JP4623283B2 - Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery - Google Patents

Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4623283B2
JP4623283B2 JP2005076430A JP2005076430A JP4623283B2 JP 4623283 B2 JP4623283 B2 JP 4623283B2 JP 2005076430 A JP2005076430 A JP 2005076430A JP 2005076430 A JP2005076430 A JP 2005076430A JP 4623283 B2 JP4623283 B2 JP 4623283B2
Authority
JP
Japan
Prior art keywords
silicon
secondary battery
particles
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005076430A
Other languages
Japanese (ja)
Other versions
JP2005310759A (en
Inventor
幹夫 荒又
悟 宮脇
宏文 福岡
一磨 籾井
興一 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005076430A priority Critical patent/JP4623283B2/en
Publication of JP2005310759A publication Critical patent/JP2005310759A/en
Application granted granted Critical
Publication of JP4623283B2 publication Critical patent/JP4623283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用高容量負極活物質として有用とされる珪素複合体粒子、その製造方法、及び非水電解質二次電池用負極材に関する。   The present invention relates to silicon composite particles useful as a high-capacity negative electrode active material for lithium ion secondary batteries, a method for producing the same, and a negative electrode material for nonaqueous electrolyte secondary batteries.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV,Si,B,Zr,Snなどの酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報参照)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報参照)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報参照)、負極材料にSi22O及びGe22Oを用いる方法(特許文献5:特開平11−102705号公報参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献6:特開2000−243396号公報参照)、Si粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7:特開2000−215887号公報参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2002−42806号公報参照)、更には、ポリイミド系バインダーを用いて成膜後焼結する負極の製造方法がある(特許文献9:特開2004−22433号公報参照)。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, or Sn and a composite oxide thereof as a negative electrode material (Patent Document 1: Japanese Patent Laid-Open No. Hei 5 (1998)). -174818, Patent Document 2: JP-A-6-60867, a method of applying a melted and quenched metal oxide as a negative electrode material (Patent Document 3: JP-A-10-294112), a negative electrode material A method using silicon oxide (see Patent Document 4: Japanese Patent No. 2997774), a method using Si 2 N 2 O and Ge 2 N 2 O as negative electrode materials (Patent Document 5: see Japanese Patent Laid-Open No. 11-102705), etc. It has been known. In addition, for the purpose of imparting conductivity to the negative electrode material, a method in which SiO is mechanically alloyed with graphite and then carbonized (see Patent Document 6: Japanese Patent Laid-Open No. 2000-243396), carbon is deposited on the Si particle surface by chemical vapor deposition. A method of coating a layer (see Patent Document 7: JP 2000-215887 A), a method of coating a carbon layer on the surface of silicon oxide particles by a chemical vapor deposition method (Patent Document 8: refer to JP 2002-42806 A), Furthermore, there is a method for producing a negative electrode that is sintered after film formation using a polyimide binder (see Patent Document 9: Japanese Patent Application Laid-Open No. 2004-22433).

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、充放電に伴う負極膜そのものの容積変化が大きく、また集電体からの剥離などの問題があり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなかった。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, the volume change of the negative electrode film itself due to charge / discharge is large, and peeling from the current collector is performed. However, the required characteristics of the market are still insufficient and cannot always be satisfied.

これを解決する方法として、熱CVDによる表面炭素コートなどが提案され、効果を挙げている。しかし、現在の正極容量の少なさとのバランスを考慮すると、負極材の充放電容量は現状では実際の市場の要求レベルに対して過大であることから、電池の用途によっては、容量は多少減じたとしても、よりサイクル性の高い材料が求められていた。即ち、珪素ベースのものではあるが、このものよりエネルギー密度を若干抑えても、サイクル性が高い負極活物質が望まれていた。   As a method for solving this problem, surface carbon coating by thermal CVD has been proposed and has been effective. However, considering the balance with the current low capacity of the positive electrode, the charge / discharge capacity of the negative electrode material is currently excessive with respect to the actual demand level of the market. However, a material with higher cycleability has been demanded. In other words, a negative electrode active material having high cycleability is desired, although it is silicon-based but has a slightly lower energy density than this.

特に、特許第2997741号公報(特許文献4)では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報(特許文献6)では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があるし、特開2000−215887号公報(特許文献7)の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報(特許文献8)の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。   In particular, in Japanese Patent No. 2997741 (Patent Document 4), silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. There is room for improvement because the irreversible capacity at the time of discharge is large and the cycle performance has not reached the practical level. In addition, regarding the technique for imparting conductivity to the negative electrode material, in Japanese Patent Application Laid-Open No. 2000-243396 (Patent Document 6), since it is a solid-solid fusion, a uniform carbon film is not formed, and conductivity is improved. There is a problem that it is insufficient, and in the method of Japanese Patent Application Laid-Open No. 2000-215887 (Patent Document 7), although a uniform carbon film can be formed, since Si is used as a negative electrode material, lithium The expansion / contraction at the time of adsorption / desorption of ions is too large, and as a result, it cannot withstand practical use. In the method of 2002-42806 (patent document 8), the precipitation of fine silicon crystals, the structure of the carbon coating, and the fusion with the base material are insufficient, and thus the improvement in cycleability is confirmed. , Gradually decreased capacity Hover the number of cycles of charge and discharge, there is a phenomenon that decreases rapidly after a certain number of times, there is a problem as the secondary battery is still insufficient.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A 特開2004−22433号公報Japanese Patent Laid-Open No. 2004-22433

本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする珪素複合体粒子、その製造方法並びに非水電解質二次電池用負極材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a silicon composite particle capable of producing a negative electrode of a lithium ion secondary battery with higher cycleability, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery. The purpose is to provide.

本発明者は、上記目的を達成するため鋭意検討を行った結果、よりサイクル性が高く、かつ珪素系負極活物質での課題であった充放電時の体積変化の低減効果のある非水電解質二次電池負極用の活剤として有効な珪素複合体を見出した。
また、炭素系負極材よりははるかに高いエネルギー密度を有し、珪素そのものの特性である高エネルギー密度という観点では若干低下するものの、従来の珪素系負極材よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする珪素−炭素複合体として、サイクル性が高く、かつ充放電時の体積変化の低減効果のある非水電解質二次電池負極用の活剤として有効な珪素−炭素複合体を見出した。
As a result of intensive studies to achieve the above object, the present inventor has a non-aqueous electrolyte that is more cycleable and has an effect of reducing volume change during charge / discharge, which was a problem with a silicon-based negative electrode active material. An effective silicon composite was found as an activator for a secondary battery negative electrode.
In addition, it has a much higher energy density than the carbon-based negative electrode material, and is slightly lower in terms of high energy density, which is a characteristic of silicon itself, but has a higher cycleability than conventional silicon-based negative electrode materials. As a silicon-carbon composite that makes it possible to produce a negative electrode, a silicon-carbon composite that is effective as an activator for a negative electrode of a nonaqueous electrolyte secondary battery that has high cycleability and is effective in reducing volume change during charge and discharge I found my body.

即ち、充放電容量の大きな電極材料の開発は極めて重要であり、各所で研究開発が行われている。このような中で、リチウムイオン二次電池負極活物質として珪素、酸化珪素(SiOx)、及び珪素系合金はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの劣化が大きい、即ちサイクル性に劣ること、また、特に酸化珪素では初期効率が低いことから、ごく一部のものを除き実用化には至っていないのが現状であった。このような観点より、このサイクル性及び初期効率の改善を目標に検討した結果、酸化珪素粉末に熱CVDにより炭素コートを施すことによって、従来のものと比較して格段にその性能が向上することを見出した(特開2004−047404号公報)が、長期安定性、初期効率に更なる改良が求められた。 In other words, the development of electrode materials having a large charge / discharge capacity is extremely important, and research and development are being conducted in various places. Under such circumstances, silicon, silicon oxide (SiO x ), and silicon-based alloys as lithium ion secondary battery negative electrode active materials are of great interest because of their large capacity, but were repeatedly charged and discharged. Since the deterioration at the time is large, that is, the cycle performance is inferior, and the initial efficiency is particularly low in silicon oxide, it has not been put into practical use except for a few. From this point of view, as a result of studying with the goal of improving the cycle performance and initial efficiency, by applying a carbon coat to silicon oxide powder by thermal CVD, its performance is significantly improved compared to the conventional one. (Japanese Patent Laid-Open No. 2004-047404), however, further improvement in long-term stability and initial efficiency has been demanded.

このため、CVD法による炭素コート珪素粉及び酸化珪素粉をリチウムイオン二次電池負極の活物質として使用した時に、多回数の充放電後の急激な充放電容量低下の原因について、構造そのものからの検討を行い、解析した結果、リチウムを大量に吸蔵・放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こること、更にリチウムの吸蔵によってもともと導電性が小さい珪素及び珪素系合金が体積膨張することによって電極自体の導電率が低下し、更に負極膜の集電体からの剥離などが起こり、結果として集電性の低下によりリチウムイオンの電極内の移動が妨げられ、サイクル性及び効率低下が惹起されることが原因であることがわかった。更に結晶学的に無定形の酸化珪素構造が残った状態では、酸化珪素の酸素がリチウムを酸化リチウムとして捕捉するために初期効率が極めて低くなることが分かった。   For this reason, when carbon-coated silicon powder and silicon oxide powder by CVD are used as the active material of the negative electrode of a lithium ion secondary battery, the cause of the sudden decrease in charge / discharge capacity after many times of charge / discharge is from the structure itself. As a result of investigation and analysis, a large volume change occurs due to insertion and extraction of a large amount of lithium, resulting in the destruction of particles, and furthermore, silicon and silicon-based alloys that originally have low conductivity due to the insertion of lithium. Due to the volume expansion, the conductivity of the electrode itself decreases, and further, the negative electrode film peels off from the current collector, and as a result, the movement of lithium ions in the electrode is hindered due to the decrease in current collection, and the cycle performance and It was found that this was caused by a decrease in efficiency. Furthermore, it was found that in the state where the crystallographically amorphous silicon oxide structure remains, the initial efficiency is extremely low because oxygen of silicon oxide traps lithium as lithium oxide.

そこで、このようなことに基づいて、リチウムの吸蔵・放出に伴う体積変化を緩和して安定な構造について鋭意検討を行った結果、珪素又は珪素合金の微粒子表面を不活性で強固な物質、例えばSi−C系、Si−C−O系、Si−C−N系コンポジットなどで被覆して造粒し、更にこの内部に空隙を有する構造にすることによって、リチウムイオン二次電池負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を向上させることができることを見出した。従って、珪素及び珪素合金微粒子を高度に架橋できる熱硬化性の有機珪素化合物、例えばハイドロシリレーションによる付加反応性シロキサン組成物、多官能シラン/シロキサン、(ポリ)シラザン、ポリカルボシランなどの中に細かく分散し、熱硬化後、更に不活性雰囲気下で焼結し、無機化後、再粉砕することによってサイクル性などの特性が向上した珪素複合粒子が得られることを見出した。また、この場合、珪素や珪素合金微粒子と有機珪素化合物との密着性を向上させるために、予めその表面にシランカップリング剤などで疎水化処理を施すことも大きな効果があること、更に珪素複合体粒子を得たままの状態では、導電性がないので、導電性の炭素粉との混合で負極活物質として用いられるが、こうして製造される珪素複合体粒子に熱CVD処理などにより炭素コートを施すことによって、従来のものと比較して格段にその性能が向上することを見出した。   Therefore, based on the above, as a result of diligent study on the stable structure by reducing the volume change associated with the insertion and extraction of lithium, the surface of the fine particles of silicon or silicon alloy is an inert and strong substance, for example, As a lithium ion secondary battery negative electrode active material, it is granulated by coating with Si-C-based, Si-C-O-based, Si-C-N-based composite, etc. It has been found that the above problems can be solved, the battery can stably have a large charge / discharge capacity, and the cycleability and efficiency of charge / discharge can be improved. Therefore, in thermosetting organosilicon compounds that can highly crosslink silicon and silicon alloy fine particles, such as addition-reactive siloxane compositions by hydrosilylation, polyfunctional silane / siloxane, (poly) silazane, polycarbosilane, etc. It has been found that silicon composite particles having improved cycle characteristics and the like can be obtained by finely dispersing, thermally curing, further sintering in an inert atmosphere, mineralization, and re-grinding. In this case, in order to improve the adhesion between the silicon or silicon alloy fine particles and the organosilicon compound, it is also effective to apply a hydrophobic treatment to the surface with a silane coupling agent in advance. In the state where the body particles are obtained, since there is no conductivity, it is used as a negative electrode active material by mixing with conductive carbon powder. However, the silicon composite particles thus produced are coated with a carbon coat by thermal CVD treatment or the like. It has been found that the performance is remarkably improved as compared with the conventional one.

更に、球状又は鱗片状グラファイト微粒子等の炭素微粒子を核にしてその周囲に珪素又は珪素系合金の微粒子表面を不活性で強固な物質、例えばSi−C系、Si−C−O系、Si−C−N系コンポジットなどで付着して造粒し、更にこの内部に空隙を有する構造にすることによっても、リチウムイオン二次電池負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を大幅に向上させることができることを見出した。更に珪素−炭素複合体粒子を得たままの状態でも、多少導電性は有することがあるが、こうして製造される珪素−炭素系複合体粒子に熱CVD処理などにより更に炭素コートを施すことによって、従来のものと比較して格段にその性能が向上することを見出し、本発明をなすに至った。   Furthermore, carbon fine particles such as spherical or flaky graphite fine particles are used as the core, and the surface of the fine particles of silicon or a silicon-based alloy is inert and strong around them, such as Si—C, Si—C—O, Si— By adhering and granulating with a C—N composite, etc., and further having a void structure inside this, the above problem as the negative electrode active material of the lithium ion secondary battery can be solved, and a stable and large capacity can be obtained. It has been found that it has a charge / discharge capacity and can greatly improve the chargeability / discharge cycleability and efficiency. Furthermore, even if the silicon-carbon composite particles are still obtained, they may have some conductivity, but by further applying a carbon coat to the silicon-carbon composite particles thus produced by thermal CVD treatment, The inventors have found that the performance is remarkably improved as compared with the conventional one, and have made the present invention.

発明は、珪素、珪素合金又は酸化珪素の微粒子及び炭素微粒子を有機珪素化合物又はその混合物と共に焼結することによって得られる粒子であって、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子及び炭素微粒子が分散されていると共に、該粒子内に空隙が存在する構造を有することを特徴とする、リチウムイオン二次電池用珪素−炭素複合体粒子を提供する。
この場合、珪素、珪素合金又は酸化珪素の一次粒子の大きさが100nm〜10μmであり、炭素の一次粒子の大きさが100nm〜20μmであり、珪素系無機化合物がSi−C−OもしくはSi−C−N系コンポジット、SiNx、SiOy、SiCz(但し、xは0<x≦4/3、yは0<y≦2、zは0<z≦1の正数である)又はこれらの混合物であることが好ましく、炭素微粒子が球形又は鱗片状の天然又は合成グラファイトであることが好ましい。
The present invention is a particle obtained by sintering fine particles of silicon, silicon alloy or silicon oxide and carbon fine particles together with an organic silicon compound or a mixture thereof, and the organic silicon compound or a mixture thereof is sintered. A lithium ion secondary battery characterized by having a structure in which silicon or silicon alloy fine particles and carbon fine particles are dispersed in a silicon-based inorganic compound formed as a binder and voids are present in the particles. Silicon-carbon composite particles for use are provided.
In this case, the size of primary particles of silicon, silicon alloy, or silicon oxide is 100 nm to 10 μm, the size of primary particles of carbon is 100 nm to 20 μm, and the silicon-based inorganic compound is Si—C—O or Si—. CN composite, SiN x , SiO y , SiC z (where x is a positive number satisfying 0 <x ≦ 4/3, y is 0 <y ≦ 2, z is 0 <z ≦ 1) or these The carbon fine particles are preferably spherical or scale-like natural or synthetic graphite.

ここで、有機珪素化合物又はその混合物が、架橋基を有する反応性有機珪素化合物又は硬化性ポリシロキサン組成物であることが好ましく、この場合、架橋基を有する反応性有機珪素化合物が、後述する一般式(1)〜(5)で示されるシラン又はシロキサンの1種又は2種以上であるか、平均式ChiSiOjk(h、i、jは正数、kは0又は正数)で表され、架橋点が珪素原子4個に対して少なくとも1個有し、かつ(h−j)が0より大きなシラン又はシロキサンであること、また、硬化性ポリシロキサン組成物が、付加反応硬化型オルガノポリシロキサン組成物であることが好ましい。
更に、本発明の珪素複合体粒子、珪素−炭素複合体粒子は、粒子内の空隙率が1〜70体積%であることが好ましく、また表面を炭素でコーティングしてなるものが好ましい。
Here, the organosilicon compound or a mixture thereof is preferably a reactive organosilicon compound having a crosslinking group or a curable polysiloxane composition. In this case, the reactive organosilicon compound having a crosslinking group is generally described later. One or more of silanes or siloxanes represented by formulas (1) to (5), or an average formula C h H i SiO j N k (h, i, j are positive numbers, k is 0 or positive A silane or siloxane having at least one crosslinking point with respect to 4 silicon atoms and (hj) being greater than 0, and a curable polysiloxane composition is added. A reaction curable organopolysiloxane composition is preferred.
Furthermore, the silicon composite particles and silicon-carbon composite particles of the present invention preferably have a porosity in the particles of 1 to 70% by volume, and those obtained by coating the surface with carbon.

本発明は、また、珪素、珪素合金又は酸化珪素の微粒子を有機珪素化合物又はその混合物と共に焼結し、造粒して、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子が分散されていると共に、内部に空隙が存在する構造を有する珪素複合体粒子を得ることを特徴とする珪素複合体粒子の製造方法、及び
珪素、珪素合金又は酸化珪素の微粒子及び炭素微粒子を有機珪素化合物又はその混合物と共に焼結し、造粒して、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子及び炭素微粒子が分散されていると共に、内部に空隙が存在する構造を有する珪素−炭素複合体粒子を得ることを特徴とする珪素−炭素複合体粒子の製造方法を提供する。
この場合、有機珪素化合物又はその混合物が、架橋基を有する反応性有機珪素化合物又は硬化性ポリシロキサン組成物であり、これを珪素又は珪素合金微粒子と混合した後、熱硬化又は触媒反応により硬化させて架橋物とし、更に不活性気流中500〜1,400℃の温度範囲で加熱、焼結させて無機化し、これを0.5〜30μmに再粉砕することが好ましい。
The present invention also provides silicon formed by sintering fine particles of silicon, a silicon alloy, or silicon oxide together with an organic silicon compound or a mixture thereof, and granulating the organic silicon compound or the mixture thereof. Silicon composite particles having a structure in which silicon or silicon alloy fine particles are dispersed therein and a void is present therein, with a base inorganic compound as a binder, and a method for producing silicon composite particles, Silicon inorganic compound formed by sintering and granulating silicon, silicon alloy or silicon oxide fine particles and carbon fine particles together with an organic silicon compound or a mixture thereof, and sintering the organic silicon compound or the mixture thereof. Silicon-carbon having a structure in which silicon or silicon alloy fine particles and carbon fine particles are dispersed therein and voids exist inside Provided is a method for producing silicon-carbon composite particles characterized by obtaining elementary composite particles.
In this case, the organosilicon compound or a mixture thereof is a reactive organosilicon compound or a curable polysiloxane composition having a crosslinkable group, which is mixed with silicon or silicon alloy fine particles and then cured by thermal curing or catalytic reaction. It is preferable to make it into a crosslinked product, further heat and sinter in an inert air current at a temperature range of 500 to 1,400 ° C. to make it inorganic, and regrind it to 0.5 to 30 μm.

更に、珪素又は珪素合金微粒子の表面を予めシランカップリング剤、その(部分)加水分解縮合物、シリル化剤、シリコーンレジンから選ばれる1種又は2種以上の表面処理剤で処理することが好ましい。また、上記の製造方法によって得られた複合体粒子を有機物ガス及び/又は蒸気を含む雰囲気下、800〜1,400℃の温度域で熱処理して、上記複合体粒子の表面をコーティングすることが好ましい。   Furthermore, it is preferable to treat the surface of the silicon or silicon alloy fine particles in advance with one or more surface treatment agents selected from silane coupling agents, (partial) hydrolysis condensates, silylating agents, and silicone resins. . In addition, the composite particles obtained by the above production method may be heat-treated at a temperature range of 800 to 1,400 ° C. in an atmosphere containing an organic gas and / or vapor to coat the surface of the composite particles. preferable.

本発明は、更に上記珪素複合体粒子又は珪素−炭素複合体粒子を用いた非水電解質二次電池用負極材を提供する。
この場合、珪素複合体粒子又は珪素−炭素複合体粒子と導電剤の混合物であって、混合物中の導電剤が1〜60質量%であり、かつ混合物中の全炭素量が25〜90質量%である混合物を用いた非水電解質二次電池用負極材であることが好ましい。
The present invention further provides a negative electrode material for a non-aqueous electrolyte secondary battery using the silicon composite particles or silicon-carbon composite particles.
In this case, it is a mixture of silicon composite particles or silicon-carbon composite particles and a conductive agent, the conductive agent in the mixture is 1 to 60% by mass, and the total carbon content in the mixture is 25 to 90% by mass. It is preferable that it is a negative electrode material for nonaqueous electrolyte secondary batteries using the mixture which is.

本発明の珪素複合体及び珪素−炭素複合体粒子は、非水電解質二次電池用負極材として用いられて、良好なサイクル性を与える。   The silicon composite and silicon-carbon composite particles of the present invention are used as a negative electrode material for a non-aqueous electrolyte secondary battery and give good cycle characteristics.

以下、本発明につき更に詳しく説明する。
本発明は、リチウムイオン二次電池用負極活物質として、充放電容量が現在主流であるグラファイト系のものと比較して、その数倍の容量であることから期待されている反面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系負極材のサイクル性及び効率を改善した珪素複合体粒子を提供するもので、珪素、珪素合金又は酸化珪素の微粒子を有機珪素化合物又はその混合物と焼結することによって得られた(結果として造粒された)、珪素又は珪素合金の微粒子がバインダーとしての珪素系無機化合物に分散し、かつその内部に空隙を有する構造を持つ、好ましくは平均粒径が0.5〜30μmの粒子状のものである。図1はこれを示すもので、図1において、1は珪素複合体粒子であり、11は珪素又は珪素合金、12は珪素系無機化合物のバインダー、13が空隙である。また、その粒子表面を好ましくはその少なくとも一部がカーボンと融合した状態でカーボンがコーティング(融着)してなるものである。
また、本発明は、サイクル性及び効率を改善し、更に充放電に伴う大きな体積変化を緩和した珪素−炭素系複合体を提供するもので、珪素、珪素合金又は酸化珪素の微粒子及び炭素微粒子を有機珪素化合物又はその混合物と共に焼結することによって得られた(結果として造粒された)炭素微粒子、好ましくは球状又は鱗片状炭素微粒子を核にして、珪素又は珪素合金の微粒子を、珪素系無機化合物をバインダーとして分散し、かつその内部に空隙を有する構造を有する好ましくは平均粒径が0.5〜30μmの粒子状のものである。図2は、これを示すもので、2は珪素−炭素複合体粒子であり、11,12,13は上記の通り、14は炭素微粒子である。また、その表面の導電性を増すために,熱CVDによりカーボンコートしてもよい。
Hereinafter, the present invention will be described in more detail.
The present invention is expected as a negative electrode active material for a lithium ion secondary battery because its charge / discharge capacity is several times that of the current mainstream graphite-based material, but it is repeatedly charged. Disclosed is a silicon composite particle having improved cycle performance and efficiency of a silicon-based negative electrode material in which performance deterioration due to discharge is a major bottleneck. Silicon, silicon alloy or silicon oxide fine particles are combined with an organic silicon compound or a mixture thereof. Obtained by sintering (as a result of granulation), silicon or silicon alloy fine particles are dispersed in a silicon-based inorganic compound as a binder and have a structure having voids therein, preferably average particles It is in the form of particles having a diameter of 0.5 to 30 μm. FIG. 1 shows this. In FIG. 1, 1 is a silicon composite particle, 11 is silicon or a silicon alloy, 12 is a binder of a silicon-based inorganic compound, and 13 is a void. The particle surface is preferably coated (fused) with carbon in a state where at least a part of the particle surface is fused with carbon.
In addition, the present invention provides a silicon-carbon composite in which cycleability and efficiency are improved and a large volume change associated with charge / discharge is alleviated. Silicon, silicon alloy or silicon oxide fine particles and carbon fine particles are provided. Carbon fine particles obtained by sintering together with an organosilicon compound or a mixture thereof (as a result of granulation), preferably spherical or scaly carbon fine particles, and silicon or silicon alloy fine particles as silicon-based inorganic It is preferably in the form of particles having a structure in which a compound is dispersed as a binder and voids are contained therein, preferably having an average particle size of 0.5 to 30 μm. FIG. 2 shows this, in which 2 is silicon-carbon composite particles, 11, 12 and 13 are as described above, and 14 is carbon fine particles. Moreover, in order to increase the conductivity of the surface, carbon coating may be performed by thermal CVD.

また、本発明の珪素複合体及び珪素−炭素複合体は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた結晶の粒子系が、原料によってその大きさは異なるが、2nm以上、特に5nm以上である、
ii.リチウムイオン二次電池負極において、リチウムイオンを吸蔵・放出しうるゼロ価の珪素が、炭化珪素微粉末中遊離珪素を測定する方法であるISO DIS 9286に準じた方法である、水酸化アルカリを作用させる時に水素が生成することによって水素発生量として測定ができ、水素発生量から換算して得られるゼロ価の珪素量が1〜90質量%、好ましくは20〜90質量%であり、
iii.走査電子顕微鏡観察において、粒子内部の観察を行ったときに、空隙が観察される構造である。
Moreover, it is preferable that the silicon composite and silicon-carbon composite of the present invention have the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle system of the crystal obtained by the Scherrer equation is 2 nm or more, particularly 5 nm or more, although the size varies depending on the raw material.
ii. In a lithium ion secondary battery negative electrode, zero-valent silicon capable of occluding and releasing lithium ions is a method according to ISO DIS 9286, which is a method for measuring free silicon in silicon carbide fine powder. When hydrogen is generated, it can be measured as a hydrogen generation amount, and a zero-valent silicon amount obtained by conversion from the hydrogen generation amount is 1 to 90% by mass, preferably 20 to 90% by mass,
iii. In the scanning electron microscope observation, the voids are observed when the inside of the particle is observed.

本発明において、カーボンコーティング(融着)しているとは、層状に整列したカーボン層と、内部の珪素複合体との間に炭素と珪素が共存し、かつ、双方が界面部において融合している状態を示し、透過電子顕微鏡(図3参照)で観察することができる。   In the present invention, carbon coating (fused) means that carbon and silicon coexist between a layered carbon layer and an internal silicon composite, and both fuse at the interface. And can be observed with a transmission electron microscope (see FIG. 3).

ここで、珪素微粒子としては、純度が95%以上(即ち、95〜100%)、特に99.0%以上(即ち、99.0〜100%)のものが好ましい。また、珪素微粒子としては、一般式SiOx(1≦x<1.6)で表される酸化珪素粉末を予め500〜1,200℃、好ましくは500〜1,000℃、より好ましくは500〜900℃の温度域で有機物ガス及び/又は蒸気で化学蒸着処理したものを原料として、不活性ガス雰囲気下1,000〜1,400℃、好ましくは1,100〜1,300℃の温度域で熱処理を施して珪素と二酸化珪素に不均化することによって得られる珪素微粒子を用いることもできる。また、酸化珪素を有機珪素化合物と共に焼結することで、この焼結時に珪素微粒子を不均化、形成してもよい。 Here, the silicon fine particles preferably have a purity of 95% or more (that is, 95 to 100%), particularly 99.0% or more (that is, 99.0 to 100%). As the silicon fine particles, silicon oxide powder represented by the general formula SiO x (1 ≦ x <1.6) is preliminarily 500 to 1,200 ° C., preferably 500 to 1,000 ° C., more preferably 500 to The raw material is a material vapor-deposited with an organic gas and / or vapor in a temperature range of 900 ° C. Under an inert gas atmosphere, 1,000 to 1,400 ° C., preferably 1,100 to 1,300 ° C. Silicon fine particles obtained by heat treatment to disproportionate to silicon and silicon dioxide can also be used. Further, by sintering silicon oxide together with an organic silicon compound, silicon fine particles may be disproportionated and formed during the sintering.

これら珪素、珪素合金、酸化珪素の一次粒子の大きさは、レーザー光回折法による粒度分布測定法で平均粒子径(例えば累積重量が50%となる粒子径D50又はメジアン径)が100nm〜10μm、より好ましくは100nm〜7μm、更に好ましくは1〜5μmで、特に粒子径が均一であることが好ましい。 The primary particles of silicon, silicon alloy, and silicon oxide have an average particle size (for example, a particle size D 50 or a median size with a cumulative weight of 50%) measured by a particle size distribution measurement method using a laser beam diffraction method. More preferably, the particle diameter is 100 nm to 7 μm, more preferably 1 to 5 μm, and the particle diameter is particularly uniform.

一方、珪素−炭素複合体粒子を得る場合に用いる炭素微粒子の一次粒子の大きさは上記と同様の測定法により100nm〜20μm、より好ましくは1〜20μm、更に好ましくは3〜10μmであり、同様に粒子径が均一であることが好ましい。なお、炭素微粒子は電極膜の成膜性及びリチウムの吸蔵・放出能などの点から球形又は鱗片状の天然又は合成グラファイトが好ましい。   On the other hand, the size of the primary particles of the carbon fine particles used for obtaining the silicon-carbon composite particles is 100 nm to 20 μm, more preferably 1 to 20 μm, still more preferably 3 to 10 μm by the same measurement method as above. The particle diameter is preferably uniform. The carbon fine particles are preferably spherical or scale-like natural or synthetic graphite from the viewpoint of the film formability of the electrode film and the ability to absorb and release lithium.

珪素−炭素複合体粒子を得る際の上記珪素又は珪素合金微粒子と炭素微粒子との割合は、質量比として90:10〜20:80、特に80:20〜40:60が好ましい。炭素量が少なすぎると、サイクル性が劣り、多すぎると、単位容積当りの充放電容量(又はエネルギー密度)の低下を招く。なお、酸化珪素微粒子と炭素微粒子との割合は、この酸化珪素微粒子から得られる珪素微粒子と炭素微粒子との割合が上記のようになるように選定される。   The ratio of the silicon or silicon alloy fine particles to the carbon fine particles in obtaining the silicon-carbon composite particles is preferably 90:10 to 20:80, particularly 80:20 to 40:60 as a mass ratio. If the amount of carbon is too small, the cycleability is inferior, and if it is too large, the charge / discharge capacity (or energy density) per unit volume is reduced. The ratio between the silicon oxide fine particles and the carbon fine particles is selected so that the ratio between the silicon fine particles and the carbon fine particles obtained from the silicon oxide fine particles is as described above.

一方、バインダーとしての珪素系無機化合物としては、後述する有機珪素化合物又はその混合物を焼結することによって形成されたSi−C−O系コンポジット、Si−C−N系コンポジット、SiNx、SiOy、SiCz又はこれらの混合物が挙げられる。なお、xは0<x≦4/3、好ましくは0.1≦x≦4/3の正数であり、yは0<y≦2、好ましくは0.1≦y≦2の正数であり、zは0<z≦1、好ましくは0.1≦z≦1の正数である。 On the other hand, as the silicon-based inorganic compound as the binder, a Si—C—O-based composite, a Si—C—N-based composite, SiN x , SiO y formed by sintering an organic silicon compound or a mixture thereof described later. , SiC z or a mixture thereof. Note that x is a positive number 0 <x ≦ 4/3, preferably 0.1 ≦ x ≦ 4/3, and y is a positive number 0 <y ≦ 2, preferably 0.1 ≦ y ≦ 2. And z is a positive number of 0 <z ≦ 1, preferably 0.1 ≦ z ≦ 1.

具体的にSi−C−O系コンポジットとしては、珪素、珪素合金、酸化珪素の微粒子を、高度に架橋し得るオルガノポリシロキサン(例えば付加硬化型、縮合硬化型等の硬化性オルガノポリシロキサン組成物等)でコート後、不活性雰囲気下、高温で焼成し、無機化することによって得ることができる。
Si−C−N系コンポジットとしては、上記のオルガノポリシロキサンに代えて、高度に架橋し得る含窒素オルガノポリシロキサン(例えば付加硬化型、縮合硬化型等のアミノ変性オルガノポリシロキサン組成物)及び/又はオルガノポリシラザンを用いて同様に焼成、無機化することによって得ることができる。
SiNxとしては、ポリカルボシランをコート後、アンモニア雰囲気下で同様に焼成、無機化することによって得ることができる。
SiOyとしては、テトラアルコキシシラン等をコートし、硬化させた後、同様に焼成、無機化することによって得ることができる。
SiCzとしては、テトラアルキルシラン等をコートし、硬化させた後、同様に焼成、無機化することによって得ることができる。
なお、Si−C−O系コンポジット、Si−C−N系コンポジットとは、それぞれ珪素、炭素、酸素あるいは珪素、炭素、窒素を構成原子として含有してなる無機焼結体を意味する。
Specifically, as the Si—C—O based composite, organopolysiloxane capable of highly crosslinking fine particles of silicon, silicon alloy, and silicon oxide (for example, curable organopolysiloxane compositions of addition curing type, condensation curing type, etc.) Etc.), followed by baking in an inert atmosphere at a high temperature to make it inorganic.
As the Si—C—N-based composite, instead of the above-mentioned organopolysiloxane, a highly cross-linkable nitrogen-containing organopolysiloxane (for example, an amino-modified organopolysiloxane composition of addition curing type, condensation curing type, etc.) and / or Or it can obtain by baking and mineralizing similarly using organopolysilazane.
SiN x can be obtained by coating polycarbosilane, followed by firing and mineralization in an ammonia atmosphere.
SiO y can be obtained by coating and curing tetraalkoxysilane or the like, followed by firing and mineralization in the same manner.
The SiC z, coated with tetraalkyl silane, after curing, likewise firing, can be obtained by mineralization.
The Si—C—O based composite and the Si—C—N based composite mean inorganic sintered bodies each containing silicon, carbon, oxygen, or silicon, carbon, and nitrogen as constituent atoms.

この場合、珪素系無機化合物バインダーを形成する有機珪素化合物、その混合物としては特に架橋基を有する反応性シランもしくはシロキサンに代表される有機珪素化合物、又は硬化性ポリシロキサン組成物であることが好ましい。   In this case, the organic silicon compound forming the silicon-based inorganic compound binder, and the mixture thereof is preferably an organic silicon compound represented by a reactive silane or siloxane having a crosslinking group, or a curable polysiloxane composition.

上記有機珪素化合物としては、分子中に珪素原子に結合したアルケニル基等の脂肪族不飽和基、水酸基、水素原子、加水分解性基等の架橋性官能基を2個以上有するものであればよく、2種以上組み合わせてもよい。また、これは直鎖状であっても分岐状であっても環状であってもよく、具体的には下記一般式(1),(2)で表される直鎖状のオルガノポリシロキサン、下記一般式(3)で示される分岐状のオルガノポリシロキサン、下記一般式(4)で表される環状のオルガノポリシロキサン、下記一般式(5)で表されるシランやシリコーンレジン等が例示される。   The organosilicon compound may be any compound having at least two crosslinkable functional groups such as an aliphatic unsaturated group such as an alkenyl group bonded to a silicon atom, a hydroxyl group, a hydrogen atom, and a hydrolyzable group in the molecule. Two or more kinds may be combined. Further, this may be linear, branched or cyclic, and specifically, linear organopolysiloxanes represented by the following general formulas (1) and (2), Examples include branched organopolysiloxanes represented by the following general formula (3), cyclic organopolysiloxanes represented by the following general formula (4), silanes and silicone resins represented by the following general formula (5), and the like. The

これらの有機珪素化合物は、液状であることが好ましいが、シリコーンレジン等で軟化点を有するものであれば固体であってもよい。また、有機珪素化合物を溶解させることができる有機溶剤や非反応性のシリコーンオイルで希釈して使用してもよい。有機溶剤としては、ヘキサン、トルエンやキシレン等が例示され、非反応性のシリコーンオイルとしてはジメチルポリシロキサンオイル等が例示される。   These organosilicon compounds are preferably liquid, but may be solid as long as they have a softening point such as silicone resin. Further, it may be used after diluted with an organic solvent capable of dissolving an organosilicon compound or a non-reactive silicone oil. Examples of the organic solvent include hexane, toluene, and xylene, and examples of the non-reactive silicone oil include dimethylpolysiloxane oil.

(式中、R1〜R7は、独立して水素原子、水酸基、加水分解性基、又は1価炭化水素基を示すが、上記式(1)〜(5)の各化合物において、珪素原子に結合する置換基の少なくとも2個は水素原子、水酸基、加水分解性基又は脂肪族不飽和炭化水素基である。m、n、kは0〜2,000、p、qは0〜10であるが、p、qは同時に0になることはない。) (Wherein R 1 to R 7 independently represent a hydrogen atom, a hydroxyl group, a hydrolyzable group, or a monovalent hydrocarbon group, but in each compound of the above formulas (1) to (5), a silicon atom At least two of the substituents bonded to are hydrogen atom, hydroxyl group, hydrolyzable group or aliphatic unsaturated hydrocarbon group, m, n and k are 0 to 2,000, p and q are 0 to 10. (However, p and q are not 0 at the same time.)

この場合、加水分解性基としては、アルコキシ基、アルケニロキシ基、アシロキシ基等の炭素数1〜6のものが好ましい。また、1価炭化水素基としては、炭素数1〜12、特に1〜8のアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が挙げられ、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基等のアルキル基、ビニル基、アリル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基等が例示される。   In this case, the hydrolyzable group is preferably a group having 1 to 6 carbon atoms such as an alkoxy group, an alkenyloxy group, an acyloxy group. Moreover, as a monovalent hydrocarbon group, a C1-C12, especially 1-8 alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, etc. are mentioned, Specifically, a methyl group, an ethyl group, etc. , Alkyl groups such as propyl group, butyl group and hexyl group, alkenyl groups such as vinyl group, allyl group, butenyl group, hexenyl group and cyclohexenyl group, aryl groups such as phenyl group and tolyl group, benzyl group and phenylethyl group And aralkyl groups such as.

また、上記式において、m,n,kは0〜2,000、特に0〜1,000であり、p,qは0〜10であるが、p,qは同時に0になることはなく、p+qが3〜10であることが好ましい。   In the above formula, m, n, and k are 0 to 2,000, particularly 0 to 1,000, and p and q are 0 to 10, but p and q are not 0 at the same time. It is preferable that p + q is 3-10.

本発明における原料である架橋可能なシラン、シロキサンなどの有機珪素化合物は、一般的なシリコーン製造などで用いるものであれば特に限定しないが、通常、有機シロキサンポリマーのごとき有機珪素系高分子の鎖状ポリマーは、特に非酸化性気流中での加熱によって、その主鎖結合が容易に熱解裂を起こして低分子物(例えば、環状の3−6量体)に分解することにより揮散しやすくなってしまう。これに対して、例えばハイドロシリレーション反応により形成される珪素−炭素結合は、熱に対して強いことから、このようなことによって高度に架橋した場合は低分子化が起こりにくく、起こったとしても高度に架橋しているので揮散しにくいものになる。これによって、焼成過程においても揮散することなく有効に無機物化することができることから、特に上記一般式(1)〜(5)において、分子内にSiH基を好ましくは2個以上、特に3個以上有するシラン及び/又はシロキサンと、分子内にアルケニル基、アルキニル基といった脂肪族不飽和基を好ましくは2個以上有するシラン及び/又はシロキサンとを使用し、白金、白金化合物等の公知のハイドロシリレーション触媒の存在下にハイドロシリレーション反応して架橋物を形成する付加反応硬化性オルガノポリシロキサン組成物が好ましい。   The organosilicon compounds such as crosslinkable silane and siloxane which are raw materials in the present invention are not particularly limited as long as they are used in general silicone production, etc., but are usually a chain of an organosilicon polymer such as an organosiloxane polymer. The polymer is easily volatilized by heating in a non-oxidizing air current, and its main chain bond easily undergoes thermal cleavage and decomposes into a low molecular weight substance (eg, cyclic 3-6 mer). turn into. On the other hand, for example, silicon-carbon bonds formed by hydrosilylation reaction are strong against heat. Therefore, when this is highly crosslinked, low molecular weight hardly occurs. Since it is highly crosslinked, it is difficult to volatilize. In this way, since it can be effectively converted into an inorganic material without volatilization even in the firing process, in the above general formulas (1) to (5), the number of SiH groups in the molecule is preferably 2 or more, particularly 3 or more. A known hydrosilylation of platinum, platinum compounds, etc., using silane and / or siloxane having silane and / or siloxane having preferably two or more aliphatic unsaturated groups such as alkenyl group and alkynyl group in the molecule An addition reaction curable organopolysiloxane composition that forms a cross-linked product by a hydrosilation reaction in the presence of a catalyst is preferred.

また、分子内に水酸基やアルコキシ基、アシロキシ基等の加水分解性基を有し、触媒反応又は無触媒反応によって縮合し、高度に架橋することが可能なシリコーンレジンを使用することも好ましい。   It is also preferable to use a silicone resin that has a hydrolyzable group such as a hydroxyl group, an alkoxy group, or an acyloxy group in the molecule, and can be condensed by catalytic reaction or non-catalytic reaction and highly crosslinked.

更に、本発明で原料として用いる反応性有機珪素化合物又はその混合物は、下記平均式
hiSiOjk
(但し、h、i、jは正数、kは0又は正数である。)
で表され、架橋点が珪素原子4個に対して少なくとも1個有し、かつ(h−j)が0より大きいことが好ましい。なお、Nは珪素原子と直接結合又は炭素原子を介して間接的に結合してもよい。
Furthermore, the reactive organosilicon compound or mixture thereof used as a raw material in the present invention has the following average formula C h H i SiO j N k
(However, h, i, and j are positive numbers, and k is 0 or a positive number.)
It is preferable that the number of crosslinking points is at least one for four silicon atoms, and (hj) is greater than zero. N may be bonded directly to the silicon atom or indirectly through a carbon atom.

上記平均式において、k=0で、ChiSiOjで示される場合、本発明における炭化珪素の生成反応は下記式により起こり、完全に炭化珪素化する必要はないが、理論的にはh−j=1であることが好ましい。
hiSiOj → SiC+jCO+i/2H2
In the above average equation, when k = 0 and represented by C h H i SiO j , the formation reaction of silicon carbide in the present invention occurs according to the following equation and does not need to be completely silicon carbide, but theoretically It is preferable that h−j = 1.
C h H i SiO j → SiC + jCO + i / 2H 2

しかし、ハイドロシリレーション反応では、若干ロスも見込まれることから、h−jが0より大きなシラン、シロキサン又はその混合物、好ましくは0.9〜1.5、更に好ましくは1.0〜1.2となるシラン、シロキサン又はその混合物が好適に用いられる。h−jが0以下では原料中の酸素の割合が多くなり、収率の低下及び電気伝導度等の特性が劣ることがあり、逆にh−jが1.5より大きいと、生成したC/Si/O複合材料中に炭素分が多くなり、やはり収率が低下してしまうおそれがある。そのため、h−jは0<h−j≦1.5であることが好ましい。   However, since a slight loss is expected in the hydrosilylation reaction, a silane having a hj greater than 0, siloxane, or a mixture thereof, preferably 0.9 to 1.5, more preferably 1.0 to 1.2. Silane, siloxane or a mixture thereof is preferably used. When hj is 0 or less, the proportion of oxygen in the raw material increases, and the characteristics such as yield reduction and electrical conductivity may be deteriorated. Conversely, when hj is greater than 1.5, the produced C The carbon content in the / Si / O composite material increases, and the yield may also decrease. Therefore, hj is preferably 0 <hj ≦ 1.5.

本発明の珪素複合体粒子において、この粒子中の珪素又は珪素合金含有量は1〜90質量%、より好ましくは20〜90質量%、特に20〜80質量%であることが好ましい。この含有量が少なすぎると、単位容量当りの充放電容量(又はエネルギー密度)が低下し、多すぎると、充放電に伴う体積変化の緩和が困難となる。なお、残部は珪素系無機化合物バインダーである。   In the silicon composite particles of the present invention, the silicon or silicon alloy content in the particles is preferably 1 to 90% by mass, more preferably 20 to 90% by mass, and particularly preferably 20 to 80% by mass. If the content is too small, the charge / discharge capacity (or energy density) per unit capacity is reduced, and if it is too large, it is difficult to alleviate the volume change associated with charge / discharge. The balance is a silicon-based inorganic compound binder.

一方、本発明の珪素−炭素複合体粒子において、この粒子中の珪素又は珪素合金含有量は1〜90質量%とし得るが、20〜90質量%、特に40〜80質量%であることが好ましい。この含有量が少なすぎると、単位容積当りの充放電容量(又はエネルギー密度)が低下し、多すぎると、サイクル性が低下する。   On the other hand, in the silicon-carbon composite particles of the present invention, the silicon or silicon alloy content in the particles can be 1 to 90% by mass, preferably 20 to 90% by mass, and particularly preferably 40 to 80% by mass. . When the content is too small, the charge / discharge capacity (or energy density) per unit volume is lowered, and when it is too much, the cycle performance is lowered.

また、炭素含有量は、1〜80質量%、より好ましくは10〜80質量%、特に20〜60質量%であることが好ましい。珪素系無機化合物バインダー含有量は、前記の珪素又は珪素合金と炭素との合計の残部で、通常1〜98質量%、好ましくは10〜80質量%が好ましい。   The carbon content is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 60% by mass. The silicon-based inorganic compound binder content is usually 1 to 98% by mass, and preferably 10 to 80% by mass, with the remainder of the total of the silicon or silicon alloy and carbon.

更に、珪素複合体粒子、珪素−炭素複合体粒子中の空隙率は、1〜70体積%、特に5〜50体積%であることが好ましい。空隙率が少なすぎると、充放電に伴う体積変化の緩和が困難となりサイクル性に劣り、多すぎると、単位容積当りの充放電容量(又はエネルギー密度)が低下する。   Furthermore, the porosity in the silicon composite particles and the silicon-carbon composite particles is preferably 1 to 70% by volume, particularly 5 to 50% by volume. If the porosity is too small, it is difficult to relieve the volume change associated with charge / discharge, resulting in poor cycle performance. If it is too large, the charge / discharge capacity (or energy density) per unit volume is reduced.

また、珪素複合体粒子、珪素−炭素複合体粒子の平均粒径は、リチウムイオン二次電池負極材として用いた場合、負極膜としての成膜性及びサイクル性向上の点から、0.5〜30μm、より好ましくは1〜30μm、特に5〜20μmであることが好ましい。この場合、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として測定した値である。 In addition, the average particle size of the silicon composite particles and silicon-carbon composite particles is 0.5 to 0.5 when used as a negative electrode material for a lithium ion secondary battery from the viewpoint of improving film formability and cycle performance as a negative electrode film. It is preferably 30 μm, more preferably 1 to 30 μm, particularly preferably 5 to 20 μm. In this case, the average particle diameter is a value measured as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%) in the particle size distribution measurement by the laser light diffraction method.

本発明の珪素複合体粒子、珪素−炭素複合体粒子は、その表面がカーボンで被覆されていてもよい。ここで、本発明における珪素複合体粒子あるいは珪素−炭素複合体粒子に対する被覆(蒸着)炭素量は、上記珪素複合体粒子あるいは珪素−炭素複合体粒子に対し、1〜50質量%が好ましい。特に、5〜40質量%が好ましく、更に5〜30質量%が好ましい。被覆(蒸着)炭素量が1質量%未満では、当該珪素又は珪素−炭素複合体粒子を単独で負極活物質として用いた場合、負極膜の導電性が不足し、リチウムイオン二次電池とした場合のサイクル特性など電池特性の発現が十分ではない場合があり、50質量%を超えると、炭素の割合が多くなりすぎ、負極容量が減少してしまい、効果が減少してしまう。   The surface of the silicon composite particles and silicon-carbon composite particles of the present invention may be coated with carbon. Here, the coating (vapor deposition) carbon amount with respect to the silicon composite particles or silicon-carbon composite particles in the present invention is preferably 1 to 50% by mass with respect to the silicon composite particles or silicon-carbon composite particles. In particular, 5-40 mass% is preferable and 5-30 mass% is more preferable. When the amount of coated (vapor-deposited) carbon is less than 1% by mass, when the silicon or silicon-carbon composite particles are used alone as the negative electrode active material, the negative electrode film has insufficient conductivity, resulting in a lithium ion secondary battery. In some cases, the battery characteristics such as the cycle characteristics are not sufficiently exhibited. When the amount exceeds 50% by mass, the proportion of carbon is excessively increased, the negative electrode capacity is decreased, and the effect is decreased.

特に単独で負極活物質として使用される場合、珪素複合体粒子及び珪素−炭素複合体の電気導電率は1×10-6S/m以上、特に1×10-4S/m以上が望ましい。電気伝導率が1×10-6S/mより小さいと電極の導電性が小さく、リチウムイオン二次電池用負極材として用いた場合にサイクル性が低下するおそれがある。なお、ここでいう、電気伝導率とは4端子を持つ円筒状のセル内に被測定粉末を充填し、この被測定粉末に電流を流した時の電圧降下を測定することで求めた値である。 In particular, when used alone as the negative electrode active material, the electrical conductivity of the silicon composite particles and the silicon-carbon composite is preferably 1 × 10 −6 S / m or more, and more preferably 1 × 10 −4 S / m or more. When the electric conductivity is less than 1 × 10 −6 S / m, the electrode has low conductivity, and when used as a negative electrode material for a lithium ion secondary battery, the cycle performance may be lowered. Here, the electric conductivity is a value obtained by filling a powder to be measured in a cylindrical cell having four terminals and measuring a voltage drop when a current is passed through the powder to be measured. is there.

次に、本発明における珪素複合体粒子、珪素−炭素複合体粒子の製造方法について説明する。
本発明の珪素複合体粒子、珪素−炭素複合体粒子は、珪素又は珪素系合金の微粒子又は該微粒子と炭素微粒子が珪素系化合物に分散し、かつその内部に空隙を有する構造を有する焼結体粒子であって、特に1〜30μm程度の平均粒子径を有するものであれば、その製造方法は特に限定されるものではないが、例えば下記I〜IIの方法を好適に採用することができる。
I:珪素や珪素合金塊を機械的な粉砕によって粉砕するなどの方法で得られた、好ましくは100nm〜10μm、より好ましくは100nm〜7μm、更に好ましくは1〜5μmに分級した珪素粉、珪素系合金粉、酸化珪素粉、又はこれと好ましくは100nm〜20μm、より好ましくは1〜20μm、更に好ましくは3〜10μmに分級された球状又は鱗片状炭素粉との混合物に、上述した有機珪素化合物又はその混合物、特に白金触媒、ビニルシロキサン、水素シロキサンからなる付加反応硬化型オルガノポリシロキサン組成物を添加し、よく混合後、300℃以下の温度でプレキュアする。この場合、プレキュア温度の下限は特に制限されないが、40℃以上であることが好ましい。この場合、必要に応じて有機溶剤を添加してよく均一になるようにする。その後、不活性雰囲気下で500〜1,400℃、特に600〜1,400℃、好ましくは750〜1,300℃、より好ましくは900〜1,200℃の温度域で熱処理することにより、内部に空隙を有するSi−C−O系コンポジット、Si−C−N系コンポジット、SiNx、SiOy、SiCz等をバインダーとする珪素複合体又は珪素−炭素複合体の凝集物が得られる。この内部のモデルを図1,2に、実際のSEM観察例を図4〜6に示し、図7はREM観察像(即ち、反射電子検出器(Backscattered Electron Detector)で検出した反射電子を組成像(COMPO Image)に変換した反射電子像(BEI:Backscattered Electron Image))を示す(なお、図4は珪素複合体、図5〜7は珪素−炭素複合体である)。この後、所定の粒度に粉砕、分級して珪素複合体を得るが、粉砕方法は特に問わない。なお、プレキュア時の雰囲気は特に制限されない。また、不活性ガス雰囲気は、窒素雰囲気、アルゴン雰囲気等の非酸化性雰囲気とすることができる。
Next, a method for producing silicon composite particles and silicon-carbon composite particles in the present invention will be described.
The silicon composite particles and silicon-carbon composite particles of the present invention are sintered bodies having a structure in which fine particles of silicon or a silicon-based alloy or fine particles and carbon fine particles are dispersed in a silicon-based compound and have voids therein. The method for producing the particles is not particularly limited as long as the particles have an average particle size of about 1 to 30 μm. For example, the following methods I to II can be suitably employed.
I: Silicon powder obtained by a method such as pulverizing silicon or a silicon alloy lump by mechanical pulverization, preferably 100 nm to 10 μm, more preferably 100 nm to 7 μm, still more preferably 1 to 5 μm, The above-mentioned organosilicon compound or a mixture of an alloy powder, silicon oxide powder, or a spherical or scaly carbon powder classified to 100 nm to 20 μm, more preferably 1 to 20 μm, and even more preferably 3 to 10 μm. The mixture, particularly an addition reaction curable organopolysiloxane composition composed of a platinum catalyst, vinyl siloxane, and hydrogen siloxane, is added and thoroughly mixed, and then precured at a temperature of 300 ° C. or lower. In this case, the lower limit of the precure temperature is not particularly limited, but is preferably 40 ° C. or higher. In this case, if necessary, an organic solvent may be added so as to be uniform. Thereafter, heat treatment is performed in a temperature range of 500 to 1,400 ° C., particularly 600 to 1,400 ° C., preferably 750 to 1,300 ° C., more preferably 900 to 1,200 ° C. in an inert atmosphere. An agglomerate of a silicon composite or a silicon-carbon composite containing a Si—C—O composite, Si—C—N composite, SiN x , SiO y , SiC z or the like having voids in the gap is obtained. The internal model is shown in FIGS. 1 and 2, and actual SEM observation examples are shown in FIGS. 4 to 6. FIG. 7 is a composition image of the REM observation image (that is, the reflected electrons detected by the backscattered electron detector). FIG. 4 shows a backscattered electron image (BEI) converted into (COMPO Image) (FIG. 4 is a silicon composite, and FIGS. 5 to 7 are silicon-carbon composites). Thereafter, the silicon composite is obtained by pulverization and classification to a predetermined particle size, but the pulverization method is not particularly limited. The atmosphere during precure is not particularly limited. The inert gas atmosphere can be a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere.

この場合、珪素又は珪素合金微粒子と有機珪素化合物又はその混合物との密着性を改良するために、珪素又は珪素合金微粒子表面を下記式で表されるシランカップリング剤、その(部分)加水分解縮合物、オルガノポリシラザンなどのシリル化剤、シリコーンレジンから選ばれる1種又は2種以上の有機珪素系表面処理剤などで処理することは有効である。   In this case, in order to improve the adhesion between the silicon or silicon alloy fine particles and the organosilicon compound or a mixture thereof, the surface of the silicon or silicon alloy fine particles is represented by the following formula, and (partial) hydrolysis condensation thereof It is effective to treat with a silylating agent such as an organic polysilazane, or one or more organic silicon surface treating agents selected from silicone resins.

(但し、Rは一価の有機基、Yは1価の加水分解性基又は水酸基、Zは2価の加水分解性基、aは1〜4の整数、bは0.8〜3、好ましくは1〜3の正数である。)
R'e(R''O)fSiO(4-e-f)/2 (8)
(但し、R'は水素原子又は炭素数が1〜10の置換もしくは非置換の一価炭化水素基、R''は水素原子又は炭素数が1〜6の置換もしくは非置換の一価炭化水素基であり、e,fはそれぞれ0≦e≦2.5、0.01≦f≦3、0.5≦e+f≦3を満足する0又は正数である。)
(However, R is a monovalent organic group, Y is a monovalent hydrolyzable group or hydroxyl group, Z is a divalent hydrolyzable group, a is an integer of 1 to 4, and b is 0.8 to 3, preferably Is a positive number from 1 to 3.)
R ′ e (R ″ O) f SiO (4-ef) / 2 (8)
(However, R ′ is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, R ″ is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 6 carbon atoms. E and f are 0 or a positive number satisfying 0 ≦ e ≦ 2.5, 0.01 ≦ f ≦ 3, and 0.5 ≦ e + f ≦ 3, respectively.)

ここで、Rとしては、炭素数1〜12、特に1〜10のアルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基などの非置換一価炭化水素基や、これらの基の水素原子の一部又は全部をハロゲン原子(塩素、フッ素、臭素原子等)、シアノ基、オキシエチレン基等のオキシアルキレン基、ポリオキシエチレン基等のポリオキシアルキレン基、(メタ)アクリル基、(メタ)アクリロキシ基、アクリロイル基、メタクリロイル基、メルカプト基、アミノ基、アミド基、ウレイド基、エポキシ基などの官能基で置換した置換一価炭化水素基、これら非置換又は置換一価炭化水素基において、酸素原子、NH基、NCH3基、NC65基、C65NH−基、H2NCH2CH2NH−基などが介在した基を挙げることができる。 Here, R is an unsubstituted monovalent hydrocarbon group such as an alkyl group having 1 to 12 carbon atoms, particularly 1 to 10 carbon atoms, a cycloalkyl group, an alkenyl group, an aryl group or an aralkyl group, or a hydrogen atom of these groups. A part or all of halogen atoms (chlorine, fluorine, bromine atoms, etc.), cyano groups, oxyalkylene groups such as oxyethylene groups, polyoxyalkylene groups such as polyoxyethylene groups, (meth) acryl groups, (meth) In the substituted monovalent hydrocarbon group substituted by a functional group such as acryloxy group, acryloyl group, methacryloyl group, mercapto group, amino group, amide group, ureido group, epoxy group, etc., in these unsubstituted or substituted monovalent hydrocarbon groups, oxygen A group in which an atom, NH group, NCH 3 group, NC 6 H 5 group, C 6 H 5 NH— group, H 2 NCH 2 CH 2 NH— group or the like is interposed .

Rの具体例としては、CH3−、CH3CH2−、CH3CH2CH2−などのアルキル基、CH2=CH−、CH2=CHCH2−、CH2=C(CH3)−などのアルケニル基、C65−などのアリール基、ClCH2−、ClCH2CH2CH2−、CF3CH2CH2−、(CN)CH2CH2−、CH3−(CH2CH2O)3−CH2CH2CH2−、CH2(O)CHCH2OCH2CH2CH2−(但し、CH2(O)CHCH2はグリシジル基を示す)、CH2=CHCOOCH2−、
HSCH2CH2CH2−、NH2CH2CH2CH2−、NH2CH2CH2NHCH2CH2CH2−、NH2CONHCH2CH2CH2−などが挙げられる。好ましいRとしては、γ−グリシジルオキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基、γ−アミノプロピル基、γ−シアノプロピル基、γ−アクリルオキシプロピル基、γ−メタクリルオキシプロピル基、γ−ウレイドプロピル基などである。
Specific examples of R include alkyl groups such as CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 2 ═CH—, CH 2 ═CHCH 2 —, CH 2 ═C (CH 3 ). An alkenyl group such as —, an aryl group such as C 6 H 5 —, ClCH 2 —, ClCH 2 CH 2 CH 2 —, CF 3 CH 2 CH 2 —, (CN) CH 2 CH 2 —, CH 3 — (CH 2 CH 2 O) 3 —CH 2 CH 2 CH 2 —, CH 2 (O) CHCH 2 OCH 2 CH 2 CH 2 — (wherein CH 2 (O) CHCH 2 represents a glycidyl group), CH 2 = CHCOOCH 2 −,
HSCH 2 CH 2 CH 2 —, NH 2 CH 2 CH 2 CH 2 —, NH 2 CH 2 CH 2 NHCH 2 CH 2 CH 2 —, NH 2 CONHCH 2 CH 2 CH 2 — and the like can be mentioned. Preferred R is γ-glycidyloxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group, γ-aminopropyl group, γ-cyanopropyl group, γ-acryloxypropyl group, γ-methacryloxypropyl group. , Γ-ureidopropyl group and the like.

Yの1価の加水分解性基としては、−OCH3、−OCH2CH3などのアルコキシ基、−NH2、−NH−、−N=、−N(CH32などのアミノ基、−Cl、−ON=C(CH3)CH2CH3などのオキシミノ基、−ON(CH32などのアミノオキシ基、−OCOCH3などのカルボキシル基、−OC(CH3)=CH2などのアルケニルオキシ基、−CH(CH3)−COOCH3、−C(CH32−COOCH3などが挙げられる。Yは全て同一の基であっても異なる基であってもよい。好ましいYとしては、メトキシ基、エトキシ基等のアルコキシ基、イソプロペニルオキシ基等のアルケニルオキシ基等である。また、2価の加水分解性基であるZとしては、イミド残基(−NH−)、非置換又は置換のアセトアミド残基、ウレア残基、カーバメート残基、サルファメート残基などである。 Examples of the monovalent hydrolyzable group for Y include alkoxy groups such as —OCH 3 and —OCH 2 CH 3 , amino groups such as —NH 2 , —NH—, —N═, and —N (CH 3 ) 2 ; -Cl, -ON = C (CH 3 ) CH oximino group such as 2 CH 3, amino group such as -ON (CH 3) 2, carboxyl group, such as -OCOCH 3, -OC (CH 3) = CH 2 alkenyloxy groups such as, -CH (CH 3) -COOCH 3 , like -C (CH 3) 2 -COOCH 3 . Y may be all the same group or different groups. Preferred Y is an alkoxy group such as a methoxy group or an ethoxy group, an alkenyloxy group such as an isopropenyloxy group, or the like. Z, which is a divalent hydrolyzable group, includes an imide residue (—NH—), an unsubstituted or substituted acetamido residue, a urea residue, a carbamate residue, a sulfamate residue, and the like.

aは1〜4の整数、好ましくは3又は4である。bは0.8〜3、好ましくは1〜3の正数である。   a is an integer of 1 to 4, preferably 3 or 4. b is a positive number of 0.8 to 3, preferably 1 to 3.

シランカップリング剤の具体例としては、メチルトリメトキシシラン、テトラエトキシシラン、ビニルトリメトキシシラン、メチルビニルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−シアノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−ウレイドプロピルトリメトキシシランなどのテトラアルコキシシラン、オルガノトリアルコキシシラン、ジオルガノジアルコキシシラン等のアルコキシシラン類が挙げられる。シランカップリング剤は単独でもよいし、2種類以上を混合してもよい。又はその加水分解縮合物及び/又はその部分加水分解縮合物であってもよい。   Specific examples of the silane coupling agent include methyltrimethoxysilane, tetraethoxysilane, vinyltrimethoxysilane, methylvinyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-cyanopropyltri Methoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltri Examples include tetraalkoxysilanes such as methoxysilane and γ-ureidopropyltrimethoxysilane, and alkoxysilanes such as organotrialkoxysilane and diorganodialkoxysilane. A silane coupling agent may be individual and may mix two or more types. Or the hydrolysis condensate and / or the partial hydrolysis condensate thereof may be sufficient.

また、上記一般式(7)のシリル化剤の具体例としては、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、テトラビニルジメチルジシラザン、オクタメチルトリシラザン等のオルガノ(ポリ)シラザン、N,O−ビス(トリメチルシリル)アセトアミド、N,O−ビス(トリメチルシリル)カーバメート、N,O−ビス(トリメチルシリル)サルファメート、N,O−ビス(トリメチルシリル)トリフロロアセトアミド、N,N’−ビス(トリメチルシリル)ウレア等が挙げられるが、特にジビニルテトラメチルジシラザンが好適である。   Specific examples of the silylating agent represented by the general formula (7) include organo (poly) silazanes such as hexamethyldisilazane, divinyltetramethyldisilazane, tetravinyldimethyldisilazane, octamethyltrisilazane, N, O, and the like. -Bis (trimethylsilyl) acetamide, N, O-bis (trimethylsilyl) carbamate, N, O-bis (trimethylsilyl) sulfamate, N, O-bis (trimethylsilyl) trifluoroacetamide, N, N'-bis (trimethylsilyl) urea Among them, divinyltetramethyldisilazane is particularly preferable.

一方、上記一般式(8)において、R’、R”は上記Rのうち炭素数が上記の定義に合致するものが挙げられ、特にアルキル、シクロアルキル、アルケニル、アリール基等が好ましい。
上記一般式(8)のシリコーンレジンとしては、例えば、前記したシランカップリング剤として例示したテトラエトキシシラン、ビニルトリメトキシシラン、メチルビニルジメトキシシラン等のテトラアルコキシシラン、オルガノトリアルコキシシラン、ジオルガノジアルコキシシラン等の1分子中に2〜4個のアルコキシ基を有するアルコキシシランを部分加水分解縮合して得られる、残基アルコキシ基を1分子中に少なくとも1個、好ましくは2個以上有する、通常珪素原子数2〜50個、好ましくは2〜30個程度のオルガノシロキサンオリゴマー等が挙げられる。
On the other hand, in the general formula (8), examples of R ′ and R ″ include those in which the number of carbon atoms in the R matches the above definition, and alkyl, cycloalkyl, alkenyl, aryl groups and the like are particularly preferable.
Examples of the silicone resin of the general formula (8) include tetraalkoxysilanes such as tetraethoxysilane, vinyltrimethoxysilane, and methylvinyldimethoxysilane exemplified as the silane coupling agent, organotrialkoxysilane, and diorganodi. It has at least one, preferably two or more residue alkoxy groups in one molecule, obtained by partial hydrolysis and condensation of alkoxysilane having 2 to 4 alkoxy groups in one molecule such as alkoxysilane. Examples include organosiloxane oligomers having 2 to 50 silicon atoms, preferably about 2 to 30 silicon atoms.

なお、上記表面処理剤の使用量は、珪素又は珪素合金微粒子の質量に対して、通常0.1〜50質量%、好ましくは0.5〜30質量%、より好ましくは1〜5質量%程度とすることができる。   In addition, the usage-amount of the said surface treating agent is 0.1-50 mass% normally with respect to the mass of silicon or silicon alloy fine particles, Preferably it is 0.5-30 mass%, More preferably, it is about 1-5 mass%. It can be.

II:Iによって得た珪素複合体粒子あるいは珪素−炭素複合体粒子を、好ましくは0.1〜50μmの粒度まで粉砕したものを、少なくとも有機物ガス及び/又は蒸気を含む非
酸化性雰囲気下、800〜1,400℃、好ましくは900〜1,300℃、より好ましくは1,000〜1,200℃の温度域で熱処理して表面を化学蒸着する方法。
II: The silicon composite particles or silicon-carbon composite particles obtained by I, preferably pulverized to a particle size of 0.1 to 50 μm, in a non-oxidizing atmosphere containing at least an organic gas and / or steam, 800 A method of chemically vapor-depositing the surface by heat treatment in a temperature range of ˜1,400 ° C., preferably 900˜1,300 ° C., more preferably 1,000˜1,200 ° C.

上記Iの方法に関し、珪素、珪素合金又は酸化珪素粉と、白金触媒などのハイドロシリレーション触媒を含む反応性のビニルシロキサンと水素シロキサンを混合した付加反応硬化型オルガノポリシロキサン組成物を混合した後、300℃以下の温度で、プレキュアをせずに、高温の焼成温度まで温度を上昇させた場合、低分子シロキサンへのシロキサンのクラッキングなどが先行して、ロス分が多くなってしまう。また、不活性雰囲気下での焼成温度が600℃、特に500℃より低いと、無機化が不十分で電池特性的に問題が生じる。一方、1,400℃を超えて高すぎた場合、珪素の溶融や凝集が起こり、また酸化珪素を用いた場合、その不均化が進みすぎることによるサイクル低下を招く。   After mixing an addition reaction curable organopolysiloxane composition in which silicon, a silicon alloy or silicon oxide powder and a reactive vinyl siloxane containing a hydrosilation catalyst such as a platinum catalyst and hydrogen siloxane are mixed. When the temperature is raised to a high firing temperature without pre-curing at a temperature of 300 ° C. or lower, siloxane cracking to a low-molecular siloxane precedes, resulting in an increase in loss. On the other hand, if the firing temperature in an inert atmosphere is lower than 600 ° C., particularly less than 500 ° C., mineralization is insufficient and a problem occurs in battery characteristics. On the other hand, if it exceeds 1,400 ° C. and is too high, melting and aggregation of silicon occur, and if silicon oxide is used, cycle disproportionation due to excessive disproportionation is caused.

一方、上記IIの方法に関し、800℃より低い温度の場合、炭化乃至は無機化が不十分となり、初期効率やサイクル性の低下を招く。高温すぎた場合は、上記と同様のリチウムイオン二次電池において電池特性的な問題が発生する。   On the other hand, in the case of the method II, when the temperature is lower than 800 ° C., carbonization or mineralization becomes insufficient, leading to a decrease in initial efficiency and cycleability. When the temperature is too high, battery characteristic problems occur in the same lithium ion secondary battery as described above.

このように、好ましくは熱CVD(800℃以上での化学蒸着処理)を施すことによりカーボン膜を作製するが、熱CVDの時間は、カーボン量との関係で、適宜設定される。この処理において粒子が凝集する場合があるが、この凝集物をボールミル等で解砕する。また、場合によっては、再度同様に熱CVDを繰り返し行う。   As described above, the carbon film is preferably formed by performing thermal CVD (chemical vapor deposition at 800 ° C. or higher), and the thermal CVD time is appropriately set in relation to the amount of carbon. In this treatment, particles may be aggregated, and the aggregate is crushed with a ball mill or the like. In some cases, thermal CVD is repeated again in the same manner.

本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。   As an organic substance used as a raw material for generating an organic gas in the present invention, an organic substance that can be thermally decomposed at the above heat treatment temperature to generate carbon (graphite) is selected, particularly in a non-oxidizing atmosphere. For example, methane, ethane, A single or mixture of hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone , Pyridine, anthracene, phenanthrene, and the like, and monocyclic to tricyclic aromatic hydrocarbons or a mixture thereof. Further, gas light oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.

なお、上記熱CVD(熱化学蒸着処理)は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、上記有機物ガス単独あるいは有機物ガスとAr、He、H2、N2等の非酸化性ガスの混合ガスを用いることができる。 The thermal CVD (thermochemical vapor deposition process) is not particularly limited as long as a reaction apparatus having a heating mechanism is used in a non-oxidizing atmosphere, and can be processed by a continuous process or a batch process. The fluidized bed reactor, rotary furnace, vertical moving bed reactor, tunnel furnace, batch furnace, rotary kiln and the like can be appropriately selected according to the purpose. In this case, as the (treatment) gas, the organic gas alone or a mixed gas of the organic gas and a non-oxidizing gas such as Ar, He, H 2 or N 2 can be used.

本発明で得られた珪素又は珪素−炭素複合体粒子は、これを負極材(負極活物質)として用い、高容量でかつサイクル特性の優れた非水電解質二次電池、特に、リチウムイオン二次電池を製造することができる。   The silicon or silicon-carbon composite particles obtained in the present invention are used as a negative electrode material (negative electrode active material), and have a high capacity and excellent cycle characteristics, particularly a lithium ion secondary battery. A battery can be manufactured.

この場合、得られたリチウムイオン二次電池は、上記珪素又は珪素−炭素複合体粒子を用いた負極活物質を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V26、MnO2、TiS2、MoS2などの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどの単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。 In this case, the obtained lithium ion secondary battery is characterized in that a negative electrode active material using the above silicon or silicon-carbon composite particles is used, and other positive electrode, negative electrode, electrolyte, separator and other materials and The battery shape and the like are not limited. For example, as the positive electrode active material, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 6 , MnO 2 , TiS 2 , and MoS 2 , chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used, and as the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like alone or in two types The above is used in combination. Various other non-aqueous electrolytes and solid electrolytes can also be used.

なお、上記珪素複合体粒子又は珪素−炭素複合体粒子を用いて負極を作製する場合、珪素複合体粒子又は珪素−炭素複合体粒子に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。   When a negative electrode is produced using the silicon composite particles or silicon-carbon composite particles, a conductive agent such as graphite can be added to the silicon composite particles or silicon-carbon composite particles. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder and metal fiber such as Zn, Ag, Sn, Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, various resin firing Graphite such as a body can be used.

ここで、珪素複合体粒子を用いる場合、同様に導電剤は熱CVDによってカーボンコートした珪素複合体粒子では必ずしも必要としないが、未処理のものでは、導電剤の添加量は、珪素−炭素複合体粒子と導電剤の混合物中10〜70質量%が好ましく、特に20〜50質量%、とりわけ20〜40質量%が好ましい。10質量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、70質量%を超えると充放電容量が小さくなる場合がある。
一方、珪素−炭素複合体粒子の場合、同様に導電剤は熱CVDによってカーボンコートしたものでは、必ずしも必要としないが、未処理のものでは、導電剤の添加量は、珪素−炭素複合体粒子と導電剤の混合物中10〜70質量%が好ましく、特に20〜50質量%、とりわけ20〜40質量%が好ましい。10質量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、70質量%を超えると充放電容量が小さくなる場合がある。
Here, when using silicon composite particles, similarly, the conductive agent is not necessarily required for silicon composite particles coated with carbon by thermal CVD, but in the case of untreated one, the amount of conductive agent added is silicon-carbon composite. 10-70 mass% is preferable in the mixture of a body particle and a electrically conductive agent, 20-50 mass% is especially preferable, and especially 20-40 mass% is preferable. If it is less than 10% by mass, it may not be able to withstand expansion / contraction associated with charge / discharge, and if it exceeds 70% by mass, the charge / discharge capacity may be reduced.
On the other hand, in the case of silicon-carbon composite particles, similarly, the conductive agent is not necessarily required if it is carbon-coated by thermal CVD, but in the case of an untreated one, the amount of conductive agent added is silicon-carbon composite particles. Is preferably 10 to 70% by mass, particularly 20 to 50% by mass, especially 20 to 40% by mass in the mixture of the conductive agent and the conductive agent. If it is less than 10% by mass, it may not be able to withstand expansion / contraction associated with charge / discharge, and if it exceeds 70% by mass, the charge / discharge capacity may be reduced.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記例で%は質量%、部は質量部を示し、grはグラムを示す。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples,% represents mass%, part represents mass part, and gr represents gram.

[実施例1]
化学用金属珪素(豪州SIMCOA社製低Al品;Al:0.05%,Fe:0.21%,Ca:0.003%)を、ジョークラッシャーで粗砕し、更にヘキサンを分散媒としてボールミル及びビーズミルで平均粒径約1μmの微粒子にまで粉砕した。得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、日清エンジニアリング(株)製空気式精密分級機で粗粒部分をカットし、平均粒径が約0.8μmの粉末を得た。この珪素微粉末100grを、テトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物に添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアした。
塊状のまま、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、300℃×2時間+1,000℃×3時間という温度条件で焼成を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmの珪素複合体(ゼロ価の珪素微粒子含有量は86質量%であり、空隙率は比重測定より30容量%であった(以下同様)。)を得た。
[Example 1]
Metallic silicon for chemical use (low aluminum product manufactured by SIMCOA, Australia; Al: 0.05%, Fe: 0.21%, Ca: 0.003%) is coarsely crushed with a jaw crusher, and then ball mill using hexane as a dispersion medium And it grind | pulverized to the microparticles | fine-particles with an average particle diameter of about 1 micrometer with the bead mill. The obtained suspension was filtered, and after removing the solvent under a nitrogen atmosphere, the coarse particles were cut with an air precision classifier manufactured by Nissin Engineering Co., Ltd. to obtain a powder having an average particle size of about 0.8 μm. It was. 100 g of this silicon fine powder was added to 12 g of tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.], 8 gr of methylhydrogensiloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] and a chloroplatinic acid catalyst [ Chloroplatinic acid 1% solution] was added to a mixture of a curable siloxane composition consisting of 0.1 gr and 30 ml of hexane and mixed well in a putty-like state. Thereafter, the solvent was removed and precured at 60 ° C.
As a lump, it was placed in an alumina container with a lid and baked under a nitrogen atmosphere in a muffle furnace with a temperature program capable of controlling the atmosphere under a temperature condition of 300 ° C. × 2 hours + 1,000 ° C. × 3 hours. . After cooling sufficiently, the mixture is pulverized by a pulverizer (mass colloider) with a clearance set to 20 μm, and a silicon composite having an average particle diameter of about 10 μm (zero-valent silicon fine particle content is 86% by mass, porosity is determined by specific gravity measurement. 30% by volume (the same applies hereinafter).

[電池評価]
リチウムイオン二次電池負極活物質としての評価は全ての実施例、比較例ともに同一で、以下の方法・手順にて行った。まず、得られた珪素複合体(又は珪素−炭素複合体)48部に対して人造黒鉛(平均粒子径D50=5μm)42部を加え、混合物を作製した。この混合物にポリフッ化ビニリデンを10部加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cm2に打ち抜き、負極とした。
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1(体積比)混合液(VC:ビニレンカーボネートを2質量%含む)に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで3mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が100μAを下回った時点で充電を終了した。放電は3mAの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の初期効率測定及び充放電試験50回を行った。結果を表1に示す。なお、容量は負極膜質量換算である。
[Battery evaluation]
The evaluation as the negative electrode active material of the lithium ion secondary battery was the same in all Examples and Comparative Examples, and was performed by the following methods and procedures. First, 42 parts of artificial graphite (average particle diameter D 50 = 5 μm) was added to 48 parts of the obtained silicon composite (or silicon-carbon composite) to prepare a mixture. 10 parts of polyvinylidene fluoride is added to this mixture, and N-methylpyrrolidone is further added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then pressed with a roller press. Molded and finally punched out to 2 cm 2 to form a negative electrode.
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluorophosphate was used as a non-aqueous electrolyte with 1/1 (volume) of ethylene carbonate and 1,2-dimethoxyethane. Ratio) A lithium for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in a mixed solution (VC: containing 2% by weight of vinylene carbonate), and using a polyethylene microporous film having a thickness of 30 μm as a separator. An ion secondary battery was produced.
The prepared lithium ion secondary battery is left at room temperature overnight and then charged with a constant current of 3 mA until the voltage of the test cell reaches 0 V using a secondary battery charge / discharge test device (manufactured by Nagano Co., Ltd.). After reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, the charging was terminated when the current value fell below 100 μA. The discharge was performed at a constant current of 3 mA, and when the cell voltage exceeded 2.0 V, the discharge was terminated and the discharge capacity was determined.
The above charge / discharge test was repeated, and the initial efficiency measurement and the charge / discharge test of the evaluation lithium ion secondary battery were performed 50 times. The results are shown in Table 1. The capacity is in terms of mass of the negative electrode film.

[実施例2]
化学用金属珪素(豪州SIMCOA社製低Al品;Al:0.05%,Fe:0.21%,Ca:0.003%)を、ジョークラッシャーで粗砕し、更にヘキサンを分散媒としてボールミル及びビーズミルで平均粒径約1μmの微粒子にまで粉砕した。得られた懸濁物をろ過し、この状態でヘキサン含有量の測定を行った。この結果を元に、珪素微粉末100grに相当するパテ状の珪素−ヘキサン混合物を採取し、ここに、テトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物を添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアし、更に200℃×1時間空気中でキュアした。
こうして得られた塊状のものを、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、1,000℃×3時間という温度条件で焼成を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmの珪素複合体(ゼロ価の珪素微粒子含有量は88質量%であり、空隙率は比重測定より25容量%であった。)を得た。
こうして得られた珪素複合体の粉末のリチウムイオン二次電池負極活物質としての評価を、実施例1と全く同じ条件で行った。その結果を表1に示す。なお、容量は負極膜質量換算である。
[Example 2]
Metallic silicon for chemical use (low aluminum product manufactured by SIMCOA, Australia; Al: 0.05%, Fe: 0.21%, Ca: 0.003%) is coarsely crushed with a jaw crusher, and then ball mill using hexane as a dispersion medium And it grind | pulverized to the microparticles | fine-particles with an average particle diameter of about 1 micrometer with the bead mill. The obtained suspension was filtered, and the hexane content was measured in this state. Based on this result, a putty-like silicon-hexane mixture corresponding to 100 gr of fine silicon powder was collected, and tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.] 12 gr, methyl hydrogen A curable siloxane composition consisting of 8 gr of siloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] and 0.1 gr of chloroplatinic acid catalyst [1% solution of chloroplatinic acid] was added and mixed well in a putty state. Thereafter, the solvent was removed and precured at 60 ° C., and further cured in air at 200 ° C. for 1 hour.
The lump obtained in this way was put into an alumina container with a lid and fired under a temperature condition of 1,000 ° C. × 3 hours in a muffle furnace with a temperature program capable of controlling the atmosphere in a nitrogen atmosphere. . After cooling sufficiently, the mixture is pulverized by a pulverizer (mass colloider) with a clearance set to 20 μm, and a silicon composite having an average particle size of about 10 μm (the content of zero-valent silicon fine particles is 88% by mass, and the porosity is determined by measuring the specific gravity. 25% by volume).
Evaluation of the powder of the silicon composite thus obtained as a negative electrode active material for a lithium ion secondary battery was performed under exactly the same conditions as in Example 1. The results are shown in Table 1. The capacity is in terms of mass of the negative electrode film.

[実施例3]
化学用金属珪素(Norway ELKEM製HGグレード品;Al:0.10%,Fe:0.04%)100grにジビニルテトラメチルジシラザン1gを密閉容器に採取し、よく混合後100℃にて1時間加熱し、シリル化を行った。こうして得られた表面処理珪素粉100grを採取して、以降、実施例1と全く同様に珪素複合体(ゼロ価の珪素微粒子含有量は89質量%であり、空隙率は比重測定より32容量%であった。)を作製し、リチウムイオン二次電池負極活物質としての評価を行った。その結果を表1に示す。なお、容量は負極膜質量換算である。
[Example 3]
1 g of divinyltetramethyldisilazane is collected in 100 g of chemical metallic silicon (HG grade product made by Norway ELKEM; Al: 0.10%, Fe: 0.04%) in a sealed container, and mixed at 100 ° C for 1 hour. Heated to effect silylation. 100 g of the surface-treated silicon powder thus obtained was collected, and thereafter, a silicon composite (the content of zero-valent silicon fine particles was 89% by mass, and the porosity was 32% by volume from the specific gravity measurement) in exactly the same manner as in Example 1. And evaluated as a lithium ion secondary battery negative electrode active material. The results are shown in Table 1. The capacity is in terms of mass of the negative electrode film.

[比較例1]
化学用金属珪素(豪州SIMCOA社製低Al品;Al:0.05%,Fe:0.21%,Ca:0.003%)を、ジョークラッシャーで粗砕し、更にヘキサンを分散媒としてボールミル及びビーズミルで平均粒径約1μmの微粒子にまで粉砕した。得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、日清エンジニアリング(株)製空気式精密分級機で粗粒部分をカットし、平均粒径が約0.8μmの粉末(ゼロ価の珪素微粒子含有量は98質量%であったが、比重が2.2であることから、ほとんど空隙のないものであった。)を得た。
こうして得られた粗粒部をカットして粒度の揃った珪素微粉末のリチウムイオン二次電池負極活物質としての評価を、実施例1と全く同じ条件で行った。その結果を表1に示す。なお、容量は負極膜質量換算である。
[Comparative Example 1]
Metallic silicon for chemical use (low aluminum product manufactured by SIMCOA, Australia; Al: 0.05%, Fe: 0.21%, Ca: 0.003%) is coarsely crushed with a jaw crusher, and then ball mill using hexane as a dispersion medium And it grind | pulverized to the microparticles | fine-particles with an average particle diameter of about 1 micrometer with the bead mill. The obtained suspension was filtered, and after removing the solvent under a nitrogen atmosphere, the coarse particles were cut with an air precision classifier manufactured by Nissin Engineering Co., Ltd., and a powder having an average particle diameter of about 0.8 μm (zero) The content of the fine silicon fine particles was 98% by mass, but since the specific gravity was 2.2, there was almost no void.
Evaluation of the fine silicon powder having a uniform particle size as a lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 1 by cutting the coarse portion thus obtained. The results are shown in Table 1. The capacity is in terms of mass of the negative electrode film.

注:一次粒子は、原料微粒子の平均粒径であり、二次粒子は得られた複合体粒子の平均粒径を示す(以下同様)。 Note: The primary particle is the average particle size of the raw material fine particles, and the secondary particle is the average particle size of the obtained composite particles (the same applies hereinafter).

[実施例4]
ブロック状又はフレーク状の酸化珪素(SiOx:x=1.05)を不活性ガス(アルゴン)雰囲気下で1,300℃、1時間加熱し、珪素と二酸化珪素への不均化を行った。こうして得られたものについてX線回折(Cu−Kα)を行い、2θ=28.4°のSi(111)に帰属される回折線の半価幅からシェーラー法により求めた結晶の大きさは約75nmであった。このようにして熱処理を行った珪素−二酸化珪素複合物をヘキサンを分散媒としてボールミル及びビーズミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒径が約1μmの粉末を得た。この珪素−二酸化珪素複合物粉100grを、実施例1と同様にテトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物に添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアした。
塊状のまま、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、300℃×2時間+1,000℃×3時間という温度条件で焼成を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmの珪素複合体(ゼロ価の珪素微粒子含有量は28質量%であり、空隙率は比重測定より28容量%であった。)を得た。
こうして得られた珪素複合体微粉末のリチウムイオン二次電池負極活物質としての評価を、実施例1と全く同じ条件で行った。その結果を表2に示す。なお、容量は負極膜質量換算である。
[Example 4]
Block-like or flaky silicon oxide (SiO x : x = 1.05) was heated at 1,300 ° C. for 1 hour in an inert gas (argon) atmosphere to disproportionate to silicon and silicon dioxide. . The thus obtained product was subjected to X-ray diffraction (Cu-Kα), and the crystal size determined by the Scherrer method from the half-value width of the diffraction line attributed to Si (111) at 2θ = 28.4 ° was about It was 75 nm. The heat-treated silicon-silicon dioxide composite was pulverized with a ball mill and a bead mill using hexane as a dispersion medium, and the resulting suspension was filtered. After removing the solvent under a nitrogen atmosphere, the average particle size was about A 1 μm powder was obtained. In the same manner as in Example 1, 100 gr of this silicon-silicon dioxide composite powder was added to tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.] 12 gr, methylhydrogen siloxane [KF manufactured by Shin-Etsu Chemical Co., Ltd.] -99] 8 gr and chloroplatinic acid catalyst [1% solution of chloroplatinic acid] were added to a mixture of curable siloxane composition consisting of 0.1 gr and 30 ml of hexane and mixed well in a putty state. Thereafter, the solvent was removed and precured at 60 ° C.
As a lump, it was placed in an alumina container with a lid and baked under a nitrogen atmosphere in a muffle furnace with a temperature program capable of controlling the atmosphere under a temperature condition of 300 ° C. × 2 hours + 1,000 ° C. × 3 hours. . After cooling sufficiently, it is pulverized with a pulverizer (mass colloider) with a clearance of 20 μm, and a silicon composite having an average particle diameter of about 10 μm (zero-valent silicon fine particle content is 28% by mass, porosity is determined by specific gravity measurement. 28% by volume).
Evaluation of the silicon composite fine powder thus obtained as a lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 1. The results are shown in Table 2. The capacity is in terms of mass of the negative electrode film.

[実施例5]
ブロック状又はフレーク状の酸化珪素(SiOx:x=1.05)をヘキサンを分散媒としてボールミル及びビーズミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒径が約1μmの粉末を得た。この酸化珪素粉100grを、実施例1と同様にテトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物に添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアした。
塊状のまま、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、300℃×2時間+1,200℃×3時間という温度条件で加熱し、焼成と酸化珪素組織内の不均化を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmの珪素複合体(ゼロ価の珪素微粒子含有量は27質量%であり、空隙率は比重測定より30容量%であった。)を得た。こうして得られたものについてX線回折(Cu−Kα)を行い、2θ=28.4°のSi(111)に帰属される回折線の半価幅からシェーラー法により求めた結晶の大きさは約65nmであった。
この珪素複合体微粉末のリチウムイオン二次電池負極活物質としての評価を、実施例1と全く同じ条件で行った。その結果を表2に示す。なお、容量は負極膜質量換算である。
[Example 5]
Block-like or flaky silicon oxide (SiO x : x = 1.05) was pulverized with a ball mill and a bead mill using hexane as a dispersion medium, and the resulting suspension was filtered. After removing the solvent under a nitrogen atmosphere, the average was obtained. A powder having a particle size of about 1 μm was obtained. In the same manner as in Example 1, 100 gr of this silicon oxide powder was added to tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.] 12 gr, methylhydrogensiloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] 8 gr. And chloroplatinic acid catalyst [1% chloroplatinic acid solution] was added to a mixture of curable siloxane composition consisting of 0.1 gr and 30 ml of hexane and mixed well in a putty state. Thereafter, the solvent was removed and precured at 60 ° C.
It is put in an alumina container with a lid as a lump, heated in a muffle furnace with a temperature program that can control the atmosphere under a nitrogen atmosphere at 300 ° C. × 2 hours + 1,200 ° C. × 3 hours, and fired. And disproportionation in the silicon oxide structure. After cooling sufficiently, the mixture is pulverized by a pulverizer (mass colloider) with a clearance set at 20 μm, and a silicon composite having an average particle size of about 10 μm (the content of zero-valent silicon fine particles is 27% by mass, and the porosity is determined by specific gravity measurement. 30% by volume). The thus obtained product was subjected to X-ray diffraction (Cu-Kα), and the crystal size determined by the Scherrer method from the half-value width of the diffraction line attributed to Si (111) at 2θ = 28.4 ° was about It was 65 nm.
Evaluation of this silicon composite fine powder as a lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 1. The results are shown in Table 2. The capacity is in terms of mass of the negative electrode film.

[比較例2]
X線回折的に全く無定形のブロック状又はフレーク状の酸化珪素をヘキサンを分散媒としてボールミル及びビーズミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒径が約1μm(ゼロ価の珪素微粒子含有量は31質量%であるが、空隙を有さないものであった。)の粉末を得た。
この酸化珪素微粉末のリチウムイオン二次電池負極活物質としての評価を、実施例1と全く同じ条件で行った。その結果を表2に示す。なお、容量は負極膜質量換算である。
[Comparative Example 2]
X-ray diffraction completely amorphous block-like or flake-like silicon oxide is pulverized by ball mill and bead mill using hexane as a dispersion medium, the resulting suspension is filtered, and after removing the solvent under nitrogen atmosphere, A powder having a diameter of about 1 μm (the content of zero-valent silicon fine particles was 31% by mass but having no voids) was obtained.
Evaluation of this silicon oxide fine powder as a lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 1. The results are shown in Table 2. The capacity is in terms of mass of the negative electrode film.

[実施例6]
ブロック状又はフレーク状の酸化珪素をヘキサンを分散媒としてボールミル及びビーズミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒径が約1μmの粉末を得た。この酸化珪素粉100grを、実施例1と同様にテトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物に添加し、パテ状の状態でよく混合した。60℃で脱溶剤及び200℃×1時間熱硬化した。その後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmの含珪素造粒粒子(ゼロ価の珪素微粒子含有量は28質量%であり、空隙率は比重測定より25容量%であった。)を得た。
この含珪素造粒粒子を縦型管状炉(内径約50mmφ)を用いて、メタン−アルゴン混合ガス通気下で1,200℃、3時間の熱CVDを行った。こうして、得られた導電性珪素複合体をらいかい器で解砕した。得られた導電性珪素複合体粒子の炭素量は15%、活性珪素量は28.1%、平均粒径は13μmであり、シェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさは約60nmであった。
[Example 6]
Block or flaky silicon oxide was pulverized with a ball mill and bead mill using hexane as a dispersion medium, the resulting suspension was filtered, and after removing the solvent in a nitrogen atmosphere, a powder having an average particle size of about 1 μm was obtained. . In the same manner as in Example 1, 100 gr of this silicon oxide powder was added to tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.] 12 gr, methylhydrogensiloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] 8 gr. And chloroplatinic acid catalyst [1% chloroplatinic acid solution] was added to a mixture of curable siloxane composition consisting of 0.1 gr and 30 ml of hexane and mixed well in a putty state. Solvent removal at 60 ° C. and heat curing at 200 ° C. for 1 hour. After that, it was pulverized by a pulverizer (mass colloider) with a clearance set at 20 μm, and silicon-containing granulated particles having an average particle diameter of about 10 μm (the content of zero-valent silicon fine particles was 28% by mass, and the porosity was determined from specific gravity measurement. 25% by volume).
The silicon-containing granulated particles were subjected to thermal CVD at 1,200 ° C. for 3 hours under a methane-argon mixed gas flow using a vertical tubular furnace (inner diameter: about 50 mmφ). Thus, the obtained conductive silicon composite was crushed with a sieve. The obtained conductive silicon composite particles had a carbon content of 15%, an active silicon content of 28.1% and an average particle size of 13 μm. The size of silicon crystals dispersed in silicon dioxide determined by the Scherrer method Was about 60 nm.

[電池評価]
リチウムイオン二次電池負極活物質としての評価は実施例6、比較例3ともに同一で、以下の方法・手順にて行った。まず、得られた炭素コート珪素複合体に人造黒鉛(平均粒子径D50=5μm)を加え、人造黒鉛の炭素と蒸着した珪素複合体中のフリー炭素が合計40%となるように加え、混合物を作製した。この混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cm2に打ち抜き、負極とした。以下、実施例1に記載の方法と全く同一の手順で行った。
こうして得られた珪素複合体微粉末のリチウムイオン二次電池負極活物質としての評価結果を表3に示す。なお、容量は負極膜質量換算である。
[Battery evaluation]
Evaluation as a lithium ion secondary battery negative electrode active material was the same in Example 6 and Comparative Example 3, and was performed by the following method and procedure. First, artificial graphite (average particle diameter D 50 = 5 μm) was added to the obtained carbon-coated silicon composite, and the carbon of the artificial graphite and the free carbon in the deposited silicon composite were added to a total of 40%, and the mixture Was made. 10% polyvinylidene fluoride is added to this mixture, and N-methylpyrrolidone is further added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then pressed with a roller press. Molded and finally punched out to 2 cm 2 to form a negative electrode. Thereafter, the same procedure as described in Example 1 was performed.
Table 3 shows the evaluation results of the silicon composite fine powder thus obtained as a negative electrode active material for a lithium ion secondary battery. The capacity is in terms of mass of the negative electrode film.

[比較例3]
実施例6と同様に、ブロック状又はフレーク状の酸化珪素をヘキサンを分散媒としてボールミル及びビーズミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒径が約1μmの粉末(空隙率は0容量%)を得た。この酸化珪素粉100grを、縦型管状炉(内径約50mmφ)を用いて、メタン−アルゴン混合ガス通気下で1,200℃、5時間の熱CVDを行った。こうして、得られた導電性珪素複合体をらいかい器で解砕した。得られた導電性珪素複合体粒子の炭素量は17%、ゼロ価の活性珪素量は25%、平均粒径は13μmであり、シェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさは約65nmであった。
この珪素複合体微粒子のリチウムイオン二次電池負極活物質としての評価を、実施例6と全く同じ条件で行った。その結果を表3に示す。なお、容量は負極膜質量換算である。
[Comparative Example 3]
In the same manner as in Example 6, block or flake silicon oxide was pulverized with a ball mill and a bead mill using hexane as a dispersion medium, the obtained suspension was filtered, and after removing the solvent under a nitrogen atmosphere, the average particle size was reduced. About 1 μm powder (porosity of 0% by volume) was obtained. 100 gr of this silicon oxide powder was subjected to thermal CVD at 1,200 ° C. for 5 hours under a methane-argon mixed gas flow using a vertical tubular furnace (inner diameter: about 50 mmφ). Thus, the obtained conductive silicon composite was crushed with a sieve. The obtained conductive silicon composite particles had a carbon content of 17%, a zero-valent active silicon content of 25%, an average particle size of 13 μm, and the size of silicon crystals dispersed in silicon dioxide determined by the Scherrer method. The thickness was about 65 nm.
Evaluation of the silicon composite fine particles as a lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 6. The results are shown in Table 3. The capacity is in terms of mass of the negative electrode film.

[実施例7]
化学用金属珪素(豪州SIMCOA社製低Al品;Al:0.05%,Fe:0.21%,Ca:0.003%)を、ジョークラッシャーで粗砕し、更にヘキサンを分散媒としてボールミル及びビーズミルで平均粒径約1μmの微粒子にまで粉砕した。得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、日清エンジニアリング(株)製空気式精密分級機で粗粒部分をカットし、平均粒径が約0.8μmの粉末を得た。この珪素微粉末100grと大阪ガスケミカル株式会社製球状グラファイト粉MCMB06−28(平均粒子径:6μm)80grを混合し、ここに予め調製した、テトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物を添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアした。
塊状のまま、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、300℃×2時間+1,000℃×3時間という温度条件で焼成を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約15μmの珪素複合体(ゼロ価の珪素微粒子含有量が55質量%、空隙率が比重測定より28容量%、カーボン含有量が40質量%)を得た。
上記充放電試験を繰り返し、評価用リチウムイオン二次電池の初期効率測定及び充放電試験50回を行った。結果を表4に示す。なお、容量は負極膜重量換算である。
[Example 7]
Metallic silicon for chemical use (low aluminum product manufactured by SIMCOA, Australia; Al: 0.05%, Fe: 0.21%, Ca: 0.003%) is coarsely crushed with a jaw crusher, and then ball mill using hexane as a dispersion medium And it grind | pulverized to the microparticles | fine-particles with an average particle diameter of about 1 micrometer with the bead mill. The obtained suspension was filtered, and after removing the solvent under a nitrogen atmosphere, the coarse particles were cut with an air precision classifier manufactured by Nissin Engineering Co., Ltd. to obtain a powder having an average particle size of about 0.8 μm. It was. 100 gr of this silicon fine powder and 80 gr of spherical graphite powder MCMB06-28 (average particle size: 6 μm) manufactured by Osaka Gas Chemical Co., Ltd. were mixed, and tetramethyltetravinylcyclotetrasiloxane [Shin-Etsu Chemical Co., Ltd.] LS-8670 manufactured by LS-8670], 12 grams of methyl hydrogen siloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] 8 grams and chloroplatinic acid catalyst [1% solution of chloroplatinic acid] 0.1 gr and 30 ml of hexane. The mixture was added and mixed well in a putty state. Thereafter, the solvent was removed and precured at 60 ° C.
As a lump, it was placed in an alumina container with a lid and baked under a nitrogen atmosphere in a muffle furnace with a temperature program capable of controlling the atmosphere under a temperature condition of 300 ° C. × 2 hours + 1,000 ° C. × 3 hours. . After cooling sufficiently, the mixture was pulverized with a pulverizer (mass colloider) with a clearance of 20 μm, and a silicon composite having an average particle size of about 15 μm (zero-valent silicon fine particle content was 55% by mass, porosity was 28 volumes from specific gravity measurement) %, And the carbon content was 40% by mass).
The charge / discharge test was repeated, and the initial efficiency measurement and charge / discharge test of the evaluation lithium ion secondary battery were performed 50 times. The results are shown in Table 4. The capacity is in terms of the weight of the negative electrode film.

[実施例8]
実施例7で記載した方法で、平均粒径が約0.8μmの珪素粉末を得、この珪素微粉末100grとSCE社製鱗片状合成グラファイト粉SGP10(平均粒子径:10μm)80grを混合し、ここに予め調製した、テトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製LS−8670〕12gr、メチル水素シロキサン〔信越化学工業(株)製KF−99〕8gr及び塩化白金酸触媒〔塩化白金酸1%溶液〕0.1grからなる硬化性シロキサン組成物とヘキサン30mlの混合物を添加し、パテ状の状態でよく混合した。その後、60℃で脱溶剤・プレキュアした。塊状のまま、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、300℃×2時間+1,000℃×3時間という温度条件で焼成を行った。十分冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約15μmの珪素−炭素複合体(ゼロ価の珪素微粒子含有量が53質量%、空隙率が比重測定より25容量%、カーボン含有量が42質量%)を得た。
このリチウムイオン二次電池負極活物質としての評価を、実施例7と全く同じ条件で行った。その結果を表4に示す。なお、容量は負極膜重量換算である。
[Example 8]
By the method described in Example 7, a silicon powder having an average particle diameter of about 0.8 μm was obtained, and 100 gr of this silicon fine powder was mixed with Scr scale synthetic graphite powder SGP10 (average particle diameter: 10 μm) 80 gr. Tetramethyltetravinylcyclotetrasiloxane [LS-8670 manufactured by Shin-Etsu Chemical Co., Ltd.] 12 gr, methylhydrogen siloxane [KF-99 manufactured by Shin-Etsu Chemical Co., Ltd.] 8 gr and chloroplatinic acid catalyst [salt] Platinum acid 1% solution] A mixture of a curable siloxane composition consisting of 0.1 gr and 30 ml of hexane was added and mixed well in a putty state. Thereafter, the solvent was removed and precured at 60 ° C. As a lump, it was placed in an alumina container with a lid and baked under a nitrogen atmosphere in a muffle furnace with a temperature program capable of controlling the atmosphere under a temperature condition of 300 ° C. × 2 hours + 1,000 ° C. × 3 hours. . After sufficiently cooling, the mixture is pulverized with a pulverizer (mass colloider) with a clearance set at 20 μm, and a silicon-carbon composite having an average particle size of about 15 μm (zero-valent silicon fine particle content is 53 mass%, porosity is measured by specific gravity) 25% by volume and a carbon content of 42% by mass).
Evaluation as this lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 7. The results are shown in Table 4. The capacity is in terms of the weight of the negative electrode film.

[実施例9]
実施例7で作製した平均粒子径約15μmの珪素−炭素複合体約100grを内径約30mmのアルミナ製縦型反応機に入れ、アルゴン気流下で予め1,150℃に昇温したのち、メタン−アルゴン(メタン30%)に切り替え、3時間熱CVDを行った。冷却後、らいかい機で解砕し、平均粒子径約15μmの導電性珪素−炭素系複合体(ゼロ価の珪素量:49質量%,グラファイト:36質量%,CVD炭素:14質量%(CVD後の空隙率は測定困難))を得た。
このリチウムイオン二次電池負極活物質としての評価を、実施例7と全く同じ条件で行った。その結果を表4に示す。なお、容量は負極膜重量換算である。
[Example 9]
About 100 gr of the silicon-carbon composite having an average particle diameter of about 15 μm prepared in Example 7 was placed in an alumina vertical reactor having an inner diameter of about 30 mm, and the temperature was raised to 1,150 ° C. in advance under an argon stream. Switching to argon (methane 30%), thermal CVD was performed for 3 hours. After cooling, the mixture was crushed with a cracking machine, and a conductive silicon-carbon composite having an average particle diameter of about 15 μm (zero-valent silicon content: 49 mass%, graphite: 36 mass%, CVD carbon: 14 mass% (CVD The later porosity was difficult to measure)).
Evaluation as this lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 7. The results are shown in Table 4. The capacity is in terms of the weight of the negative electrode film.

[比較例4]
化学用金属珪素(豪州SIMCOA社製低Al品;Al:0.05%,Fe:0.21%,Ca:0.003%)を、ジョークラッシャーで粗砕し、更にヘキサンを分散媒としてボールミル及びビーズミルで平均粒径約1μmの微粒子にまで粉砕した。得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、日清エンジニアリング(株)製空気式精密分級機で粗粒部分をカットし、平均粒径が約0.8μmの粉末(この粉末は造粒していないため、空隙を有さないものである)を得た。
こうして得られた粗粒部をカットして粒度の揃った珪素微粉末を実施例に従って、メタンによって熱CVDを行い、炭素量約15%の炭素被覆珪素粉を得た。このリチウムイオン二次電池負極活物質としての評価を、実施例7と全く同じ条件で行った。その結果を表4に示す。なお、容量は負極膜重量換算である。
[Comparative Example 4]
Metallic silicon for chemical use (low aluminum product manufactured by SIMCOA, Australia; Al: 0.05%, Fe: 0.21%, Ca: 0.003%) is coarsely crushed with a jaw crusher, and then ball mill using hexane as a dispersion medium And it grind | pulverized to the microparticles | fine-particles with an average particle diameter of about 1 micrometer with the bead mill. The obtained suspension was filtered, and after removing the solvent under a nitrogen atmosphere, the coarse particles were cut with an air precision classifier manufactured by Nissin Engineering Co., Ltd. Since the powder is not granulated, it has no voids).
The coarse particles thus obtained were cut, and the silicon fine powder having a uniform particle size was subjected to thermal CVD with methane according to the example to obtain a carbon-coated silicon powder having a carbon content of about 15%. Evaluation as this lithium ion secondary battery negative electrode active material was performed under exactly the same conditions as in Example 7. The results are shown in Table 4. The capacity is in terms of the weight of the negative electrode film.

本発明の珪素複合体のイメージ図である。It is an image figure of the silicon composite of this invention. 珪素−炭素複合体のイメージ図である。It is an image figure of a silicon-carbon composite. 透過電子顕微鏡による珪素系複合体と炭素層界面の融合状態観察例を示した図である。It is the figure which showed the example of a fusion state observation of the silicon system composite_body | complex and carbon layer interface by a transmission electron microscope. (A)、(B)はそれぞれ珪素複合体の焼結状態での断面SEM写真である。(A) and (B) are cross-sectional SEM photographs in the sintered state of the silicon composite, respectively. (A)、(B)はそれぞれ球状グラファイト(10μm)を配合した場合における珪素−炭素複合体断面のSEM写真である。(A) and (B) are SEM photographs of the cross section of the silicon-carbon composite when spherical graphite (10 μm) is blended. (A)、(B)はそれぞれ鱗片状グラファイト(6μm)を配合した場合における珪素−炭素複合体断面のSEM写真である。(A) and (B) are SEM photographs of the cross section of the silicon-carbon composite when scaly graphite (6 μm) is blended. 珪素−炭素複合体断面の反射電子像(組成像)であり、(A)は球状グラファイトを配合した場合、(B)は鱗片状グラファイトを配合した場合である。It is the reflected electron image (composition image) of a silicon-carbon composite cross section, (A) is a case where spherical graphite is mix | blended, (B) is a case where scaly graphite is mix | blended.

符号の説明Explanation of symbols

1 珪素複合体粒子
2 珪素−炭素複合体粒子
11 珪素又は珪素合金
12 珪素系無機化合物のバインダー
13 空隙
14 炭素微粒子
DESCRIPTION OF SYMBOLS 1 Silicon composite particle 2 Silicon-carbon composite particle 11 Silicon or silicon alloy 12 Binder of silicon-based inorganic compound 13 Void 14 Carbon fine particle

Claims (21)

珪素と、珪素合金又は酸化珪素の微粒子と、球形又は鱗片状の天然又は合成グラファイトである炭素微粒子とを、有機珪素化合物又はその混合物と共に焼結することによって得られる粒子であって、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子及び炭素微粒子が分散されていると共に、該粒子内に空隙が存在する構造を有することを特徴とする、リチウムイオン二次電池用珪素複合体粒子。 Particles obtained by sintering silicon , silicon alloy or silicon oxide fine particles, and carbon fine particles that are spherical or scale-like natural or synthetic graphite, together with an organic silicon compound or a mixture thereof, Silicon or silicon alloy fine particles and carbon fine particles are dispersed in a silicon-based inorganic compound formed by sintering a compound or a mixture thereof as a binder, and voids exist in the particles. A silicon composite particle for a lithium ion secondary battery . 珪素、珪素合金又は酸化珪素の一次粒子の大きさが100nm〜10μmであり、炭素の一次粒子の大きさが100nm〜20μmであり、珪素系無機化合物がSi−C−OもしくはSi−C−N系コンポジット、SiNx、SiOy、SiCz(但し、xは0<x≦4/3、yは0<y≦2、zは0<z≦1の正数である)又はこれらの混合物であることを特徴とする請求項記載のリチウムイオン二次電池用珪素複合体粒子。 The primary particle size of silicon, silicon alloy or silicon oxide is 100 nm to 10 μm, the primary particle size of carbon is 100 nm to 20 μm, and the silicon-based inorganic compound is Si—C—O or Si—C—N. Composite, SiN x , SiO y , SiC z (where x is 0 <x ≦ 4/3, y is 0 <y ≦ 2, z is a positive number of 0 <z ≦ 1) or a mixture thereof The silicon composite particle for a lithium ion secondary battery according to claim 1, wherein 有機珪素化合物又はその混合物が、架橋基を有する反応性有機珪素化合物又は硬化性ポリシロキサン組成物であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用珪素複合体粒子。 Organosilicon compounds or mixtures thereof, the reactive organic silicon compound or a curable polysiloxane composition according to claim 1 or 2 for a lithium ion secondary battery silicon composite particles wherein that having a crosslinkable group. 架橋基を有する反応性有機珪素化合物が、下記一般式(1)〜(5)で示されるシラン又はシロキサンの1種又は2種以上である請求項記載のリチウムイオン二次電池用珪素複合体粒子。
(式中、R1〜R7は、独立して水素原子、水酸基、加水分解性基、又は1価炭化水素基を示すが、上記式(1)〜(5)の各化合物において、珪素原子に結合する置換基の少なくとも2個は水素原子、水酸基、加水分解性基又は脂肪族不飽和炭化水素基である。m、n、kは0〜2,000、p、qは0〜10であるが、p、qは同時に0になることはない。)
4. The silicon composite for lithium ion secondary battery according to claim 3, wherein the reactive organosilicon compound having a crosslinking group is one or more of silanes or siloxanes represented by the following general formulas (1) to (5). particle.
(Wherein R 1 to R 7 independently represent a hydrogen atom, a hydroxyl group, a hydrolyzable group, or a monovalent hydrocarbon group, but in each compound of the above formulas (1) to (5), a silicon atom At least two of the substituents bonded to are hydrogen atom, hydroxyl group, hydrolyzable group or aliphatic unsaturated hydrocarbon group, m, n and k are 0 to 2,000, p and q are 0 to 10. (However, p and q are not 0 at the same time.)
架橋基を有する反応性有機珪素化合物又はその混合物が、平均式ChiSiOjk(h、i、jは正数、kは0又は正数)で表され、架橋点が珪素原子4個に対して少なくとも1個有し、かつ(h−j)が0より大きなシラン又はシロキサンであることを特徴とする請求項記載のリチウムイオン二次電池用珪素複合体粒子。 A reactive organosilicon compound having a crosslinkable group or a mixture thereof is represented by the average formula C h H i SiO j N k (h, i, j are positive numbers, k is 0 or a positive number), and the crosslink point is a silicon atom. The silicon composite particle for a lithium ion secondary battery according to claim 3 , wherein the silane or siloxane has at least one for four and (hj) is greater than zero. 硬化性ポリシロキサン組成物が、付加反応硬化型オルガノポリシロキサン組成物であることを特徴とする請求項記載のリチウムイオン二次電池用珪素複合体粒子。 4. The silicon composite particle for a lithium ion secondary battery according to claim 3, wherein the curable polysiloxane composition is an addition reaction curable organopolysiloxane composition. 粒子内の空隙率が1〜70体積%である請求項1〜のいずれか1項記載のリチウムイオン二次電池用珪素複合体粒子。 Any one lithium ion secondary battery silicon composite particles according to claim 1-6 porosity in the particles is 1 to 70% by volume. 請求項1〜のいずれか1項記載の珪素複合体粒子の表面を炭素でコーティングしてなることを特徴とするリチウムイオン二次電池用導電性珪素複合体粒子。 Claim 1-7 any one lithium ion secondary battery conductive silicon composite particles the surface of the silicon composite particles characterized by being coated with carbon according to. 珪素、珪素合金又は酸化珪素の微粒子を有機珪素化合物又はその混合物と共に焼結し、造粒して、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子が分散されていると共に、内部に空隙が存在する構造を有する珪素複合体粒子を得ることを特徴とする、リチウムイオン二次電池用珪素複合体粒子の製造方法。 Silicon, silicon alloy or silicon oxide fine particles are sintered together with an organic silicon compound or a mixture thereof, granulated, and a silicon-based inorganic compound formed by sintering the organic silicon compound or the mixture thereof as a binder. A method for producing silicon composite particles for a lithium ion secondary battery, wherein silicon composite particles having a structure in which silicon or silicon alloy fine particles are dispersed therein and voids are present therein are obtained. 珪素、珪素合金又は酸化珪素の一次粒子の大きさが100nm〜10μmであり、珪素系無機化合物がSi−C−OもしくはSi−C−N系コンポジット、SiNx、SiOy、SiCz(但し、xは0<x≦4/3、yは0<y≦2、zは0<z≦1の正数である)又はこれらの混合物であることを特徴とする請求項記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 The primary particle size of silicon, silicon alloy or silicon oxide is 100 nm to 10 μm, and the silicon-based inorganic compound is Si—C—O or Si—C—N based composite, SiN x , SiO y , SiC z (provided that x is 0 <x ≦ 4/3, y is 0 <y ≦ 2, z is 0 <z ≦ 1 for a positive number) or lithium-ion secondary of claim 9, wherein the mixtures thereof A method for producing silicon composite particles for a secondary battery . 珪素、珪素合金又は酸化珪素の微粒子及び炭素微粒子を有機珪素化合物又はその混合物と共に焼結し、造粒して、上記有機珪素化合物又はその混合物が焼結されることによって形成される珪素系無機化合物をバインダーとしてこの中に珪素又は珪素合金微粒子及び炭素微粒子が分散されていると共に、内部に空隙が存在する構造を有する珪素−炭素複合体粒子を得ることを特徴とするリチウムイオン二次電池用珪素複合体粒子の製造方法。 Silicon inorganic compound formed by sintering and granulating silicon, silicon alloy or silicon oxide fine particles and carbon fine particles together with an organic silicon compound or a mixture thereof, and sintering the organic silicon compound or the mixture thereof. Silicon for lithium ion secondary battery , characterized in that silicon or silicon alloy fine particles and carbon fine particles are dispersed therein and silicon-carbon composite particles having a structure in which voids exist are obtained. A method for producing composite particles. 珪素、珪素合金又は酸化珪素の一次粒子の大きさが100nm〜10μmであり、炭素の一次粒子の大きさが100nm〜20μmであり、珪素系無機化合物がSi−C−OもしくはSi−C−N系コンポジット、SiNx、SiOy、SiCz(但し、xは0<x≦4/3、yは0<y≦2、zは0<z≦1の正数である)又はこれらの混合物であることを特徴とする請求項1記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 The primary particle size of silicon, silicon alloy or silicon oxide is 100 nm to 10 μm, the primary particle size of carbon is 100 nm to 20 μm, and the silicon-based inorganic compound is Si—C—O or Si—C—N. Composite, SiN x , SiO y , SiC z (where x is 0 <x ≦ 4/3, y is 0 <y ≦ 2, z is a positive number of 0 <z ≦ 1) or a mixture thereof the process according to claim 1 1 for a lithium ion secondary battery silicon composite particles, wherein the certain. 炭素粒子が球形又は鱗片状の天然又は合成グラファイトである請求項1又は1記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 The method according to claim 1 1 or 1 2 for a lithium ion secondary battery silicon composite particles according carbon particles are spherical or scale-like natural or synthetic graphite. 有機珪素化合物又はその混合物が、架橋基を有する反応性有機珪素化合物又は硬化性ポリシロキサン組成物であり、これを珪素又は珪素合金微粒子と混合した後、熱硬化又は触媒反応により硬化させて架橋物とし、更に不活性気流中500〜1,400℃の温度範囲で加熱、焼結させて無機化し、これを0.5〜30μmに再粉砕することを特徴とする請求項9〜13のいずれか1項記載のリチウムイオン二次電池用珪素複合体の製造方法。 The organosilicon compound or a mixture thereof is a reactive organosilicon compound or a curable polysiloxane composition having a crosslinkable group, and after this is mixed with silicon or silicon alloy fine particles, it is cured by thermal curing or catalytic reaction to be crosslinked. and then, further heated at a temperature in the range of 500~1,400 ° C. in an inert gas stream, and mineralized by sintering, claim 9 to 13, characterized in that the reground this 0.5~30μm A method for producing a silicon composite for a lithium ion secondary battery according to claim 1. 架橋基を有する反応性有機珪素化合物が、下記一般式(1)〜(5)で示されるシラン又はシロキサンの1種又は2種以上である請求項1記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。
(式中、R1〜R7は、独立して水素原子、水酸基、加水分解性基、又は1価炭化水素基を示すが、上記式(1)〜(5)の各化合物において、珪素原子に結合する置換基の少なくとも2個は水素原子、水酸基、加水分解性基又は脂肪族不飽和炭化水素基である。m、n、kは0〜2,000、p、qは0〜10であるが、p、qは同時に0になることはない。)
Reactive organic silicon compound having a crosslinking group is represented by the following general formula (1) to (5) is a silane or siloxane one or more of claims 1 to 4 silicon for lithium ion secondary battery composite according represented by A method for producing body particles.
(Wherein R 1 to R 7 independently represent a hydrogen atom, a hydroxyl group, a hydrolyzable group, or a monovalent hydrocarbon group, but in each compound of the above formulas (1) to (5), a silicon atom At least two of the substituents bonded to are hydrogen atom, hydroxyl group, hydrolyzable group or aliphatic unsaturated hydrocarbon group, m, n and k are 0 to 2,000, p and q are 0 to 10. (However, p and q are not 0 at the same time.)
架橋基を有する反応性有機珪素化合物又はその混合物が、平均式ChiSiOjk(h、i、jは正数、kは0又は正数)で表され、架橋点が珪素原子4個に対して少なくとも1個有し、かつ(h−j)が0より大きなシラン又はシロキサンであることを特徴とする請求項1記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 A reactive organosilicon compound having a crosslinkable group or a mixture thereof is represented by the average formula C h H i SiO j N k (h, i, j are positive numbers, k is 0 or a positive number), and the crosslink point is a silicon atom. having at least one for four, and a manufacturing method of (h-j) is according to claim 1 4 for a lithium ion secondary battery silicon composite particles wherein the a major silanes or siloxanes from 0 . 硬化性ポリシロキサン組成物が、付加反応硬化型オルガノポリシロキサン組成物であることを特徴とする請求項1記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 Method for producing a curable polysiloxane composition, addition-curable organopolysiloxane characterized in that it is a composition according to claim 1 4 for a lithium ion secondary battery silicon composite particles according. 珪素又は珪素合金微粒子の表面を予めシランカップリング剤、その(部分)加水分解縮合物、シリル化剤、シリコーンレジンから選ばれる1種又は2種以上の表面処理剤で処理することを特徴とする請求項9〜17のいずれか1項記載のリチウムイオン二次電池用珪素複合体粒子の製造方法。 The surface of silicon or silicon alloy fine particles is treated in advance with one or more surface treatment agents selected from silane coupling agents, (partial) hydrolysis condensates, silylating agents, and silicone resins. The manufacturing method of the silicon composite particle for lithium ion secondary batteries of any one of Claims 9-17 . 請求項9〜18のいずれか1項記載の製造方法によって得られた珪素複合体粒子を有機物ガス及び/又は蒸気を含む雰囲気下、800〜1,400℃の温度域で熱処理して、上記珪素複合体粒子の表面をコーティングすることを特徴とする、リチウムイオン二次電池用導電性珪素複合体粒子の製造方法。 The silicon composite particles obtained by the production method according to any one of claims 9 to 18 are heat-treated in a temperature range of 800 to 1,400 ° C in an atmosphere containing an organic gas and / or vapor, and the silicon A method for producing conductive silicon composite particles for a lithium ion secondary battery , wherein the surface of the composite particles is coated. 請求項1〜のいずれか1項記載の珪素複合体粒子を用いた非水電解質二次電池用負極材。 The negative electrode material for nonaqueous electrolyte secondary batteries using the silicon composite particle of any one of Claims 1-8 . 請求項1〜のいずれか1項記載の珪素複合体粒子と導電剤の混合物であって、混合物中の導電剤が1〜60質量%であり、かつ混合物中の全炭素量が25〜90質量%である混合物を用いた非水電解質二次電池用負極材。 A mixture of silicon composite particles and a conductive agent according to any one of claims 1 to 8, wherein the conductive agent in the mixture is 1 to 60% by mass and the total carbon content in the mixture is 25 to 90. A negative electrode material for a non-aqueous electrolyte secondary battery using a mixture having a mass%.
JP2005076430A 2004-03-26 2005-03-17 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery Active JP4623283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076430A JP4623283B2 (en) 2004-03-26 2005-03-17 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004093169 2004-03-26
JP2004093074 2004-03-26
JP2005076430A JP4623283B2 (en) 2004-03-26 2005-03-17 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005310759A JP2005310759A (en) 2005-11-04
JP4623283B2 true JP4623283B2 (en) 2011-02-02

Family

ID=35439247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076430A Active JP4623283B2 (en) 2004-03-26 2005-03-17 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4623283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
WO2021101188A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지에너지솔루션 Anode and secondary battery comprising same

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233088B2 (en) * 2005-09-15 2013-07-10 日産自動車株式会社 Battery electrode
JP5320671B2 (en) * 2005-12-13 2013-10-23 三菱化学株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
JP5058494B2 (en) * 2006-02-15 2012-10-24 株式会社クラレ Composite, method for producing the same, and electrode material for power storage device
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080206641A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
JP5128873B2 (en) * 2007-08-10 2013-01-23 株式会社豊田自動織機 Secondary battery electrode and manufacturing method thereof
KR101375491B1 (en) * 2008-04-10 2014-04-01 주식회사 엘지화학 Composite for electrode active material and method for preparing the same
US20110031935A1 (en) * 2008-04-18 2011-02-10 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for lithium-ion secondary battery and manufacturing process for the same
JP5136180B2 (en) * 2008-04-18 2013-02-06 株式会社豊田自動織機 Charge control method for lithium ion secondary battery
JP5129007B2 (en) * 2008-04-18 2013-01-23 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and method for producing the same
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
CN102428763A (en) 2009-05-19 2012-04-25 纳米***公司 Nanostructured materials for battery applications
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
CN103238238B (en) * 2010-10-22 2016-11-09 安普瑞斯股份有限公司 Complex structure body containing the high power capacity porous active materials constrained in shell
JP2012186119A (en) * 2011-03-08 2012-09-27 Toyota Industries Corp Negative electrode mixture for secondary battery, negative electrode for secondary battery, secondary battery, and vehicle comprising the same
EP2698851B1 (en) 2011-04-13 2018-12-12 Sei Corporation Electrode material for lithium secondary battery and lithium secondary battery
WO2013002157A1 (en) * 2011-06-27 2013-01-03 東レ・ダウコーニング株式会社 Silicon-containing carbon-based composite material in which fine lithium-coated silicon metal or silicon alloy particles are dispersed
KR101772113B1 (en) * 2011-11-08 2017-08-29 삼성에스디아이 주식회사 anode electrode material, preparation method thereof, electrode comprising the material, and lithium battery comprising the electrode
KR101733736B1 (en) 2012-01-06 2017-05-10 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method prepareing the same and rechargeable lithium battery including the same
JP2013171793A (en) * 2012-02-22 2013-09-02 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, method for producing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101660001B1 (en) * 2012-03-22 2016-09-26 신닛테츠스미킨 카부시키카이샤 Silicon-graphite composite particles and method for manufacturing same
JP5761761B2 (en) 2012-04-19 2015-08-12 エルジー・ケム・リミテッド Porous electrode active material, method for producing the same, and secondary battery
KR101514501B1 (en) 2012-04-19 2015-04-23 주식회사 엘지화학 Electrode active material having pores and secondary battery comprising the same
JP5686441B2 (en) 2012-04-19 2015-03-18 エルジー・ケム・リミテッド Silicon-based positive electrode active material and secondary battery including the same
JP5513689B1 (en) * 2012-05-15 2014-06-04 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
EP2797143B1 (en) * 2012-07-06 2016-11-30 Toray Industries, Inc. Negative electrode material for lithium ion secondary batteries, composite negative electrode material for lithium ion secondary batteries, resin composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
GB2520193B (en) * 2012-07-06 2015-11-04 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary batteries
KR101578262B1 (en) 2012-07-24 2015-12-28 주식회사 엘지화학 Porous silicon based electrode active material and secondary battery comprising the same
KR101634843B1 (en) 2012-07-26 2016-06-29 주식회사 엘지화학 Electrode active material for secondary battery
JP6048726B2 (en) * 2012-08-16 2016-12-21 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
KR101591571B1 (en) * 2012-10-31 2016-02-03 주식회사 엘지화학 Porous composite and manufacturing method thereof
KR102370791B1 (en) * 2012-12-19 2022-03-04 디아이씨 가부시끼가이샤 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
DE102013200750A1 (en) * 2013-01-18 2014-07-24 Wacker Chemie Ag Electrode for a Li-ion battery with polyether / siloxane copolymer as binder
JP6274032B2 (en) 2013-08-19 2018-02-07 Jsr株式会社 Method for manufacturing electrode material, electrode and power storage device
WO2015175509A1 (en) 2014-05-12 2015-11-19 Amprius, Inc. Structurally controlled deposition of silicon onto nanowires
KR20160037742A (en) 2014-09-29 2016-04-06 주식회사 엘지화학 Flame Retarding Electrolyte and Secondary Battery Comprising the Same
CN104261409B (en) * 2014-09-29 2016-08-24 平顶山易成新材料有限公司 A kind of preparation method of the silicon carbide powder as organic composite material reinforcement
WO2017149731A1 (en) * 2016-03-03 2017-09-08 株式会社日立製作所 Negative-electrode material for lithium-ion battery, lithium-ion battery, and method for manufacturing negative-electrode material for lithium-ion battery
JP6567448B2 (en) 2016-03-16 2019-08-28 株式会社東芝 Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery and battery pack including the same, vehicle
JP6632957B2 (en) * 2016-11-01 2020-01-22 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
KR102256534B1 (en) * 2017-11-08 2021-05-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
WO2019107336A1 (en) 2017-12-01 2019-06-06 Dic株式会社 Negative electrode active substance and production method therefor
JP7159665B2 (en) * 2018-07-18 2022-10-25 トヨタ自動車株式会社 All-solid battery
WO2020129467A1 (en) 2018-12-19 2020-06-25 Dic株式会社 Silicon nanoparticles, non-aqueous secondary battery negative electrode active material using said silicon nanoparticles, and secondary battery
JP7391401B2 (en) * 2019-02-22 2023-12-05 浙江三時紀新材科技有限公司 Method for preparing polysiloxane powder filler, polysiloxane powder filler obtained thereby and its application
JP2020138895A (en) * 2019-03-01 2020-09-03 Jnc株式会社 SILICON-BASED FINE PARTICLE/SILICON-CONTAINING POLYMER COMPOSITE, SiOC STRUCTURE, AND COMPOSITION USING SiOC STRUCTURE FOR ANODE, ANODE AND SECONDARY BATTERY
JPWO2021157460A1 (en) 2020-02-07 2021-08-12
JPWO2021157459A1 (en) 2020-02-07 2021-08-12
CN113363458B (en) * 2021-06-03 2022-11-15 开封平煤新型炭材料科技有限公司 Preparation method of silicon-carbon negative electrode material
CN113461016B (en) * 2021-06-30 2023-05-23 松山湖材料实验室 Silicon-carbon negative electrode material and preparation method and application thereof
JPWO2023157643A1 (en) * 2022-02-21 2023-08-24
JPWO2023157642A1 (en) * 2022-02-21 2023-08-24

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335335A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
JP2004335334A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335335A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
JP2004335334A (en) * 2003-05-09 2004-11-25 Mitsubishi Materials Corp Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097990A1 (en) 2013-12-25 2015-07-02 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
KR20160101932A (en) 2013-12-25 2016-08-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
EP3089245A4 (en) * 2013-12-25 2017-09-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
US10050272B2 (en) 2013-12-25 2018-08-14 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electolyte secondary battery and method of producing the same
EP3480875A1 (en) 2013-12-25 2019-05-08 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
WO2021101188A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지에너지솔루션 Anode and secondary battery comprising same

Also Published As

Publication number Publication date
JP2005310759A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4623283B2 (en) Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
JP4998662B2 (en) Si-C-O-based composite, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
US7790316B2 (en) Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
KR101139205B1 (en) Si-C-O-Based Composite and Method for Preparing the Same, and Negative Electrode Material for Non-aqueous Electrolyte Secondary Battery
KR101310531B1 (en) SiCO-Li COMPOSIT, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL
JP5003877B2 (en) Method for producing SiCO-Li composite
KR101296447B1 (en) Metal silicon powder for negative electrode material for non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery
JP4025995B2 (en) Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
KR102102099B1 (en) Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP4171897B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP2006100255A (en) Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
EP3089245B1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
EP3597597A1 (en) Spherical sioc particulate electrode material
KR102179257B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
JPWO2011013855A1 (en) Electrode active material, electrode, and electricity storage device
JP6726394B2 (en) Silicon nanoparticle-containing hydrogen polysilsesquioxane calcined product-metal oxide composite, method for producing the same, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP6955696B2 (en) Composition for secondary battery negative electrode and negative electrode and secondary battery for secondary battery using the same
JP6645514B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
JP2015125815A (en) Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2006059558A (en) Electrochemical electric energy storage device and its manufacturing method
KR20180134939A (en) Method for manufacturing anode active material for lithium ion secondary battery
WO2013002157A1 (en) Silicon-containing carbon-based composite material in which fine lithium-coated silicon metal or silicon alloy particles are dispersed
JPH1097853A (en) Lithium ion battery electrode using polysylane
JP6986201B2 (en) Hydrogen polysilsesquioxane containing silicon nanoparticles, silicon oxide structure and method for producing them
KR20210031563A (en) Silicon-containing anode material for lithium-ion secondary battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4623283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3