JP4621887B2 - Carbon dioxide absorbing material - Google Patents

Carbon dioxide absorbing material Download PDF

Info

Publication number
JP4621887B2
JP4621887B2 JP2005014357A JP2005014357A JP4621887B2 JP 4621887 B2 JP4621887 B2 JP 4621887B2 JP 2005014357 A JP2005014357 A JP 2005014357A JP 2005014357 A JP2005014357 A JP 2005014357A JP 4621887 B2 JP4621887 B2 JP 4621887B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium
lithium ferrite
ferrite
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005014357A
Other languages
Japanese (ja)
Other versions
JP2006198550A (en
Inventor
宏美 江場
健次 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005014357A priority Critical patent/JP4621887B2/en
Publication of JP2006198550A publication Critical patent/JP2006198550A/en
Application granted granted Critical
Publication of JP4621887B2 publication Critical patent/JP4621887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本願発明は、二酸化炭素吸収材料に関する。   The present invention relates to a carbon dioxide absorbing material.

近年、地球の温暖化問題が懸念されるようになり、温室効果ガスとしての二酸化炭素の排出量削減が求められる中、二酸化炭素を吸収する材料が注目を集めている。たとえば、リチウムの複酸化物から形成される二酸化炭素吸収材料が提案されている(たとえば、特許文献1、2参照)。   In recent years, the global warming problem has become a concern, and as carbon dioxide emission as a greenhouse gas is required to be reduced, materials that absorb carbon dioxide have attracted attention. For example, carbon dioxide absorbing materials formed from lithium double oxides have been proposed (see, for example, Patent Documents 1 and 2).

特許文献1には、複酸化物として、アルミニウム、チタン、鉄およびニッケルから選ばれる少なくとも1種を含むことが記載されている。特許文献2には、鉄、ニッケル、ジルコニウム、珪素等を含むことが記載されている。   Patent Document 1 describes that the double oxide contains at least one selected from aluminum, titanium, iron and nickel. Patent Document 2 describes that iron, nickel, zirconium, silicon and the like are included.

また、特許文献1には、平均粒径0.1〜5.0μmの粒子からなる多孔質体が例示され、特許文献2には、リチウム含有複酸化物としてリチウムシリケートに限定した上で、平均粒径が0.1〜2.0μmの範囲内であることが記載され、粒径を小さくすることで吸収速度を速める効果があると記載されている。
特開平11−90219号公報 特開2001−232184号公報
Patent Document 1 exemplifies a porous body composed of particles having an average particle diameter of 0.1 to 5.0 μm, and Patent Document 2 includes an average after limiting lithium silicate as a lithium-containing double oxide. It is described that the particle size is in the range of 0.1 to 2.0 μm, and it is described that there is an effect of increasing the absorption rate by reducing the particle size.
Japanese Patent Application Laid-Open No. 11-90219 JP 2001-232184 A

一方、本願の発明者らは、低コストで入手しやすい鉄を含むリチウム複酸化物、すなわち、リチウムフェライトに着目し、性能を調べてきた。   On the other hand, the inventors of the present application have examined the performance by paying attention to a lithium complex oxide containing iron that is easily available at low cost, that is, lithium ferrite.

しかしながら、特許文献1、2に記載されているような粒径0.1μmまで粉砕した粉末試料を用いても、二酸化炭素の吸収量は理論値よりはるかに低い値しか示さないという問題に行き当たった。二酸化炭素と完全に反応してすべて炭酸リチウムと酸化鉄に変化した場合の二酸化炭素吸収量を100%としたとき、実際の吸収量は数%にしか到達しないのであった。   However, even when using a powder sample pulverized to a particle size of 0.1 μm as described in Patent Documents 1 and 2, the amount of carbon dioxide absorbed is much lower than the theoretical value. It was. When the amount of carbon dioxide absorption when completely changing to carbon dioxide and changing to lithium carbonate and iron oxide was 100%, the actual amount of absorption reached only a few percent.

本願発明は、このような事情に鑑みてなされたものであり、吸収速度、吸収量ともに優れた二酸化炭素吸収材料を提供することを課題としている。   This invention is made | formed in view of such a situation, and makes it the subject to provide the carbon dioxide absorption material excellent in both the absorption rate and the absorption amount.

本願発明は、上記の課題を解決するものとして、第1には、リチウムと鉄を含む酸化物であるリチウムフェライトからなる二酸化炭素吸収材料であって、前記リチウムフェライトが、室温〜400℃の温度で合成することによって得られるα−LiFeO の結晶構造をとるリチウムフェライトもしくはスピネル型の結晶構造をとるリチウムフェライト、110℃の温度で合成することによって得られるホランダイト型の結晶構造をとるリチウムフェライト、又は、270℃の温度で合成することによって得られるα−NaFeO 型の結晶構造をとるリチウムフェライトのいずれかであることを特徴としている。
In order to solve the above-mentioned problems, the present invention is, firstly , a carbon dioxide-absorbing material composed of lithium ferrite which is an oxide containing lithium and iron, and the lithium ferrite has a temperature of room temperature to 400 ° C. Lithium ferrite having a crystal structure of α-LiFeO 2 obtained by synthesizing with lithium ferrite or lithium ferrite having a spinel type crystal structure, lithium ferrite having a hollandite type crystal structure obtained by synthesizing at a temperature of 110 ° C., Alternatively, it is any one of lithium ferrites having an α-NaFeO 2 type crystal structure obtained by synthesis at a temperature of 270 ° C.

本願発明は、第2には、上記第1の二酸化炭素吸収材料において、前記α−LiFeO の結晶構造をとるリチウムフェライト、前記スピネル型の結晶構造をとるリチウムフェライト又は前記ホランダイト型の結晶構造をとるリチウムフェライトが、水酸化リチウムとオキシ水酸化鉄とを反応させて得られることを特徴としている。
The second aspect of the present invention is that, in the first carbon dioxide-absorbing material, the lithium ferrite having the α-LiFeO 2 crystal structure, the lithium ferrite having the spinel crystal structure, or the hollandite crystal structure. lithium ferrite take is, is characterized in that it is obtained a lithium hydroxide and iron oxyhydroxide by reaction.

本願発明の第1〜第5の二酸化炭素吸収材料によれば、高温で合成した酸化物と比較して、二酸化炭素の吸収速度、吸収量がともに格段に優れる。   According to the first to fifth carbon dioxide absorbing materials of the present invention, both the absorption rate and the absorption amount of carbon dioxide are remarkably excellent as compared with the oxide synthesized at high temperature.

本願の発明者らは、リチウムフェライトを低温で合成することができれば、生成物の結晶粒が小さくなり、反応表面積が増えて二酸化炭素吸収速度が速くなるのではないかと考えた。そして、低温での合成に成功し、二酸化炭素曝露試験を行った結果、吸収速度に優れることを確認し、さらに総吸収量にも優れることを見出した。   The inventors of the present application thought that if lithium ferrite could be synthesized at a low temperature, the crystal grains of the product would become smaller, the reaction surface area would increase, and the carbon dioxide absorption rate would increase. As a result of successful synthesis at low temperature and a carbon dioxide exposure test, it was confirmed that the absorption rate was excellent, and the total absorption amount was also excellent.

リチウムフェライトは、室温〜400℃の比較的低温で合成することができる。   Lithium ferrite can be synthesized at a relatively low temperature of room temperature to 400 ° C.

たとえば、水酸化リチウムとオキシ水酸化鉄(α−FeO(OH)またはスピネル型FeO(OH)のどちらでもよい)との混合物を固相反応させたり、アルコール中で反応させたりすると、イオン交換・脱水の後に、リチウムフェライトが形成される。X線回折パターンを調べると、生成物にはα型のLiFeO2相(α−LiFeO2)が確認され、X線回折ラインの幅はブロードであり、結晶粒の小さな生成物となっている。ラインの幅から見積もられる結晶粒径(結晶子サイズ)は、数nm〜数十nmの範囲である。 For example, when a mixture of lithium hydroxide and iron oxyhydroxide (which can be either α-FeO (OH) or spinel type FeO (OH)) is reacted in a solid phase or in alcohol, ion exchange / After dehydration, lithium ferrite is formed. When the X-ray diffraction pattern is examined, an α-type LiFeO 2 phase (α-LiFeO 2 ) is confirmed in the product, the width of the X-ray diffraction line is broad, and the product has small crystal grains. The crystal grain size (crystallite size) estimated from the line width is in the range of several nanometers to several tens of nanometers.

また、固相反応による合成をスピネル型FeO(OH)を原料とし、400℃において行ったり、2−フェノキシエタノールのようなアルコール中で200℃において合成したりして、α−LiFeO2がほぼ単相として得られる。 In addition, synthesis by solid phase reaction is performed using spinel-type FeO (OH) as a raw material at 400 ° C., or synthesized at 200 ° C. in an alcohol such as 2-phenoxyethanol, so that α-LiFeO 2 is almost a single phase. As obtained.

室温〜400℃で合成される生成物を二酸化炭素に曝露すると、高温で処理し粉砕して粒径0.1μmオーダー以下の粉末状にしたものに比べて短時間で多くの二酸化炭素を吸収することができる。低温で合成したものは、高温を経たもののような結晶粒の粗大化が起こらないため、合成された時点で結晶粒はサイズの小さいものであり、二酸化炭素は結晶粒の表面より反応・吸収されると考えられるので、表面積の増加により反応面積が増え、反応速度(吸収速度)が増加すると考えられる。   When a product synthesized at room temperature to 400 ° C. is exposed to carbon dioxide, it absorbs more carbon dioxide in a shorter time than a product processed at high temperature and pulverized into a powder having a particle size of 0.1 μm or less. be able to. When synthesized at a low temperature, the crystal grains are not as coarse as those obtained at a high temperature, so when synthesized, the grains are small in size, and carbon dioxide is reacted and absorbed from the surface of the grains. Therefore, it is considered that the reaction area increases and the reaction rate (absorption rate) increases by increasing the surface area.

また、吸収速度が速いだけでなく、一定時間経過後の総吸収量を比較しても室温〜400℃で合成されたものは高温で処理したものより優れる。この理由としては、低温で合成したものは、結晶粒が小さいことにより内部まで完全に反応しやすく、一方、高温で処理したものは結晶粒が大きく、そのため、表面から進む反応は結晶粒の内部まで進行しにくく、表面付近で反応が完了してしまうためと考えられる。   Moreover, not only is the absorption rate fast, but even if the total absorption after a certain period of time is compared, those synthesized at room temperature to 400 ° C. are superior to those treated at high temperature. The reason for this is that those synthesized at low temperature are easy to react completely to the inside due to the small crystal grains, while those processed at high temperature are large in crystal grains, so the reaction proceeding from the surface is the inside of the crystal grains. This is probably because the reaction is completed near the surface.

低温で合成することにより性能の向上するその他の理由は、微粒子・ナノ粒子であるためのバルク状態とは異なる性質の現れ、すなわち、体積当たりの表面積が非常に大きくなり表面の効果が顕著に現れること等が考えられる。   The other reason for improving the performance by synthesizing at low temperature is the appearance of properties different from the bulk state due to the fine particles / nanoparticles, that is, the surface area per volume becomes very large and the surface effect becomes remarkable. It is conceivable.

さらに、水酸化リチウムとオキシ水酸化鉄との混合物を室温〜400℃において固相反応させると、α−LiFeO2の他にスピネル型構造のリチウムフェライト(LiFe58、Li1-xFe5+x8などと表される)も得られる。 Further, when a mixture of lithium hydroxide and iron oxyhydroxide is subjected to a solid phase reaction at room temperature to 400 ° C., spinel type lithium ferrite (LiFe 5 O 8 , Li 1-x Fe 5) in addition to α-LiFeO 2. + x O 8 etc.).

また、オキシ水酸化鉄としてβ型結晶構造のもの(β−FeO(OH))を用い、アルコール中において110℃前後の低温でイオン交換によりリチウムを導入すると、ホランダイト型構造のリチウムフェライト(LiFeO2またはLi1-yFe1+y2などと表され
る)が得られる。
Further, when iron having a β-type crystal structure (β-FeO (OH)) is used as iron oxyhydroxide and lithium is introduced by ion exchange at a low temperature around 110 ° C. in alcohol, lithium ferrite having a hollandite structure (LiFeO 2). Or Li 1-y Fe 1 + y O 2 or the like).

また、α型ナトリウムフェライト(α−NaFeO2)を原料とし、270℃前後の低
温でイオン交換することによって、α−NaFeO2型構造のリチウムフェライト(Li
FeO2)が得られる。
Also, α-NaFeO 2 type structure lithium ferrite (Li) is obtained by ion exchange at a low temperature of around 270 ° C. using α-type sodium ferrite (α-NaFeO 2 ) as a raw material.
FeO 2 ) is obtained.

これらの生成物を二酸化炭素に曝露すると、いずれも、高温で処理したα−LiFeO2相の生成物と比べて短時間で多くの二酸化炭素を吸収することができる。通常リチウム
フェライトと呼ばれるのは最安定相であるα−LiFeO2相であるが、上記構造型のも
のは準安定相として利用可能であることが明らかにされる。
When these products are exposed to carbon dioxide, any of them can absorb a large amount of carbon dioxide in a short time as compared with the product of α-LiFeO 2 phase treated at high temperature. Usually, the lithium ferrite is called α-LiFeO 2 phase which is the most stable phase, but it is clarified that the structure type can be used as a metastable phase.

本願発明の二酸化炭素吸収材料は、典型的には数nm〜数十nmの範囲のサイズであり、合成温度は室温〜400℃と低温である。したがって、高温合成を行う必要がなく、高温に加熱するための装置が不要であり、結晶粒を微細化する手間はなく、低温で取り扱えるという利点を有する。   The carbon dioxide absorbing material of the present invention typically has a size in the range of several nm to several tens of nm, and the synthesis temperature is as low as room temperature to 400 ° C. Therefore, there is no need to perform high-temperature synthesis, an apparatus for heating to a high temperature is unnecessary, and there is an advantage that it can be handled at a low temperature without the trouble of refining crystal grains.

LiOH・H2Oとスピネル型FeO(OH)粉末をLi:Fe=1:1のモル比で混
合し、100℃において2時間乾燥させた後、再度混合し、錠剤型にプレス成型し、次いで窒素雰囲気内で400℃において10時間加熱した。この試料とは別に、通常のセラミック法によっても試料を作製した。α−FeO(OH)と炭酸リチウムLi2CO3の混合粉末を錠剤型にプレス成型した後、電気炉を用いて800℃において5時間加熱した。いずれの試料も、合成後、直ちに真空デシケータに移すなど、空気中の二酸化炭素と反応しないように注意を払った。
LiOH.H 2 O and spinel-type FeO (OH) powder were mixed at a molar ratio of Li: Fe = 1: 1, dried at 100 ° C. for 2 hours, mixed again, pressed into a tablet mold, Heated at 400 ° C. for 10 hours in a nitrogen atmosphere. Separately from this sample, a sample was also produced by a normal ceramic method. A mixed powder of α-FeO (OH) and lithium carbonate Li 2 CO 3 was pressed into a tablet shape, and then heated at 800 ° C. for 5 hours using an electric furnace. Care was taken not to react any carbon dioxide in the air with any sample, for example, immediately after synthesis, transfer to a vacuum desiccator.

粉末X線回折パターンを調べると、いずれの試料も、ほぼα−LiFeO2からのみ構
成される単相であり、800℃において合成した試料の回折ラインは、幅の狭いシャープなものであった。これに対し、400℃において合成した試料では、幅の広いブロードなラインが観察され、ライン幅より結晶粒径を見積もると、数nm〜数十nmの範囲であった。
When the powder X-ray diffraction pattern was examined, all the samples were single-phase composed almost only of α-LiFeO 2 , and the diffraction lines of the samples synthesized at 800 ° C. were narrow and sharp. On the other hand, in the sample synthesized at 400 ° C., a broad broad line was observed, and the crystal grain size was estimated from the line width, which was in the range of several nm to several tens of nm.

二酸化炭素の吸収性能を調べるために、それぞれの錠剤型試料を粉砕して0.1μmオーダー以下の粉末状にし、二酸化炭素フロー下において熱重量分析を行った。表1に、400℃に試料を温め、二酸化炭素フローを開始してから10分後までと、150分後までにおける重量の増加量を初期重量に対する百分率で示した。   In order to examine the carbon dioxide absorption performance, each tablet-type sample was pulverized into a powder of the order of 0.1 μm or less, and thermogravimetric analysis was performed under a carbon dioxide flow. Table 1 shows the amount of increase in weight as a percentage of the initial weight until 10 minutes after the sample was warmed to 400 ° C. and carbon dioxide flow was started and after 150 minutes.

なお、二酸化炭素曝露後の試料においては、炭酸リチウムと酸化鉄の生成が確認されており、重量増加は二酸化炭素の吸収によるものであることが確かめられている。   In the sample after carbon dioxide exposure, generation of lithium carbonate and iron oxide was confirmed, and it was confirmed that the increase in weight was due to absorption of carbon dioxide.

Figure 0004621887
Figure 0004621887

10分後の重量増加をみると、400℃で合成した試料の方が、短時間で急速に二酸化炭素を吸収していることが分かる。また、十分に長時間経過した150分後における重量増加をみても、400℃で合成した試料の方が格段に吸収量が多いことが分かる。400℃において合成した試料は、吸収速度、総吸収量のいずれにおいても優れていることが明
らかとなった。
Looking at the increase in weight after 10 minutes, it can be seen that the sample synthesized at 400 ° C. absorbs carbon dioxide more rapidly in a shorter time. Moreover, even if it sees the weight increase in 150 minutes after a sufficiently long time, it can be seen that the sample synthesized at 400 ° C. has much higher absorption. The sample synthesized at 400 ° C. was found to be excellent in both absorption rate and total absorption.

LiOH・H2Oとスピネル型FeO(OH)粉末を混合し、100℃において2時間
乾燥させた後、再度混合し、錠剤型にプレス成型し、次いで窒素雰囲気内で200℃において10時間加熱した。粉末X線回折パターンを調べると、スピネル型リチウムフェライト相の存在が確認された(試料a)。
LiOH.H 2 O and spinel-type FeO (OH) powder were mixed, dried at 100 ° C. for 2 hours, mixed again, pressed into a tablet mold, and then heated at 200 ° C. for 10 hours in a nitrogen atmosphere. . Examination of the powder X-ray diffraction pattern confirmed the presence of a spinel type lithium ferrite phase (sample a).

LiOH・H2Oとβ−FeO(OH)粉末とをエトキシエタノール中で110℃にお
いて12時間加熱し反応させた。粉末X線回折パターンより、イオン交換してホランダイト型リチウムフェライト相が形成されていることが確認された(試料b)。
LiOH.H 2 O and β-FeO (OH) powder were reacted in ethoxyethanol by heating at 110 ° C. for 12 hours. From the powder X-ray diffraction pattern, it was confirmed that a hollandite-type lithium ferrite phase was formed by ion exchange (sample b).

α−NaFeO2をLiCl:LiNO3=3:22の溶融塩中で270℃において15時間加熱し、イオン交換した。X線回折パターンにより、α−NaFeO2型リチウムフ
ェライト相の形成が確認された(試料c)。
α-NaFeO 2 was heated in a molten salt of LiCl: LiNO 3 = 3: 22 at 270 ° C. for 15 hours for ion exchange. The formation of α-NaFeO 2 type lithium ferrite phase was confirmed by the X-ray diffraction pattern (sample c).

それぞれの試料中に残存するリチウム塩を洗浄除去し、二酸化炭素フロー下で熱重量分析を行った。10℃/minの昇温速度で室温から加熱し、500℃まで到達した時点での重量増を初期重量に対する百分率で表2に示した。比較として、実施例1において800℃で合成した試料について同様の分析を行った。その結果も表2に示した。   The lithium salt remaining in each sample was washed and removed, and thermogravimetric analysis was performed under a carbon dioxide flow. Table 2 shows the increase in weight when heated from room temperature at a heating rate of 10 ° C./min and reaching 500 ° C. as a percentage of the initial weight. As a comparison, the same analysis was performed on the sample synthesized at 800 ° C. in Example 1. The results are also shown in Table 2.

Figure 0004621887
Figure 0004621887

高温で合成したα−LiFeO2試料よりも、低温で合成した他の結晶構造をとるリチ
ウムフェライトの方が吸収性能が優れていることが分かる。
It can be seen that lithium ferrite having another crystal structure synthesized at a low temperature has better absorption performance than an α-LiFeO 2 sample synthesized at a high temperature.

以上詳しく説明したとおり、本願発明によって、吸収速度、吸収量ともに優れた二酸化炭素吸収材料が提供される。

As explained in detail above, the present invention provides a carbon dioxide-absorbing material excellent in both absorption speed and absorption amount.

Claims (2)

リチウムと鉄を含む酸化物であるリチウムフェライトからなる二酸化炭素吸収材料であって、前記リチウムフェライトが、室温〜400℃の温度で合成することによって得られるα−LiFeO の結晶構造をとるリチウムフェライトもしくはスピネル型の結晶構造をとるリチウムフェライト、110℃の温度で合成することによって得られるホランダイト型の結晶構造をとるリチウムフェライト、又は、270℃の温度で合成することによって得られるα−NaFeO 型の結晶構造をとるリチウムフェライトのいずれかであることを特徴とする二酸化炭素吸収材料。 A carbon dioxide-absorbing material comprising lithium ferrite, which is an oxide containing lithium and iron , wherein the lithium ferrite has a crystal structure of α-LiFeO 2 obtained by synthesis at a temperature of room temperature to 400 ° C. Alternatively, lithium ferrite having a spinel type crystal structure, lithium ferrite having a hollandite type crystal structure obtained by synthesis at a temperature of 110 ° C., or α-NaFeO 2 type obtained by synthesis at a temperature of 270 ° C. A carbon dioxide-absorbing material, which is any one of lithium ferrites having a crystal structure of 前記α−LiFeO の結晶構造をとるリチウムフェライト、前記スピネル型の結晶構造をとるリチウムフェライト又は前記ホランダイト型の結晶構造をとるリチウムフェライトが、水酸化リチウムとオキシ水酸化鉄とを反応させて得られる請求項1記載の二酸化炭素吸収材料。
Lithium ferrite has a crystalline structure of the alpha-LiFeO 2, lithium ferrite taking lithium ferrite or the hollandite-type crystal structure has a crystalline structure of the spinel type, a lithium hydroxide and iron oxyhydroxide by reaction The carbon dioxide absorbing material according to claim 1 obtained.
JP2005014357A 2005-01-21 2005-01-21 Carbon dioxide absorbing material Expired - Fee Related JP4621887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014357A JP4621887B2 (en) 2005-01-21 2005-01-21 Carbon dioxide absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014357A JP4621887B2 (en) 2005-01-21 2005-01-21 Carbon dioxide absorbing material

Publications (2)

Publication Number Publication Date
JP2006198550A JP2006198550A (en) 2006-08-03
JP4621887B2 true JP4621887B2 (en) 2011-01-26

Family

ID=36957003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014357A Expired - Fee Related JP4621887B2 (en) 2005-01-21 2005-01-21 Carbon dioxide absorbing material

Country Status (1)

Country Link
JP (1) JP4621887B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383188B2 (en) * 2014-06-16 2018-08-29 国立大学法人埼玉大学 Method for producing α-sodium ferrites
KR20220112802A (en) * 2019-12-10 2022-08-11 도다 고교 가부시끼가이샤 Sodium ferrite particle powder and its manufacturing method
EP4353353A1 (en) * 2021-06-07 2024-04-17 Toda Kogyo Corp. Solid material for recovering carbon dioxide, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255315A (en) * 2003-02-26 2004-09-16 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2004313916A (en) * 2003-04-15 2004-11-11 Bridgestone Corp Material and apparatus for absorbing/desorbing carbon dioxide
JP2005021781A (en) * 2003-07-01 2005-01-27 Toshiba Corp Carbon dioxide absorption material, production method for carbon dioxide absorption material, absorption method for carbon dioxide, carbon dioxide separation method, and carbon dioxide separation apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723176B2 (en) * 1995-02-17 1998-03-09 工業技術院長 Method for producing LiFeO2 powder and heat-resistant yellow pigment comprising the powder
JP3420036B2 (en) * 1997-09-16 2003-06-23 株式会社東芝 Carbon dioxide absorbing material and carbon dioxide absorbing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255315A (en) * 2003-02-26 2004-09-16 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2004313916A (en) * 2003-04-15 2004-11-11 Bridgestone Corp Material and apparatus for absorbing/desorbing carbon dioxide
JP2005021781A (en) * 2003-07-01 2005-01-27 Toshiba Corp Carbon dioxide absorption material, production method for carbon dioxide absorption material, absorption method for carbon dioxide, carbon dioxide separation method, and carbon dioxide separation apparatus

Also Published As

Publication number Publication date
JP2006198550A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
KR102105601B1 (en) Garnet-type ion-conducting oxide and method for producing oxide electrolyte sintered body
US9931614B2 (en) Ceria-zirconia-based composite oxide and method for producing same, and catalyst for exhaust gas purification including ceria-zirconia-based composite oxide
JP2008081392A (en) Porous zirconia-based powder and its manufacture method
JP2019023148A (en) Method for producing transition metal hydroxide particles, method for producing lithium transition metal composite oxide, method for producing positive electrode for lithium secondary battery, method for producing lithium secondary battery, and transition metal hydroxide particles
Wangle et al. The effect of precipitation and calcination parameters on oxalate derived ThO2 pellets
JP2008289985A (en) Method for manufacturing catalytic carrier for cleaning exhaust gas
US7744845B2 (en) Synthesis of lithium zirconate
JP5634828B2 (en) Manufacturing method and use of spinel type lithium manganese composite oxide particles
Tao et al. Morphology control of Ce0. 9Gd0. 1O1. 95 nanopowder synthesized by sol–gel method using PVP as a surfactant
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JP5007667B2 (en) Nickel oxide powder and method for producing the same
JP4621887B2 (en) Carbon dioxide absorbing material
JP7093431B2 (en) Perovskite type composite oxide powder and its manufacturing method
JP4210533B2 (en) Sinterable tetragonal zirconia powder and method for producing the same
JP5116276B2 (en) Powder comprising oxide microcrystal particles, catalyst using the same, and method for producing the same
CN113784923A (en) Spinel powder
JP2020083741A (en) Shell burned product
JP6322218B2 (en) Oxygen storage material and method for producing the same
JP6685774B2 (en) Desulfurizing agent, desulfurizing agent precursor, method for producing the desulfurizing agent, and method for producing the desulfurizing agent precursor
JP6913490B2 (en) Perovskite type composite oxide powder and its manufacturing method
CN114929627A (en) Precursor materials for lithium ion battery cathode synthesis
Sen et al. Preparation of nano-sized calcium, magnesium, and zinc chromite powder through metalo-organic precursor solutions
JP7473713B2 (en) Lithium-cobalt composite oxide particles and their manufacturing method, lithium-cobalt composite oxide particle composition and their manufacturing method
JP3786457B2 (en) Method for producing porous lithium aluminate
Paladiya et al. Physical property of magnesium doped barium hexaferrite particles by citrate precursor route in presence of surfactants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees