, and soldering to the substrate is performed. There is a problem that package cracks occur in the reflow furnace.

これらの問題点に対して、めっきの異常析出の起点となる銅合金中の析出物の数を一定値以下に制限する方法(特許文献1)や添加元素または不純物元素の含有量を一定値以下に制限する方法(特許文献2、3)などが提案されている。しかしながら、これらの方法は特定の合金組成の銅合金には効果的であるもののその他の銅合金へは適用できず、銅合金全般に適用できる方法は見出されていなかった。   For these problems, a method (Patent Document 1) for limiting the number of precipitates in the copper alloy that is the starting point of abnormal precipitation of plating to a certain value or less, and the content of additive elements or impurity elements to a certain value or less. (Patent Documents 2 and 3) and the like have been proposed. However, although these methods are effective for copper alloys having a specific alloy composition, they cannot be applied to other copper alloys, and no method that can be applied to copper alloys in general has been found.

本発明者等がめっき時またはめっき後に発生する前記問題点について鋭意検討した結果、鋳造、熱間圧延、冷間圧延、バフ研磨処理、焼鈍などの工程を適宜組み合わせる一般的な工程で製造された電子機器用銅合金の表層には非晶質組織のベイルビー層(上層)と、極微細な結晶集合組織の微細結晶層(下層)からなる加工変質層が存在しており、この加工変質層の上にめっきが施された場合に前記問題点の原因となるめっきの異常析出が起こることを知見し、さらに検討を進めて本発明を完成させるに至った。   As a result of intensive studies on the above-mentioned problems occurring during or after plating by the present inventors, the present invention was manufactured in a general process that suitably combined processes such as casting, hot rolling, cold rolling, buffing treatment, and annealing. The surface layer of the copper alloy for electronic devices has a modified layer consisting of a Bailby layer (upper layer) with an amorphous structure and a fine crystalline layer (lower layer) with an extremely fine crystal texture. It has been found that abnormal deposition of plating that causes the above problems occurs when plating is performed on the top, and further studies have been made to complete the present invention.

なお、これまでに金属材料表面に存在する加工変質層の影響を改善する方法(特許文献4、5、6)が提案されているものの、これらはめっき層の密着性やはんだ濡れ性についての改善を対象としており、めっきの異常析出(例えば突起状析出、ポーラス状析出)と加工変質層の厚みとの関連を見い出したことに基づく本発明とは本質的に異なるものである。   In addition, although the method (patent documents 4, 5, 6) which improves the influence of the work-affected layer which exists in the metal material surface until now has been proposed, these are improvement about the adhesiveness and solder wettability of a plating layer. The present invention is essentially different from the present invention based on finding the relationship between abnormal deposition of plating (for example, projection-like deposition and porous deposition) and the thickness of the work-affected layer.

特開2001−49369号公報JP 2001-49369 A 特開平10−102166号公報Japanese Patent Laid-Open No. 10-102166 特開平8−319528号公報JP-A-8-319528 特開平2−100355号公報Japanese Patent Laid-Open No. 2-100355 特開平10−265973号公報JP-A-10-265773 特開平11−29894号公報JP-A-11-29894

本発明は、めっきの異常析出や酸化膜密着性の低下を生じない、めっき性に優れた電子機器用銅合金の提供を目的とする。また、本発明は、このようなめっき性に優れた銅合金の製造方法を提供することを目的とする。   An object of this invention is to provide the copper alloy for electronic devices excellent in plating property which does not produce the abnormal precipitation of plating and the fall of oxide film adhesiveness. Moreover, an object of this invention is to provide the manufacturing method of such a copper alloy excellent in the plateability.

銅合金は一般的に鋳造、熱間圧延、冷間圧延、バフ研磨処理、焼鈍などの工程を適宜組み合わせて製造されており、その過程において様々な塑性加工を受ける。前記塑性加工の結果、銅合金材の表層には銅合金内部よりも微細な結晶組織を呈する加工変質層と塑性変形層とが形成される。
本明細書及び請求の範囲において、「加工変質層」とは、前記様々な塑性加工の結果、銅合金の表層に生じる、ベイルビー層(上層)と微細結晶層(下層)とからなる不均一で微細な結晶組織(例えば、非晶質〜結晶粒径0.2μm未満)をいう。前記ベイルビー層は非晶質組織からなり、前記微細結晶層は極微細な結晶集合組織からなる。前記塑性変形層は結晶粒が微細結晶層より粗大であり(例えば、結晶粒径0.2〜3.0μm程度)、下部にいくに従い次第に銅合金内部の結晶粒の大きさ(例えば、結晶粒径3.0μm〜10.0μm程度)に近づいていく結晶集合組織からなる。
Copper alloys are generally manufactured by appropriately combining processes such as casting, hot rolling, cold rolling, buffing treatment, and annealing, and undergo various plastic processing in the process. As a result of the plastic working, a work-affected layer and a plastic deformation layer exhibiting a finer crystal structure than the inside of the copper alloy are formed on the surface layer of the copper alloy material.
In the present specification and claims, the “work-affected layer” is a non-uniform layer consisting of a Bailby layer (upper layer) and a fine crystalline layer (lower layer) that is formed on the surface layer of a copper alloy as a result of the various plastic workings. It refers to a fine crystal structure (for example, amorphous to a crystal grain size of less than 0.2 μm). The Bailby layer has an amorphous structure, and the fine crystal layer has an extremely fine crystal texture. The plastic deformation layer has crystal grains that are coarser than the fine crystal layer (for example, a crystal grain size of about 0.2 to 3.0 μm), and gradually becomes smaller in size (for example, crystal grains in the copper alloy) The crystal texture is approaching a diameter of about 3.0 μm to 10.0 μm.

銅合金の表層に前記加工変質層のように不均一で微細な結晶組織がある場合には、めっき初期段階において生成した核の中から優先的に核成長が進み突起状となることや、表層での均一な核生成が起こりにくいためにめっき皮膜がポーラス状となることなどの異常析出が起こりやすいことを見出した。本発明はこれら知見に基づきなされるに至ったものである。   When the surface layer of the copper alloy has a non-uniform and fine crystal structure like the work-affected layer, the nucleus grows preferentially from the nuclei generated in the initial stage of plating, and the surface layer It has been found that abnormal precipitation such as the formation of a porous coating film is likely to occur because uniform nucleation is difficult to occur. The present invention has been made based on these findings.

すなわち、本発明は、
(1)表層の加工変質層の厚さが熱処理により0.2μm以下となされていることを特徴とするめっき性に優れた電子機器用銅合金、
(2)前記熱処理が非酸化性雰囲気中で行われることを特徴とする(1)に記載の電子機器用銅合金、
(3)前記熱処理が還元性雰囲気中で行われることを特徴とする(1)に記載の電子機器用銅合金、
(4)前記熱処理が500〜600℃で行われることを特徴とする(1)〜(3)のいずれか1項に記載の電子機器用銅合金、
(5)前記銅合金上にめっきが施されていることを特徴とする(1)〜(4)のいずれか1項に記載の電子機器用銅合金、
(6)前記銅合金上に銀めっきまたは銅めっきが施されていることを特徴とする(1)〜(4)のいずれか1項に記載の電子機器用銅合金、
(7)Crを0.05〜0.5質量%、Snを0.05〜2.0質量%、及びZnを0.05〜1.0質量%含み、さらに必要に応じて0.01〜0.5質量%のSi及び0.01〜0.5質量%のZrのうち1種または2種を合計で0.01〜0.5質量%含み、残部がCu及び不可避的不純物からなる(1)〜(6)のいずれか1項に記載の電子機器用銅合金、
(8)Niを2.0〜4.0質量%、Siを0.4〜0.8質量%含み、さらに必要に応じて0.05〜0.3質量%のMg、0.005〜0.2質量%のAg、0.005〜0.2質量%のMn、0.05〜2.0質量%のSn及び0.05〜1.0質量%のZnのうち1種または2種以上を合計で0.005〜2.0質量%含み、残部がCu及び不可避的不純物からなる(1)〜(6)のいずれか1項に記載の電子機器用銅合金。
(9)前記(1)〜(8)のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とするリードフレーム、
(10)前記(1)〜(8)のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とする端子、
(11)前記(1)〜(8)のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とするコネクタ、
(12)前記加工変質層の厚さが0.2μm以下になるように、表層の加工変質層を熱処理して前記表層の結晶性を回復させることを特徴とする電子機器用銅合金の製造方法、
(13)前記電子機器用銅合金が、Crを0.05〜0.5質量%、Snを0.05〜2.0質量%、Znを0.05〜1.0質量%含み、さらに必要に応じて0.01〜0.5質量%のSi、0.01〜0.5質量%のZrのうち1種または2種を合計で0.01〜0.5質量%含み、残部がCu及び不可避的不純物からなる、(12に記載の電子機器用銅合金の製造方法、及び
(14)前記電子機器用銅合金が、Niを2.0〜4.0質量%、Siを0.4〜0.8質量%含み、さらに必要に応じて0.05〜0.3質量%のMg、0.005〜0.2質量%のAg、0.005〜0.2質量%のMn、0.05〜2.0質量%のSn、0.05〜1.0質量%のZnのうち1種または2種以上を合計で0.005〜2.0質量%含み、残部がCu及び不可避的不純物からなる、(12)に記載の電子機器用銅合金の製造方法
を提供する。
That is, the present invention
(1) Copper alloy for an electronic device having excellent plating properties that the thickness of the surface layer of the work-affected layer is characterized by being made with 0.2μm or less by heat treatment,
(2) The copper alloy for electronic devices according to (1), wherein the heat treatment is performed in a non-oxidizing atmosphere,
(3) The copper alloy for electronic equipment according to (1), wherein the heat treatment is performed in a reducing atmosphere,
(4) The copper alloy for electronic equipment according to any one of (1) to (3), wherein the heat treatment is performed at 500 to 600 ° C.
(5) The copper alloy for electronic equipment according to any one of (1) to (4), wherein the copper alloy is plated.
(6) The copper alloy for electronic equipment according to any one of (1) to (4), wherein silver plating or copper plating is applied on the copper alloy.
(7) 0.05 to 0.5% by mass of Cr, 0.05 to 2.0% by mass of Sn, and 0.05 to 1.0% by mass of Zn, and if necessary, 0.01 to One or two of 0.5% by mass of Si and 0.01 to 0.5% by mass of Zr are contained in total in an amount of 0.01 to 0.5% by mass, with the balance being Cu and inevitable impurities ( The copper alloy for electronic devices according to any one of 1) to (6) ,
(8) Ni is contained in an amount of 2.0 to 4.0% by mass, Si is contained in an amount of 0.4 to 0.8% by mass, and further 0.05 to 0.3 % by mass of Mg, 0.005 to 0 if necessary. One or more of 2 mass% Ag, 0.005 to 0.2 mass% Mn, 0.05 to 2.0 mass% Sn and 0.05 to 1.0 mass% Zn The copper alloy for electronic devices according to any one of (1) to (6) , in which 0.005 to 2.0% by mass in total is included, and the balance is made of Cu and inevitable impurities.
(9) A lead frame using the copper alloy for electronic equipment according to any one of (1) to (8) ,
(10) A terminal using the copper alloy for electronic equipment according to any one of (1) to ( 8) ,
(11) A connector using the copper alloy for electronic equipment according to any one of (1) to (8) ,
(12) A method for producing a copper alloy for electronic equipment, comprising recovering the crystallinity of the surface layer by heat-treating the surface layer so that the thickness of the work-affected layer is 0.2 μm or less ,
(13) The said copper alloy for electronic devices contains 0.05-0.5 mass% of Cr, 0.05-2.0 mass% of Sn, 0.05-1.0 mass% of Zn, and is further required Depending on the case, 0.01 to 0.5% by mass of Si, 0.01 to 0.5% by mass of Zr, or one or two of them in total, 0.01 to 0.5% by mass, with the balance being Cu and inevitable impurities, the method of manufacturing copper alloy for electronic devices according to (12), and (14) a copper alloy for the electronic device, a Ni 2.0 to 4.0 mass%, the Si 0. 4 to 0.8% by mass, and optionally 0.05 to 0.3 % by mass of Mg, 0.005 to 0.2 % by mass of Ag, 0.005 to 0.2 % by mass of Mn, 0.005 to 2.0% by mass in total of one or more of 0.05 to 2.0% by mass of Sn and 0.05 to 1.0% by mass of Zn See, balance being Cu and unavoidable impurities, to provide a method of manufacturing a copper alloy for electronic devices according to (12).

本発明の電子機器用銅合金は、銅合金の表層に存在する不均一で微細な加工変質層を除去してその厚さを0.2μm以下に抑えたものであり、その上にめっきを施すことにより異常析出が防止され、銀めっきや酸化膜密着性に影響を及ぼす銅めっきなどのめっき性が良好となる。   The copper alloy for electronic devices of the present invention is obtained by removing a non-uniform and fine work-affected layer present on the surface layer of the copper alloy and suppressing the thickness to 0.2 μm or less, and plating is performed thereon. Thus, abnormal precipitation is prevented, and plating properties such as silver plating and copper plating that affect the adhesion of the oxide film are improved.

本発明は銅合金の表層に存在する加工変質層を0.2μm以下にすることによりめっき性を良好にするものであり、合金組成や質別の異なる様々な種類の銅合金に対してその効果が発現される。また、銀めっきや銅めっき以外にも、半田めっきやニッケルめっきなどについても同様にめっきの異常析出を防止して優れためっき性を得ることができる。   The present invention improves the plating property by making the work-affected layer present on the surface layer of the copper alloy 0.2 μm or less, and the effect on various types of copper alloys having different alloy compositions and qualities. Is expressed. Also, in addition to silver plating and copper plating, abnormal plating deposition can be similarly prevented for solder plating, nickel plating, and the like, and excellent plating properties can be obtained.

本発明による電子機器用銅合金材料を用いたリードフレーム、端子、コネクタは、その製造工程においてめっき性に起因する不具合が発生せぬため歩留まりがよく、またパッケージング工程や基板実装工程、さらにはそれ以降の使用段階において高い信頼性をもたらす。   The lead frame, terminal, and connector using the copper alloy material for electronic equipment according to the present invention have a good yield because defects due to plating properties do not occur in the manufacturing process, and the packaging process and the board mounting process. Provides high reliability in subsequent use stages.

本発明において、めっき異常析出を防止して優れためっき性を得るためにはめっき析出の際の結晶性に影響を及ぼさない程度に加工変質層の厚さを薄くすることが必要であり、その厚さを0.2μm以下とすることが好ましい。特に高信頼性が要求される用途においては、加工変質層の厚さを0.05μm以下とすることがより好ましい。   In the present invention, in order to prevent plating abnormal precipitation and obtain excellent plating properties, it is necessary to reduce the thickness of the work-affected layer to such an extent that the crystallinity during plating deposition is not affected. The thickness is preferably 0.2 μm or less. Particularly in applications where high reliability is required, the thickness of the work-affected layer is more preferably 0.05 μm or less.

本発明において、前記銅合金上に施されるめっきには銀めっき、銅めっき、半田めっきないしはスズめっき、ニッケルめっきなどを適用することができ、特にリードフレーム、端子、コネクタ等用銅合金に施される銀めっき又は銅めっきへの適用が好ましい。   In the present invention, silver plating, copper plating, solder plating, tin plating, nickel plating, etc. can be applied to the plating applied on the copper alloy, and in particular, it is applied to copper alloys for lead frames, terminals, connectors and the like. Application to silver plating or copper plating is preferred.

本発明において、前記銅合金としてはCu−Sn系やCu−Zn系の固溶型合金にもCu−Cr−Sn系、Cu−Cr系、Cu−Ni−Si系、Cu−Fe−P系、Cu−Ni−Sn系の析出型銅合金などにも適用することができるが、特にリード間隔が狭小な多ピン用リードフレームに用いられるCu−Cr−Sn系、Cu−Ni−Si系銅合金への適用が好適である。   In the present invention, the copper alloy may be a Cu-Sn-based or Cu-Zn-based solid solution type alloy such as Cu-Cr-Sn-based, Cu-Cr-based, Cu-Ni-Si-based, Cu-Fe-P-based. It can also be applied to Cu-Ni-Sn-based precipitation type copper alloys, etc., but Cu-Cr-Sn-based and Cu-Ni-Si-based copper used for multi-pin lead frames with particularly narrow lead spacing. Application to alloys is preferred.

前記Cu−Cr−Sn系銅合金は、リードフレームとして良好な強度及び導電性を得るために化学成分組成が下記範囲であることが好ましい。Crは銅中で析出を起こして銅合金の強度を高める添加元素である。0.05質量%より小さいとその効果が少なく、0.5質量%より大きいとその効果が飽和してしまうため、0.05〜0.5質量%の範囲が好ましい。0.1〜0.45質量%がより好ましく、0.2〜0.4質量%がさらに好ましい。
スズ(Sn)、亜鉛(Zn)は銅中に固溶する添加元素であり、固溶強化及びその後の冷間加工において強度を著しく高める効果がある。0.05質量%より少ないとその効果が少なく、添加量が多いと導電性を損なう。電子機器に好ましい導電性を確保するために、Sn量は、0.05〜2.0質量%とするのが好ましく、0.1〜0.5質量%がより好ましく、0.2〜0.4質量%がさらに好ましい。また、同様な観点から、Zn量は、0.05〜1.0質量%が好ましく、0.1〜0.5質量%がより好ましく、0.15〜0.3質量%であることがさらに好ましい。
The Cu—Cr—Sn-based copper alloy preferably has a chemical component composition in the following range in order to obtain good strength and conductivity as a lead frame. Cr is an additive element that causes precipitation in copper and increases the strength of the copper alloy. If it is less than 0.05% by mass, the effect is small, and if it is greater than 0.5% by mass, the effect is saturated. Therefore, the range of 0.05 to 0.5% by mass is preferable. 0.1-0.45 mass% is more preferable, and 0.2-0.4 mass% is further more preferable.
Tin (Sn) and zinc (Zn) are additive elements that dissolve in copper, and have the effect of significantly increasing strength in solid solution strengthening and subsequent cold working. If the amount is less than 0.05% by mass, the effect is small, and if the amount is large, the conductivity is impaired. In order to ensure the electrical conductivity preferable for the electronic device, the Sn amount is preferably 0.05 to 2.0% by mass, more preferably 0.1 to 0.5% by mass, and 0.2 to 0.00. More preferably, 4% by mass. From the same viewpoint, the Zn content is preferably 0.05 to 1.0 mass%, more preferably 0.1 to 0.5 mass%, and further preferably 0.15 to 0.3 mass%. preferable.

さらに強度向上のためケイ素(Si)、ジルコニウム(Zr)を一方又は両方を添加してもよい。SiはCrとCr−Si析出物を形成し、クロム(Cr)とCr−Siの複合析出により銅合金の強度を高める添加元素である。0.01質量%以下ではその効果が少なく、0.5質量%以上では導電性を損なうため、0.01〜0.5質量%とするのが好ましい。0.05〜0.4質量%がより好ましく、0.1〜0.3質量%であることがさらに好ましい。
Zrは銅中で析出を起こして銅合金の強度を高める添加元素である。0.01質量%以下ではその効果が少なく、0.5質量%以上ではその効果が飽和してしまうため、0.01〜0.5質量%とすることが好ましい。0.05〜0.4質量%がより好ましく、0.1〜0.3質量%であることがさらに好ましい。
Furthermore, one or both of silicon (Si) and zirconium (Zr) may be added to improve the strength. Si is an additive element that forms Cr and Cr—Si precipitates and enhances the strength of the copper alloy by composite precipitation of chromium (Cr) and Cr—Si. The effect is small at 0.01% by mass or less, and the conductivity is impaired at 0.5% by mass or more, so 0.01 to 0.5% by mass is preferable. 0.05-0.4 mass% is more preferable, and it is still more preferable that it is 0.1-0.3 mass%.
Zr is an additive element that causes precipitation in copper and increases the strength of the copper alloy. The effect is small at 0.01% by mass or less, and the effect is saturated at 0.5% by mass or more, so 0.01 to 0.5% by mass is preferable. 0.05-0.4 mass% is more preferable, and it is still more preferable that it is 0.1-0.3 mass%.

前記Cu−Ni−Si系銅合金は、リードフレームとして良好な強度及び導電性を得るために化学成分組成が下記範囲であることが望ましい。NiとSiは添加比を制御することによりNi−Si析出物を形成させて析出強化を行い、銅合金の強度を高める添加元素である。Ni量が1.0質量%以下では十分な析出強化が得られず、5.0質量%以上では導電性を損なう。好ましくは2.0〜4.5質量%、より好ましくは2.0〜4.0質量%、さらに好ましくは2.5〜4.0質量%である。Si量はNi添加量の約1/5の時に最も強化量が大きくなることから、0.25〜1.0質量%が好ましく、2.0〜4.5質量%がより好ましく、0.4〜0.9質量%がさらに好ましく、0.4〜0.8質量%がさらに好ましく、0.5〜0.8質量%とするのが最も好ましい。   The Cu—Ni—Si based copper alloy preferably has a chemical component composition in the following range in order to obtain good strength and conductivity as a lead frame. Ni and Si are additive elements that form Ni—Si precipitates by controlling the addition ratio to strengthen precipitation, thereby increasing the strength of the copper alloy. If the Ni content is 1.0% by mass or less, sufficient precipitation strengthening cannot be obtained, and if it is 5.0% by mass or more, the conductivity is impaired. Preferably it is 2.0-4.5 mass%, More preferably, it is 2.0-4.0 mass%, More preferably, it is 2.5-4.0 mass%. Since the strengthening amount becomes the largest when the amount of Si is about 1/5 of the amount of Ni added, 0.25 to 1.0% by mass is preferable, 2.0 to 4.5% by mass is more preferable, 0.4 -0.9 mass% is further more preferable, 0.4-0.8 mass% is further more preferable, and it is most preferable to set it as 0.5-0.8 mass%.

さらに特性向上のためMg、Ag、Mn、Sn、Znを添加してもよい。
マグネシウム(Mg)は銅中に固溶または析出を起こして銅合金の強度を高める添加元素である。0.05質量%ではその効果が少なく、0.3質量%以上では鋳塊の熱間加工性を低下させる。好ましくは0.1〜0.2質量%、より好ましくは0.13〜0.17質量%が最適である。
銀(Ag)は銅中に固溶し銅合金の強度を高める添加元素である。0.005質量%以下ではその効果が少なく、0.2質量%以上ではその効果が飽和してコスト高になってしまう。好ましくは0.01〜0.1質量%、より好ましくは0.02〜0.05質量%とする。
マンガン(Mn)は鋳塊の熱間加工性を良好にする添加元素である。0.005質量%以下ではその効果が少なく、0.2質量%以上では導電性を損なう。好ましくは0.01〜0.15質量%、より好ましくは0.07〜0.12質量%とする。
Sn、Znは銅中に固溶する元素であり、固溶強化及びその後の冷間加工において強度を著しく高める効果がある。0.01質量%以下ではその効果が少なく、添加量が多いと銅合金の導電性を損なう。電子機器に望ましい導電性を確保するために、Sn量は、0.05〜2.0質量%が好ましく、0.05〜1.0質量%がより好ましく、0.1〜0.2質量%であることがさらに好ましい。また、同様な観点から、Zn量は、0.05〜1.0質量%が好ましく、0.1〜0.7質量%がより好ましい。
Further, Mg, Ag, Mn, Sn, Zn may be added for improving the characteristics.
Magnesium (Mg) is an additive element that causes solid solution or precipitation in copper to increase the strength of the copper alloy. At 0.05 mass%, the effect is small, and at 0.3 mass% or more, the hot workability of the ingot is lowered. Preferably 0.1 to 0.2 mass%, more preferably 0.13 to 0.17 mass% is optimal.
Silver (Ag) is an additive element that dissolves in copper and increases the strength of the copper alloy. If it is 0.005 mass% or less, the effect is small, and if it is 0.2 mass% or more, the effect is saturated and the cost is increased. Preferably it is 0.01-0.1 mass%, More preferably, you may be 0.02-0.05 mass%.
Manganese (Mn) is an additive element that improves the hot workability of the ingot. If it is 0.005 mass% or less, the effect is small, and if it is 0.2 mass% or more, the conductivity is impaired. Preferably it is 0.01-0.15 mass%, More preferably, you may be 0.07-0.12 mass%.
Sn and Zn are elements that dissolve in copper and have the effect of remarkably increasing the strength in solid solution strengthening and subsequent cold working. If the amount is less than 0.01% by mass, the effect is small, and if the amount is large, the conductivity of the copper alloy is impaired. In order to ensure the electrical conductivity desirable for electronic equipment, the Sn content is preferably 0.05 to 2.0 mass%, more preferably 0.05 to 1.0 mass%, and 0.1 to 0.2 mass%. More preferably. From the same viewpoint, the Zn content is preferably 0.05 to 1.0% by mass, and more preferably 0.1 to 0.7% by mass.

本発明において、前記銅合金の加工変質層の除去においては化学的な溶解処理や電気化学的な溶解処理、スパッタリングなどの物理的処理による除去方法を適用することができる。また、非酸化性雰囲気で熱処理を施して非晶質や微細な結晶組織の結晶性を回復させて塑性変形層または銅合金内部の結晶組織と同様の組織とすることにより、加工変質層を消失させる方法も同様に適用することができる。スパッタリングなどの物理的処理の場合には適用できるサイズや処理時間の面で制約があるため、工業的な方法としては化学的または電気化学的な溶解処理や熱処理による除去方法が好適である。   In the present invention, a removal method by physical treatment such as chemical dissolution treatment, electrochemical dissolution treatment, and sputtering can be applied to the removal of the work-affected layer of the copper alloy. In addition, by applying heat treatment in a non-oxidizing atmosphere, the crystallinity of the amorphous or fine crystal structure is recovered to form a structure similar to that of the plastic deformation layer or the copper alloy, thereby eliminating the work-affected layer. This method can be applied in the same manner. In the case of physical treatment such as sputtering, there are restrictions in terms of applicable size and treatment time, and therefore, an industrial method is preferably a chemical or electrochemical dissolution treatment or a removal method by heat treatment.

前記化学的な溶解処理としては、酸および酸化剤を組み合わせた酸溶解液を用いることができ、硫酸、硝酸、塩酸、フッ酸、リン酸などの酸と、過酸化水素、クロム酸塩、過硫酸塩などの酸化剤とを組み合わせて適用できるが、溶解速度や環境面・作業性への配慮からは硫酸と過酸化水素の組み合わせが好適である。   As the chemical dissolution treatment, an acid solution containing a combination of an acid and an oxidizing agent can be used, and an acid such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, hydrogen peroxide, chromate, hydrogen peroxide, Although it can be applied in combination with an oxidizing agent such as sulfate, a combination of sulfuric acid and hydrogen peroxide is preferable from the viewpoint of dissolution rate, environmental aspect and workability.

前記電気化学的な溶解処理としては、酸性溶液中におけるアノード電解を用いることができ、リン酸、硫酸などの酸にクロム酸のような無機酸を添加した電解液を適用できる。銅合金に対しては、長い実績と優れた研磨効果のあるリン酸系の電解液が好適である。   As the electrochemical dissolution treatment, anodic electrolysis in an acidic solution can be used, and an electrolytic solution in which an inorganic acid such as chromic acid is added to an acid such as phosphoric acid or sulfuric acid can be applied. For copper alloys, phosphoric acid electrolytes with a long track record and excellent polishing effect are suitable.

前記熱処理としては、還元性雰囲気や不活性雰囲気の加熱炉中における加熱処理を用いることができ、加熱温度と加熱時間を適宜組み合わせることにより焼鈍炉でのバッチ式加熱や走間焼鈍炉での走間加熱などを適用できる。加工変質層の除去処理中における表層の酸化を防止するには水素などの還元性雰囲気中での加熱が望ましく、熱処理中の酸素濃度の安定性面からはベル型炉などでのバッチ式加熱が好適である。   As the heat treatment, heat treatment in a heating furnace in a reducing atmosphere or an inert atmosphere can be used. By appropriately combining the heating temperature and the heating time, batch-type heating in an annealing furnace or running in a running annealing furnace can be used. Interheating or the like can be applied. Heating in a reducing atmosphere such as hydrogen is desirable to prevent oxidation of the surface layer during removal of the work-affected layer, and batch-type heating in a bell-type furnace or the like is preferred from the standpoint of oxygen concentration stability during heat treatment. Is preferred.

本発明において、前記銅合金の加工変質層の観察は板厚方向の断面において銅合金の表層部を拡大観察することにより行う。組織観察は、組織を明確に識別するために、電子顕微鏡を用いて10000倍程度に拡大して行うことが望ましく、SIMやFE−SEMなどの観察装置を用いることが特に好適である。また、断面加工においては加工変質層を形成しない方法が望ましく、FIBなどの装置を用いることが特に好適である。   In the present invention, the work-affected layer of the copper alloy is observed by magnifying and observing the surface layer portion of the copper alloy in the cross section in the plate thickness direction. In order to clearly identify the tissue, the tissue observation is desirably performed at an magnification of about 10,000 times using an electron microscope, and an observation device such as a SIM or FE-SEM is particularly preferable. In cross-section processing, a method that does not form a work-affected layer is desirable, and it is particularly preferable to use an apparatus such as FIB.

図1及び2を用いて銅合金の断面構造について説明する。
図1は、SIM観察による銅合金の断面図写真である。
図2は、加工変質層1及び塑性変形層2からなる銅合金の断面図である。
図2から明らかなように、前記加工変質層1はベイルビー層3(上層)と微細結晶層4(下層)とからなり、前記ベイルビー層3は非晶質組織からなり、前記微細結晶層4は極微細な結晶集合組織からなる。加工変質層1の更に下部に存在する塑性変形層2は結晶粒が微細結晶層より粗大であり、図1に示すように加工変質層1(破線で囲まれる部分)は塑性変形層2と結晶組織が明瞭に異なるため、両者は容易に識別することができる。
The cross-sectional structure of the copper alloy will be described with reference to FIGS.
FIG. 1 is a cross-sectional photograph of a copper alloy by SIM observation.
FIG. 2 is a cross-sectional view of a copper alloy including the work-affected layer 1 and the plastically deformable layer 2.
As apparent from FIG. 2, the work-affected layer 1 is composed of a Bailby layer 3 (upper layer) and a fine crystal layer 4 (lower layer), the Bailby layer 3 is composed of an amorphous structure, and the fine crystal layer 4 is It consists of an extremely fine crystal texture. The plastic deformation layer 2 existing further below the work-affected layer 1 has crystal grains coarser than the fine crystal layer, and the work-affected layer 1 (portion surrounded by a broken line) is composed of the plastic deformation layer 2 and the crystal as shown in FIG. Since the tissues are clearly different, they can be easily identified.

加工変質層は加工の程度により形成量が変化するため、顕微鏡観察による拡大観察を行った視野内あるいは複数の観察箇所の比較においてその厚さが変化する場合がある。そこで、拡大観察の視野内において加工変質層が最も厚い位置の厚さを計測し、5ヶ所の観察箇所における計測値の平均を加工変質層の厚さと定義した。   Since the formation amount of the work-affected layer changes depending on the degree of processing, the thickness may change in the visual field in which the magnified observation is performed by microscopic observation or in comparison between a plurality of observation places. Therefore, the thickness at the position where the work-affected layer was the thickest in the field of view of magnification observation was measured, and the average of the measured values at the five observation locations was defined as the thickness of the work-affected layer.

以下、本発明の実施例の効果について、特許請求の範囲内にて実施した本発明例および特許請求の範囲から外れる参考例、比較例を比較してより詳細に説明する Hereinafter, the effects of the embodiments of the present invention will be described in more detail by comparing the examples of the present invention implemented within the scope of the claims, the reference examples deviating from the scope of the claims , and comparative examples .

(参考例1)
表1に示す化学成分組成の銅合金を鋳造、圧延、バフ研磨処理、焼鈍を行い厚さ0.15mmの銅合金板を作製した。これらの銅合金板に脱脂処理および酸洗処理を施した後に、化学溶解により加工変質層の除去処理を施した材料に対して銀めっきを行い、銀めっき性を評価した。
(Reference Example 1)
The copper alloy having the chemical composition shown in Table 1 was cast, rolled, buffed, and annealed to produce a 0.15 mm thick copper alloy sheet. These copper alloy plates were subjected to a degreasing treatment and a pickling treatment, and then subjected to silver plating on the material subjected to the removal treatment of the work-affected layer by chemical dissolution, and silver plating properties were evaluated.

Figure 2007039804
Figure 2007039804

前記脱脂処理は、クリーナー160S(メルテックス社製)を60g/l含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で30秒間カソード電解して行った。また、前記酸洗処理は、硫酸を100g/l含む酸洗液中に室温で30秒間浸漬して行った。 The degreasing treatment was performed by cathodic electrolysis for 30 seconds at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 in a degreasing solution containing 60 g / l of cleaner 160S (manufactured by Meltex). The pickling treatment was performed by immersing in a pickling solution containing 100 g / l of sulfuric acid for 30 seconds at room temperature.

前記加工変質層の除去処理は、硫酸を100g/l、過酸化水素を15g/l含む水溶液中に室温で浸漬して行った。除去処理後の加工変質層の厚さは、本参考例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。 The removal process of the work-affected layer was performed by immersing in an aqueous solution containing 100 g / l sulfuric acid and 15 g / l hydrogen peroxide at room temperature. The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in this reference example, and 0.3 μm as a comparative example.

前記銀めっきは、シアン化銀カリウムを55g/l、シアン化カリウムを75g/l、水酸化カリウムを10g/l、炭酸カリウムを25g/l含む銀めっき液中において、室温で電流密度1.0A/dmの条件でめっき厚が3μmとなるように行った。 The silver plating is carried out at room temperature in a silver plating solution containing 55 g / l of silver potassium cyanide, 75 g / l of potassium cyanide, 10 g / l of potassium hydroxide, and 25 g / l of potassium carbonate at room temperature. The plating thickness was 3 μm under the condition of 2 .

前記銀めっき性は、銀めっき表面をマイクロスコープ(キーエンス社製)を用いて450倍に拡大観察して銀めっき表面に発生した突起状の異常析出箇所の個数をカウントし、単位面積あたりの個数が5個/mm以下の場合を◎、5〜10個/mmの場合を○、10個/mmより多い場合を×として評価した。
参考例1の評価結果を表2に示す。
The silver plating property is obtained by enlarging the surface of the silver plating 450 times using a microscope (manufactured by Keyence Corporation) and counting the number of protrusions of abnormal deposits generated on the surface of the silver plating. There where five / mm 2 or less ◎, the case of 5 to 10 / mm 2 ○, was evaluated if more than 10 pieces / mm 2 as ×.
The evaluation results of Reference Example 1 are shown in Table 2.

Figure 2007039804
Figure 2007039804

(参考例2)
加工変質層の除去方法に電解溶解を用いた他は、参考例1と同じ方法により銀めっきを行い、銀めっき性の評価を行った。
(Reference Example 2)
Silver plating was performed by the same method as in Reference Example 1 except that electrolytic dissolution was used as a method for removing the work-affected layer, and silver plating properties were evaluated.

前記加工変質層の除去処理は、リン酸を700g/l含む水溶液中において室温で電流密度10A/dmの条件でアノード電解して行った。除去処理後の加工変質層の厚さは、本参考例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。
参考例2の評価結果を表3に示す。
The process-affected layer was removed by anodic electrolysis in an aqueous solution containing 700 g / l phosphoric acid at room temperature and a current density of 10 A / dm 2 . The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in this reference example, and 0.3 μm as a comparative example.
The evaluation results of Reference Example 2 are shown in Table 3.

Figure 2007039804
Figure 2007039804

(実施例1)
加工変質層の除去方法に熱処理を用いた他は、参考例1と同じ方法により銀めっきを行い、銀めっき性の評価を行った。
Example 1
Silver plating was performed by the same method as in Reference Example 1 except that heat treatment was used as a method for removing the work-affected layer, and silver plating properties were evaluated.

前記加工変質層の除去処理は、水素還元雰囲気の加熱炉において2時間の熱処理により行った。除去処理後の加工変質層の厚さは、本発明例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。
なお、加工変質層の厚さが0.4μmの元材に対して、加工変質層の厚さを0、0.02、0.05、0.1、0.2、0.3μmとするための熱処理温度を、それぞれ600、585、565、540、500、450℃とした。
実施例の評価結果を表4に示す。
The removal process of the work-affected layer was performed by heat treatment for 2 hours in a heating furnace in a hydrogen reduction atmosphere. The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in the examples of the present invention, and 0.3 μm as a comparative example.
In order to set the thickness of the work-affected layer to 0, 0.02, 0.05, 0.1, 0.2, 0.3 μm with respect to the base material having the work-affected layer thickness of 0.4 μm. Were set to 600, 585, 565, 540, 500, and 450 ° C., respectively.
The evaluation results of Example 1 are shown in Table 4.

Figure 2007039804
Figure 2007039804

表2、表3、表4から明らかなように、本発明例においては、いずれも銀めっきで発生する突起状の異常析出の個数が少なく、加工変質層の厚さが0.05μm以下と薄いものでは異常析出の発生数が非常に少なく銀めっき性が特に優れた。
また、銅合金の合金系が異なるものや加工変質層の除去方法が異なるものにおいても、加工変質層の厚さが同じ場合には同様の効果が得られており、いずれの場合においても加工変質層を0.2μm以下とすることにより優れた銀めっき性が得られた。
これに対して、比較例では銅合金表層の不均一で微細な加工変質層が十分に除去されずに残っていたため、前記加工変質層に起因した異常析出は起こり銀めっき性が低下した
As is clear from Tables 2, 3 and 4, in the examples of the present invention, the number of abnormal projections generated by silver plating is small, and the thickness of the work-affected layer is as thin as 0.05 μm or less. In the product, the number of abnormal precipitations was very small and the silver plating property was particularly excellent.
In addition, the same effect is obtained when the thickness of the work-affected layer is the same even if the copper alloy is different or the work-affected layer is removed differently. By making the layer 0.2 μm or less, excellent silver plating property was obtained.
On the other hand, in the comparative example, the uneven and fine work-affected layer on the surface of the copper alloy was not sufficiently removed, so that abnormal precipitation due to the work-affected layer occurred and the silver plating property was lowered .

(参考例3)
表1に示す化学成分組成の銅合金を鋳造、圧延、焼鈍を行い厚さ0.15mmの銅合金板を作製した。これらの銅合金板に脱脂処理および酸洗処理を施した後に、化学溶解により加工変質層の除去処理を施した材料に対して銅めっきを行い、銅めっき性の評価を行った。
(Reference Example 3)
A copper alloy plate having a thickness of 0.15 mm was prepared by casting, rolling, and annealing the copper alloy having the chemical composition shown in Table 1. After performing a degreasing process and a pickling process on these copper alloy plates, copper plating was performed on the material subjected to the removal process of the work-affected layer by chemical dissolution, and the copper plating property was evaluated.

前記脱脂処理は、クリーナー160S(メルテックス社製)を60g/l含む脱脂液中において、液温60℃で電流密度2.5A/dmの条件で30秒間カソード電解して行った。また、前記酸洗処理は、硫酸を100g/l含む酸洗液中に室温で30秒間浸漬して行った。 The degreasing treatment was performed by cathodic electrolysis for 30 seconds at a liquid temperature of 60 ° C. and a current density of 2.5 A / dm 2 in a degreasing solution containing 60 g / l of cleaner 160S (manufactured by Meltex). The pickling treatment was performed by immersing in a pickling solution containing 100 g / l of sulfuric acid for 30 seconds at room temperature.

前記加工変質層の除去処理は、硫酸を100g/l、過酸化水素を15g/l含む水溶液中に室温で浸漬して行った。除去処理後の加工変質層の厚さは、本参考例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。 The removal process of the work-affected layer was performed by immersing in an aqueous solution containing 100 g / l sulfuric acid and 15 g / l hydrogen peroxide at room temperature. The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in this reference example, and 0.3 μm as a comparative example.

前記銅めっきは、シアン化銅を65g/l、シアン化カリウムを110g/l、炭酸カリウムを7.5g/l含む銅めっき液中において、液温45℃で電流密度1.5A/dmの条件でめっき厚が0.1μmとなるように行った。 The copper plating is performed in a copper plating solution containing 65 g / l of copper cyanide, 110 g / l of potassium cyanide and 7.5 g / l of potassium carbonate, at a liquid temperature of 45 ° C. and a current density of 1.5 A / dm 2 . The plating thickness was 0.1 μm.

前記銅めっき性は、テープピール試験により評価した。銅めっき後に長さ30mm、幅10mmに切り出したサンプルにホットプレートを用いて350℃で7分間の大気加熱を施し、サンプル表面に形成された酸化膜の上に粘着テープ(寺岡製作所631S)を貼り付けて引き剥がした際に、ほとんど剥離が見られないものを◎、一部に剥離が見られたものを○、半分以上の面積に剥離が見られたものを×として評価した。
参考の評価結果を表5に示す。
The copper plating property was evaluated by a tape peel test. A sample cut to 30 mm in length and 10 mm in width after copper plating is subjected to atmospheric heating at 350 ° C. for 7 minutes using a hot plate, and an adhesive tape (Teraoka Seisakusho 631S) is pasted on the oxide film formed on the sample surface. When the film was attached and peeled off, it was evaluated as “A” when almost no peeling was observed, “◯” when some peeling was observed, and “X” when peeling was observed in more than half of the area.
The evaluation results of Reference Example 3 are shown in Table 5.

Figure 2007039804
Figure 2007039804

(参考例4)
加工変質層の除去方法に電解溶解を用いた他は、参考と同じ方法により銅めっきを行い、銅めっき性の評価を行った。
(Reference Example 4)
Copper plating was performed by the same method as in Reference Example 3 except that electrolytic dissolution was used as a method for removing the work-affected layer, and copper plating properties were evaluated.

前記加工変質層の除去処理は、リン酸を700g/l含む水溶液中において室温で電流密度10A/dmの条件でアノード電解して行った。除去処理後の加工変質層の厚さは、本参考例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。
参考の評価結果を表6に示す。
The process-affected layer was removed by anodic electrolysis in an aqueous solution containing 700 g / l phosphoric acid at room temperature and a current density of 10 A / dm 2 . The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in this reference example, and 0.3 μm as a comparative example.
The evaluation results of Reference Example 4 are shown in Table 6.

Figure 2007039804
Figure 2007039804

(実施例2)
加工変質層の除去方法に熱処理を用いた他は、参考と同じ方法により銅めっきを行い、銅めっき性の評価を行った。
(Example 2)
Copper plating was performed by the same method as in Reference Example 3 except that heat treatment was used as a method for removing the work-affected layer, and copper plating properties were evaluated.

前記加工変質層の除去処理は、水素還元雰囲気の加熱炉中において2時間の熱処理により行った。除去処理後の加工変質層の厚さは、本発明例においては0、0.02、0.05、0.1、0.2μmの5通りとし、比較例としては0.3μmとした。
なお、加工変質層の厚さが0.4μmの元材に対して、加工変質層の厚さを0、0.02、0.05、0.1、0.2、0.3μmとするための熱処理温度を、それぞれ600、585、565、540、500、450℃とした。
実施例の評価結果を表7に示す。
The removal processing of the work-affected layer was performed by heat treatment for 2 hours in a heating furnace in a hydrogen reduction atmosphere. The thickness of the work-affected layer after the removal treatment was 0, 0.02, 0.05, 0.1, and 0.2 μm in the examples of the present invention, and 0.3 μm as a comparative example.
In order to set the thickness of the work-affected layer to 0, 0.02, 0.05, 0.1, 0.2, 0.3 μm with respect to the base material having the work-affected layer thickness of 0.4 μm. Were set to 600, 585, 565, 540, 500, and 450 ° C., respectively.
The evaluation results of Example 2 are shown in Table 7.

Figure 2007039804
Figure 2007039804

表5、表6、表7から明らかなように、本発明例においては、いずれも銅めっき後での酸化膜剥離面積が少なく、加工変質層の厚さが0.05μm以下と薄いものでは酸化膜剥離面積が非常に少なく銅めっき性が特に優れた。
また、銅合金の合金系が異なるものや加工変質層の除去方法が異なるものにおいても、加工変質層の厚さが同じ場合には同様の効果が得られており、いずれの場合においても加工変質層を0.2μm以下とすることにより優れた銅めっき性が得られた。
これに対して、比較例では銅合金表層の不均一で微細な加工変質層が十分に除去されずに残っていたため、前記加工変質層に起因した異常析出が起こり、銅めっき性が低下した。
As is clear from Table 5, Table 6, and Table 7, in the examples of the present invention, the oxide film peeling area after copper plating is small, and when the thickness of the work-affected layer is as thin as 0.05 μm or less, it is oxidized. The film peeling area is very small and the copper plating property is particularly excellent.
In addition, the same effect is obtained when the thickness of the work-affected layer is the same even if the copper alloy is different or the work-affected layer is removed differently. By making the layer 0.2 μm or less, excellent copper plating properties were obtained.
On the other hand, in the comparative example, the uneven and fine work-affected layer on the surface of the copper alloy remained without being sufficiently removed. Therefore, abnormal precipitation caused by the work-affected layer occurred and the copper plating property was lowered.

図1は、SIM観察による銅合金の断面図写真である。FIG. 1 is a cross-sectional photograph of a copper alloy by SIM observation. 図2は、加工変質層1及び塑性変形層2からなる銅合金の断面図である。FIG. 2 is a cross-sectional view of a copper alloy composed of a work-affected layer 1 and a plastically deformable layer 2.

符号の説明Explanation of symbols

1 加工変質層
2 塑性変形層
1 Work-affected layer 2 Plastic deformation layer

Claims (14)

表層の加工変質層の厚さが熱処理により0.2μm以下となされていることを特徴とするめっき性に優れた電子機器用銅合金。 Copper alloy for an electronic device having excellent plating properties that the thickness of the surface layer of the work-affected layer is characterized by being made with 0.2μm or less by heat treatment. 前記熱処理が非酸化性雰囲気中で行われることを特徴とする請求項1に記載の電子機器用銅合金。The copper alloy for electronic devices according to claim 1, wherein the heat treatment is performed in a non-oxidizing atmosphere. 前記熱処理が還元性雰囲気中で行われることを特徴とする請求項1に記載の電子機器用銅合金。The copper alloy for electronic devices according to claim 1, wherein the heat treatment is performed in a reducing atmosphere. 前記熱処理が500〜600℃で行われることを特徴とする請求項1〜3のいずれか1項に記載の電子機器用銅合金。The said heat processing is performed at 500-600 degreeC, The copper alloy for electronic devices of any one of Claims 1-3 characterized by the above-mentioned. 前記銅合金上にめっきが施されていることを特徴とする請求項1〜4のいずれか1項に記載の電子機器用銅合金。 The copper alloy for electronic devices according to any one of claims 1 to 4, wherein the copper alloy is plated. 前記銅合金上に銀めっきまたは銅めっきが施されていることを特徴とする請求項1〜4のいずれか1項に記載の電子機器用銅合金。 The copper alloy for electronic devices according to any one of claims 1 to 4, wherein silver plating or copper plating is applied on the copper alloy. Crを0.05〜0.5質量%、Snを0.05〜2.0質量%、及びZnを0.05〜1.0質量%含み、さらに必要に応じて0.01〜0.5質量%のSi及び0.01〜0.5質量%のZrのうち1種または2種を合計で0.01〜0.5質量%含み、残部がCu及び不可避的不純物からなる請求項1〜のいずれか1項に記載の電子機器用銅合金。 It contains 0.05 to 0.5% by mass of Cr, 0.05 to 2.0% by mass of Sn, and 0.05 to 1.0% by mass of Zn, and further 0.01 to 0.5 as necessary. 1 to 2 mass% of Si or 0.01 to 0.5 mass% of Zr in total is contained in 0.01 to 0.5 mass%, and the balance consists of Cu and inevitable impurities. 6. The copper alloy for electronic equipment according to any one of 6 above. Niを2.0〜4.0質量%、Siを0.4〜0.8質量%含み、さらに必要に応じて0.05〜0.3質量%のMg、0.005〜0.2質量%のAg、0.005〜0.2質量%のMn、0.05〜2.0質量%のSn及び0.05〜1.0質量%のZnのうち1種または2種以上を合計で0.005〜2.0質量%含み、残部がCu及び不可避的不純物からなる請求項1〜のいずれか1項に記載の電子機器用銅合金。 It contains 2.0 to 4.0% by mass of Ni, 0.4 to 0.8% by mass of Si, and further 0.05 to 0.3 % by mass of Mg, 0.005 to 0.2 % by mass as necessary. % Or more of Ag, 0.005 to 0.2 % by mass of Mn, 0.05 to 2.0% by mass of Sn and 0.05 to 1.0% by mass of Zn in total. The copper alloy for electronic devices according to any one of claims 1 to 6 , comprising 0.005 to 2.0% by mass, the balance being made of Cu and inevitable impurities. 請求項1〜のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とするリードフレーム。 A lead frame using the copper alloy for electronic equipment according to any one of claims 1 to 8 . 請求項1〜のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とする端子。 A terminal using the copper alloy for electronic equipment according to any one of claims 1 to 8 . 請求項1〜のいずれか1項に記載の電子機器用銅合金を用いたことを特徴とするコネクタ。 The connector using the copper alloy for electronic devices of any one of Claims 1-8 . 加工変質層の厚さが0.2μm以下になるように、表層の加工変質層を熱処理して前記表層の結晶性を回復させることを特徴とする電子機器用銅合金の製造方法。 A method for producing a copper alloy for electronic equipment, comprising: heat treating a work-affected layer on a surface layer to restore the crystallinity of the surface layer so that the thickness of the work-affected layer is 0.2 μm or less. 前記電子機器用銅合金が、Crを0.05〜0.5質量%、Snを0.05〜2.0質
量%、Znを0.05〜1.0質量%含み、さらに必要に応じて0.01〜0.5質量%
のSi、0.01〜0.5質量%のZrのうち1種または2種を合計で0.01〜0.5
質量%含み、残部がCu及び不可避的不純物からなる、請求項12に記載の電子機器用銅合金の製造方法。
The said copper alloy for electronic devices contains 0.05-0.5 mass% of Cr, 0.05-2.0 mass% of Sn, 0.05-1.0 mass% of Zn, Furthermore, as needed 0.01-0.5% by mass
Si, 0.01 to 0.5 mass% of Zr, or one or two of them in total 0.01 to 0.5
The manufacturing method of the copper alloy for electronic devices of Claim 12 containing the mass% and a remainder consisting of Cu and an unavoidable impurity.
前記電子機器用銅合金が、Niを2.0〜4.0質量%、Siを0.4〜0.8質量%含み、さらに必要に応じて0.05〜0.3質量%のMg、0.005〜0.2質量%のAg、0.005〜0.2質量%のMn、0.05〜2.0質量%のSn、0.05〜1.0質量%のZnのうち1種または2種以上を合計で0.005〜2.0質量%含み、残部がCu及び不可避的不純物からなる、請求項12に記載の電子機器用銅合金の製造方法。
The copper alloy for electronic devices contains 2.0 to 4.0% by mass of Ni, 0.4 to 0.8% by mass of Si, and optionally 0.05 to 0.3 % by mass of Mg, 0.005 to 0.2 wt% of Ag, 0.005 to 0.2 mass% of Mn, 0.05 to 2.0 wt% of Sn, of 0.05 to 1.0 mass% of Zn 1 The manufacturing method of the copper alloy for electronic devices of Claim 12 which contains seed | species or 2 or more types in total 0.005-2.0 mass%, and a remainder consists of Cu and an unavoidable impurity.
JP2006184940A 2005-07-05 2006-07-04 Copper alloy for electronic apparatus and method of producing the same Pending JP2007039804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184940A JP2007039804A (en) 2005-07-05 2006-07-04 Copper alloy for electronic apparatus and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005195720 2005-07-05
JP2006184940A JP2007039804A (en) 2005-07-05 2006-07-04 Copper alloy for electronic apparatus and method of producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009009347A Division JP5170895B2 (en) 2005-07-05 2009-01-19 Precipitation type copper alloy material for electronic equipment and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007039804A JP2007039804A (en) 2007-02-15
JP2007039804A5 true JP2007039804A5 (en) 2008-07-10

Family

ID=37798064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184940A Pending JP2007039804A (en) 2005-07-05 2006-07-04 Copper alloy for electronic apparatus and method of producing the same

Country Status (1)

Country Link
JP (1) JP2007039804A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128152B2 (en) * 2007-03-14 2013-01-23 古河電気工業株式会社 Copper alloy for lead frame excellent in bare bonding property and manufacturing method thereof
JP5334648B2 (en) * 2009-03-31 2013-11-06 株式会社神戸製鋼所 Copper alloy sheet with excellent heat resistance for tin plating
JP4629154B1 (en) * 2010-03-23 2011-02-09 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP5589756B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Flexible flat cable and manufacturing method thereof
JP5755892B2 (en) * 2011-01-26 2015-07-29 株式会社Shカッパープロダクツ Method for producing copper alloy sheet
JP5957300B2 (en) * 2012-06-01 2016-07-27 エア・ウォーター株式会社 Manufacturing method of carburized member
JP6141708B2 (en) * 2013-07-09 2017-06-07 三菱伸銅株式会社 Plated copper alloy plate with excellent gloss
KR101587014B1 (en) * 2014-01-16 2016-01-20 한국산업기술대학교 산학협력단 Alloy for connection terminal of electric vehicle, manufacturing method for connection terminal of electric vehicle and connection terminal of electric vehicle manufactured by the method
JP2016156056A (en) * 2015-02-24 2016-09-01 株式会社神戸製鋼所 Copper alloy sheet strip for lead frame of led
JP6767147B2 (en) * 2016-03-31 2020-10-14 古河電気工業株式会社 Metallic material for thin film plating
JP6793005B2 (en) * 2016-10-27 2020-12-02 Dowaメタルテック株式会社 Copper alloy plate material and its manufacturing method
JP6985072B2 (en) 2017-09-06 2021-12-22 新光電気工業株式会社 Lead frame and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5170895B2 (en) Precipitation type copper alloy material for electronic equipment and method for producing the same
JP2007039804A5 (en)
JP2007039804A (en) Copper alloy for electronic apparatus and method of producing the same
JP4143662B2 (en) Cu-Ni-Si alloy
US20140369883A1 (en) Copper alloy and method of producing same
JP4629154B1 (en) Copper alloy for electronic materials and manufacturing method thereof
JP5468423B2 (en) High strength and high heat resistance copper alloy material
WO2011118400A1 (en) High-strength copper titanium plate and production method therefor
JP5700834B2 (en) High strength copper alloy sheet with excellent oxide film adhesion
JP2009074125A (en) Copper alloy for electrical-electronic parts having excellent plating property, and method for producing the same
JP2000178670A (en) Copper alloy for semiconductor lead frame
KR102285168B1 (en) Cu-Ni-Si-based copper alloy bath and manufacturing method thereof
KR101682801B1 (en) Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING WORKABILITY
JP2007031795A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY
JP2009293091A (en) Method for producing copper alloy for electrical or electronic parts
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP2005298920A (en) Cu-Ni-Si-Mg BASED COPPER ALLOY STRIP
JP4642701B2 (en) Cu-Ni-Si alloy strips with excellent plating adhesion
WO2021025071A1 (en) Copper alloy sheet, copper alloy sheet with plating film, and methods for producing these
JP2010248593A (en) Copper alloy material for electrical and electronic component and method for manufacturing the same
JP2018009206A (en) Copper alloy rolled material, manufacturing method therefor and electric and electronic component
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JP2015059225A (en) Copper alloy material and production method therefor
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
JP2594249B2 (en) Copper base alloy for connector and method of manufacturing the same