JP2001104789A - Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst - Google Patents

Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst

Info

Publication number
JP2001104789A
JP2001104789A JP28230299A JP28230299A JP2001104789A JP 2001104789 A JP2001104789 A JP 2001104789A JP 28230299 A JP28230299 A JP 28230299A JP 28230299 A JP28230299 A JP 28230299A JP 2001104789 A JP2001104789 A JP 2001104789A
Authority
JP
Japan
Prior art keywords
catalyst
periodic table
group
heavy hydrocarbon
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28230299A
Other languages
Japanese (ja)
Inventor
Shigeari Kagami
成存 各務
Tsunehiro Fujikata
恒博 藤方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Idemitsu Kosan Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP28230299A priority Critical patent/JP2001104789A/en
Publication of JP2001104789A publication Critical patent/JP2001104789A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a heavy hydrocarbon oil which can improve treating capacity and decrease frequency of exchange of a catalyst by providing a demetallization catalyst with a higher metal accumulating capacity on the upstream side and suppressing deterioration of a desulfurization catalyst on the downstream side and extending remarkably desufurization life of the catalyst system in a hydrogenation treatment catalytic system for the heavy hydrocarbon oil wherein the demetallization catalyst and desulfurization catalyst are respectively provided on the upstream side and on the downstream side. SOLUTION: A demetalization catalyst prepared by mixing a catalyst molded body (a) carrying at least one kind of metals of the 6th group in the periodic table and/or at least one kind selected from metals of the 8-10th group in the periodic table on a refractory inorg. oxide carrier and a refractory inorganic oxide molded body (b) and a method for hydrogenation treatment of a heavy hydrocarbon oil using the demetallization catalyst are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は脱金属触媒及びこれ
を用いた重質炭化水素油(以下、重質油という場合があ
る。)の水素化処理方法に関し、より詳しくは金属の蓄
積能力の優れた脱金属触媒、及びこれを用いた重質炭化
水素油の水素化処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demetalization catalyst and a method for hydrotreating heavy hydrocarbon oil (hereinafter sometimes referred to as "heavy oil") using the same. The present invention relates to an excellent demetalization catalyst and a method for hydrotreating heavy hydrocarbon oil using the same.

【0002】[0002]

【従来の技術】現在、酸性雨等からの環境保護のため、
燃料油中の硫黄分は水素化精製処理により低減されてお
り、そこで脱硫触媒が一般に使用されている。しかし、
特に常圧残油、減圧残油等の重質油を原料として低硫黄
重油を生産する場合においては、灯軽油の水素化処理に
比較して、硫黄分を低減するためには、運転初期から高
い温度を必要とする。また、触媒の脱硫活性は時間とと
もに劣化していくため、製品の硫黄分の量を一定に維持
するためには、運転温度を徐々に上げていく必要があ
る。特に、重質油にはバナジウム、ニッケルといった金
属分が含まれ、反応中に触媒に堆積して活性を被毒する
ため、触媒の劣化が著しい。このため、現在において
は、脱硫触媒の上流側に脱金属活性を有する触媒を充填
し、下流側の脱硫触媒へ流出するバナジウム,ニッケル
の濃度を低減して脱硫触媒を保護する触媒システムが用
いられている。しかし、脱金属触媒の金属除去活性も、
該触媒上への金属分の蓄積に伴い低下し、その寿命(金
属蓄積能力)が十分でないため、下流側の脱硫触媒への
金属流出濃度が運転とともに高くなり脱硫触媒の活性低
下抑制が十分ではなく、1年以内に装置の上限温度に達
し、触媒を交換することとなる。
2. Description of the Related Art At present, to protect the environment from acid rain, etc.,
The sulfur content in fuel oils has been reduced by hydrorefining processes, where desulfurization catalysts are commonly used. But,
In particular, when producing low-sulfur heavy oil from heavy oil such as atmospheric residual oil or vacuum residual oil as a raw material, in order to reduce the sulfur content as compared with kerosene-oil hydrotreatment, Requires high temperatures. In addition, since the desulfurization activity of the catalyst deteriorates with time, it is necessary to gradually increase the operating temperature in order to keep the sulfur content of the product constant. In particular, heavy oil contains metals such as vanadium and nickel, and accumulates on the catalyst during the reaction and poisons the activity. For this reason, at present, a catalyst system is used in which a catalyst having demetallizing activity is filled on the upstream side of the desulfurization catalyst and the concentration of vanadium and nickel flowing out to the downstream desulfurization catalyst is reduced to protect the desulfurization catalyst. ing. However, the metal removal activity of the demetalization catalyst also
The concentration decreases with the accumulation of metal on the catalyst, and its life (metal accumulation capacity) is not sufficient. Therefore, the concentration of metal effluent to the desulfurization catalyst on the downstream side increases with operation, and the reduction in the activity of the desulfurization catalyst is not sufficient. Instead, the temperature reaches the upper limit of the apparatus within one year, and the catalyst is replaced.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記観点か
らなされたもので、上流側に脱金属触媒、下流側に脱硫
触媒を設けた重質油の水素化処理触媒システムにおい
て、上流側により金属蓄積能力の高い脱金属触媒を提供
するとともに、下流側の脱硫触媒の劣化を抑え、触媒シ
ステムの脱硫寿命を著しく長くすることにより、処理能
力の向上及び触媒交換頻度の低減が可能な重質油の処理
方法を提供する。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above point of view. In a heavy oil hydrotreating catalyst system provided with a demetalization catalyst on the upstream side and a desulfurization catalyst on the downstream side, the present invention relates to A heavy metal that provides a demetalization catalyst with high metal accumulation capacity, suppresses the degradation of the desulfurization catalyst on the downstream side, and significantly prolongs the desulfurization life of the catalyst system, thereby improving the processing capacity and reducing the frequency of catalyst replacement. An oil treatment method is provided.

【0004】[0004]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、耐火性無機酸化物担体に、周期表第6族の金属の
少なくとも一種及び/又は周期表第8〜10族の金属か
ら選ばれる少なくとも一種を担持した触媒成型体(a)
と耐火性無機酸化物成型体(b)を混合してなる触媒を
脱金属触媒として用いることにより、上記本発明の目的
を効果的に達成しうることを見出し本発明を完成させた
ものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a refractory inorganic oxide carrier can contain at least one metal of Group 6 of the periodic table and / or a metal of Groups 8 to 10 of the periodic table. Catalyst molded body carrying at least one selected member (a)
It has been found out that the object of the present invention can be effectively achieved by using a catalyst obtained by mixing a refractory inorganic oxide molded article (b) with a refractory inorganic oxide molded body (b) as a metal removal catalyst, thereby completing the present invention. .

【0005】すなわち、本発明の要旨は下記のとおりで
ある。 1.耐火性無機酸化物担体に、周期表第6族の金属の少
なくとも一種及び/又は周期表第8〜10族の金属から
選ばれる少なくとも一種を担持した触媒成型体(a)と
耐火性無機酸化物成型体(b)を混合してなる脱金属触
媒。 2.周期表第6族金属がモリブデンであり、周期表第8
〜10族金属がニッケルである上記1記載の脱金属触
媒。 3.上記1又は2に記載の脱金属触媒を用いた重質炭化
水素油の水素化処理方法。 4.上流側に上記1又は2に記載の脱金属触媒、下流側
に脱硫触媒を用いた上記3記載の重質炭化水素油の水素
化処理方法。
That is, the gist of the present invention is as follows. 1. A catalyst molded body (a) in which at least one metal selected from Group 6 of the periodic table and / or at least one selected from metals belonging to Groups 8 to 10 of the periodic table are supported on a refractory inorganic oxide carrier; A demetalization catalyst obtained by mixing the molded body (b). 2. The group 6 metal of the periodic table is molybdenum,
2. The demetalization catalyst according to the above 1, wherein the Group 10 metal is nickel. 3. 3. A method for hydrotreating heavy hydrocarbon oils using the metal removal catalyst according to 1 or 2 above. 4. 4. The method for hydrotreating heavy hydrocarbon oil according to 3 above, wherein the demetallizing catalyst according to 1 or 2 above is used upstream and the desulfurizing catalyst is used downstream.

【0006】[0006]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明の脱金属触媒は、耐火性無機酸化物担体
に、周期表第6族の金属の少なくとも一種及び/又は周
期表第8〜10族の金属から選ばれる少なくとも一種を
担持した触媒成型体(a)と耐火性無機酸化物成型体
(b)を混合して得られたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The demetallizing catalyst of the present invention is a catalyst molded body in which a refractory inorganic oxide carrier carries at least one metal selected from Group 6 of the periodic table and / or at least one metal selected from Group 8 to 10 of the periodic table. This is obtained by mixing a) and the refractory inorganic oxide molded body (b).

【0007】(a)成分について まず、耐火性無機酸化物担体として、アルミナ,シリ
カ,シリカ・アルミナ,マグネシア,ジルコニア,チタ
ニア,酸化亜鉛,結晶性アルミノシリケート,粘土鉱物
又はそれらの混合物が使用される。中でも、アルミナが
好ましい。これらの(a)成分の製造法については特に
限定されないが、一般に採用されている方法であればよ
い。一例としてアルミナについて説明する。
(A) Component First, alumina, silica, silica-alumina, magnesia, zirconia, titania, zinc oxide, crystalline aluminosilicate, clay mineral or a mixture thereof is used as a refractory inorganic oxide carrier. . Among them, alumina is preferable. The method for producing the component (a) is not particularly limited, but may be any method generally employed. As an example, alumina will be described.

【0008】例えば、水溶性酸性アルミナ塩の水溶液に
塩基を添加するか、水溶性塩基性アルミナ塩の水溶液に
酸を添加するか、水溶性酸性アルミナ塩の水溶液と水溶
性塩基性アルミナ塩の水溶液を混合して生成するゲル
を、熟成、成型、乾燥、焼成することによって得られ
る。
For example, a base is added to an aqueous solution of a water-soluble acidic alumina salt, an acid is added to an aqueous solution of a water-soluble basic alumina salt, or an aqueous solution of a water-soluble acidic alumina salt and an aqueous solution of a water-soluble basic alumina salt are added. Is obtained by aging, molding, drying, and baking a gel formed by mixing.

【0009】熟成方法として特に限定されないが、例え
ば、pH3.3〜9.3の間で少なくとも10回以上
(好ましくは13回以上)変動させるpHスイング法、
pH10以上(好ましくは11以上)、温度70℃以上
(好ましくは80℃以上)で処理する水熱高温熟成法が
あるが、これらを適当に組み合わせてもよい。
The ripening method is not particularly limited. For example, a pH swing method in which pH is fluctuated at least 10 times (preferably 13 times) between pH 3.3 and 9.3,
There is a hydrothermal high-temperature aging method in which the treatment is performed at a pH of 10 or more (preferably 11 or more) and a temperature of 70 ° C. or more (preferably 80 ° C. or more), and these may be appropriately combined.

【0010】成型方法については、ゲルの水分を調整し
て、例えば、押出成型等により円柱,三つ葉,四つ葉型
などに成型される。大きさとしては、直径0.5〜5m
m(好ましくは1〜3mm)、長さは1〜7mm(好ま
しくは2〜4mm)とする。また、種々の方法により球
状に造粒されたものも用いることができる。その場合、
直径は1〜6mm(好ましくは2〜5mm)である。
[0010] As for the molding method, the gel is adjusted into water and molded into a column, a three-leaf or a four-leaf type by extrusion molding or the like. The size is 0.5-5m in diameter
m (preferably 1 to 3 mm) and a length of 1 to 7 mm (preferably 2 to 4 mm). Further, those granulated in a spherical shape by various methods can also be used. In that case,
The diameter is 1-6 mm (preferably 2-5 mm).

【0011】以上のように調製された耐火性無機酸化物
担体に、下記の方法で周期表第6族の金属の少なくとも
一種及び/又は周期表第8〜10族の金属から選ばれる
少なくとも一種を担持する。周期表第6族金属として、
モリブデン,タングステンが使用され、モリブデンが好
ましい。その担持量は酸化物基準で、触媒体基準で1〜
13重量%、好ましくは3〜11重量%である。周期表
第8〜10族の金属として、ニッケル,コバルトが使用
され、ニッケルが好ましい。その担持量は酸化物基準
で、触媒体基準で0.5〜4重量%、好ましくは1〜3
重量%である。
The refractory inorganic oxide carrier prepared as described above is coated with at least one metal of Group 6 and / or at least one metal of Groups 8 to 10 of the periodic table by the following method. Carry. As a Group 6 metal of the periodic table,
Molybdenum and tungsten are used, with molybdenum being preferred. The supported amount is 1 to 1 on an oxide basis and a catalyst body basis.
It is 13% by weight, preferably 3 to 11% by weight. Nickel and cobalt are used as metals of Groups 8 to 10 of the periodic table, and nickel is preferred. The supported amount is 0.5 to 4% by weight, preferably 1 to 3% by weight on an oxide basis and a catalyst body basis.
% By weight.

【0012】上記の金属の担持法は含浸法が好ましい。
周期表第6族のモリブデン化合物としては、三酸化モリ
ブデン,パラモリブデン酸アンモニウム等が使用され、
タングステン化合物としては、三酸化タングステン,タ
ングステン酸アンモニウム等が使用される。また、周期
表第8〜10族のニッケル化合物としては、硝酸ニッケ
ル,塩基性炭酸ニッケル等が使用され、コバルト化合物
としては、硝酸コバルト,塩基性炭酸コバルト等が使用
される。さらに、必要に応じて、リンが使用され、リン
化合物としては、五酸化リン,リン酸等が使用される。
上記の金属化合物を、周期表第6族金属は0.2〜2.
2モル/リットル、周期表第8〜10族の金属は0.1
〜1.0モル/リットル、リン化合物は0.3〜2.0
モル/リットルの割合で純水に溶解させ、担体に吸水率
と等量になるように調整後含浸させる。含浸時のpHは
含浸液の安定性を考慮して一般には1〜4、好ましくは
1.5〜3.5である。このpHの調整方法は特に限定
されないが、硝酸,塩酸,硫酸等の無機酸、りんご酸,
クエン酸,エチレンジアミン4酢酸等の有機酸、アンモ
ニアなどを使用して行うことができる。含浸後乾燥、焼
成するが、乾燥温度は80〜200℃(好ましくは10
0〜150℃)、焼成温度は300〜600℃(好まし
くは400〜550℃)である。焼成温度が低すぎる
と、担持成分と担体と十分な結合を持つことができない
場合があり、高すぎると、担持成分の凝集が起こり易く
なる。
The above-mentioned method of supporting a metal is preferably an impregnation method.
As the molybdenum compound of Group 6 of the periodic table, molybdenum trioxide, ammonium paramolybdate and the like are used.
As the tungsten compound, tungsten trioxide, ammonium tungstate or the like is used. Nickel nitrate, basic nickel carbonate or the like is used as a nickel compound belonging to Groups 8 to 10 of the periodic table, and cobalt nitrate, basic cobalt carbonate or the like is used as a cobalt compound. Further, if necessary, phosphorus is used, and phosphorus compounds such as phosphorus pentoxide and phosphoric acid are used.
The above-mentioned metal compounds are used, and Group 6 metals of the periodic table are 0.2 to 2.
2 mol / liter, 0.1 to 0.1
~ 1.0 mol / l, phosphorus compound is 0.3 ~ 2.0
It is dissolved in pure water at a ratio of mol / liter, and the carrier is impregnated after being adjusted to have an equivalent water absorption. The pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in consideration of the stability of the impregnating liquid. The method of adjusting the pH is not particularly limited, but inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid, malic acid,
The reaction can be performed using an organic acid such as citric acid or ethylenediaminetetraacetic acid, ammonia, or the like. After impregnation, drying and baking are performed. The drying temperature is 80 to 200 ° C (preferably 10 to 200 ° C).
0 to 150 ° C), and the firing temperature is 300 to 600 ° C (preferably 400 to 550 ° C). If the firing temperature is too low, it may not be possible to have a sufficient bond between the support component and the carrier, and if it is too high, the support component is likely to aggregate.

【0013】得られた触媒体の平均細孔径は150〜2
50Å(好ましくは160〜220Å)であり、比表面
積は100〜200m2 /g、好ましくは130〜19
0m 2 /gである。また、全細孔容量は0.6〜1.2
cc/g、好ましくは0.7〜1.0cc/gである。
The obtained catalyst has an average pore diameter of 150 to 2
50 ° (preferably 160-220 °), specific surface
The product is 100-200mTwo/ G, preferably 130 to 19
0m Two/ G. The total pore volume is 0.6 to 1.2.
cc / g, preferably 0.7 to 1.0 cc / g.

【0014】(b)成分について 耐火性無機酸化物成型体としては、アルミナ,シリカ,
シリカ・アルミナ,マグネシア,ジルコニア,チタニ
ア,酸化亜鉛,結晶性アルミノシリケート,粘土鉱物又
はそれらの混合物が使用される。中でも、アルミナが好
ましい。また、(a)成分の製造に使用される担体と同
じものを使用してもよいし、異なったものを使用しても
よい。耐火性無機酸化物成型体の製造方法は、上記
(a)成分で述べた担体と同じである。
Regarding the component (b) As the refractory inorganic oxide molded body, alumina, silica,
Silica-alumina, magnesia, zirconia, titania, zinc oxide, crystalline aluminosilicate, clay minerals or mixtures thereof are used. Among them, alumina is preferable. Further, the same carrier as used in the production of the component (a) or a different carrier may be used. The method for producing the refractory inorganic oxide molded body is the same as the carrier described in the above component (a).

【0015】得られた耐火性無機酸化物成型体の平均細
孔径は150〜250Å(好ましくは160〜220
Å)であり、比表面積は100〜200m2 /g、好ま
しくは130〜190m2 /gである。また、全細孔容
量は0.6〜1.2cc/g、好ましくは0.7〜1.
0cc/gである。本発明の脱金属触媒は、(a)成分
と(b)成分を任意の割合に混合(物理混合)して得ら
れるが、好ましくは(a)成分5〜95容量%に対し
て、(b)成分95〜5容量%である。
The average pore size of the obtained refractory inorganic oxide molded product is 150 to 250 ° (preferably 160 to 220 °).
A Å), a specific surface area of 100 to 200 m 2 / g, preferably from 130~190m 2 / g. The total pore volume is 0.6 to 1.2 cc / g, preferably 0.7 to 1.
0 cc / g. The demetallizing catalyst of the present invention is obtained by mixing (physical mixing) the components (a) and (b) at an arbitrary ratio. ) Component 95-5% by volume.

【0016】第二の発明は、本発明の脱金属触媒を用い
た重質油の水素化処理であり、好ましくは上流側に本発
明の脱金属触媒を設け、下流側に脱硫触媒を設けた触媒
システムで重質油の水素化処理を行うものである。脱硫
触媒は耐火性無機酸化物担体に、周期表第6族の金属の
少なくとも一種及び周期表第8〜10族の金属から選ば
れる少なくとも一種を担持したものである。
The second invention is a hydrogenation treatment of heavy oil using the demetallizing catalyst of the present invention. Preferably, the demetallizing catalyst of the present invention is provided on the upstream side and the desulfurizing catalyst is provided on the downstream side. The catalyst system performs heavy oil hydrotreatment. The desulfurization catalyst is obtained by supporting at least one metal selected from Group 6 of the periodic table and at least one metal selected from Group 8 to 10 of the periodic table on a refractory inorganic oxide carrier.

【0017】まず、耐火性無機酸化物担体として、アル
ミナ,シリカ,シリカ・アルミナ,マグネシア,ジルコ
ニア,チタニア,酸化亜鉛,結晶性アルミノシリケー
ト,粘土鉱物又はそれらの混合物が使用される。中で
も、アルミナが好ましい。耐火性無機酸化物担体の製造
法については特に限定されないが、一般に採用されてい
る方法であればよい。一例としてアルミナについて説明
する。
First, alumina, silica, silica-alumina, magnesia, zirconia, titania, zinc oxide, crystalline aluminosilicate, clay mineral or a mixture thereof is used as a refractory inorganic oxide carrier. Among them, alumina is preferable. The method for producing the refractory inorganic oxide carrier is not particularly limited, but may be any generally employed method. As an example, alumina will be described.

【0018】例えば、水溶性酸性アルミナ塩の水溶液に
塩基を添加するか、水溶性塩基性アルミナ塩の水溶液に
酸を添加するか、水溶性酸性アルミナ塩の水溶液と水溶
性塩基性アルミナ塩の水溶液を混合して生成するゲル
を、熟成、成型、乾燥、焼成することによって得られ
る。
For example, a base is added to an aqueous solution of a water-soluble acidic alumina salt, an acid is added to an aqueous solution of a water-soluble basic alumina salt, or an aqueous solution of a water-soluble acidic alumina salt and an aqueous solution of a water-soluble basic alumina salt are used. Is obtained by aging, molding, drying, and baking a gel formed by mixing.

【0019】熟成方法として特に限定されないが、例え
ば、pH3.3〜9.3の間で少なくとも3回以上(好
ましくは5回以上)変動させるpHスイング法、pH9
以上(好ましくは11以上)、温度70℃以上(好まし
くは80℃以上)で処理する水熱熟成法があるが、これ
らを適当に組み合わせてもよい。
The aging method is not particularly limited. For example, a pH swing method in which pH is fluctuated at least three times (preferably five times or more) between pH 3.3 and 9.3, pH 9
Above (preferably 11 or more), there is a hydrothermal aging method in which the treatment is performed at a temperature of 70 ° C. or more (preferably 80 ° C. or more), and these may be appropriately combined.

【0020】成型方法については、ゲルの水分を調整し
て、例えば、押出成型等により円柱,三つ葉,四つ葉型
などに成型される。大きさとしては、直径0.5〜5m
m(好ましくは1〜3mm)、長さは1〜7mm(好ま
しくは2〜4mm)とする。また、種々の方法により球
状に造粒されたものも用いることができる。その場合、
直径は1〜6mm(好ましくは2〜5mm)である。
With respect to the molding method, the gel is adjusted to have a water content, and is molded into, for example, a cylindrical, three-leaf, or four-leaf type by extrusion molding or the like. The size is 0.5-5m in diameter
m (preferably 1 to 3 mm) and a length of 1 to 7 mm (preferably 2 to 4 mm). Further, those granulated in a spherical shape by various methods can also be used. In that case,
The diameter is 1-6 mm (preferably 2-5 mm).

【0021】以上のように調製された耐火性無機酸化物
担体に、下記の方法で周期表第6族の金属の少なくとも
一種及び周期表第8〜10族の金属から選ばれる少なく
とも一種を担持する。周期表第6族金属として、モリブ
デン,タングステンが使用され、モリブデンが好まし
い。その担持量は酸化物基準で、触媒体基準で4〜25
重量%、好ましくは8〜20重量%である。周期表第8
〜10族の金属として、ニッケル,コバルトが使用さ
れ、ニッケルが好ましい。その担持量は酸化物基準で、
触媒体基準で1〜8重量%、好ましくは2〜5重量%で
ある。
On the refractory inorganic oxide carrier prepared as described above, at least one metal selected from Group 6 of the periodic table and a metal selected from Groups 8 to 10 of the periodic table are supported by the following method. . Molybdenum and tungsten are used as Group 6 metals of the periodic table, with molybdenum being preferred. The supported amount is 4 to 25 on an oxide basis and a catalyst body basis.
%, Preferably 8 to 20% by weight. Periodic Table No. 8
Nickel and cobalt are used as the metals of Groups 10 to 10, with nickel being preferred. The supported amount is based on oxides,
It is 1 to 8% by weight, preferably 2 to 5% by weight, based on the catalyst.

【0022】上記の金属の担持法は含浸法が好ましい。
周期表第6族のモリブデン化合物としては、三酸化モリ
ブデン,パラモリブデン酸アンモニウム等が使用され、
タングステン化合物としては、三酸化タングステン,タ
ングステン酸アンモニウム等が使用される。また、周期
表第8〜10族のニッケル化合物としては、硝酸ニッケ
ル,塩基性炭酸ニッケル等が使用され、コバルト化合物
としては、硝酸コバルト,塩基性炭酸コバルト等が使用
される。さらに、必要に応じて、リンが使用され、リン
化合物としては、五酸化リン,リン酸等が使用される。
上記の金属化合物を、周期表第6族金属は0.7〜4.
3モル/リットル、周期表第8〜10族の金属は1.1
〜2.0モル/リットル、リン化合物は0.3〜2.0
モル/リットルの割合で純水に溶解させ、担体に吸水率
と等量になるように調整後含浸させる。含浸時のpHは
含浸液の安定性を考慮して一般には1〜4、好ましくは
1.5〜3.5である。このpHの調整方法は特に限定
されないが、硝酸,塩酸,硫酸等の無機酸、りんご酸,
クエン酸,エチレンジアミン4酢酸等の有機酸、アンモ
ニアなどを使用して行うことができる。含浸後乾燥、焼
成するが、乾燥温度は80〜200℃(好ましくは10
0〜150℃)、焼成温度は300〜600℃(好まし
くは400〜550℃)である。焼成温度が低すぎる
と、担持成分と担体と十分な結合を持つことができない
場合があり、高すぎると、担持成分の凝集が起こり易く
なる。
The above-mentioned method of supporting a metal is preferably an impregnation method.
As the molybdenum compound of Group 6 of the periodic table, molybdenum trioxide, ammonium paramolybdate and the like are used.
As the tungsten compound, tungsten trioxide, ammonium tungstate or the like is used. Nickel nitrate, basic nickel carbonate or the like is used as a nickel compound belonging to Groups 8 to 10 of the periodic table, and cobalt nitrate or basic cobalt carbonate is used as a cobalt compound. Further, if necessary, phosphorus is used, and phosphorus compounds such as phosphorus pentoxide and phosphoric acid are used.
Of the above metal compounds, the Group 6 metals of the periodic table are 0.7-4.
3 mol / l, metals of groups 8 to 10 of the periodic table are 1.1
~ 2.0 mol / l, phosphorus compound is 0.3 ~ 2.0
It is dissolved in pure water at a ratio of mol / liter, and the carrier is impregnated after being adjusted so as to have an equivalent water absorption. The pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in consideration of the stability of the impregnating liquid. The method for adjusting the pH is not particularly limited, but inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid, malic acid,
The reaction can be performed using an organic acid such as citric acid or ethylenediaminetetraacetic acid, ammonia, or the like. After impregnation, drying and baking are performed. The drying temperature is 80 to 200 ° C (preferably 10 to 200 ° C).
0 to 150 ° C), and the firing temperature is 300 to 600 ° C (preferably 400 to 550 ° C). If the firing temperature is too low, it may not be possible to have a sufficient bond between the support component and the carrier, and if it is too high, the support component is likely to aggregate.

【0023】得られた触媒の平均細孔径は90〜170
Å(好ましくは100〜160Å)であり、比表面積は
100〜300m2 /g、好ましくは140〜250m
2 /gである。また、全細孔容量は0.3〜1.0cc
/g、好ましくは0.4〜0.9cc/gである。
The average pore size of the obtained catalyst is 90 to 170.
Å (preferably 100 to 160 °) and a specific surface area of 100 to 300 m 2 / g, preferably 140 to 250 m
2 / g. The total pore volume is 0.3-1.0cc
/ G, preferably 0.4 to 0.9 cc / g.

【0024】次に、水素化処理触媒システムを用いて水
素化処理を行う際には、予め安定化処理として予備硫化
を行うことが望ましい。この予備硫化処理の条件は特に
限定されないが、通常、予備硫化剤として、硫化水素,
二硫化炭素,チオフェン,ジメチルジスルフィド等を挙
げることができ、処理温度200〜400℃、処理圧力
常圧〜30MPaの範囲で行われる。
Next, when hydrotreating using the hydrotreating catalyst system, it is desirable to carry out preliminary sulfurization as a stabilization process in advance. The conditions for this pre-sulfurization treatment are not particularly limited, but usually, hydrogen sulfide,
Examples thereof include carbon disulfide, thiophene, and dimethyl disulfide. The treatment is performed at a treatment temperature of 200 to 400 ° C. and a treatment pressure of normal pressure to 30 MPa.

【0025】水素化処理条件については、原料油の種類
や目的により異なるが、一般的には反応温度200〜5
50℃(好ましくは220〜500℃)、反応圧力5〜
30MPa(好ましくは10〜25MPa)の範囲で行
われる。反応形式は特に限定されないが、通常は、固定
床,移動床,沸騰床,懸濁床等の種々のプロセスから選
択できるが、固定床が好ましい。固定床の場合の温度、
圧力以外の反応条件としては、液空間速度(LHSV)
は0.05〜10hr-1(好ましくは0.1〜5h
-1)、水素/オイル比は500〜2,500Nm3
kl(好ましくは700〜2,000Nm3 /kl)で
ある。
The hydrotreating conditions vary depending on the type and purpose of the feed oil, but generally the reaction temperature is from 200 to 5 hours.
50 ° C (preferably 220 to 500 ° C), reaction pressure 5 to
It is performed in a range of 30 MPa (preferably 10 to 25 MPa). The type of reaction is not particularly limited, but usually can be selected from various processes such as a fixed bed, a moving bed, a boiling bed, and a suspension bed, but a fixed bed is preferred. Temperature for fixed beds,
Reaction conditions other than pressure include liquid hourly space velocity (LHSV)
Is 0.05 to 10 hr -1 (preferably 0.1 to 5 h
r -1 ), the hydrogen / oil ratio is from 500 to 2,500 Nm 3 /
kl (preferably 700 to 2,000 Nm 3 / kl).

【0026】処理する重質油として、常圧残油,減圧残
油,脱蝋減圧残油,アスファルテン油,タールサンド油
及びこれらを一旦予備的に水素化処理した残油を挙げる
ことができる。原料油の性状として、特に限定されない
が、代表的な性状としては下記のとおりである。 比重(15/4℃):0.9530〜0.9940 動粘度(50℃):250〜3,000cSt 硫黄分:3.0〜4.5重量% 窒素分:1,500〜4,200重量ppm 金属分(V,Ni):30〜250重量ppm 残炭分:5〜18重量% アスファルテン分:0.5〜12.0重量%
Examples of the heavy oil to be treated include atmospheric residual oil, vacuum residual oil, dewaxed vacuum residual oil, asphaltene oil, tar sands oil, and residual oils which have been subjected to preliminary hydrogenation. The properties of the feedstock are not particularly limited, but typical properties are as follows. Specific gravity (15/4 ° C): 0.9530 to 0.9940 Kinematic viscosity (50 ° C): 250 to 3,000 cSt Sulfur content: 3.0 to 4.5 wt% Nitrogen content: 1,500 to 4,200 wt ppm Metal content (V, Ni): 30 to 250 wt ppm Residual carbon content: 5 to 18 wt% Asphaltene content: 0.5 to 12.0 wt%

【0027】[0027]

〔調製例〕(Preparation example)

(b)成分の調製 純水1リットルに、まず水酸化ナトリウム35.3gを
溶解させ、さらに、アルミン酸ソーダ99.3gを添加
して、均一なアルミナ溶液B1を得た。また、、純水1
リットルに硝酸アルミニウム500gを溶解させ、アル
ミナ溶液A1を得た。次に、純水2.38リットルを7
0℃に加温し、攪拌しながら、アルミナ溶液A1をpH
2.6になるまで添加した。次に上記アルミナ溶液B1
をpH9.0になるまで添加して、5分間攪拌しながら
熟成させた。続いて再びアルミナ溶液A1を添加して、
pHを3.6として、攪拌しながら5分間熟成させた。
このようにpHを3.6から9.0の間で変化させる操
作を計13回繰り返した。その後、得られたゲルをろ
過、洗浄してアルミナゲルを1,075g得た。このゲ
ルの水分を乾燥により調節して直径1.5mm円柱形に
押出成形し、このゲルを120℃、16時間乾燥させ、
さらに550℃で2時間焼成してアルミナ担体A1を得
た。その物性を第1表に示す。
(B) Preparation of Component First, 35.3 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was further added to obtain a uniform alumina solution B1. In addition, pure water 1
500 g of aluminum nitrate was dissolved in 1 liter to obtain an alumina solution A1. Next, add 2.38 liters of pure water to 7
While heating to 0 ° C. and stirring, the alumina solution A1 was adjusted to pH
It was added until 2.6. Next, the above alumina solution B1
Was added until pH 9.0, and the mixture was aged with stirring for 5 minutes. Subsequently, alumina solution A1 was added again,
The pH was adjusted to 3.6 and aged for 5 minutes with stirring.
The operation of changing the pH between 3.6 and 9.0 in this way was repeated 13 times in total. Thereafter, the obtained gel was filtered and washed to obtain 1,075 g of an alumina gel. The water content of the gel was adjusted by drying and extruded into a 1.5 mm diameter cylinder, and the gel was dried at 120 ° C. for 16 hours.
Further, firing was performed at 550 ° C. for 2 hours to obtain an alumina carrier A1. The physical properties are shown in Table 1.

【0028】(a)成分の調製 上記アルミナ担体A1に、三酸化モリブデン31g、塩
基性炭酸ニッケル11g(NiOとして6g)、りんご
酸32gをイオン交換水に溶解させ、全量を200cc
の含浸液とした。次にその含浸液55ccをアルミナ担
体A1の吸水量に見合った量に調製し、100gに常圧
含浸させた。この担持物を、120℃で3時間乾燥させ
て、空気中550℃、5時間焼成して触媒M1を得た。
その物性を第1表に示す。
Preparation of Component (a) 31 g of molybdenum trioxide, 11 g of basic nickel carbonate (6 g as NiO) and 32 g of malic acid are dissolved in the above alumina carrier A1 in ion-exchanged water, and the total amount is 200 cc.
Of the impregnation liquid. Next, 55 cc of the impregnating liquid was adjusted to an amount corresponding to the amount of water absorbed by the alumina carrier A1, and 100 g of the impregnating liquid was impregnated at normal pressure. This supported material was dried at 120 ° C. for 3 hours, and calcined in air at 550 ° C. for 5 hours to obtain a catalyst M1.
The physical properties are shown in Table 1.

【0029】脱硫触媒の調製 純水1リットルに、まず水酸化ナトリウム35.3gを
溶解させ、さらに、アルミン酸ソーダ99.3gを添加
して、均一なアルミナ溶液B1を得た。また、、純水1
リットルに硝酸アルミニウム500gを溶解させ、アル
ミナ溶液A1を得た。次に、純水2.38リットルを7
0℃に加温し、攪拌しながら、アルミナ溶液A1をpH
2.6になるまで添加した。次に上記アルミナ溶液B1
をpH9.0になるまで添加して、5分間攪拌しながら
熟成させた。続いて再びアルミナ溶液A1を添加して、
pHを3.6として、攪拌しながら5分間熟成させた。
このようにpHを3.6から9.0の間で変化させる操
作を計7回繰り返した。その後、得られたゲルをろ過、
洗浄してアルミナゲルを1,075g得た。このゲルの
水分を乾燥により調節して直径1.5mm円柱形に押出
成形し、このゲルを120℃、16時間乾燥させ、さら
に550℃で2時間焼成してアルミナ担体A2を得た。
Preparation of Desulfurization Catalyst First, 35.3 g of sodium hydroxide was dissolved in 1 liter of pure water, and 99.3 g of sodium aluminate was added to obtain a uniform alumina solution B1. In addition, pure water 1
500 g of aluminum nitrate was dissolved in 1 liter to obtain an alumina solution A1. Next, add 2.38 liters of pure water to 7
While heating to 0 ° C. and stirring, the alumina solution A1 was adjusted to pH
It was added until 2.6. Next, the above alumina solution B1
Was added until pH 9.0, and the mixture was aged with stirring for 5 minutes. Subsequently, alumina solution A1 was added again,
The pH was adjusted to 3.6 and aged for 5 minutes with stirring.
The operation of changing the pH between 3.6 and 9.0 in this way was repeated a total of seven times. Then, the obtained gel is filtered,
After washing, 1,075 g of an alumina gel was obtained. The water content of the gel was adjusted by drying to extrude the gel into a cylindrical shape having a diameter of 1.5 mm. The gel was dried at 120 ° C. for 16 hours and calcined at 550 ° C. for 2 hours to obtain an alumina carrier A2.

【0030】上記アルミナ担体A2に、三酸化モリブデ
ン59g、塩基性炭酸ニッケル26g(NiOとして1
4g)、りんご酸75gをイオン交換水に溶解させ、全
量を200ccの含浸液とした。次にその含浸液55c
cをアルミナ担体A1の吸水量に見合った量に調製し、
100gに常圧含浸させた。この担持物を、120℃で
3時間乾燥させて、空気中550℃、5時間焼成して触
媒M2を得た。その物性を第1表に示す。
On the alumina carrier A2, 59 g of molybdenum trioxide and 26 g of basic nickel carbonate (1 as NiO)
4 g) and 75 g of malic acid were dissolved in ion-exchanged water to make a total volume of 200 cc. Next, the impregnating liquid 55c
c is adjusted to an amount corresponding to the water absorption of the alumina carrier A1,
100 g were impregnated at normal pressure. The supported material was dried at 120 ° C. for 3 hours, and calcined in air at 550 ° C. for 5 hours to obtain a catalyst M2. The physical properties are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例1,2及び比較例1,2 〔触媒性能評価〕小型高圧固定床反応装置で、中東系軽
質軽油(LGO,硫黄分1.18重量%,窒素分70重
量ppm)にジメチルジスルフィドを添加して硫黄濃度
を2.5重量%に調整した予備硫化油を調製した。この
予備硫化油を、触媒に、水素ガスとともに250℃で2
4時間流通させて予備硫化した。原料油としては、第2
表に示す中東系常圧残油を用いた。
Examples 1 and 2 and Comparative Examples 1 and 2 [Evaluation of catalyst performance] In a small high-pressure fixed-bed reactor, dimethyl dimethyl was added to light oil of the Middle East (LGO, 1.18% by weight of sulfur, 70% by weight of nitrogen). A presulfurized oil was prepared by adding disulfide to adjust the sulfur concentration to 2.5% by weight. This pre-sulfurized oil is added to the catalyst at 250 ° C. with hydrogen gas for 2 hours.
The mixture was allowed to flow for 4 hours to be presulfurized. As the feedstock, the second
The Middle Eastern atmospheric residual oil shown in the table was used.

【0033】[0033]

【表2】 [Table 2]

【0034】この原料油を、上記の予備硫化後の触媒
に、水素ガスとともに流通させて、以下の条件で水素化
処理を行った。 反応温度:最上段及び中段層=385℃(一定)、後段
層=400℃(一定) 水素分圧:13.5MPa、液空間速度:1.0hr-1 水素/オイル比:850Nm3 /kl 前記で得られた担体A1、触媒M1、触媒M2を第3表
に示す仕様で充填した触媒システムを上記の条件で評価
した。その結果を第4表に示す。
The raw oil was passed through the catalyst after the preliminary sulfurization together with hydrogen gas, and was subjected to hydrotreatment under the following conditions. Reaction temperature: top and middle layers = 385 ° C. (constant), rear layer = 400 ° C. (constant) Hydrogen partial pressure: 13.5 MPa, liquid hourly space velocity: 1.0 hr −1 hydrogen / oil ratio: 850 Nm 3 / kl The catalyst system in which the support A1, the catalyst M1, and the catalyst M2 obtained in the above were packed according to the specifications shown in Table 3 was evaluated under the above conditions. Table 4 shows the results.

【0035】なお、最上段触媒、中段触媒、後段触媒を
別々のリアクターに充填し、これを直列に連結したシス
テムリアクターを用い、必要に応じて最上段触媒層の出
口及び後段触媒層出口からサンプリングを実施した。
In addition, the uppermost catalyst, the middle catalyst, and the latter catalyst are filled in separate reactors, and these are sampled from the outlet of the uppermost catalyst layer and the outlet of the latter catalyst layer as necessary using a system reactor in which these are connected in series. Was carried out.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】第4表より、実施例では運転2,000時
間後の脱金属触媒の脱金属率の低下が抑えられ、したが
って脱硫触媒の脱硫率の低下が抑えられていることがわ
かる。
From Table 4, it can be seen that in the example, the decrease in the demetallization rate of the demetallization catalyst after 2,000 hours of operation was suppressed, and thus the decrease in the desulfurization rate of the desulfurization catalyst was suppressed.

【0039】[0039]

【発明の効果】本発明は、上流側に脱金属触媒、下流側
に脱硫触媒を設けた重質油の水素化処理触媒システムに
おいて、上流側により金属蓄積能力の高い脱金属触媒を
提供するとともに、下流側の脱硫触媒の劣化を抑え、触
媒システムの脱硫寿命を著しく長くすることにより、処
理能力の向上及び触媒交換頻度の低減が可能な重質油の
処理方法を提供する。
According to the present invention, in a heavy oil hydrotreating catalyst system provided with a demetallization catalyst on the upstream side and a desulfurization catalyst on the downstream side, the present invention provides a demetallization catalyst having a higher metal accumulation capacity on the upstream side. In addition, the present invention provides a method for treating heavy oil capable of suppressing deterioration of a downstream desulfurization catalyst and prolonging the desulfurization life of a catalyst system, thereby improving the treatment capacity and reducing the frequency of catalyst replacement.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 AA03 AA12 BA01A BA01B BA02A BA03A BA04A BA05A BA06A BA07A BA10A BB02A BB04A BB04B BC35A BC57A BC59A BC59B BC65A BC68A BC68B BC69A CC02 CC03 DA06 EA02Y EB18Y EC03Y EC07Y EC08Y EC14Y EC15Y ED07 EE08 EE09 4H029 CA00 DA00 DA09  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4G069 AA02 AA03 AA12 BA01A BA01B BA02A BA03A BA04A BA05A BA06A BA07A BA10A BB02A BB04A BB04B BC35A BC57A BC59A BC59B BC65A BC68A BC68B BC69A CC02 CC03 EC06 EC02 EC03 EC06 CA00 DA00 DA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐火性無機酸化物担体に、周期表第6族
の金属の少なくとも一種及び/又は周期表第8〜10族
の金属から選ばれる少なくとも一種を担持した触媒成型
体(a)と耐火性無機酸化物成型体(b)を混合してな
る脱金属触媒。
1. A molded catalyst (a) comprising a refractory inorganic oxide carrier carrying at least one metal selected from Group 6 of the periodic table and / or at least one metal selected from Group 8 to 10 of the periodic table. A metal removal catalyst obtained by mixing a refractory inorganic oxide molded product (b).
【請求項2】 周期表第6族金属がモリブデンであり、
周期表第8〜10族金属がニッケルである請求項1記載
の脱金属触媒。
2. The group 6 metal of the periodic table is molybdenum,
The demetalization catalyst according to claim 1, wherein the group 8-10 metal of the periodic table is nickel.
【請求項3】 請求項1又は2に記載の脱金属触媒を用
いた重質炭化水素油の水素化処理方法。
3. A method for hydrotreating heavy hydrocarbon oil using the demetallizing catalyst according to claim 1 or 2.
【請求項4】 上流側に請求項1又は2に記載の脱金属
触媒、下流側に脱硫触媒を用いた請求項3記載の重質炭
化水素油の水素化処理方法。
4. The method for hydrotreating heavy hydrocarbon oil according to claim 3, wherein the demetallation catalyst according to claim 1 or 2 is used on the upstream side and the desulfurization catalyst is used on the downstream side.
JP28230299A 1999-10-04 1999-10-04 Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst Pending JP2001104789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28230299A JP2001104789A (en) 1999-10-04 1999-10-04 Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28230299A JP2001104789A (en) 1999-10-04 1999-10-04 Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst

Publications (1)

Publication Number Publication Date
JP2001104789A true JP2001104789A (en) 2001-04-17

Family

ID=17650662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28230299A Pending JP2001104789A (en) 1999-10-04 1999-10-04 Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP2001104789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363575A (en) * 2001-06-08 2002-12-18 Nippon Kecchen Kk Method for two step hydrogenating heavy hydrocarbon oil
JP2002363576A (en) * 2001-06-08 2002-12-18 Nippon Kecchen Kk Method for two step hydrogenating heavy hydrocarbon oil
JP2016517347A (en) * 2013-03-15 2016-06-16 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー New residual oil hydrotreating catalyst
JP2017066226A (en) * 2015-09-29 2017-04-06 Jxエネルギー株式会社 Process for producing hydrocarbon oil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363575A (en) * 2001-06-08 2002-12-18 Nippon Kecchen Kk Method for two step hydrogenating heavy hydrocarbon oil
JP2002363576A (en) * 2001-06-08 2002-12-18 Nippon Kecchen Kk Method for two step hydrogenating heavy hydrocarbon oil
JP2016517347A (en) * 2013-03-15 2016-06-16 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー New residual oil hydrotreating catalyst
JP2017066226A (en) * 2015-09-29 2017-04-06 Jxエネルギー株式会社 Process for producing hydrocarbon oil

Similar Documents

Publication Publication Date Title
KR100209814B1 (en) Hydrotreating catalyst composition, its preparation and use
US5494568A (en) Hydrocarbon conversion process
RU2673891C2 (en) Hydrotreating catalyst composition containing heterocyclic polar compound, method of making such catalyst, and process of using such catalyst
JP5140817B2 (en) Process for hydrorefining and / or hydroconversion of hydrocarbon feedstock using catalyst
JP2631712B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same
US5403806A (en) Phosphorous-containing hydroprocessing catalyst and method of preparation
JP5922372B2 (en) Hydrotreating catalyst and method for producing the same
US5135902A (en) Nickel-tungsten-phosphorus catalyst
US6893553B1 (en) Hydroprocessing catalyst and use thereof
US4613425A (en) Process for hydrotreating heavy hydrocarbon oils
EP3065868B1 (en) Process for preparing a hydrotreating catalyst
WO1998026866A1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
US5290429A (en) Catalytic aromatic saturation in the presence of halide
JP2001104789A (en) Demetallization catalyst and method for hydrogenation treatment of heavy hydrocarbon oil using the catalyst
JPH11319567A (en) Hydrodesulfurization catalyst
JP3802939B2 (en) Catalyst for hydrotreating
JP4865940B2 (en) Hydrotreating catalyst and method for hydrotreating heavy hydrocarbon oil using the catalyst
JP4878736B2 (en) Heavy oil hydrotreating catalyst and method for producing the same
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2006061845A (en) Hydrogenation catalyst for heavy oil and manufacturing method thereof
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
JP4621371B2 (en) Hydrotreating catalyst bed and method for hydrotreating heavy hydrocarbon oil using the catalyst bed
JP2567291B2 (en) Hydroprocessing method for hydrocarbon oil
JPH07228875A (en) Method for hydrogenation treatment of heavy hydrocarbon oil
JPH03278839A (en) Preparation of hydrotreating catalyst composition for hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414