JP2002356726A - High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it - Google Patents

High-strength titanium-copper alloy, its manufacturing method, and terminal and connector using it

Info

Publication number
JP2002356726A
JP2002356726A JP2002031219A JP2002031219A JP2002356726A JP 2002356726 A JP2002356726 A JP 2002356726A JP 2002031219 A JP2002031219 A JP 2002031219A JP 2002031219 A JP2002031219 A JP 2002031219A JP 2002356726 A JP2002356726 A JP 2002356726A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
titanium
copper
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002031219A
Other languages
Japanese (ja)
Other versions
JP4001491B2 (en
Inventor
Michiharu Yamamoto
道晴 山本
Toshiaki Nonaka
俊照 野中
Takahiro Umegaki
卓裕 梅垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002031219A priority Critical patent/JP4001491B2/en
Publication of JP2002356726A publication Critical patent/JP2002356726A/en
Application granted granted Critical
Publication of JP4001491B2 publication Critical patent/JP4001491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium-copper alloy in which strength is improved without reducing flexibility. SOLUTION: The titanium-copper alloy has a composition consisting of >=2.0 and <=3.0 mass% Ti and the balance copper with inevitable impurities. Average grain size is <=20 μm, 0.2% proof stress represented by (b) is >=800 N/mm<2> . When W-bend tests are carried out in a direction perpendicular to the rolling direction, the bend radius ratio (bend radius/sheet thickness) which is represented by (a) and at which no cracking is brought about, satisfies the relation of a <=0.05×b-40.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は端子・コネクター等
の電子部品用に用いられる曲げ加工性に優れた高強度チ
タン銅合金及びその製造方法、更にそれらを用いた端子
・コネクターに関するものである。また、本発明は、素
材である金属材料に対して高強度の要求されるフォーク
型コンタクト用として最適な高強度チタン銅合金及びそ
の製造方法、さらに該チタン銅合金を用いたフォーク型
コネクターに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength titanium-copper alloy excellent in bending workability used for electronic parts such as terminals and connectors, a method for producing the same, and a terminal and connector using the same. The present invention also relates to a high-strength titanium-copper alloy which is optimal for a fork-type contact requiring high strength with respect to a metal material as a raw material, a method for producing the same, and a fork-type connector using the titanium-copper alloy It is.

【0002】[0002]

【従来の技術】C1990等のチタンを含む銅合金(以
下チタン銅合金)は、優れた加工性と機械的強度を有す
るため、電子部品用として端子・コネクターなどの用途
で広く用いられている。一方、近年においては、電子部
品の軽薄・短小化の進展が従前にもまして著しく、これ
に対応するため電子部品用の銅合金条にも、材料厚さが
薄いことが要求されてきている。ところが、材料が薄く
なったにもかかわらず、コネクターの接触圧等を維持す
るために材料自体の強度が高いことと、小さなスペース
でその機能を果たすために部品の曲げ加工も小さな曲げ
半径で施すことが要求されている。すなわち、チタン銅
合金には、高導電率であることに加えて高強度で且つ曲
げ加工性が良好であるという相反する特性が要求されて
いる。
2. Description of the Related Art Titanium-containing copper alloys such as C1990 (hereinafter referred to as titanium-copper alloys) have excellent workability and mechanical strength, and are therefore widely used for electronic components such as terminals and connectors. On the other hand, in recent years, the progress of lightening, thinning, and shortening of electronic components has been more remarkable than before, and in order to cope with this, copper alloy strips for electronic components have also been required to be thin. However, despite the thinner material, the strength of the material itself is high to maintain the contact pressure of the connector, etc., and the bending of parts is performed with a small bending radius to fulfill its function in a small space. Is required. In other words, the titanium copper alloy is required to have not only high conductivity but also high strength and good bending workability, which are contradictory characteristics.

【0003】さらに、携帯電話、デジタルカメラ、ビデ
オカメラ等高密度実装化の進展に伴い、電子部品用の端
子・コネクター、リードフレーム等の金属部材にも過酷
でかつ複雑な曲げ成形が行われるため、高強度の他に加
工性としてとりわけ曲げ加工性が良好であることが要求
される。
Further, with the development of high-density packaging such as cellular phones, digital cameras, and video cameras, severe and complicated bending is performed on metal members such as terminals and connectors for electronic components and lead frames. In addition to high strength, it is required that bendability is particularly good as workability.

【0004】こうした状況において、チタン銅合金の曲
げ加工性及び応力緩和率を改善するために、結晶粒度を
20μmを越えない熱処理条件で溶体化処理を行う製造
方法に関する報告(例えば特開平7−258803号公
報)がなされている。ところが、近年の端子・コネクタ
ー等の電子部品用に用いられる銅合金素材に対する曲げ
加工性の要求に対して上記改善を行ったチタン銅でも、
必ずしも満足できる曲げ加工性を有しているとはいえな
いのが現状である。チタン銅合金について要求を満足さ
せるためには、強度と曲げ加工性の相関を改善すること
が必要であり、そのためにはチタン銅合金の製造方法も
改善することが必要となる。
[0004] Under such circumstances, in order to improve the bending workability and the stress relaxation rate of the titanium copper alloy, there is a report on a manufacturing method in which a solution treatment is performed under heat treatment conditions in which the crystal grain size does not exceed 20 μm (for example, JP-A-7-258803) Publication). However, even in the case of titanium copper which has been improved in response to the demand for bending workability for copper alloy materials used for electronic components such as terminals and connectors in recent years,
At present, it cannot always be said that the material has satisfactory bending workability. In order to satisfy the requirements for titanium-copper alloys, it is necessary to improve the correlation between strength and bending workability. For that purpose, it is necessary to improve the method for producing titanium-copper alloys.

【0005】また、従来より、電子部品用銅合金の引張
強さが500〜800MPaの中程度の強度が要求され
る場合には、黄銅、りん青銅、洋白、更に高導電性が要
求される時には、Cu−Ni−Si系、Cu−Cr−Z
r系、Cu−Cr−Sn系の銅合金が使用されており、
また900MPa程度以上の高強度が要求される場合に
は、ベリリウム銅、チタン銅が使用されている。
[0005] Conventionally, when the tensile strength of a copper alloy for electronic parts is required to be a medium strength of 500 to 800 MPa, brass, phosphor bronze, nickel silver, and even higher conductivity are required. Sometimes Cu-Ni-Si, Cu-Cr-Z
r-based, Cu-Cr-Sn-based copper alloy is used,
When high strength of about 900 MPa or more is required, beryllium copper and titanium copper are used.

【0006】こうした中で、最近ではFPC(フレキシ
ブルプリント配線板)の需要が増え、FPC用のコネク
ターも改良が加えられている。フォーク型コネクターは
FPC用のコネクターに使用され、金属材料の面で接触
する汎用のコネクターと異なり、基板とは、銅合金板の
破面で接触させる構造である。 そのため、曲げ加工は
行われず、フォーク型コネクターとしては、曲げ加工性
が良好ではなくとも、強度が高いことが第一に要求され
る。
Under these circumstances, the demand for FPCs (Flexible Printed Wiring Boards) has recently increased, and connectors for FPCs have been improved. The fork-type connector is used for an FPC connector, and is different from a general-purpose connector that comes into contact with a surface of a metal material, and has a structure in which a substrate is brought into contact with a broken surface of a copper alloy plate. Therefore, the bending process is not performed, and the fork-type connector is required to have high strength even if the bending processability is not good.

【0007】具体的にフォーク型コネクターとしては、
最低でも1000MPa以上の引張強さが必要であり、
多様な設計に対応できるためには1200MPa以上の
引張強さが必要である。
Specifically, fork-type connectors include:
A tensile strength of at least 1000 MPa is required,
To cope with various designs, a tensile strength of 1200 MPa or more is required.

【0008】ステンレス鋼は高強度のもの、例えばSU
S301では1200MPaを超える引張強さを有する
材料もあるが、スレンレスは導電率2.4%IACS程
度と低く、フォーク型コネクター用としては使用できな
い。フォーク型コネクターとしては、最低でも10%I
ACSの導電率が必要である。
[0008] Stainless steel is of high strength, such as SU
In S301, there is a material having a tensile strength exceeding 1200 MPa, but stainless steel has a low electrical conductivity of about 2.4% IACS and cannot be used for a fork type connector. At least 10% I for a fork connector
ACS conductivity is required.

【0009】1200MPa以上の引張強さを有する銅
合金としては、ベリリウム銅がある。また、高強度銅合
金としては、チタン銅も有力であるが、1200MPa
以上の引張強さを得るには、4質量%チタンを含有さ
せ、更にMTH(時効加工加熱処理)等の特殊な処理を
行わなければならない(講座・現代の金属学 材料編5
非鉄材料,p78(日本金属学会)等)。
A copper alloy having a tensile strength of 1200 MPa or more includes beryllium copper. Titanium copper is also a powerful high-strength copper alloy, but 1200 MPa
In order to obtain the above tensile strength, 4% by mass of titanium must be contained, and special treatment such as MTH (aging heat treatment) must be performed.
Non-ferrous materials, p78 (The Japan Institute of Metals).

【0010】しかしながら、4質量%Tiを含有するチ
タン銅は加工性が悪く、熱間圧延にて割れ、冷間圧延に
て耳割れが発生しやすいため、工業的に歩留よく製造す
るのは難しく、電子部品用素材として、商業的に拡販す
ることは困難である。また、MTH処理は、時効処理後
のチタン銅を更に冷間圧延し、その後熱処理するプロセ
スであるが、時効処理後のチタン銅合金を冷間圧延する
ことは、耳割れ等が発生し易く、製造が困難である。
However, titanium copper containing 4% by mass of Ti is poor in workability and easily cracked by hot rolling and edge cracking by cold rolling. It is difficult, and it is difficult to expand the sales commercially as a material for electronic components. Further, the MTH treatment is a process of further cold-rolling titanium copper after aging treatment and then performing a heat treatment.Cold-rolling the titanium copper alloy after aging treatment is apt to cause ear cracks and the like, Difficult to manufacture.

【0011】一方、3質量%Tiを含有するチタン銅
(C1990)は従来の製造法ではせいぜい1000M
Pa程度の引張強さしか得られない。 また、特開平7
−258803では、チタン銅合金について結晶粒が2
0μmを越えない熱処理条件で溶体化処理を行う製造方
法に関する報告がなされ、従来の同材料と比べて特に強
度が低下せずに曲げ特性の優れた材料が製造できること
が知られているが、高強度のチタン銅は得られていな
い。したがって、1200MPa以上の引張強さを有す
る銅合金としては、ベリリウム銅以外の銅合金はなく、
独占的な市場であった。
On the other hand, titanium copper (C1990) containing 3% by mass of Ti is at most 1000M in the conventional production method.
Only a tensile strength of about Pa can be obtained. Also, Japanese Patent Application Laid-Open
-258803, the crystal grain of titanium-copper alloy is 2
There is a report on a production method in which a solution treatment is performed under heat treatment conditions not exceeding 0 μm, and it is known that a material having excellent bending characteristics can be produced without a particular decrease in strength as compared with the same conventional material. No strong titanium copper was obtained. Therefore, as a copper alloy having a tensile strength of 1200 MPa or more, there is no copper alloy other than beryllium copper,
It was an exclusive market.

【0012】しかしながら、ベリリウム銅も最適な銅合
金ではなく、応力緩和特性はチタン銅に劣り、決して満
足できるものではなかった。よって、Tiを2.0〜
3.5質量%含有するチタン銅合金について、従前より
更に高強度である1200MPa以上の引張強さが得ら
れれば、応力緩和特性を含めて最適な高強度銅合金とな
りうるため、改善が待たれている。
However, beryllium copper is not an optimum copper alloy, and its stress relaxation property is inferior to titanium copper, and has never been satisfactory. Therefore, Ti
With respect to a 3.5% by mass titanium-copper alloy, if a tensile strength of 1200 MPa or more, which is higher than before, can be obtained, an optimal high-strength copper alloy including stress relaxation properties can be obtained. ing.

【0013】[0013]

【発明が解決しようとする課題】本発明はかかる点に鑑
みて為されたものであり、チタン銅合金について曲げ加
工性を低下させないで強度を向上させた端子・コネクタ
ー材料を提供することを目的としている。また、本発明
は、引張強さがベリリウム銅に匹敵する1200MPa
以上、導電率が10%IACS以上を有する高強度チタ
ン銅合金、及びその製造方法、並びに該高強度チタン銅
合金を用いた電子部品、特にフォーク型コネクターを提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a terminal / connector material of titanium copper alloy having improved strength without deteriorating bending workability. And In addition, the present invention provides 1200 MPa, which has a tensile strength comparable to that of beryllium copper.
As described above, an object of the present invention is to provide a high-strength titanium-copper alloy having a conductivity of 10% IACS or more, a method for producing the same, and an electronic component using the high-strength titanium-copper alloy, particularly a fork-type connector.

【0014】[0014]

【課題を解決するための手段】本発明者等は、チタン銅
合金の最終の再結晶焼鈍条件(溶体化処理条件)および
その後の冷間圧延条件及び時効処理条件を調整し、最終
熱処理後に各特性値間の相関を調査することにより、曲
げ加工性を低下させないで強度を向上させた特性を有す
るチタン銅合金素材を安定的に得ることを見い出した。
Means for Solving the Problems The present inventors adjusted the final recrystallization annealing conditions (solution treatment conditions), the subsequent cold rolling conditions and the aging treatment conditions of the titanium copper alloy, and adjusted the respective conditions after the final heat treatment. By investigating the correlation between the characteristic values, it has been found that a titanium-copper alloy material having improved properties without deteriorating bending workability can be stably obtained.

【0015】本発明は上記知見に基づいてなされたもの
で、Tiを2.0質量%以上3.5質量%以下を含有
し、残部が銅及び不可避不純物からなるチタン銅合金に
おいて、平均結晶粒径が20μm以下、かつbで表示さ
れる0.2%耐力が800N/mm以上で圧延方向に
対し直角方向にW曲げ試験を行った際、aで表示される
割れの発生しない曲げ半径比(曲げ半径/板厚)が、a
≦0.05×b−40となることを特徴としている。
The present invention has been made on the basis of the above findings. In a titanium-copper alloy containing 2.0% by mass or more and 3.5% by mass or less of Ti and the balance of copper and unavoidable impurities, When a W bending test is performed in a direction perpendicular to the rolling direction with a diameter of 20 μm or less and a 0.2% proof stress represented by b of 800 N / mm 2 or more, a bending radius ratio free of cracks represented by a (Bending radius / plate thickness) is a
≦ 0.05 × b−40.

【0016】本発明の第2の特徴は、Tiを2.0質量
%以上3.5質量%以下を含有し、更にZn、Cr、Z
r、Fe、Ni、Sn、In、Mn、P及びSiの1種
以上を総量で0.01質量%以上3.0質量%以下含有
し、残部が銅及び不可避不純物からなるチタン銅合金に
おいて、平均結晶粒径が20μm以下、かつbで表示さ
れる0.2%耐力が800N/mm以上で圧延方向に
対し直角方向にW曲げ試験を行った際、aで表示される
割れの発生しない曲げ半径比(曲げ半径/板厚)が、a
≦0.05×b−40となるものである。
A second feature of the present invention is that Ti contains 2.0% to 3.5% by mass and further contains Zn, Cr, Z
In a titanium copper alloy containing at least one kind of r, Fe, Ni, Sn, In, Mn, P, and Si in a total amount of 0.01% by mass or more and 3.0% by mass or less, with the balance being copper and unavoidable impurities, When a W bending test is performed in a direction perpendicular to the rolling direction with an average crystal grain size of 20 μm or less and a 0.2% proof stress represented by b of 800 N / mm 2 or more, no crack represented by a occurs. The bending radius ratio (bending radius / plate thickness) is a
≦ 0.05 × b−40.

【0017】以下、上記数値限定の根拠を本発明の作用
とともに説明する。なお、以下の説明において「%」は
「質量%」を意味するものとする。A.Ti :2.0〜3.5% TiにはCu−Ti合金を時効処理した際にスピノーダ
ル分解を起こして母材中に濃度の変調構造を生成し、こ
れにより非常に高い強度を確保する作用があるが、その
含有率が2.0%未満では所望の強化が期待できず、一
方3.5%を越えてTiを含有させると粒界反応型の析
出を起こし易くなって逆に強度低下を招いたり、加工性
を劣化したりする。よって、Ti含有量は2.0〜3.
5%と規定した。
Hereinafter, the grounds for the numerical limitation will be described together with the operation of the present invention. In the following description, “%” means “% by mass”. A. Ti : 2.0 to 3.5% Ti has a function of securing a very high strength by causing spinodal decomposition during aging treatment of a Cu-Ti alloy to generate a concentration modulation structure in the base material. However, if the content is less than 2.0%, the desired strengthening cannot be expected. On the other hand, if the content of Ti exceeds 3.5%, precipitation of the grain boundary reaction type is liable to occur, and conversely, the strength decreases. And the workability is degraded. Therefore, Ti content is 2.0-3.
It was specified as 5%.

【0018】B.Zn、Cr、Zr、Fe、Ni、S
n、In、Mn、P、Si:総量で0.01〜3.0% Cr、Zr、Fe、Ni、Sn、In、Mn、P及びS
iは、いずれもCu−Ti合金の導電性を大きく低下さ
せず粒界反応型析出を抑制し、結晶粒径を微細にし、さ
らに時効析出により強度を上昇させるなどの作用を有し
ている。また、Sn、In、Mn、P及びSiは固溶強
化によりCu−Ti合金の強度を向上させる作用を有し
ている。したがって、必要に応じてこれらの元素が1種
または2種以上添加されるが、その含有量が総量で0.
01%未満では前記作用による所望の効果が得られず、
一方総量で3.0%を越える含有量になるとCu−Ti
合金の導電性及び加工性を著しく劣化させる。よって、
1種の単独添加或いは2種以上の複合添加がなされるZ
n、Cr、Zr、Fe、Ni、Sn、In、Mn、P及
びSiの含有量は、総量で0.01%〜3.0%と定め
た。
B. Zn, Cr, Zr, Fe, Ni, S
n, In, Mn, P, Si : 0.01 to 3.0% in total amount Cr, Zr, Fe, Ni, Sn, In, Mn, P and S
i has the effect of suppressing grain boundary reaction-type precipitation without significantly lowering the conductivity of the Cu-Ti alloy, reducing the crystal grain size, and increasing the strength by aging precipitation. In addition, Sn, In, Mn, P and Si have a function of improving the strength of the Cu-Ti alloy by solid solution strengthening. Therefore, if necessary, one or more of these elements are added, but the content of these elements is 0.1% in total.
If it is less than 01%, the desired effect cannot be obtained by the above action,
On the other hand, if the total content exceeds 3.0%, Cu-Ti
Significantly degrades the conductivity and workability of the alloy. Therefore,
Z to which one kind of single addition or two or more kinds of addition is made
The contents of n, Cr, Zr, Fe, Ni, Sn, In, Mn, P, and Si were determined to be 0.01% to 3.0% in total.

【0019】ここで、上記添加元素のうちZnは、Cu
−Ti合金の導電性を低下させずに半田の熱剥離を抑制
する作用が期待できるため、特に好適に添加されるが、
その含有量が0.05%未満では所望の効果が得られ
ず、また2.0%を越えると導電性及び応力緩和特性が
劣化する。よって、Znの含有量は0.05%〜2.0
%であることが望ましい。
Here, among the above-mentioned additional elements, Zn is Cu
-Since the effect of suppressing the thermal delamination of the solder can be expected without lowering the conductivity of the Ti alloy, it is particularly preferably added.
If the content is less than 0.05%, the desired effects cannot be obtained, and if it exceeds 2.0%, the conductivity and the stress relaxation characteristics are deteriorated. Therefore, the content of Zn is 0.05% to 2.0%.
% Is desirable.

【0020】C.チタン銅合金の特性 チタン銅合金が端子・コネクター材として用いられるた
めには、特に、その材料強度と共に複雑な部品加工を施
されて使用されるために曲げ加工性が重要である。部品
設計をする際には、材料強度の指標である0.2%耐力
と、材料板厚に対して種々の曲げ半径で曲げ加工を施し
たときの曲げ部の状況によって評価される曲げ特性とが
考慮される。本発明者等は、近年の電子部品に要求され
る強度と板厚に応じた曲げ加工性を定量的に解析した結
果、以下に示すように、両者をバランスさせた一定の尺
度を見い出した。
C. Characteristics of Titanium Copper Alloy In order for titanium copper alloy to be used as a terminal / connector material, bending workability is important, in particular, since it is used after being subjected to complicated component processing together with its material strength. When designing parts, 0.2% proof stress, which is an index of material strength, and bending characteristics evaluated by the condition of the bent part when bending is performed with various bending radii with respect to the material thickness. Is taken into account. The present inventors have quantitatively analyzed the bending workability according to the strength and plate thickness required for electronic components in recent years, and as a result, as shown below, have found a certain scale that balances both.

【0021】すなわち、本発明は、bで表示される0.
2%耐力が800N/mm以上で圧延方向に対し直角
方向にW曲げ試験を行った際、aで表示される割れの発
生しない曲げ半径比(曲げ半径/板厚)が、a≦0.0
5×b−40であることにより、高強度と曲げ加工性を
バランスさせて近年の要求に応えることができるチタン
銅合金を提供し得たものである。なお、チタン銅合金の
0.2%耐力を800N/mm以上と規定したのは、
800N/mm未満であると、チタン銅合金としての
高強度特性を十分に生かし切れないからである。また、
本発明において、結晶粒径の測定はJIS H 050
1に準じて、切断法により求めた値を使用する。
That is, according to the present invention, 0.
When a W bending test is performed in a direction perpendicular to the rolling direction with a 2% proof stress of 800 N / mm 2 or more, the bending radius ratio (bending radius / plate thickness) where cracks do not occur as indicated by a (bending radius / plate thickness) is a ≦ 0. 0
By being 5 × b-40, it is possible to provide a titanium-copper alloy capable of meeting recent requirements by balancing high strength and bending workability. The reason why the 0.2% proof stress of the titanium copper alloy is specified to be 800 N / mm 2 or more is as follows.
If it is less than 800 N / mm 2 , the high strength characteristics as a titanium copper alloy cannot be fully utilized. Also,
In the present invention, the measurement of the crystal grain size is performed according to JIS H 050.
The value obtained by the cutting method is used according to 1.

【0022】チタン銅合金の強度を向上させるために
は、合金元素の添加による固溶強化、時効処理温度を適
正にして析出強化させること及び時効前の加工度を適正
にした加工硬化による強化があり、従来はこれらを組み
合わせることによって所望の材料特性を確保していた。
ところが、こうした強化機構のみで強度を向上させると
曲げ性が劣化し、所望とする材料特性の領域に達しない
場合が生じた。そこで、本発明者等は種々の試験を実施
したところ、結晶粒度に対して強度と曲げ特性の相関が
あり、0.2%耐力と曲げ半径比の上記のような関係を
得るためには、平均結晶粒径が20μm以下である必要
があることを見出した。
In order to improve the strength of the titanium-copper alloy, solid solution strengthening by adding alloying elements, precipitation strengthening by adjusting the aging treatment temperature appropriately, and strengthening by work hardening with an appropriate workability before aging are required. Conventionally, desired material properties have been secured by combining these.
However, when the strength is improved only by such a reinforcing mechanism, the bendability is deteriorated, and a case where a desired material property is not reached may occur. Therefore, the present inventors conducted various tests. As a result, there was a correlation between strength and bending characteristics with respect to the crystal grain size. In order to obtain the above relationship between the 0.2% proof stress and the bending radius ratio, It has been found that the average crystal grain size needs to be 20 μm or less.

【0023】なお、材料の強度を低下させずに曲げ特性
を向上させるには、結晶粒度を厳密に規定し、かつ最終
の再結晶焼鈍条件、冷間加工度及び時効処理温度を適正
にする必要がある。また、本発明は、上記のようなチタ
ン銅合金を用いた端子・コネクターでもある。
In order to improve the bending characteristics without reducing the strength of the material, it is necessary to strictly define the crystal grain size and to set the final recrystallization annealing conditions, the degree of cold working and the aging temperature appropriately. There is. The present invention is also a terminal / connector using the above-described titanium-copper alloy.

【0024】次に、本発明のチタン銅合金の製造方法
は、最終再結晶焼鈍を図1に示すα相とα+CuTi
相の境界線L以下の温度で行うことで上記チタン銅合金
を製造することを特徴としている。
Next, in the method for producing a titanium copper alloy according to the present invention, the final recrystallization annealing is performed by using the α phase and α + Cu 3 Ti shown in FIG.
The method is characterized in that the above-described titanium-copper alloy is manufactured by performing the process at a temperature equal to or lower than the phase boundary line L.

【0025】本発明においては、最終の再結晶焼鈍条件
とこれに続く冷間加工、更に時効処理の条件を規定する
ことが基本となっている。最終の再結晶焼鈍条件はその
後に続く加工を容易にするため、並びに材料の特性及び
結晶粒度を調整するために行われる。
In the present invention, it is fundamental to define the conditions for the final recrystallization annealing, the subsequent cold working, and the conditions for the aging treatment. Final recrystallization annealing conditions are used to facilitate subsequent processing and to adjust material properties and grain size.

【0026】従来、結晶粒度が20μmを越えないチタ
ン銅合金を製造するには、処理温度をTiの固溶領域に
定めて処理時間を適正にすることによって結晶粒度を調
整する方法が取られている。しかしながら、高温短時間
での溶体化処理により再結晶させる場合、結晶粒径の均
一性が不十分なために、強度の向上は図れるものの曲げ
加工性が悪くなるとともに特性のばらつきが生じ、20
μm以下の結晶粒径にてチタン銅合金の高強度化の安定
化を図ることは困難であった。
Conventionally, in order to produce a titanium copper alloy having a crystal grain size not exceeding 20 μm, a method of adjusting the crystal grain size by setting the processing temperature to a solid solution region of Ti and making the processing time appropriate has been adopted. I have. However, in the case of recrystallization by solution treatment at high temperature for a short time, the uniformity of the crystal grain size is insufficient, so that the strength can be improved, but the bending workability is deteriorated and the characteristics are varied.
It was difficult to stabilize the high strength of the titanium-copper alloy with a crystal grain size of μm or less.

【0027】そこで、本発明者等は再結晶焼鈍に関する
種々の試験を行った結果、各組成に対し、固溶−析出の
境界であるα−(α+CuTi)境界線L以下の温
度、すなわち、含有する全てのTiがCu中に固溶する
温度領域ではなく、一部析出が起こる温度領域にて、平
均結晶粒径が20μmを越えない時間再結晶焼鈍を行う
と、強度を低下させないで曲げ加工性が良好であり、し
かも特性のばらつきが小さいチタン銅合金を提供するこ
とができることを見出した。なお、α−(α+Cu
i)境界線Lの温度y(℃)については、簡略的にTi
濃度をx(%)とし、y=50x+650で近似するこ
とができる。なお、結晶粒が微細になれば曲げ加工性は
良好になるが、平均結晶粒径が3μm未満になると、未
再結晶部が残存することがあり、曲げ加工性が劣化する
ことがあるため、平均結晶粒径は20μm以下、好まし
くは3〜20μmとする。
The present inventors have conducted various tests on recrystallization annealing. As a result, for each composition, the temperature below the α- (α + Cu 3 Ti) boundary line L, which is the boundary between solid solution and precipitation, When the recrystallization annealing is performed for a time period in which the average crystal grain size does not exceed 20 μm in a temperature region where partial precipitation occurs, not in a temperature region where all the contained Ti is dissolved in Cu, a strength does not decrease. It has been found that it is possible to provide a titanium copper alloy having good bending workability and small variation in characteristics. Note that α- (α + Cu 3 T
i) For the temperature y (° C.) of the boundary line L, simply use Ti
The density can be approximated as x (%), with y = 50x + 650. When the crystal grains become finer, the bendability becomes better. However, when the average crystal grain size is less than 3 μm, unrecrystallized portions may remain and the bendability may be deteriorated. The average crystal grain size is 20 μm or less, preferably 3 to 20 μm.

【0028】また、再結晶焼鈍後の冷却速度を100℃
/秒以上とすることが望ましい。これは、冷却速度が1
00℃/秒を下回ると冷却時にスピノーダル分解を起こ
して材料が硬化し、その後の加工が困難になるためであ
る。このため、加熱炉を出た材料表面を水や気水によっ
て冷却することが、上記冷却速度を確保しかつ材料を均
一に冷却するために好ましい。
Further, the cooling rate after the recrystallization annealing is 100 ° C.
/ Sec or more is desirable. This means that the cooling rate is 1
If the temperature is lower than 00 ° C./sec, spinodal decomposition occurs at the time of cooling to harden the material, which makes subsequent processing difficult. For this reason, it is preferable to cool the surface of the material that has exited the heating furnace with water or steam to secure the above-mentioned cooling rate and to cool the material uniformly.

【0029】さらに、上記のような0.2%耐力と曲げ
加工性の特性の相関を得るには、再結晶焼鈍条件の他に
その後の冷間加工度と時効処理条件を厳密に規定する必
要がある。再結晶焼鈍された材料は、殆どのTiが固溶
され、冷間圧延によって加工された後、時効処理が施さ
れる。その冷間圧延時の加工度は、5〜70%以下とす
ることが望ましい。これは、5%未満の加工度では、加
工硬化による強度の向上が小さいために所望の強度が得
られず、一方、加工度が70%を超えると時効処理条件
を適正にすることによって高い強度は得られるものの、
曲げ加工性が劣化して上記のような0.2%耐力と曲げ
加工性の特性の相関特性を得ることができないためであ
る。
Furthermore, in order to obtain the above-mentioned correlation between the 0.2% proof stress and the bendability, it is necessary to strictly define not only the recrystallization annealing conditions but also the subsequent cold workability and aging treatment conditions. There is. The recrystallized and annealed material is subjected to aging treatment after most of the Ti is dissolved in solid solution and processed by cold rolling. The working ratio at the time of the cold rolling is desirably 5 to 70% or less. This is because, when the degree of work is less than 5%, the desired strength cannot be obtained due to a small improvement in strength due to work hardening. On the other hand, when the degree of work exceeds 70%, high strength is obtained by optimizing the aging treatment conditions. Can be obtained,
This is because the bending property deteriorates and it is not possible to obtain the above-mentioned correlation property between the 0.2% proof stress and the bending property.

【0030】また、時効処理条件は300℃以上600
℃以下であることが望ましい。これは、時効処理温度が
300℃未満であると十分に時効処理が施されずに材料
強度が向上せず、一方、600℃以上の温度にて時効処
理を行っても固溶Ti量が多く(析出物量が少なく)、
所望の強度が得られないためである。また、時効時間
は、1時間以上15時間以下であることが望ましい。こ
れは、1時間未満では時効による強度、導電性の向上が
期待できず、一方、15時間を超えると著しい過時効に
よる強度低下が起こるためである。
The aging condition is 300 ° C. or more and 600 ° C.
It is desirable that the temperature is not more than ° C. This is because if the aging temperature is lower than 300 ° C., the aging treatment is not sufficiently performed and the material strength is not improved. On the other hand, even if the aging treatment is performed at a temperature of 600 ° C. or more, the amount of solid solution Ti is large. (The amount of precipitate is small),
This is because a desired strength cannot be obtained. The aging time is desirably 1 hour or more and 15 hours or less. This is because if it is less than 1 hour, strength and conductivity due to aging cannot be expected to improve, and if it exceeds 15 hours, the strength is significantly reduced due to overaging.

【0031】以上のように、本発明は、時効硬化型銅合
金であるチタン銅合金であって曲げ加工性に優れた高強
度のものであり、小型で優れた曲げ加工性、高強度が要
求される端子・コネクターに適用される。また、端子・
コネクターのコンタクトに加工前、又は加工後にめっき
処理されても強度、曲げ加工性は殆ど劣化せず、本発明
の効果は発揮される。
As described above, the present invention is a titanium copper alloy which is an age-hardening type copper alloy and has high bending workability and high strength, and requires small size and excellent bending workability and high strength. Applicable to terminals and connectors. Also, terminals
Even if the contact of the connector is plated before or after processing, the strength and bending workability hardly deteriorate, and the effect of the present invention is exhibited.

【0032】上記のような高強度チタン銅は、一般に、
時効処理の後にプレス加工が行われる。本発明者等は、
プレス加工後に時効処理を行うとともに結晶粒度の範囲
を上記よりも限定することにより、曲げ加工性がさらに
向上されることを見い出した。すなわち、本発明の第3
の特徴は、Tiを2.0質量%以上3.5質量%以下含
有し、残部が銅及び不可避不純物からなるチタン銅合金
において、プレス加工後に時効処理が行われ、結晶粒度
が5〜15μmであり、かつ、時効処理前に曲げ半径が
0で圧延方向に対し直角方向にW曲げ試験を行った際に
割れが発生せず、上記時効処理後に硬さが300Hv以
上、好ましくは310Hv以上となる加工組織を有する
ものである。
The high-strength titanium copper as described above is generally
Press working is performed after the aging treatment. The present inventors,
It has been found that the bending workability is further improved by performing the aging treatment after the press working and further restricting the range of the crystal grain size from the above. That is, the third aspect of the present invention
The feature of is that, in a titanium copper alloy containing Ti in an amount of 2.0% by mass or more and 3.5% by mass or less, the balance being copper and unavoidable impurities, aging treatment is performed after press working, and the crystal grain size is 5 to 15 μm. Yes, and before the aging treatment, the bending radius is 0, no crack occurs when a W bending test is performed in a direction perpendicular to the rolling direction, and the hardness becomes 300 Hv or more, preferably 310 Hv or more after the aging treatment. It has a processing structure.

【0033】また、本発明の第4の特徴は、Tiを2.
0質量%以上3.5質量%以下含有し、更にZn、C
r、Zr、Fe、Ni、Sn、In、Mn、P及びSi
の1種以上を総量で0.01質量%以上3.0質量%以
下含有し、残部が銅及び不可避不純物からなるチタン銅
合金において、プレス加工後に時効処理が行われ、結晶
粒度が5〜15μmであり、かつ、時効処理前に曲げ半
径が0で圧延方向に対し直角方向にW曲げ試験を行った
際に割れが発生せず、上記時効処理後に硬さが300H
v以上、好ましくは310Hv以上となる加工組織を有
するものである。
A fourth feature of the present invention resides in that Ti is used in the following manner.
0 mass% to 3.5 mass%, Zn, C
r, Zr, Fe, Ni, Sn, In, Mn, P and Si
In a titanium-copper alloy containing 0.01% by mass or more and 3.0% by mass or less in total, and the balance being copper and unavoidable impurities, aging treatment is performed after press working, and the crystal grain size is 5 to 15 μm. In addition, when the bending radius is 0 before the aging treatment and the W bending test is performed in a direction perpendicular to the rolling direction, no crack occurs, and the hardness is 300H after the aging treatment.
v or more, preferably 310 Hv or more.

【0034】上記のような高強度チタン銅合金は、最終
再結晶焼鈍をα相とα+CuTi相の境界線以下の温
度で行って結晶粒度を5〜15μmに調整後、加工度5
〜50%の最終冷間圧延を行うことで製造することがで
きる。また、時効処理条件は、上記第1、第2の特徴と
同じ条件とすることができ、そのような製造方法も本発
明の特徴である。さらに、第3および第4の特徴も小型
で優れた曲げ加工性、高強度が要求される端子・コネク
ターに適用され、そのような端子・コネクターも本発明
の特徴である。
The high-strength titanium copper alloy as described above is subjected to final recrystallization annealing at a temperature below the boundary between the α phase and α + Cu 3 Ti phase to adjust the crystal grain size to 5 to 15 μm,
It can be manufactured by performing final cold rolling of 50%. Further, the aging condition can be the same as the first and second features, and such a manufacturing method is also a feature of the present invention. Further, the third and fourth features are also applied to terminals / connectors which are required to be small and have excellent bending workability and high strength, and such terminals / connectors are also features of the present invention.

【0035】次に、本発明者らは、チタン銅合金の製造
工程を検討し、熱間圧延条件、その後の冷間圧延条件、
それに続く時効処理条件を調整することにより、120
0MPa以上の引張強さを有する高強度チタン銅合金を
安定的に得ることが可能であることを見出した。
Next, the present inventors examined the production process of the titanium-copper alloy and examined the hot rolling conditions, the subsequent cold rolling conditions,
By adjusting the subsequent aging conditions, 120
It has been found that a high-strength titanium-copper alloy having a tensile strength of 0 MPa or more can be stably obtained.

【0036】すなわち、本発明の第5の特徴は、Tiを
2.0〜3.5質量%含み、残部銅及び不可避的不純物
からなる高強度チタン銅合金であって、引張強さが12
00MPa以上、導電率が10%IACS以上のもので
ある。
That is, a fifth feature of the present invention is a high-strength titanium-copper alloy containing 2.0 to 3.5% by mass of Ti, the balance being copper and unavoidable impurities, and having a tensile strength of 12%.
It has a conductivity of at least 00 MPa and a conductivity of at least 10% IACS.

【0037】また、本発明の第6の特徴は、Tiを2.
0〜3.5質量%含み、更にZn0.05質量%以上
2.0質量%未満、Cr、Zr、Fe、Ni、Sn、I
n、Mn、P及びSiの1種以上を総量で0.01質量
%以上3.0質量%未満含有し、残部銅及び不可避的不
純物からなる高強度チタン銅合金であって、引張強さが
1200MPa以上、導電率が10%IACS以上のも
のである。
The sixth feature of the present invention resides in that Ti
0-3.5% by mass, Zn 0.05% by mass or more and less than 2.0% by mass, Cr, Zr, Fe, Ni, Sn, I
a high-strength titanium-copper alloy containing at least one kind of n, Mn, P and Si in a total amount of 0.01% by mass or more and less than 3.0% by mass, the balance being copper and unavoidable impurities; It has a conductivity of 1200 MPa or more and a conductivity of 10% IACS or more.

【0038】上記高強度チタン銅合金は、600℃以上
の温度で熱間圧延した後、続いて加工度95%以上で冷
間圧延し、引き続き冷間圧延の集合組織の状態を保持し
て340℃以上480℃未満で1時間以上15時間未満
の温度で時効処理することで製造することができる。
The high-strength titanium-copper alloy is hot-rolled at a temperature of 600 ° C. or more, then cold-rolled at a workability of 95% or more, and continuously maintained in a cold-rolled texture state 340. It can be manufactured by aging at a temperature of not less than 480 ° C and not more than 1 hour and less than 15 hours.

【0039】また、本発明は、上記第5、第6の特徴を
有する高強度チタン銅合金を用いたフォーク型コネクタ
ーでもある。
The present invention is also a fork connector using a high-strength titanium-copper alloy having the fifth and sixth characteristics.

【0040】第5、第6の特徴において成分の限定理由
は上記第1、第2の特徴と同じである。第5、第6の特
徴における特性値の限定理由は以下のとおりである。 引張強さ:FPC用のフォーク型コネクターは、金属
材料の面で接触する汎用のコネクターと異なり、基板と
は、銅合金板の破面で接触させる構造であり、曲げ加工
は行われない。 そのため、強度が高いことが第一に要
求される。本発明では、強度の指標として引張強さを用
いた。フォーク型コネクターとして要求される引張強さ
は、黄銅、りん青銅、洋白等の汎用銅合金で得られる引
張強さでは十分でなく、フォーク型コネクター用として
多様な設計に対応可能とするためには、1200MPa
以上の引張強さが必要である。
In the fifth and sixth aspects, the reasons for limiting the components are the same as in the first and second aspects. The reasons for limiting the characteristic values in the fifth and sixth characteristics are as follows. Tensile strength: A fork-type connector for FPC is different from a general-purpose connector in contact with a surface of a metal material, and has a structure in which a substrate is in contact with a broken surface of a copper alloy plate, and is not bent. Therefore, high strength is first required. In the present invention, tensile strength was used as an index of strength. The tensile strength required for fork-type connectors is not enough with the tensile strength obtained from general-purpose copper alloys such as brass, phosphor bronze, and nickel silver. Is 1200 MPa
The above tensile strength is required.

【0041】導電率:FPC用のフォーク型コネクタ
ー用の金属材料としては、強度が高いことが第一に要求
されるが、フォーク型コネクターは金属材料の破面で接
触する構造であるため、他のコネクターに比べて接触抵
抗が大きい。対応として、接触部に金めっきして使用さ
れるが、金属材料としても、ある程度の導電性が要求さ
れる。 ステンレス鋼は高強度の材料もあるが、導電性
が低く、コンタクト部で発生した熱を放散しにくい。最
低でも10%IACSの導電率が必要である。
Conductivity: A metal material for a fork-type connector for an FPC is required to have high strength first, but the fork-type connector has a structure in which the metal material comes into contact with a broken surface. The contact resistance is higher than that of the connector. As a countermeasure, the contact portion is used by being plated with gold, but a certain degree of conductivity is required also as a metal material. Although stainless steel is a high-strength material, its conductivity is low and it is difficult to dissipate the heat generated at the contact portion. A conductivity of at least 10% IACS is required.

【0042】第5、第6の特徴を有する高強度チタン銅
合金は、以下のようにして製造することができる。従
来、チタン銅合金の強度を向上させる製造工程として
は、熱間圧延後、冷間圧延・熱処理を適宜行なった後、
熱処理(溶体化処理)を施して結晶粒を20μm以下に
調整し、かつ最終冷間圧延の加工度、及び時効処理温度
を適正にする方法があり、これによって引張強さが10
00MPa程度で、かつ曲げ性の優れた材料を製造でき
る(特開平7−258803)。ところが、製造性を考
慮し、Ti量が2.0〜3.5質量%の範囲において、
この製造方法にて、引張強さが1200MPa以上の高
強度チタン銅を製造することは未だ達成されてない。
また、前述のMTH処置についてもTi量が2.0〜
3.5質量%の範囲では1200MPa以上の引張強さ
は得られていない。
The high-strength titanium-copper alloy having the fifth and sixth characteristics can be manufactured as follows. Conventionally, as a manufacturing process for improving the strength of titanium copper alloy, after hot rolling, after appropriately performing cold rolling and heat treatment,
There is a method in which heat treatment (solution treatment) is performed to adjust the crystal grains to 20 μm or less, and the workability of final cold rolling and the aging treatment temperature are adjusted appropriately.
A material having a flexibility of about 00 MPa and excellent in bendability can be manufactured (Japanese Patent Application Laid-Open No. 7-258803). However, in consideration of manufacturability, when the Ti content is in the range of 2.0 to 3.5% by mass,
Production of high-strength titanium copper having a tensile strength of 1200 MPa or more has not yet been achieved by this production method.
In addition, the amount of Ti is 2.0 to
In the range of 3.5% by mass, a tensile strength of 1200 MPa or more was not obtained.

【0043】本発明の製造方法においては、「熱間圧延
での材料温度」「時効処理前の冷間圧延の加工度」「時
効処理条件」を規定することが基本となっている。 熱間圧延:熱間圧延は、鋳造組織を均質化し更に高温
で圧延することによって動的再結晶を起こさせて、その
後の加工を容易にするが、熱間圧延時に材料温度が60
0℃以下になるとチタン銅合金はスピノーダル分解を起
こして急激に硬化するため、それ以降の冷間加工が困難
になると共に特性のばらつきが生じる。したがって、熱
間圧延時の材料温度を600℃以上に保持して行うこと
とした。また、熱間圧延後の冷却は、急冷しなければ材
料が硬化し、その後の圧延加工が困難になることから、
水冷等によって材料の冷却速度を200℃/秒以上とす
ることが好ましい。
In the production method of the present invention, it is fundamental to define "material temperature in hot rolling", "working degree of cold rolling before aging treatment", and "aging treatment conditions". Hot rolling: In hot rolling, the casting structure is homogenized and further subjected to rolling at a high temperature to cause dynamic recrystallization and facilitate subsequent processing.
When the temperature is lower than 0 ° C., the titanium-copper alloy undergoes spinodal decomposition and rapidly hardens, so that the subsequent cold working becomes difficult and the characteristics vary. Therefore, the hot rolling was performed while maintaining the material temperature at 600 ° C. or higher. In addition, the cooling after hot rolling, if not quenched, the material hardens, and subsequent rolling becomes difficult,
It is preferable that the material is cooled at a rate of 200 ° C./sec or more by water cooling or the like.

【0044】冷間圧延:従来、チタン銅合金は、熱間
圧延後に冷間圧延と焼鈍が適宜行われ、冷間圧延にて所
定の板厚とした後、更に時効処理の前に高温短時間の熱
処理(溶体化処理)が施されていた。 すなわち、熱処
理は材料特性を調整すること及びその後の加工を容易に
するために行うのであるが、熱間圧延終了から時効処理
までの間に、熱処理を施すために、冷間圧延の適度な加
工度が設定できず、強度が低下し、所望の高強度を得る
ことが困難となる。
Cold Rolling: Conventionally, titanium copper alloys are appropriately subjected to cold rolling and annealing after hot rolling, and after cold rolling to a predetermined thickness, and before aging, a high temperature and a short time. Heat treatment (solution treatment). In other words, the heat treatment is performed to adjust the material properties and to facilitate the subsequent processing, but during the period from the end of hot rolling to the aging treatment, the appropriate processing of cold rolling is performed to perform the heat treatment. The degree cannot be set, the strength is reduced, and it is difficult to obtain a desired high strength.

【0045】ところが、前記熱間圧延の加工条件を厳密
に規定することによって、その後の冷間圧延でも95%
以上の強加工が可能となる。 ここで、冷間加工の加工
度を95%以上としたのは、一般に加工度が高くなるに
したがって強度が上昇するが、その後の時効処理にて1
200MPa以上の引張強さを得るためには、加工度を
厳密に規定する必要があり、加工度95%以上にするこ
とによって1200MPa以上の引張強さを得ることが
可能となるためである。
However, by strictly defining the working conditions of the hot rolling, 95% can be obtained even in the subsequent cold rolling.
The above-mentioned strong working becomes possible. Here, the reason why the working ratio of the cold working is set to 95% or more is that the strength generally increases as the working ratio increases, but it is 1% in the subsequent aging treatment.
In order to obtain a tensile strength of 200 MPa or more, it is necessary to strictly define the degree of work. By setting the degree of work to 95% or more, it is possible to obtain a tensile strength of 1200 MPa or more.

【0046】時効処理:さらに、冷間圧延を終えた材
料は、より強度を向上させると共に、伸びとばね性、導
電率等の特性を改善するために、時効処理が施される。
この時の時効処理条件を340℃以上480℃未満とし
たのは、時効処理温度が340℃未満であると十分に時
効処理が施されずに強度、導電性が向上しないためであ
り、480℃以上であると、時効処理前の冷間圧延加工
度が95%以上と強加工であるために、短時間の時効処
理でも過時効状態となり、強度が低下し所望の特性が得
られないため、340℃以上480℃未満の温度範囲と
した。
Aging treatment: The material that has been subjected to cold rolling is further subjected to an aging treatment in order to further improve strength and to improve properties such as elongation, spring properties, and electrical conductivity.
The reason for setting the aging treatment condition at this time to 340 ° C. or more and less than 480 ° C. is that if the aging treatment temperature is less than 340 ° C., the aging treatment is not sufficiently performed, and the strength and conductivity are not improved. If it is above, since the cold rolling work ratio before the aging treatment is 95% or more, which is a strong working, even if the aging treatment for a short time, it becomes over-aged, the strength is reduced, and the desired characteristics cannot be obtained. The temperature range was 340 ° C. or more and less than 480 ° C.

【0047】また、時効処理時間を1時間以上15時間
未満としたのは、1時間未満では時効による強度、導電
性の向上が期待できず、15時間以上であると、著しい
過時効による強度低下が起こるために1時間以上15時
間未満とした。
Further, the reason why the aging treatment time is set to 1 hour or more and less than 15 hours is that when less than 1 hour, the strength and conductivity due to aging cannot be expected, and when it is 15 hours or more, the strength is significantly reduced due to overaging. 1 hour or more and less than 15 hours for the occurrence of the occurrence.

【0048】上記のような高強度チタン銅は、一般に、
時効処理の後にプレス加工が行われる。本発明者等は、
プレス加工後に時効処理を行うことにより、時効処理後
の寸法変化を大幅に低減できることを見い出した。すな
わち、本発明の第7の特徴は、Tiを2.0質量%以上
3.5質量%以下含有し、残部が銅及び不可避不純物か
らなるチタン銅合金において、プレス加工後に時効処理
が行われ、上記時効処理後に硬さが345Hv以上とな
る加工組織を有するものである。
The above-mentioned high-strength titanium copper is generally
Press working is performed after the aging treatment. The present inventors,
By performing aging treatment after press working, it has been found that dimensional changes after aging treatment can be significantly reduced. That is, the seventh feature of the present invention is that in a titanium-copper alloy containing 2.0% by mass or more and 3.5% by mass or less of Ti and the balance being copper and unavoidable impurities, aging treatment is performed after press working, It has a worked structure in which the hardness becomes 345 Hv or more after the aging treatment.

【0049】また、本発明の第8の特徴は、Tiを2.
0〜3.5質量%含み、更にZn0.05質量%以上
2.0質量%未満、Cr、Zr、Fe、Ni、Sn、I
n、Mn、P及びSiの1種以上を総量で0.01質量
%以上3.0質量%未満含有し、残部銅及び不可避的不
純物からなるチタン銅合金において、プレス加工後に時
効処理が行われ、上記時効処理後に硬さが345Hv以
上となる加工組織を有するものである。
An eighth feature of the present invention resides in that Ti is used in the following manner.
0-3.5% by mass, Zn 0.05% by mass or more and less than 2.0% by mass, Cr, Zr, Fe, Ni, Sn, I
In a titanium copper alloy containing at least one kind of n, Mn, P, and Si in a total amount of 0.01% by mass or more and less than 3.0% by mass, and aging treatment is performed after press working, in a titanium copper alloy composed of copper and unavoidable impurities. And has a processed structure in which the hardness becomes 345 Hv or more after the aging treatment.

【0050】上記第7、第8の特徴を有する高強度チタ
ン銅は、600℃以上の温度で熱間圧延した後、続いて
加工度95%以上で冷間圧延して製造することができ、
そのような製造方法も本発明の特徴である。また、第
7、第8の特徴を有する高強度チタン銅は、フォーク型
コネクターに特に好適であり、そのようなフォーク型コ
ネクターも本発明の特徴である。
The high-strength titanium copper having the seventh and eighth characteristics can be manufactured by hot rolling at a temperature of 600 ° C. or higher, and then cold rolling at a working ratio of 95% or higher.
Such a manufacturing method is also a feature of the present invention. The high-strength titanium copper having the seventh and eighth features is particularly suitable for a fork-type connector, and such a fork-type connector is also a feature of the present invention.

【0051】[0051]

【実施例】[第1実施例]本発明を特に好ましい合金組
成範囲を示す第1実施例により更に具体的に説明する。
まず、電気銅あるいは無酸素銅を原料とし、高周波溶解
炉にて表1(実施例)及び表2(比較例)に示す各種組
成の銅合金インゴット(50mm×100mm×2
00mm)を溶製した。次に、これら各インゴットを
850〜950℃の温度で1時間加熱後、熱間圧延を行
い8mm厚さの板を得た。なお、その際の熱間圧延後の
材料温度は650℃以上とし、熱間圧延後は材料を水冷
した。次いで、板の表面の酸化層を研磨して除去後、圧
延と再結晶焼鈍を繰り返し、適宜酸洗を行った後、表
1、2の条件にて再結晶焼鈍(溶体化処理)を行った
後、冷間圧延、時効処理を行い、0.2mm厚さの材料
を得た。なお、再結晶焼鈍後の冷却は熱処理後水中に投
入することにより行った。この時の冷却速度は200℃
/秒以上であることを、材料表面に熱電対を取り付ける
ことにより確認した。また、表中には、α−(α+Cu
Ti)境界線の温度を前述した簡略式(y=50x+
650)にて求めた値を付記する。表1に示すように、
本発明ではα−(α+CuTi)境界線以下であって
50℃以内の温度で再結晶焼鈍を行った。
EXAMPLES [First Example] The present invention will be described more specifically with reference to a first example showing a particularly preferable alloy composition range.
First, copper alloy ingots of various compositions shown in Table 1 (Example) and Table 2 (Comparative Example) (50 mm t × 100 mm w × 2) were prepared using electrolytic copper or oxygen-free copper as a raw material in a high frequency melting furnace.
00 mm l ). Next, each of these ingots was heated at a temperature of 850 to 950 ° C. for 1 hour, and then hot-rolled to obtain a plate having a thickness of 8 mm. In this case, the material temperature after hot rolling was 650 ° C. or higher, and the material was water-cooled after hot rolling. Next, after the oxide layer on the surface of the plate was polished and removed, rolling and recrystallization annealing were repeated, pickling was appropriately performed, and then recrystallization annealing (solution treatment) was performed under the conditions shown in Tables 1 and 2. Thereafter, cold rolling and aging treatment were performed to obtain a material having a thickness of 0.2 mm. The cooling after the recrystallization annealing was performed by pouring into water after the heat treatment. The cooling rate at this time is 200 ° C
/ Sec or more was confirmed by attaching a thermocouple to the material surface. Also, in the table, α- (α + Cu
3 Ti) The temperature of the boundary line is calculated by the above-described simplified formula (y = 50x +
650) is appended. As shown in Table 1,
In the present invention, the recrystallization annealing was performed at a temperature below the α- (α + Cu 3 Ti) boundary and within 50 ° C.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】上記一連の処理を施すことにより得られた
材料から各種の試験片を採取して特性試験を行った。ま
ず、ばね性及び強度を評価する尺度として引張試験を行
うことによって、0.2%耐力、引張強さ及び伸びをJ
ISZ2201及びZ2241に従って測定した。次
に、曲げ加工性については10mm×100mm
寸法の試験片を圧延方向と直角に採取し、W曲げ試験
(JIS H 3110)を各種曲げ半径で行い、日本
伸銅協会技術標準JBTA T307:1999による
評価基準でランクC以上の良好な曲げ部外観が得られ
る、割れの発生しない最小の曲げ半径比(r/t:r;
曲げ半径、t;試験片厚さ(板厚))を、曲げ部を光学
顕微鏡により観察して求めた。この評価基準はランク
A:しわ無し、ランクB:しわ小、ランクC:しわ大、
ランクD:割れ小、ランクE:割れ大の5ランクに分け
られ、Cランクの結果が得られた曲げ半径比より大きな
曲げ半径比で曲げ試験を行った場合は、同等若しくはよ
り良好なA〜Cの外観が得られる。なお、W曲げ試験の
曲げ軸は、曲げ特性が劣る 圧延方向と平行方向(Bad
Way)により評価した。また、曲げ半径は、曲げ中心か
ら試験片の内周面までの距離とし、種々の曲げ半径を有
する治具を用いて評価した。
Various test pieces were sampled from the material obtained by performing the above series of processes, and a characteristic test was performed. First, a 0.2% proof stress, a tensile strength and an elongation were evaluated by performing a tensile test as a scale for evaluating spring property and strength.
It was measured according to ISZ2201 and Z2241. Next, regarding the bending workability, a test piece having a size of 10 mm w × 100 mm 1 was sampled at a right angle to the rolling direction, a W bending test (JIS H 3110) was performed at various bending radii, and the Japan Copper and Brass Association technical standard JBTA T307 was obtained. : A minimum bending radius ratio (r / t: r; r / t: r; no cracking) with which a good appearance of a bent portion of rank C or higher can be obtained according to the evaluation criteria according to 1999.
The bending radius, t; the thickness of the test piece (plate thickness)) was determined by observing the bent portion with an optical microscope. The evaluation criteria are: rank A: no wrinkle, rank B: small wrinkle, rank C: large wrinkle,
Rank D: Small crack, Rank E: Large crack, divided into 5 ranks. When the bending test was performed at a bending radius ratio larger than the bending radius ratio at which the result of C rank was obtained, the same or better A ~ The appearance of C is obtained. In addition, the bending axis of the W bending test is parallel to the rolling direction (Bad
Way). The bending radius was a distance from the bending center to the inner peripheral surface of the test piece, and was evaluated using jigs having various bending radii.

【0055】表3(実施例)および4(比較例)に上記
特性試験の結果を示す。本発明の実施例No.1〜24
では、bで表示される0.2%耐力と、aで表示される
割れの発生しない曲げ半径比(曲げ半径/板厚)がa≦
0.05×b−40となり、高強度と曲げ加工性とがバ
ランスされた近年の要求に応えるチタン銅合金(評価:
良好)を得ることができた。これに対して、比較例N
o.25〜39は、以下に説明するように、本発明の要
件を満たしていないため、0.2%耐力に対して、曲げ
加工性が悪い等の問題が発生した。
Tables 3 (Examples) and 4 (Comparative Examples) show the results of the above characteristic tests. Example No. 1 of the present invention. 1 to 24
Then, the 0.2% proof stress indicated by b and the bending radius ratio (bending radius / plate thickness) at which cracks do not occur, indicated by a, are a ≦ a ≦
0.05 × b-40, which is a titanium copper alloy that meets the recent demands in which high strength and bending workability are balanced (evaluation:
Good). On the other hand, Comparative Example N
o. As described below, Nos. 25 to 39 did not satisfy the requirements of the present invention, and thus caused problems such as poor bending workability with respect to 0.2% proof stress.

【0056】No.25,26ではTi含有量が低いた
め、0.2%耐力が800N/mm 以上の高強度が得
られない。No.27,28では、強度が本発明の実施
例の合金より低く、曲げ半径比も大きく曲げ加工性が悪
い。これは、Ti含有量が多すぎるために、強度向上に
寄与しない粒界への析出が多く発生したため、引張試
験、曲げ試験の際に、粒界への析出物を起点にクラック
が発生したためと考えられる。
No. In 25 and 26, the Ti content was low.
0.2% proof stress is 800N / mm 2Higher strength
I can't. No. In 27 and 28, the strength is the practice of the present invention.
Lower than the alloy of the example, large bending radius ratio, poor bending workability
No. This is because the Ti content is too large,
Many precipitations at grain boundaries that do not contribute occurred,
During precipitation and bending tests, starting from precipitates at grain boundaries
It is considered that a problem occurred.

【0057】No.29では、Zn量が多すぎる例、N
o.30は添加した副成分の総量が多すぎる例であり、
これらはいずれも導電率が低く、曲げ加工性も悪い。N
o.31,32は再結晶温度が高すぎる例であるが、2
0μm以下の平均結晶粒径が得られず、高い0.2%耐
力が得られなかった。また、本発明例における同レベル
の0.2%耐力の合金例と比較すると曲げ半径比が大き
く、曲げ加工性が悪い。なお、No.31は混粒組織で
あった。そのため、No.31の平均結晶粒径は25μ
mとNo.32より小さいが、曲げ半径比が3.0〜
5.0の範囲でばらついた。なお、表4にはその最大値
を記載した。
No. In the case of No. 29, when the Zn content is too large,
o. 30 is an example where the total amount of the added sub-components is too large,
All of these have low conductivity and poor bending workability. N
o. 31 and 32 are examples where the recrystallization temperature is too high.
An average crystal grain size of 0 μm or less was not obtained, and a high 0.2% proof stress was not obtained. Further, the bending radius ratio is large and the bending workability is poor as compared with the alloy example of the present invention having the same level of 0.2% proof stress. In addition, No. 31 was a mixed grain structure. Therefore, no. 31 has an average grain size of 25μ.
m and No. 32, but the bending radius ratio is 3.0 to 3.0.
It varied in the range of 5.0. Table 4 shows the maximum values.

【0058】No.33,34は冷間圧延の加工度が高
すぎる例であるが、時効処理時間を他の例に比べて短く
することにより、高い0.2%耐力は得られたが、曲げ
加工性が悪い。No.35は時効処理温度が低い例であ
るが、温度が低いため、時効処理が不充分で強度が低
い。No.36は時効処理時間が長すぎる例であり、過
時効状態となり、0.2%耐力が低下した。
No. 33 and 34 are examples in which the degree of cold rolling is too high. By shortening the aging time as compared with other examples, a high 0.2% proof stress was obtained, but the bending workability was poor. . No. 35 is an example in which the aging treatment temperature is low, but since the temperature is low, the aging treatment is insufficient and the strength is low. No. No. 36 is an example in which the aging treatment time was too long, which resulted in an overaged state and a 0.2% proof stress decreased.

【0059】No.37は時効処理温度が高すぎ、時効
処理時間が短すぎる例であるが、時効処理温度が高すぎ
るため、Tiの固溶量が多く、しかも時効処理温度が短
いため、十分な0.2%耐力が得られなかった。No.
38は時効処理時間が短い例であり、時効が不充分なた
め0.2%耐力が低い。No.39は時効処理温度が低
い例であり、50時間という長い時効処理時間でも高い
0.2%耐力が得られない。
No. 37 is an example in which the aging treatment temperature is too high and the aging treatment time is too short. However, since the aging treatment temperature is too high, the solid solution amount of Ti is large and the aging treatment temperature is short. The proof stress was not obtained. No.
38 is an example in which the aging treatment time is short, and the aging is insufficient, so that the 0.2% proof stress is low. No. 39 is an example in which the aging temperature is low, and a high 0.2% proof stress cannot be obtained even with a long aging time of 50 hours.

【0060】以上のように、本発明の合金例では、適正
な組成において、α−(α+CuTi)境界線以下の
温度にて再結晶焼鈍(溶体化処理)を行い、その後の冷
間圧延、時効処理を適正な条件で行うことにより、0.
2%耐力と曲げ半径比の良好な関係が得られ、曲げ加工
性を損なわず、高強度のチタン銅合金が得られる。これ
に対して、比較例の合金はいずれも本発明の合金に比べ
て、0.2%耐力と曲げ半径比の良好な関係が得られ
ず、バランスの良い材料が得られなかった。
As described above, in the alloy example of the present invention, recrystallization annealing (solution treatment) is performed at a temperature below the α- (α + Cu 3 Ti) boundary line with an appropriate composition, and then cold rolling is performed. By performing aging treatment under appropriate conditions,
A good relationship between the 2% proof stress and the bending radius ratio is obtained, and a high-strength titanium copper alloy is obtained without impairing bending workability. On the other hand, the alloys of Comparative Examples did not show a good relationship between the 0.2% proof stress and the bending radius ratio as compared with the alloys of the present invention, and could not obtain a well-balanced material.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】[第2実施例]最終再結晶焼鈍を表5に示
す条件で行った以外は第1実施例のNo.2およびN
o.10と同じ条件で冷間圧延までの工程を行ったもの
をプレス加工した。このプレス加工した試験片に対して
実施例1と同じ条件でW曲げ試験を行った後、時効処理
を施した。時効処理は、No.2に対しては400℃で
6時間、No.10に対しては380℃で6時間行っ
た。時効処理を行う前と後で試験片の各種特性を第1実
施例と同じ方法で調査し、その結果を表5に併記した。
表5から明かなように、平均結晶粒径が5〜15μmの
場合には、曲げ半径比(r/t)がゼロであり、極めて
優れた曲げ加工性を示すことが確認された。また、それ
らの試験片は、時効処理後の硬さが310Hv以上であ
り、引張強度も1000MPa以上であった。
[Second Embodiment] No. 2 of the first embodiment except that the final recrystallization annealing was performed under the conditions shown in Table 5. 2 and N
o. What performed the process until cold rolling on the same conditions as 10 was pressed. After performing a W bending test on the pressed test piece under the same conditions as in Example 1, an aging treatment was performed. In the aging process, No. 2 at 400 ° C. for 6 hours. For 10 was carried out at 380 ° C. for 6 hours. Before and after the aging treatment, various characteristics of the test pieces were investigated in the same manner as in the first example, and the results are shown in Table 5.
As is clear from Table 5, when the average crystal grain size was 5 to 15 μm, the bending radius ratio (r / t) was zero, and it was confirmed that the material exhibited extremely excellent bending workability. Moreover, those test pieces had a hardness after aging treatment of 310 Hv or more and a tensile strength of 1000 MPa or more.

【0064】[0064]

【表5】 [Table 5]

【0065】[第3実施例]電気銅或いは無酸素銅及び
添加元素の金属塊若しくは母合金を原料とし、高周波溶
解炉にて表6(実施例)及び表7(比較例)に示す各種
組成の銅合金インゴットを溶製した。次に、これらのイ
ンゴット(形状:50mmt×100mmw×150m
ml;重量約7000g)の押湯部を切断し、表層を除
去後、850℃で1時間以上加熱した後、材料温度を6
00℃以上に保持して厚さ8mmまで熱間圧延を行い、
水冷した。なお、熱間圧延時の材料温度は、予め温度補
正された2色式パイロメーターによって測定した。その
後、表面の酸化スケールを片面約0.4mm厚さ機械研
磨することによって除去した後、板厚0.4mm未満
(加工度95%以上)の所定の板厚まで冷間加工し、ア
セトン等の有機溶剤で材料表面に付着した圧延油を除去
した後、真空焼鈍炉を用いて所定の条件で時効処理を施
し、供試材を作製した。
[Third Example] Various compositions shown in Table 6 (Example) and Table 7 (Comparative Example) were prepared by using an electrolytic copper or oxygen-free copper and a metal lump or mother alloy of an additive element in a high-frequency melting furnace. Was melted. Next, these ingots (shape: 50 mmt × 100 mmw × 150 m
ml; weight about 7,000 g) was cut off, the surface layer was removed, and heated at 850 ° C for 1 hour or more.
Hot rolling to a thickness of 8 mm while holding at a temperature of 00 ° C or higher,
Water cooled. The material temperature during hot rolling was measured by a two-color pyrometer whose temperature was corrected in advance. Thereafter, the oxide scale on the surface is removed by mechanical polishing of a thickness of about 0.4 mm on one side, and then cold-worked to a predetermined thickness of less than 0.4 mm (working ratio of 95% or more). After removing the rolling oil adhering to the material surface with an organic solvent, aging treatment was performed under predetermined conditions using a vacuum annealing furnace to prepare a test material.

【0066】[0066]

【表6】 [Table 6]

【0067】[0067]

【表7】 [Table 7]

【0068】そして、上記製造工程により得られた板材
から、各種の試験片を採取して材料試験に供した。ま
ず、強度を評価する尺度としてJIS Z 2241に
より、引張試験を行い、0.2%耐力、引張強さ及び伸
びをの評価を行なった。なお試験片は、JIS Z 2
201により13B号試験片を使用した。 導電率はJ
IS H 0505に従って測定した。測定結果を表
8、9に示す。
Then, various test pieces were sampled from the plate material obtained in the above manufacturing process and subjected to a material test. First, a tensile test was performed according to JIS Z 2241 as a scale for evaluating strength, and 0.2% proof stress, tensile strength, and elongation were evaluated. The test piece was JIS Z 2
No. 13B test piece was used according to 201. Conductivity is J
It was measured according to IS H0505. Tables 8 and 9 show the measurement results.

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【表9】 [Table 9]

【0071】表8の本発明例は、何れもフォーク型コネ
クターとして要求される1200MPa以上の引張強さ
を有し、No.4〜6、8、15、20は1300MP
a以上の引張強さを有する。しかしながら、表9の比較
の例において、No.26、27、30、31は、熱間
若しくは冷間圧延途中で割れが発生し、製造性が悪く、
特性の評価ができなかった。 すなわち、No.26、
27はTi量が多すぎるため、No.26は熱間圧延に
て割れが発生し、35mmの厚さまで熱間圧延を行なっ
たが、その後の加工は行わなかった。No.27は熱間
圧延時には割れの発生はなかったが、その後の冷間圧延
にて耳割れが発生した。また、No.30、31は、熱
間圧延時の温度が低く、夫々25mm、15mm厚さの
段階で600℃以下の温度となり、熱間圧延後の冷間圧
延にて耳割れが発生した。
Each of the examples of the present invention in Table 8 has a tensile strength of 1200 MPa or more required for a fork-type connector. 4 to 6, 8, 15, and 20 are 1300MP
It has a tensile strength of at least a. However, in the comparative example of Table 9, 26, 27, 30, and 31, cracks occur during hot or cold rolling, resulting in poor manufacturability,
The characteristics could not be evaluated. That is, No. 26,
No. 27 has an excessive amount of Ti. In No. 26, a crack was generated by hot rolling, and hot rolling was performed to a thickness of 35 mm, but subsequent processing was not performed. No. In No. 27, no cracks occurred during hot rolling, but ear cracks occurred in the subsequent cold rolling. In addition, No. Samples Nos. 30 and 31 had low temperatures during hot rolling, and had a temperature of 600 ° C. or less at a thickness of 25 mm and 15 mm, respectively, and edge cracks occurred during cold rolling after hot rolling.

【0072】No.24はTi量が少ないため、強度が
低い。 No.25も同様にTi量が少なく、Cu−C
r−Zr系銅合金の例であり、導電率は高いものの、強
度が低い。No.28、29はZn等の含有量が多いた
め、導電率が低く、No.29は冷間圧延中に耳割れた
発生した。
No. No. 24 has a low strength because of a small amount of Ti. No. 25 also has a low Ti content,
This is an example of an r-Zr-based copper alloy, which has high conductivity but low strength. No. Nos. 28 and 29 have a low conductivity due to a high content of Zn and the like. No. 29 cracked during cold rolling.

【0073】No.32、33は冷間圧延の加工度のが
低すぎるため、強度が低い。No.34、38は時効温
度が低いため、No.38にて50時間と長い時効時間
を設けても所望の導電率に達しない。 No.37は時
効時間が短いため、所望の導電率に達しない。No.3
5、36は時効温度が高い、若しくは時効時間が長い例
であり、時効処理前の冷間圧延の加工度が高いこともあ
り、過時効状態となり、高い強度が得られない。
No. Nos. 32 and 33 have low strength because the degree of cold rolling is too low. No. Nos. 34 and 38 have low aging temperatures. Even if an aging time as long as 50 hours is provided at 38, the desired conductivity is not reached. No. 37 does not reach the desired conductivity because of the short aging time. No. 3
Nos. 5 and 36 are examples in which the aging temperature is high or the aging time is long. In some cases, the degree of cold rolling before the aging treatment is high, and the steel is overaged, and high strength cannot be obtained.

【0074】No.39、40は本発明No.3、4の
合金にて、冷間圧延までは同一の製造工程で、時効処理
を行わないことだけが異なる例だが、高加工度の冷間圧
延により、1200MPa以上の強度は得られるが、導
電率が低く、フォーク型コネクターとしては、使用でき
ない。
No. 39 and 40 of the present invention. For the alloys Nos. 3 and 4, the only difference is that the aging treatment is not performed in the same manufacturing process up to the cold rolling. However, the strength of 1200 MPa or more can be obtained by the cold rolling of high workability. Low rate, cannot be used as a fork connector.

【0075】以上のように、本発明のチタン銅は、本発
明の製造方法によってのみ得られるもので、従来にない
1200MPa以上の引張強さ、10%IACS以上の
導電率を有するチタン銅合金である。また、本発明の高
強度チタン銅を用いたフォーク型コネクターは、ベリリ
ウム銅を使用した場合に匹敵する接圧を有する。
As described above, the titanium copper of the present invention can be obtained only by the production method of the present invention, and is a titanium copper alloy having a tensile strength of 1200 MPa or more and a conductivity of 10% IACS or more, which is not heretofore known. is there. Further, the fork-type connector using the high-strength titanium copper of the present invention has a contact pressure comparable to that of using beryllium copper.

【0076】[第4実施例]第3実施例の表6の冷間圧
延までの工程を行ったものから表10に記載のものを選
定してプレス加工した。このプレス加工した試験片に対
して第3実施例と同じ条件で時効処理を施した。時効処
理を行う前と後で試験片の各種特性を第3実施例と同じ
方法で調査し、その結果を表10に併記した。また、時
効処理後の試験片の熱伸縮率を測定し、その結果を表1
0に併記した。なお、熱伸縮率は、圧延平行方向を長手
方向として100×10mmの試料を切り出した後、所
定位置のマーキング間の距離を3次元座標測定装置を用
いて測定し、時効処理後に再度マーキング間距離を測定
し、加熱前後の寸法の測定値から寸法の変化率を測定し
た。また、比較のために、表7に示すものとベリリウム
銅を用いて上記と同じ条件で試験片を作成し、上記と同
じ方法で各種特性を測定した。その結果を表10に併記
した。
[Fourth Embodiment] From the results of the steps up to the cold rolling shown in Table 6 of the third embodiment, those shown in Table 10 were selected and pressed. The pressed specimen was subjected to aging treatment under the same conditions as in the third embodiment. Before and after the aging treatment, various characteristics of the test pieces were investigated in the same manner as in the third example, and the results are shown in Table 10. Further, the thermal expansion and contraction rate of the test piece after the aging treatment was measured, and the result was shown in Table 1.
0. The thermal expansion and contraction rate was determined by cutting a sample of 100 × 10 mm with the parallel direction parallel to the rolling direction as a longitudinal direction, measuring the distance between markings at a predetermined position using a three-dimensional coordinate measuring device, and after aging treatment, again measuring the distance between markings. Was measured, and the rate of change of the dimensions was measured from the measured values of the dimensions before and after heating. For comparison, test pieces were prepared using the components shown in Table 7 and beryllium copper under the same conditions as described above, and various characteristics were measured by the same methods as described above. The results are shown in Table 10.

【0077】[0077]

【表10】 [Table 10]

【0078】表10から判るように、第4実施例である
No.1〜10は、時効処理後の強度がベリリウム銅
(No.16)に匹敵するとともに、高い導電率を有し
ている。これに対して、No.11はチタンの含有率が
2.0質量%未満であるため引張強度が低い。また、N
o.16は、熱伸縮率が極端に大きくなった。
As can be seen from Table 10, the No. 4 of the fourth embodiment. Nos. 1 to 10 have strength after aging treatment comparable to that of beryllium copper (No. 16) and have high electrical conductivity. On the other hand, no. No. 11 has a low tensile strength because the content of titanium is less than 2.0% by mass. Also, N
o. In No. 16, the thermal expansion rate was extremely large.

【0079】[0079]

【発明の効果】以上説明したように本発明によれば、曲
げ加工性を損なわずに、チタン銅合金の高強度化が図
れ、電子部品用の端子・コネクター用として、要求され
ていた特性改善が図れ、信頼性の高い端子・コネクター
用の素材を供給することが可能となる。また、本発明例
は、チタン銅合金について引張強さが1200MPa以
上、導電率が10%IACS以上と、ベリリウム銅に匹
敵する高強度化が図れ、電子部品用の端子・コネクター
用、特にFPCのフォーク型のコネクターに適した銅合
金に改善され、ベリリウム銅合金の代替銅合金として十
分対応できる可能性が見出された。 また、端子・コネ
クターのコンタクトに加工前、又は加工後にめっき処理
されても強度は殆ど劣化せず、本発明の効果は発揮され
る。
As described above, according to the present invention, it is possible to increase the strength of a titanium-copper alloy without impairing bending workability, and to improve the characteristics required for terminals and connectors for electronic components. This makes it possible to supply highly reliable materials for terminals and connectors. In addition, the present invention example provides a titanium-copper alloy having a tensile strength of 1200 MPa or more and a conductivity of 10% IACS or more, which can achieve high strength comparable to beryllium copper, and is used for terminals and connectors for electronic components, particularly for FPC. It has been found that copper alloys have been improved to be suitable for fork-type connectors and can be sufficiently used as copper alloy substitutes for beryllium copper alloys. Further, even if plating is applied to the terminal / connector contact before or after processing, the strength is hardly deteriorated, and the effect of the present invention is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Ti−Cu平衡状態図である。FIG. 1 is an equilibrium diagram of Ti—Cu.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 9/04 C22C 9/04 9/05 9/05 9/06 9/06 9/10 9/10 C22F 1/00 602 C22F 1/00 602 603 603 623 623 630 630A 630C 630F 661 661A 685 685Z 686 686B 691 691B 691C 692 692A 694 694A (72)発明者 梅垣 卓裕 神奈川県高座郡寒川町倉見3番地 日鉱金 属株式会社倉見工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 9/04 C22C 9/04 9/05 9/05 9/06 9/06 9/10 9/10 C22F 1/00 602 C22F 1/00 602 603 603 623 623 630 630A 630C 630F 661 661A 685 685Z 686 686B 691 691B 691C 692 692A 694 694A 694 Kurami Factory Co., Ltd.

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 Tiを2.0質量%以上3.5質量%以
下を含有し、残部が銅及び不可避不純物からなるチタン
銅合金において、平均結晶粒径が20μm以下、かつb
で表示される0.2%耐力が800N/mm以上で圧
延方向に対し直角方向にW曲げ試験を行った際、aで表
示される割れの発生しない曲げ半径比(曲げ半径/板
厚)が、a≦0.05×b−40となる高強度チタン銅
合金。
1. A titanium-copper alloy containing not less than 2.0% by mass and not more than 3.5% by mass of Ti, the balance being copper and unavoidable impurities, wherein the average crystal grain size is 20 μm or less
When a W bending test is performed in a direction perpendicular to the rolling direction with a 0.2% proof stress of 800 N / mm 2 or more, a bending radius ratio (bending radius / thickness) at which no crack occurs is displayed as a. Is a high strength titanium-copper alloy satisfying a ≦ 0.05 × b-40.
【請求項2】 Tiを2.0質量%以上3.5質量%以
下を含有し、更にZn、Cr、Zr、Fe、Ni、S
n、In、Mn、P及びSiの1種以上を総量で0.0
1質量%以上3.0質量%以下含有し、残部が銅及び不
可避不純物からなるチタン銅合金において、平均結晶粒
径が20μm以下、かつbで表示される0.2%耐力が
800N/mm以上で圧延方向に対し直角方向にW曲
げ試験を行った際、aで表示される割れの発生しない曲
げ半径比(曲げ半径/板厚)が、a≦0.05×b−4
0となる高強度チタン銅合金。
2. The composition contains not less than 2.0% by mass and not more than 3.5% by mass of Ti, and further contains Zn, Cr, Zr, Fe, Ni, and S.
at least one of n, In, Mn, P and Si in a total amount of 0.0
In a titanium-copper alloy containing 1% by mass or more and 3.0% by mass or less, with the balance being copper and unavoidable impurities, the average crystal grain size is 20 μm or less, and the 0.2% proof stress represented by b is 800 N / mm 2. When a W bending test was performed in the direction perpendicular to the rolling direction as described above, the bending radius ratio (bending radius / sheet thickness) at which cracks did not occur indicated by a was a ≦ 0.05 × b−4.
High strength titanium-copper alloy with 0.
【請求項3】 平均結晶粒径が3〜20μmであること
を特徴とする請求項1または2に記載の高強度チタン銅
合金。
3. The high-strength titanium-copper alloy according to claim 1, wherein the average crystal grain size is 3 to 20 μm.
【請求項4】 最終再結晶焼鈍をα相とα+CuTi
相の境界線以下の温度で行って得られたことを特徴とす
る請求項1〜3のいずれかに記載の高強度チタン銅合
金。
4. The final recrystallization annealing is performed by using an α phase and α + Cu 3 Ti
The high-strength titanium-copper alloy according to any one of claims 1 to 3, wherein the high-strength titanium-copper alloy is obtained at a temperature lower than a phase boundary.
【請求項5】 最終再結晶焼鈍をα相とα+CuTi
相の境界線以下の温度で行うことを特徴とする請求項1
〜3のいずれかに記載の高強度チタン銅合金の製造方
法。
5. The final recrystallization annealing is performed by using an α phase and α + Cu 3 Ti
2. The method according to claim 1, wherein the temperature is lower than the phase boundary.
4. The method for producing a high-strength titanium-copper alloy according to any one of items 1 to 3.
【請求項6】 最終再結晶焼鈍後冷却速度100℃/秒
以上で冷却し、その後加工度5〜70%の冷間加工を施
し、更に300℃以上600℃以下の温度で1時間以上
15時間以下時効処理を施すことを特徴とする請求項5
に記載の高強度チタン銅合金の製造方法。
6. Cooling at a cooling rate of 100 ° C./second or more after the final recrystallization annealing, then performing cold working at a working degree of 5 to 70%, and further at a temperature of 300 ° C. to 600 ° C. for 1 hour to 15 hours. The aging process is performed below.
3. The method for producing a high-strength titanium-copper alloy according to item 1.
【請求項7】 請求項1〜4のいずれかに記載の高強度
チタン銅を用いた端子・コネクター。
7. A terminal / connector using the high-strength titanium copper according to claim 1.
【請求項8】 Tiを2.0質量%以上3.5質量%以
下含有し、残部が銅及び不可避不純物からなるチタン銅
合金において、プレス加工後に時効処理が行われ、結晶
粒度が5〜15μmであり、かつ、時効処理前に曲げ半
径が0で圧延方向に対し直角方向にW曲げ試験を行った
際に割れが発生せず、上記時効処理後に硬さが300H
v以上となる加工組織を有することを特徴とする高強度
チタン銅合金。
8. In a titanium-copper alloy containing Ti in an amount of 2.0% by mass to 3.5% by mass and a balance of copper and unavoidable impurities, aging treatment is performed after press working, and the crystal grain size is 5 to 15 μm. In addition, when the bending radius is 0 before the aging treatment and the W bending test is performed in the direction perpendicular to the rolling direction, no crack occurs, and the hardness is 300H after the aging treatment.
A high-strength titanium-copper alloy having a processed structure of not less than v.
【請求項9】 Tiを2.0質量%以上3.5質量%以
下含有し、更にZn、Cr、Zr、Fe、Ni、Sn、
In、Mn、P及びSiの1種以上を総量で0.01質
量%以上3.0質量%以下含有し、残部が銅及び不可避
不純物からなるチタン銅合金において、プレス加工後に
時効処理が行われ、結晶粒度が5〜15μmであり、か
つ、時効処理前に曲げ半径が0で圧延方向に対し直角方
向にW曲げ試験を行った際に割れが発生せず、上記時効
処理後に硬さが300Hv以上となる加工組織を有する
ことを特徴とする高強度チタン銅合金。
9. It contains Ti in an amount of 2.0% by mass to 3.5% by mass, and further contains Zn, Cr, Zr, Fe, Ni, Sn,
In a titanium-copper alloy containing at least one of In, Mn, P, and Si in a total amount of 0.01% by mass to 3.0% by mass and the balance being copper and unavoidable impurities, aging treatment is performed after press working. Having a grain size of 5 to 15 μm, a bending radius of 0 before the aging treatment, no cracking when performing a W bending test in a direction perpendicular to the rolling direction, and a hardness of 300 Hv after the aging treatment. A high-strength titanium-copper alloy having a working structure as described above.
【請求項10】 最終再結晶焼鈍をα相とα+Cu
i相の境界線以下の温度で行って結晶粒度を5〜15μ
mに調整後、加工度5〜50%の最終冷間圧延を行うこ
とを特徴とする請求項8または9に記載の高強度チタン
銅合金の製造方法。
10. The final recrystallization annealing is performed by using an α phase and α + Cu 3 T
Perform at a temperature below the boundary of the i-phase to reduce the crystal grain size to 5 to 15 μm.
The method for producing a high-strength titanium-copper alloy according to claim 8 or 9, wherein after adjusting to m, final cold rolling is performed at a work ratio of 5 to 50%.
【請求項11】 請求項8または9に記載の高強度チタ
ン銅を用いた端子・コネクター。
11. A terminal / connector using the high-strength titanium copper according to claim 8 or 9.
【請求項12】 Tiを2.0〜3.5質量%含み、残
部銅及び不可避的不純物からなり、引張強さが1200
MPa以上、導電率が10%IACS以上であることを
特徴とする高強度チタン銅合金。
12. A steel containing 2.0 to 3.5 mass% of Ti, the balance being copper and unavoidable impurities, and having a tensile strength of 1200.
A high-strength titanium-copper alloy having a MPa or higher and a conductivity of 10% IACS or higher.
【請求項13】 Tiを2.0〜3.5質量%含み、更
にZn0.05質量%以上2.0質量%未満、Cr、Z
r、Fe、Ni、Sn、In、Mn、P及びSiの1種
以上を総量で0.01質量%以上3.0質量%未満含有
し、残部銅及び不可避的不純物からなり、引張強さが1
200MPa以上、導電率が10%IACS以上である
ことを特徴とする高強度チタン銅合金。
13. An alloy containing Ti in an amount of 2.0 to 3.5% by mass, and further containing 0.05% to less than 2.0% by mass of Zn.
It contains at least one of r, Fe, Ni, Sn, In, Mn, P, and Si in a total amount of 0.01% by mass or more and less than 3.0% by mass, and the balance consists of copper and unavoidable impurities. 1
A high-strength titanium-copper alloy having a pressure of 200 MPa or more and a conductivity of 10% IACS or more.
【請求項14】 600℃以上の温度で熱間圧延した
後、続いて加工度95%以上で冷間圧延し、引き続き冷
間圧延の集合組織の状態を保持して340℃以上480
℃未満で1時間以上15時間未満の温度で時効処理する
ことを特徴とする請求項12または13に記載の高強度
チタン銅合金の製造方法。
14. Hot rolling at a temperature of 600 ° C. or higher, followed by cold rolling at a working ratio of 95% or higher, and subsequently maintaining a cold rolled texture state at 340 ° C. or higher and 480 ° C.
The method for producing a high-strength titanium-copper alloy according to claim 12 or 13, wherein the aging treatment is performed at a temperature of less than 1 ° C and less than 15 hours.
【請求項15】 請求項12または13に記載の高強度
チタン銅合金を用いたことを特徴とするフォーク型コネ
クター。
15. A fork-type connector using the high-strength titanium-copper alloy according to claim 12 or 13.
【請求項16】 Tiを2.0質量%以上3.5質量%
以下含有し、残部が銅及び不可避不純物からなるチタン
銅合金において、プレス加工後に時効処理が行われ、上
記時効処理後に硬さが345Hv以上となる加工組織を
有することを特徴とする高強度チタン銅合金。
16. Ti not less than 2.0% by mass and 3.5% by mass.
A high-strength titanium copper alloy comprising: a titanium copper alloy containing the following and the balance being copper and unavoidable impurities, being subjected to aging treatment after press working, and having a worked structure having a hardness of 345 Hv or more after the aging treatment. alloy.
【請求項17】 Tiを2.0〜3.5質量%含み、更
にZn0.05質量%以上2.0質量%未満、Cr、Z
r、Fe、Ni、Sn、In、Mn、P及びSiの1種
以上を総量で0.01質量%以上3.0質量%未満含有
し、残部銅及び不可避的不純物からなるチタン銅合金に
おいて、プレス加工後に時効処理が行われ、上記時効処
理後に硬さが345Hv以上となる加工組織を有するこ
とを特徴とする高強度チタン銅合金。
17. An alloy containing Ti in an amount of 2.0 to 3.5% by mass, and further containing 0.05 to less than 2.0% by mass of Zn, Cr, Z
In a titanium copper alloy containing at least one of r, Fe, Ni, Sn, In, Mn, P, and Si in a total amount of 0.01% by mass or more and less than 3.0% by mass, and the balance being copper and unavoidable impurities, A high-strength titanium-copper alloy characterized by having an aging treatment after press working and having a worked structure having a hardness of 345 Hv or more after the aging treatment.
【請求項18】 600℃以上の温度で熱間圧延した
後、続いて加工度95%以上で冷間圧延することを特徴
とする請求項16または17に記載の高強度チタン銅合
金の製造方法。
18. The method for producing a high-strength titanium copper alloy according to claim 16, wherein hot rolling is performed at a temperature of 600 ° C. or more, and then cold rolling is performed at a working degree of 95% or more. .
【請求項19】 請求項16または17に記載の高強度
チタン銅合金を用いたことを特徴とするフォーク型コネ
クター。
19. A fork-type connector using the high-strength titanium-copper alloy according to claim 16 or 17.
JP2002031219A 2001-02-20 2002-02-07 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same Expired - Fee Related JP4001491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031219A JP4001491B2 (en) 2001-02-20 2002-02-07 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001043278 2001-02-20
JP2001-94522 2001-03-29
JP2001094522 2001-03-29
JP2001-43278 2001-03-29
JP2002031219A JP4001491B2 (en) 2001-02-20 2002-02-07 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same

Publications (2)

Publication Number Publication Date
JP2002356726A true JP2002356726A (en) 2002-12-13
JP4001491B2 JP4001491B2 (en) 2007-10-31

Family

ID=27346036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031219A Expired - Fee Related JP4001491B2 (en) 2001-02-20 2002-02-07 High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same

Country Status (1)

Country Link
JP (1) JP4001491B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187885A (en) * 2003-12-25 2005-07-14 Nikko Metal Manufacturing Co Ltd Titanium copper strip having excellent fatigue characteristic
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
JP2006241573A (en) * 2005-03-07 2006-09-14 Yamaha Metanikusu Kk Plate of copper-titanium alloy and manufacturing method therefor
JP2006274422A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Material for electronic component having superior press-stampability
JP2006272889A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Copper base material for electronic component excellent in press punching characteristics
WO2007015549A1 (en) * 2005-08-03 2007-02-08 Nippon Mining & Metals Co., Ltd. High strength copper alloy for electronic parts and electronic parts
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
US7544259B2 (en) 2002-07-18 2009-06-09 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
JP2010007159A (en) * 2008-06-30 2010-01-14 Sumitomo Light Metal Ind Ltd Copper alloy material and electrode member of welding equipment
KR20100056635A (en) * 2008-11-20 2010-05-28 도와 메탈테크 가부시키가이샤 Cu-ti-based copper alloy sheet material and method of manufacturing same
EP2194149A1 (en) * 2008-11-28 2010-06-09 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing the same
EP2196548A1 (en) * 2008-12-02 2010-06-16 Dowa Metaltech Co., Ltd. Cu-Ti based copper alloy sheet material and method of manufacturing same
JP4629154B1 (en) * 2010-03-23 2011-02-09 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP2011195881A (en) * 2010-03-19 2011-10-06 Jx Nippon Mining & Metals Corp Titanium copper having excellent strength, conductivity and bending workability, and method for producing the same
JP2011202218A (en) * 2010-03-25 2011-10-13 Jx Nippon Mining & Metals Corp High-strength copper titanium plate and production method therefor
JP2012077338A (en) * 2010-09-30 2012-04-19 Jx Nippon Mining & Metals Corp Copper-titanium alloy and wrought product, electronic component, and connector each using the same
TWI402361B (en) * 2008-11-03 2013-07-21 Dowa Metaltech Co Ltd Cu-Ti copper alloy sheet and manufacturing method thereof
JP2014080670A (en) * 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp High strength titanium copper foil
KR20160013241A (en) * 2016-01-22 2016-02-03 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
CN106048300A (en) * 2016-06-21 2016-10-26 中色奥博特铜铝业有限公司 Nickel brass strip and manufacturing method thereof
WO2020044700A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
WO2020044699A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
WO2020095509A1 (en) 2018-11-09 2020-05-14 Jx金属株式会社 Titanium-copper foil, elongated copper article, electronic device component, and autofocus camera module
WO2020095508A1 (en) 2018-11-09 2020-05-14 Jx金属株式会社 Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
CN113802027A (en) * 2021-09-18 2021-12-17 宁波博威合金板带有限公司 Titanium bronze and preparation method thereof
US12000029B2 (en) 2018-11-09 2024-06-04 Jx Metals Corporation Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723849B2 (en) 2012-07-19 2015-05-27 Jx日鉱日石金属株式会社 High strength titanium copper foil and method for producing the same
JP6609589B2 (en) 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure
JP6609590B2 (en) 2017-03-30 2019-11-20 Jx金属株式会社 High-strength titanium copper strip and foil having a layered structure

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544259B2 (en) 2002-07-18 2009-06-09 Honda Giken Kogyo Kabushiki Kaisha Copper alloy, copper alloy producing method, copper complex material, and copper complex material producing method
JP2005187885A (en) * 2003-12-25 2005-07-14 Nikko Metal Manufacturing Co Ltd Titanium copper strip having excellent fatigue characteristic
JP2005213611A (en) * 2004-01-30 2005-08-11 Nikko Metal Manufacturing Co Ltd Material for electronic parts with excellent press blanking property
JP2006241573A (en) * 2005-03-07 2006-09-14 Yamaha Metanikusu Kk Plate of copper-titanium alloy and manufacturing method therefor
JP2006274422A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Material for electronic component having superior press-stampability
JP2006272889A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Copper base material for electronic component excellent in press punching characteristics
JP4563850B2 (en) * 2005-03-30 2010-10-13 日鉱金属株式会社 Copper base material for electronic parts with excellent press punchability
JP4686658B2 (en) * 2005-03-30 2011-05-25 Jx日鉱日石金属株式会社 Material for electronic parts with excellent press punchability
WO2007015549A1 (en) * 2005-08-03 2007-02-08 Nippon Mining & Metals Co., Ltd. High strength copper alloy for electronic parts and electronic parts
JPWO2007015549A1 (en) * 2005-08-03 2009-02-19 日鉱金属株式会社 High strength copper alloy for electronic parts and electronic parts
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
JP4634955B2 (en) * 2006-03-31 2011-02-16 Jx日鉱日石金属株式会社 High strength copper alloy with excellent bending workability and dimensional stability
JP2009084592A (en) * 2007-09-27 2009-04-23 Nikko Kinzoku Kk Titanium copper for precision press working, and its manufacturing method
JP2010007159A (en) * 2008-06-30 2010-01-14 Sumitomo Light Metal Ind Ltd Copper alloy material and electrode member of welding equipment
TWI402361B (en) * 2008-11-03 2013-07-21 Dowa Metaltech Co Ltd Cu-Ti copper alloy sheet and manufacturing method thereof
KR101895558B1 (en) 2008-11-20 2018-09-07 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
KR20100056635A (en) * 2008-11-20 2010-05-28 도와 메탈테크 가부시키가이샤 Cu-ti-based copper alloy sheet material and method of manufacturing same
JP4563480B2 (en) * 2008-11-28 2010-10-13 Dowaメタルテック株式会社 Copper alloy sheet and manufacturing method thereof
JP2010126777A (en) * 2008-11-28 2010-06-10 Dowa Metaltech Kk Copper alloy sheet, and method for producing the same
EP2194149A1 (en) * 2008-11-28 2010-06-09 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing the same
US8871041B2 (en) 2008-11-28 2014-10-28 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing same
EP2196548A1 (en) * 2008-12-02 2010-06-16 Dowa Metaltech Co., Ltd. Cu-Ti based copper alloy sheet material and method of manufacturing same
JP2011195881A (en) * 2010-03-19 2011-10-06 Jx Nippon Mining & Metals Corp Titanium copper having excellent strength, conductivity and bending workability, and method for producing the same
JP2011195927A (en) * 2010-03-23 2011-10-06 Jx Nippon Mining & Metals Corp Copper alloy for electronic material and method for producing the same
WO2011118650A1 (en) * 2010-03-23 2011-09-29 Jx日鉱日石金属株式会社 Copper alloy for electronic material and method of manufacture for same
JP4629154B1 (en) * 2010-03-23 2011-02-09 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP2011202218A (en) * 2010-03-25 2011-10-13 Jx Nippon Mining & Metals Corp High-strength copper titanium plate and production method therefor
JP2012077338A (en) * 2010-09-30 2012-04-19 Jx Nippon Mining & Metals Corp Copper-titanium alloy and wrought product, electronic component, and connector each using the same
JP2014080670A (en) * 2012-10-18 2014-05-08 Jx Nippon Mining & Metals Corp High strength titanium copper foil
KR20160013241A (en) * 2016-01-22 2016-02-03 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
KR101664819B1 (en) 2016-01-22 2016-10-11 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
CN106048300A (en) * 2016-06-21 2016-10-26 中色奥博特铜铝业有限公司 Nickel brass strip and manufacturing method thereof
WO2020044699A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
WO2020044700A1 (en) 2018-08-30 2020-03-05 Jx金属株式会社 Titanium copper plate, pressed product, and pressed-product manufacturing method
KR20210038638A (en) 2018-08-30 2021-04-07 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-processed product and press-processed product
KR20210038639A (en) 2018-08-30 2021-04-07 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-processed product and press-processed product
KR102442517B1 (en) 2018-08-30 2022-09-13 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-formed article and press-formed article before aging treatment
KR102455771B1 (en) * 2018-08-30 2022-10-18 제이엑스금속주식회사 Manufacturing method of titanium copper plate, press-formed article and press-formed article before aging treatment
WO2020095509A1 (en) 2018-11-09 2020-05-14 Jx金属株式会社 Titanium-copper foil, elongated copper article, electronic device component, and autofocus camera module
WO2020095508A1 (en) 2018-11-09 2020-05-14 Jx金属株式会社 Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
KR20210069074A (en) 2018-11-09 2021-06-10 제이엑스금속주식회사 Titanium copper foil, new products, electronic device parts and autofocus camera module
KR20210076102A (en) 2018-11-09 2021-06-23 제이엑스금속주식회사 Titanium copper foil, new products, electronic device parts and autofocus camera modules
US11739397B2 (en) 2018-11-09 2023-08-29 Jx Nippon Mining & Metals Corporation Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
US12000029B2 (en) 2018-11-09 2024-06-04 Jx Metals Corporation Titanium copper foil, extended copper article, electronic device component, and auto-focus camera module
CN113802027A (en) * 2021-09-18 2021-12-17 宁波博威合金板带有限公司 Titanium bronze and preparation method thereof

Also Published As

Publication number Publication date
JP4001491B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4001491B2 (en) High-strength titanium-copper alloy, manufacturing method thereof, and terminal / connector using the same
KR100515804B1 (en) Titanium copper alloy having high strength and method for producing the same, and terminal?connector using the titanium copper alloy
JP4809935B2 (en) Copper alloy sheet having low Young&#39;s modulus and method for producing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5847987B2 (en) Copper alloy containing silver
TWI649437B (en) Copper alloy plate and manufacturing method of copper alloy plate
JP5448763B2 (en) Copper alloy material
JP5097970B2 (en) Copper alloy sheet and manufacturing method thereof
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
WO2013018228A1 (en) Copper alloy
JP5525247B2 (en) Copper alloy with high strength and excellent bending workability
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
WO2008038593A1 (en) Cu-Ni-Si ALLOY
TW201309817A (en) Cu-ni-si alloy and method for manufacturing same
JP6801163B2 (en) Copper alloy materials for automobiles and electrical and electronic parts and their manufacturing methods
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JP6111028B2 (en) Corson alloy and manufacturing method thereof
WO2013069376A1 (en) Cu-co-si-based alloy and method for producing same
JP6246454B2 (en) Cu-Ni-Si alloy and method for producing the same
JP2016211078A (en) Cu-Ni-Si-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP4679040B2 (en) Copper alloy for electronic materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees