JP5173555B2 - Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP5173555B2
JP5173555B2 JP2008114000A JP2008114000A JP5173555B2 JP 5173555 B2 JP5173555 B2 JP 5173555B2 JP 2008114000 A JP2008114000 A JP 2008114000A JP 2008114000 A JP2008114000 A JP 2008114000A JP 5173555 B2 JP5173555 B2 JP 5173555B2
Authority
JP
Japan
Prior art keywords
transition metal
graphite
negative electrode
precursor
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008114000A
Other languages
Japanese (ja)
Other versions
JP2009263160A (en
Inventor
邦彦 江口
孝宏 菊地
聡 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2008114000A priority Critical patent/JP5173555B2/en
Publication of JP2009263160A publication Critical patent/JP2009263160A/en
Application granted granted Critical
Publication of JP5173555B2 publication Critical patent/JP5173555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、黒鉛質材料の製造方法に関し、詳しくは、該黒鉛質材料を含有するリチウム
イオン二次電池用負極材料と該負極材料を用いてなるリチウムイオン二次電池に関する。
The present invention relates to a method for producing a graphite material, and more particularly, to a negative electrode material for a lithium ion secondary battery containing the graphite material and a lithium ion secondary battery using the negative electrode material.

近年、電子機器の小型化あるいは高性能化に伴い、電池の高エネルギー密度化に対する要望はますます高まっている。特に、リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能であり、エネルギー密度を高められるため注目されている。リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素とする。リチウムイオンは非水電解質を介して放電過程および充電過程で負極と正極との間を移動し、二次電池となる。通常、上記のリチウムイオン二次電池の負極材料には炭素材料が使用される。このような炭素材料として、特に、充放電特性に優れ、高い放電容量と電位平坦性とを示す黒鉛(特許文献1)が有望視されている。   In recent years, with the miniaturization or high performance of electronic devices, there is an increasing demand for higher energy density of batteries. In particular, lithium ion secondary batteries are attracting attention because they are capable of higher voltages than other secondary batteries and can increase energy density. A lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions move between the negative electrode and the positive electrode through the nonaqueous electrolyte during the discharge process and the charge process, and become a secondary battery. Usually, a carbon material is used for the negative electrode material of the lithium ion secondary battery. As such a carbon material, graphite (Patent Document 1) that is excellent in charge / discharge characteristics and exhibits high discharge capacity and potential flatness is particularly promising.

負極材料として使用される黒鉛(黒鉛質粒子)としては、天然黒鉛、人造黒鉛などの黒鉛粒子、さらにはタール、ピッチを原料としたメソフェーズピッチやメソフェーズ小球体を熱処理して得られる黒鉛質粒子、粒子状や繊維状のメソフェーズピッチを酸化不融化した後に熱処理して得られるメソフェーズ黒鉛質粒子やメソフェーズ黒鉛質繊維、天然黒鉛や人造黒鉛をタール、ピッチなどで被覆した後に熱処理して得られる複合黒鉛質粒子などが挙げられる。   Graphite (graphite particles) used as a negative electrode material includes graphite particles such as natural graphite and artificial graphite, and further, graphite particles obtained by heat treatment of mesophase pitch and mesophase spherules using tar and pitch as raw materials, Composite graphite obtained by heat-treating mesophase graphite particles, mesophase graphite fibers, natural graphite or artificial graphite obtained by heat-treating particulate or fibrous mesophase pitch after oxidation infusibilization For example, fine particles.

なかでも、タール、ピッチ類を熱処理してなる黒鉛質粒子の場合、黒鉛化触媒によって結晶性を高め、リチウムイオンの吸蔵能力(放電容量)を高くすることが提案されている。例えば、黒鉛前駆体である炭素質材料を金属化合物の有機溶剤溶液に含浸した後、有機溶剤を乾燥除去し、炭化と黒鉛化を引続き行って負極材料用黒鉛を製造する方法が提案されている(特許文献2)。該製造方法は、該金属化合物の金属が有する黒鉛化の促進作用を利用したものであり、結晶性の低い部分の黒鉛化が促進され、放電容量を増大させる点に特徴がある。   In particular, in the case of graphite particles obtained by heat treatment of tar and pitch, it has been proposed to increase the crystallinity and increase the lithium ion storage capacity (discharge capacity) with a graphitization catalyst. For example, a method has been proposed in which a carbonaceous material that is a graphite precursor is impregnated in an organic solvent solution of a metal compound, and then the organic solvent is dried and removed, followed by carbonization and graphitization to produce graphite for negative electrode materials. (Patent Document 2). The production method utilizes the graphitization promoting action of the metal of the metal compound, and is characterized in that the graphitization of a portion having low crystallinity is promoted and the discharge capacity is increased.

しかし、有機溶剤を乾燥除去する従来の製造方法では、触媒となる金属化合物を均一に付着させることが難しい。攪拌しながら有機溶剤を乾燥除去した場合であっても、炭素質材料表面の金属化合物の付着量に偏りを生じてしまい、金属化合物が接触していない部分では黒鉛化が促進されず、放電容量の増大効果が充分でないことがある。
金属化合物が高濃度になるように溶液を調製すれば、比較的均一被覆が形成される可能性があるが、金属化合物が多いと黒鉛化工程で大量の金属が瞬時に蒸発して黒鉛化炉から噴出するなどの工業化に際し新たな問題があった。また、従来の製造方法では、炭素質材料と金属化合物の付着力が弱く、黒鉛化工程で金属化合物が脱落することも黒鉛化促進作用が不足する一因になっていた。
However, in the conventional manufacturing method in which the organic solvent is removed by drying, it is difficult to uniformly deposit the metal compound serving as a catalyst. Even when the organic solvent is removed by drying with stirring, the amount of adhesion of the metal compound on the surface of the carbonaceous material will be biased, and graphitization will not be promoted in the part where the metal compound is not in contact, and the discharge capacity The increase effect may not be sufficient.
If a solution is prepared so that the concentration of the metal compound becomes high, a relatively uniform coating may be formed. However, if there is a large amount of the metal compound, a large amount of metal instantly evaporates during the graphitization process, and the graphitization furnace There was a new problem in the industrialization such as erupting from. Further, in the conventional manufacturing method, the adhesion between the carbonaceous material and the metal compound is weak, and the metal compound falling off in the graphitization step is also one of the reasons for insufficient graphitization promoting action.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特開平10−255770号公報JP 10-255770 A

本発明は、上記のような状況を鑑みてなされたものであり、リチウムイオン二次電池用負極材料として、高い放電容量が得られ、さらに工業的観点からも簡便かつ安価に製造可能な黒鉛質材料の製造方法を提供することを目的とする。また、そのような製造方法で得られた黒鉛質材料を用いてなるリチウムイオン二次電池を提供することが目的である。   The present invention has been made in view of the above situation, and as a negative electrode material for a lithium ion secondary battery, a high discharge capacity is obtained, and further, a graphite that can be produced easily and inexpensively from an industrial viewpoint. It aims at providing the manufacturing method of material. Another object of the present invention is to provide a lithium ion secondary battery using a graphite material obtained by such a manufacturing method.

前記目的を達成する本発明は下記の通りである。
すなわち、本発明は、黒鉛前駆体と水溶性遷移金属化合物とアルカリを水中で接触させて、生成した遷移金属水酸化物を前記黒鉛前駆体に付着させる水酸化物付着工程と、前記付着工程で付着した遷移金属水酸化物を酸化剤または酸化性気体により、遷移金属酸化物に酸化する酸化工程と、前記酸化工程で酸化された遷移金属酸化物が付着している黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含むことを特徴とする黒鉛質材料の製造方法である。
The present invention for achieving the above object is as follows.
That is, the present invention includes a hydroxide adhesion step in which a graphite precursor, a water-soluble transition metal compound, and an alkali are contacted in water, and the produced transition metal hydroxide is adhered to the graphite precursor. An oxidation step of oxidizing the attached transition metal hydroxide to a transition metal oxide with an oxidizing agent or oxidizing gas, and a graphite precursor to which the transition metal oxide oxidized in the oxidation step is attached at 1500 ° C. or higher It is a manufacturing method of the graphite material characterized by including the graphitization process heated to this temperature and graphitizing.

また、本発明は、黒鉛前駆体と水溶性遷移金属化合物とアルカリを水中で接触させて、生成した遷移金属水酸化物を前記黒鉛前駆体に付着させる水酸化物付着工程と、前記付着工程で付着した遷移金属水酸化物を酸化剤または酸化性気体により、遷移金属酸化物に酸化する酸化工程と、前記酸化工程で得られた黒鉛前駆体を水溶液から分離する分離工程と、前記酸化工程で得られた黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含むことを特徴とする黒鉛質材料の製造方法である。   The present invention also includes a hydroxide adhesion step in which a graphite precursor, a water-soluble transition metal compound, and an alkali are contacted in water, and the produced transition metal hydroxide is adhered to the graphite precursor. An oxidation step of oxidizing the attached transition metal hydroxide to a transition metal oxide with an oxidant or oxidizing gas, a separation step of separating the graphite precursor obtained in the oxidation step from an aqueous solution, and the oxidation step It is a method for producing a graphite material, comprising a graphitization step of graphitizing by heating the obtained graphite precursor to a temperature of 1500 ° C. or higher.

また、本発明は、黒鉛前駆体、水溶性遷移金属化合物およびアルカリを含有する水溶液中の前記遷移金属化合物を、酸化剤または酸化性気体により酸化し、生成した遷移金属酸化物を黒鉛前駆体に付着させる酸化工程と、前記酸化工程で得られた黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含むことを特徴とする黒鉛質材料の製造方法である。   In addition, the present invention provides a graphite precursor, which is obtained by oxidizing the transition metal compound in an aqueous solution containing a graphite precursor, a water-soluble transition metal compound and an alkali with an oxidizing agent or an oxidizing gas. A method for producing a graphite material, comprising: an attaching oxidation step; and a graphitization step of heating the graphite precursor obtained in the oxidation step to a temperature of 1500 ° C. or more to graphitize.

また、本発明は、黒鉛前駆体、水溶性遷移金属化合物およびアルカリを含有する水溶液中の前記遷移金属化合物を、酸化剤または酸化性気体により酸化し、生成した遷移金属酸化物を黒鉛前駆体に付着させる酸化工程と、前記酸化工程で得られた黒鉛前駆体を前記水溶液から分離する分離工程と、前記分離工程で得られた黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含むことを特徴とする黒鉛質材料の製造方法である。   In addition, the present invention provides a graphite precursor, which is obtained by oxidizing the transition metal compound in an aqueous solution containing a graphite precursor, a water-soluble transition metal compound and an alkali with an oxidizing agent or an oxidizing gas. An oxidizing step for attaching, a separating step for separating the graphite precursor obtained in the oxidizing step from the aqueous solution, and a graphite for graphitizing by heating the graphite precursor obtained in the separating step to a temperature of 1500 ° C. or higher It is a manufacturing method of the graphite material characterized by including a conversion process.

本発明の黒鉛質材料の製造方法は、予め酸化処理または酸素含有化合物の付着処理を施した黒鉛前駆体を水酸化物付着工程または酸化工程の原材料として用いることが好ましい。   In the method for producing a graphite material of the present invention, it is preferable to use a graphite precursor which has been previously subjected to an oxidation treatment or an oxygen-containing compound attachment treatment as a raw material for the hydroxide attachment step or the oxidation step.

本発明の黒鉛質材料の製造方法は、黒鉛前駆体に付着した前記遷移金属酸化物中の遷移金属が黒鉛化触媒として作用することが好ましい。   In the method for producing a graphite material of the present invention, the transition metal in the transition metal oxide attached to the graphite precursor preferably acts as a graphitization catalyst.

本発明の黒鉛質材料の製造方法は、前記遷移金属化合物が遷移金属の塩化物、硝酸塩および硫化物から選ばれる少なくとも1種であることが好ましい。   In the method for producing a graphite material of the present invention, the transition metal compound is preferably at least one selected from chlorides, nitrates, and sulfides of transition metals.

本発明の黒鉛質材料の製造方法は、前記遷移金属化合物の金属が鉄、ニッケルおよびコバルトから選ばれる少なくとも1種であることが好ましい。   In the method for producing a graphite material of the present invention, the metal of the transition metal compound is preferably at least one selected from iron, nickel and cobalt.

本発明の黒鉛質材料の製造方法は、前記アルカリが水酸化ナトリウム、水酸化カリウムおよびアンモニア水から選ばれる少なくとも1種であることが好ましい。   In the method for producing a graphite material of the present invention, the alkali is preferably at least one selected from sodium hydroxide, potassium hydroxide and aqueous ammonia.

本発明の黒鉛質材料の製造方法は、酸化剤が亜硝酸ナトリウム、硝酸ナトリウムおよび過酸化水素から選ばれる少なくとも1種であることが好ましい。   In the method for producing a graphite material of the present invention, the oxidizing agent is preferably at least one selected from sodium nitrite, sodium nitrate and hydrogen peroxide.

本発明の黒鉛質材料の製造方法は、酸化性気体が空気または酸素であることが好ましい。   In the method for producing a graphite material of the present invention, the oxidizing gas is preferably air or oxygen.

本発明の黒鉛質材料の製造方法で得られた前記黒鉛質材料はリチウムイオン二次電池負極材料用材料であることが好ましい。   The graphite material obtained by the method for producing a graphite material of the present invention is preferably a material for a negative electrode material for a lithium ion secondary battery.

また、本発明は、前記いずれかに記載の黒鉛質材料の製造方法で製造した黒鉛質材料を含有するリチウムイオン二次電池用負極材料である。   Moreover, this invention is a negative electrode material for lithium ion secondary batteries containing the graphite material manufactured with the manufacturing method of the graphite material in any one of the said.

また、本発明は、前記のリチウムイオン二次電池用負極材料を用いてなるリチウムイオン二次電池である。   Moreover, this invention is a lithium ion secondary battery using the said negative electrode material for lithium ion secondary batteries.

本発明の黒鉛質材料の製造方法によれば、黒鉛前駆体の黒鉛化触媒として作用する遷移金属を含有する遷移金属酸化物を、黒鉛前駆体の表面に一様にかつ強固に付着することができる。本発明の黒鉛質材料の製造方法は、遷移金属水酸化物または酸化物を黒鉛前駆体に反応付着させる方法であるから、黒鉛前駆体の表面に該水酸化物または酸化物が膜状に一様に付着させることができる。その結果、黒鉛化が黒鉛前駆体の全面で生じ、黒鉛質材料の結晶化が不均一になることがない。また、工業的に安定した製造が可能であり、黒鉛質材料自体の製造コストが低い。
本発明の黒鉛質材料を負極材料として用いてなるリチウムイオン二次電池は、初期充放電効率に優れ、かつ、放電容量も大きい。そのため、本発明のリチウムイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
According to the method for producing a graphite material of the present invention, a transition metal oxide containing a transition metal that acts as a graphitization catalyst for a graphite precursor can be uniformly and firmly attached to the surface of the graphite precursor. it can. Since the method for producing a graphite material according to the present invention is a method in which a transition metal hydroxide or oxide is reactively attached to a graphite precursor, the hydroxide or oxide is formed into a film on the surface of the graphite precursor. Can be attached. As a result, graphitization does not occur on the entire surface of the graphite precursor, and the crystallization of the graphite material does not become uneven. Moreover, industrially stable production is possible, and the production cost of the graphite material itself is low.
A lithium ion secondary battery using the graphite material of the present invention as a negative electrode material is excellent in initial charge / discharge efficiency and has a large discharge capacity. Therefore, the lithium ion secondary battery of the present invention satisfies the recent demand for higher energy density of the battery, and is effective in reducing the size and performance of the mounted device.

以下、本発明をより具体的に説明する。
リチウムイオン二次電池は、通常、非水電解質、負極および正極を主たる電池構成要素とし、これら要素が、例えば、電池缶内に封入されている。負極および正極はそれぞれリチウムイオンの担持体として作用する。充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極からリチウムイオンが離脱する電池機構によっている。
Hereinafter, the present invention will be described more specifically.
A lithium ion secondary battery usually has a non-aqueous electrolyte, a negative electrode, and a positive electrode as main battery components, and these components are enclosed in, for example, a battery can. The negative electrode and the positive electrode each act as a lithium ion carrier. The battery mechanism is such that lithium ions are occluded in the negative electrode during charging, and lithium ions are released from the negative electrode during discharging.

(黒鉛前駆体)
本発明に使用する黒鉛前駆体は、1500℃以上の温度に加熱したときに容易に黒鉛化する炭素材料であることが好ましく、石油系または石炭系のタールおよび/またはピッチ類、樹脂類など、あるいは、これらの誘導体である。具体的な黒鉛前駆体としては、石油系または石炭系のタールおよび/またはピッチ類を、不活性気体雰囲気下、350〜450℃の温度で加熱してメソフェーズ小球体を生成させ、熱処理生成物からマトリックスを除去して得たメソフェーズ小球体; 石油系または石炭系のタールおよび/またはピッチ類を、不活性気体雰囲気下、350〜1490℃の温度で加熱してメソフェーズ重合体またはメソフェーズ焼成体を生成させ、該重合体または該焼成体を紡糸し、酸化不融化処理を施して得たメソフェーズ繊維などのメソフェーズ系炭素材料; 石油コークス、ニードルコークス、生コークス、グリーンコークス、ピッチコークスなどのコークス系炭素材料; フェノール樹脂、フルフリルアルコール樹脂、フラン樹脂などの熱硬化性樹脂などが挙げられる。これらは複数種の炭素材料や、天然黒鉛、人造黒鉛などの黒鉛質材料との混合物、積層物、被覆物、造粒物であってもよい。中でも、メソフェーズ系炭素材料が好ましく、メソフェーズ小球体が特に好ましい。
(Graphite precursor)
The graphite precursor used in the present invention is preferably a carbon material that is easily graphitized when heated to a temperature of 1500 ° C. or higher, such as petroleum-based or coal-based tars and / or pitches, resins, Alternatively, these are derivatives. As specific graphite precursors, petroleum-based or coal-based tars and / or pitches are heated at a temperature of 350 to 450 ° C. in an inert gas atmosphere to generate mesophase spherules. Mesophase microspheres obtained by removing the matrix; petroleum or coal-based tars and / or pitches are heated at a temperature of 350 to 1490 ° C. in an inert gas atmosphere to produce a mesophase polymer or mesophase calcined product A mesophase-based carbon material such as mesophase fiber obtained by spinning the polymer or the fired body and subjecting it to oxidative infusibilization; coke-based carbon such as petroleum coke, needle coke, green coke, green coke, pitch coke Material: Thermosetting resin such as phenol resin, furfuryl alcohol resin, furan resin, etc. And the like. These may be a plurality of types of carbon materials, a mixture with a graphite material such as natural graphite or artificial graphite, a laminate, a coating, or a granulated material. Among these, mesophase carbon materials are preferable, and mesophase microspheres are particularly preferable.

本発明に使用する黒鉛前駆体は、粒状、塊状、球状、楕円体状、板状、繊維状、フィルム状、鱗片状などのいずれであってもよいが、球状に近い、すなわち、アスペクト比が1に近い粒状が好ましい。メソフェーズ小球体のアスペクト比も3以下がより好ましく、2以下がさらに好ましい。
本発明に使用する黒鉛前駆体は、体積換算の平均粒子径が1〜100μmであることが好ましく、3〜50μmであることが特に好ましい。1μm未満では、最終的に得られる黒鉛質材料をリチウムイオン二次電池の負極材料に用いた場合に、初期充放電効率の低下が生じるおそれがあり、100μm超では、急速充放電特性やサイクル特性が低下するおそれがある。体積換算の平均粒子径とは、レーザー回折式粒度分布計により粒度分布の累積度数が体積百分率で50%になる粒子径である。
以下、断りがなく、単に平均粒子径と記したものは、全てこのような方法で測定した場合における粒子径を意味するものとする。
The graphite precursor used in the present invention may be any of granular, massive, spherical, ellipsoidal, plate-like, fiber-like, film-like, scale-like, etc., but is nearly spherical, that is, the aspect ratio is A granularity close to 1 is preferred. The aspect ratio of the mesophase spherules is also preferably 3 or less, and more preferably 2 or less.
The graphite precursor used in the present invention preferably has a volume-converted average particle diameter of 1 to 100 μm, particularly preferably 3 to 50 μm. If the thickness is less than 1 μm, the initial charge / discharge efficiency may be lowered when the finally obtained graphite material is used as a negative electrode material for a lithium ion secondary battery. May decrease. The average particle diameter in terms of volume is a particle diameter at which the cumulative frequency of particle size distribution is 50% by volume by a laser diffraction particle size distribution meter.
Hereinafter, there is no notice, and what is simply described as the average particle diameter means the particle diameter when measured by such a method.

(黒鉛前駆体の予備加熱)
本発明に使用する黒鉛前駆体は、黒鉛化のために1500℃以上の温度に加熱したときに溶融しないように、予め非酸化性気体雰囲気下で加熱してから用いることが好ましい。予備加熱の温度は1500℃未満であり、好ましくは800℃未満である。予備加熱の時間は特に限定されないが、数時間程度であればよい。
予備加熱後の黒鉛前駆体の粒子形状、平均粒子径は、黒鉛化処理後の黒鉛質材料の粒子形状、平均粒子径にほぼ同じであることから、黒鉛化処理前に予め所望の粒子形状、平均粒子径に調整しておくことが好ましい。例えば、平均粒子径が1〜100μmのメソフェーズ小球体を800℃以下の温度で予備加熱して、そのまま、または粉砕して所望の粒子形状、平均粒子径の球状または塊状の黒鉛前駆体に調整することが好ましい。粉砕、分級の方法は特に限定されない。また、予備加熱を複数回繰返してもよい。
(Preheating of graphite precursor)
The graphite precursor used in the present invention is preferably used after heating in a non-oxidizing gas atmosphere in advance so as not to melt when heated to a temperature of 1500 ° C. or higher for graphitization. The temperature of the preheating is less than 1500 ° C, preferably less than 800 ° C. The preheating time is not particularly limited, but may be about several hours.
Since the particle shape and average particle diameter of the graphite precursor after preheating are substantially the same as the particle shape and average particle diameter of the graphitic material after graphitization treatment, the desired particle shape before graphitization treatment, It is preferable to adjust the average particle diameter. For example, a mesophase spherule having an average particle size of 1 to 100 μm is preheated at a temperature of 800 ° C. or less and is directly or pulverized to prepare a spherical or massive graphite precursor having a desired particle shape and average particle size. It is preferable. The method of pulverization and classification is not particularly limited. Further, the preheating may be repeated a plurality of times.

(黒鉛前駆体の予備酸化・酸素含有化合物の予備付着)
本発明に使用する黒鉛前駆体には、水酸化物付着工程または酸化工程の前に、予め酸化処理または酸素含有化合物の付着処理を施すことが好ましい。該予備処理により黒鉛前駆体の表面が親水化し、水酸化物付着工程または酸化工程において、遷移金属水酸化物または水に難溶性または不溶性の遷移金属酸化物が該黒鉛前駆体に一様に膜状に、かつ、強固に付着する。
(Pre-oxidation of graphite precursor and pre-adhesion of oxygen-containing compounds)
The graphite precursor used in the present invention is preferably subjected to an oxidation treatment or an oxygen-containing compound adhesion treatment in advance before the hydroxide adhesion step or the oxidation step. The surface of the graphite precursor is hydrophilized by the pretreatment, and a transition metal hydroxide or a transition metal oxide hardly soluble or insoluble in water is uniformly formed on the graphite precursor in the hydroxide adhesion step or the oxidation step. It adheres firmly in a shape.

前記酸化処理または前記酸素含有化合物の付着処理に係わる予備処理方法は特に限定されない。
前記酸化処理は、空気酸化、酸化剤による化学的酸化などである。空気酸化は黒鉛前駆体を空気中に放置するだけでもよいが、容器中で攪拌したり、加熱したり、空気を流通させることが好ましい。
化学的酸化は、黒鉛前駆体と酸化剤を接触できるいかなる方法によってもよいが、酸化剤溶液中での混合、攪拌による方法が好ましい。酸化剤としては塩酸、硫酸、硝酸などの酸が例示される。
The pretreatment method relating to the oxidation treatment or the adhesion treatment of the oxygen-containing compound is not particularly limited.
The oxidation treatment includes air oxidation, chemical oxidation with an oxidizing agent, and the like. In the air oxidation, the graphite precursor may be left in the air, but it is preferable to stir in the container, heat, or circulate the air.
The chemical oxidation may be performed by any method capable of contacting the graphite precursor and the oxidizing agent, but a method of mixing and stirring in an oxidizing agent solution is preferable. Examples of the oxidizing agent include acids such as hydrochloric acid, sulfuric acid, and nitric acid.

前記酸素含有化合物の予備付着処理は、黒鉛前駆体に酸素含有化合物が付着できるいかなる方法によってもよいが、例えば、黒鉛前駆体と下記の高分子化合物の溶液を混合し、溶媒を除去し、乾燥する方法が挙げられる。該酸素含有化合物の付着は、被覆、接着、蒸着、埋設などの種々を包含する広義である。酸素含有化合物としては、水酸基やカルボキシル基などの官能基を含む有機化合物や高分子化合物または無機酸化物が用いられる。該有機化合物としては安息香酸ナトリウム、ナフタレンカルボン酸ナトリウム、アルコキシアミノシランなどのシランカップリング剤などが挙げられる。該高分子化合物としてはポリアクリル酸、ポリビニルアルコール、フェノール樹脂などの水分散性、水溶性またはアルコール溶解性樹脂が挙げられる。無機酸化物としては、アルミナ、シリカ、ジルコニア、チタニアなどが挙げられる。
無機酸化物を付着させる方法としては、黒鉛前駆体と無機酸化物の混合物に圧縮力や剪断力などの機械的エネルギーを付与し、黒鉛前駆体の表面に無機酸化物を埋設することが好ましい。機械的エネルギーを付与する装置としては、公知の混合機、粉砕機、メカノケミカル処理装置などが使用できる。なお、黒鉛前駆体の粉砕と無機酸化物の埋設を同時に行ってもよい。
The preliminary adhesion treatment of the oxygen-containing compound may be performed by any method that allows the oxygen-containing compound to adhere to the graphite precursor. For example, the graphite precursor and the following polymer compound solution are mixed, the solvent is removed, and the drying is performed. The method of doing is mentioned. The adhesion of the oxygen-containing compound has a broad meaning including various types such as coating, adhesion, vapor deposition, and embedding. As the oxygen-containing compound, an organic compound, a polymer compound, or an inorganic oxide containing a functional group such as a hydroxyl group or a carboxyl group is used. Examples of the organic compound include silane coupling agents such as sodium benzoate, sodium naphthalenecarboxylate, and alkoxyaminosilane. Examples of the polymer compound include water-dispersible, water-soluble or alcohol-soluble resins such as polyacrylic acid, polyvinyl alcohol, and phenol resin. Examples of the inorganic oxide include alumina, silica, zirconia, titania and the like.
As a method for attaching the inorganic oxide, it is preferable to embed the inorganic oxide on the surface of the graphite precursor by applying mechanical energy such as compressive force or shearing force to the mixture of the graphite precursor and the inorganic oxide. As a device for imparting mechanical energy, a known mixer, pulverizer, mechanochemical processing device, or the like can be used. The pulverization of the graphite precursor and the embedding of the inorganic oxide may be performed simultaneously.

前記予備酸化処理後の黒鉛前駆体に占める酸素の質量割合は0.1〜10%が好ましく、0.5〜3%が特に好ましい。また、酸素含有化合物の予備付着処理後の黒鉛前駆体に占める酸素含有化合物の質量割合は0.1〜5%が好ましく、0.3〜2%が特に好ましい。酸素含有量または酸素含有化合物含有量が好適範囲より少ないと親水性の向上が不充分で、その後の水酸化物付着工程における遷移金属水酸化物、または、酸化工程における遷移金属酸化物の黒鉛前駆体に対する一様な膜状の付着や強固な付着が得られない。逆に好適範囲より多いと黒鉛前駆体を黒鉛化処理した場合に黒鉛化度(結晶性)の向上が阻害され、リチウムイオン二次電池の放電容量の低下を招くおそれがある。   The mass proportion of oxygen in the graphite precursor after the pre-oxidation treatment is preferably 0.1 to 10%, particularly preferably 0.5 to 3%. Moreover, 0.1-5% is preferable and, as for the mass ratio of the oxygen containing compound to the graphite precursor after the preliminary | backup adhesion treatment of an oxygen containing compound, 0.3-2% is especially preferable. If the oxygen content or the oxygen-containing compound content is less than the preferred range, the hydrophilicity is not sufficiently improved, and the transition metal hydroxide in the subsequent hydroxide adhesion step or the transition metal oxide graphite precursor in the oxidation step Uniform film-like adhesion or strong adhesion to the body cannot be obtained. On the other hand, when the amount is larger than the preferred range, when the graphite precursor is graphitized, the improvement of the degree of graphitization (crystallinity) is hindered, and the discharge capacity of the lithium ion secondary battery may be reduced.

(水酸化物付着工程・酸化工程)
本発明の黒鉛前駆体への水酸化物付着工程は、黒鉛前駆体と水溶性遷移金属化合物とアルカリを水中で接触させて、水溶性遷移金属化合物の加水分解で生成した遷移金属水酸化物を該黒鉛前駆体の表面に一様に、膜状に析出させ、付着させることを特徴とする。その後、該水溶液に、酸化剤または酸化性気体を加えて、付着している該遷移金属水酸化物を水に難溶性または不溶性の遷移金属酸化物に酸化し、該遷移金属酸化物が一様に、膜状に付着する黒鉛前駆体を得ることができる。
(Hydroxide adhesion process / oxidation process)
In the hydroxide adhesion step to the graphite precursor of the present invention, the transition metal hydroxide produced by hydrolysis of the water-soluble transition metal compound is obtained by bringing the graphite precursor, the water-soluble transition metal compound and alkali into contact with each other in water. It is characterized by depositing and adhering uniformly on the surface of the graphite precursor. Thereafter, an oxidant or an oxidizing gas is added to the aqueous solution to oxidize the adhering transition metal hydroxide to a transition metal oxide that is hardly soluble or insoluble in water. In addition, it is possible to obtain a graphite precursor adhering to a film.

水溶性遷移金属化合物は、Ti、V、Cr、Mn、Fe、Co、Ni、Zr、Nb、Mo、Pd、Agなどの遷移金属の水溶性化合物であれば特に限定されないが、塩化物、硝化物、窒化物、臭化物などが挙げられる。該水溶性遷移金属化合物は、金属錯塩、各種酸塩、アンモニウム塩、酢酸塩などの錯体や塩であってもよい。なかでも、Fe、CoおよびNiから選ばれた少なくとも1種の遷移金属の塩化物が好ましい。
該水溶性遷移金属化合物の配合量は、黒鉛前駆体100質量部に対して、該水溶性遷移金属化合物に含まれる遷移金属として0.5〜10質量部であることが好ましく、1〜5質量部であることが特に好ましい。0.5質量部未満の場合は、黒鉛前駆体を黒鉛化処理する際の黒鉛化触媒としての作用効果が不充分である。10質量部超の場合は、黒鉛化工程で大量の遷移金属が瞬時に蒸発して黒鉛化炉から噴出するなどの問題を生じることがある。
The water-soluble transition metal compound is not particularly limited as long as it is a water-soluble compound of a transition metal such as Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Pd, and Ag, but chloride, nitrification Products, nitrides, bromides and the like. The water-soluble transition metal compound may be a complex or salt such as a metal complex salt, various acid salts, ammonium salt, and acetate. Among these, at least one transition metal chloride selected from Fe, Co, and Ni is preferable.
It is preferable that the compounding quantity of this water-soluble transition metal compound is 0.5-10 mass parts as a transition metal contained in this water-soluble transition metal compound with respect to 100 mass parts of graphite precursors, and 1-5 masses. Part is particularly preferred. When the amount is less than 0.5 part by mass, the effect as a graphitization catalyst when the graphite precursor is graphitized is insufficient. In the case of more than 10 parts by mass, there may be a problem that a large amount of transition metal is instantaneously evaporated and ejected from the graphitization furnace in the graphitization step.

アルカリは、前記水溶性遷移金属化合物を遷移金属水酸化物に加水分解させ得るものであればいかなるものでもよい。アルカリとしては水酸化ナトリウム、水酸化カリウム、アンモニア水などが例示される。前記水溶性遷移金属化合物として特に好適なFe、CoおよびNiの塩化物を用いる場合には、水酸化ナトリウム、アンモニア水などのアルカリを用いることが好ましい。アルカリは前記水溶性遷移金属化合物を遷移金属水酸化物に変化させるために必要な量を配合すればよく、前記水溶性遷移金属化合物1当量に対し0.9〜2.0当量、特に1.0〜1.5当量であることが好ましい。   Any alkali may be used as long as it can hydrolyze the water-soluble transition metal compound into a transition metal hydroxide. Examples of the alkali include sodium hydroxide, potassium hydroxide and aqueous ammonia. When particularly suitable Fe, Co and Ni chlorides are used as the water-soluble transition metal compound, it is preferable to use an alkali such as sodium hydroxide or aqueous ammonia. The alkali may be added in an amount necessary for changing the water-soluble transition metal compound to a transition metal hydroxide, and 0.9 to 2.0 equivalents, particularly 1. It is preferably 0 to 1.5 equivalents.

本発明の遷移金属水酸化物の酸化工程は、遷移金属水酸化物付着工程で得られた水溶液に酸化剤または酸化性気体を投入し、遷移金属水酸化物が一様に、膜状に付着した黒鉛前駆体に、酸化剤または酸化性気体を接触させるだけである。これにより、該遷移金属水酸化物は水に難溶性または不溶性の遷移金属酸化物に酸化され、該遷移金属酸化物が該黒鉛前駆体の表面に一様に、膜状に付着させることができる。酸化剤または酸化性気体による酸化処理を加熱して行ってもよく、その場合は50〜90℃の温度であることが好ましい。前記酸化処理の時間は特に限定されないが6時間程度あれば充分である。勿論、酸化剤による酸化処理の場合には攪拌してもよく、酸化性気体による酸化処理の場合には空気バブリングが好ましい。   In the oxidation process of the transition metal hydroxide of the present invention, the oxidant or oxidizing gas is introduced into the aqueous solution obtained in the transition metal hydroxide adhesion process, and the transition metal hydroxide is uniformly deposited in a film form. The oxidized graphite precursor is simply brought into contact with an oxidizing agent or oxidizing gas. As a result, the transition metal hydroxide is oxidized into a transition metal oxide that is hardly soluble or insoluble in water, and the transition metal oxide can be uniformly deposited on the surface of the graphite precursor. . The oxidation treatment with an oxidizing agent or oxidizing gas may be performed by heating, and in that case, the temperature is preferably 50 to 90 ° C. The time for the oxidation treatment is not particularly limited, but about 6 hours is sufficient. Of course, in the case of oxidation treatment with an oxidizing agent, stirring may be performed, and in the case of oxidation treatment with an oxidizing gas, air bubbling is preferable.

酸化剤は、遷移金属水酸化物を水に難溶性または不溶性の遷移金属酸化物に酸化させ得るものであればいかなるものでもよいが、亜硝酸ナトリウム、硝酸ナトリウム、過酸化水素などが挙げられる。酸化剤は遷移金属水酸化物を遷移金属酸化物に酸化させるために必要な量を配合すればよいが、酸化還元電位計にて−500〜−200mVの領域となるように酸化度を調整することが好ましい。   The oxidizing agent is not particularly limited as long as it can oxidize transition metal hydroxide to water-insoluble or insoluble transition metal oxide, and examples thereof include sodium nitrite, sodium nitrate, and hydrogen peroxide. The oxidizing agent may be blended in an amount necessary to oxidize the transition metal hydroxide to the transition metal oxide. It is preferable.

本発明において、黒鉛前駆体、遷移金属化合物およびアルカリを含有する水溶液に酸化剤または酸化性気体を投入して、遷移金属化合物を遷移金属酸化物に直接酸化する場合、前記した遷移金属水酸化物付着工程後の酸化工程と実質的に異なるところがないので、直接酸化についての説明を省略する。   In the present invention, when an oxidizing agent or oxidizing gas is added to an aqueous solution containing a graphite precursor, a transition metal compound and an alkali to directly oxidize the transition metal compound to a transition metal oxide, the transition metal hydroxide described above Since there is no substantial difference from the oxidation step after the deposition step, description of direct oxidation is omitted.

前記水酸化物付着工程または酸化工程において、黒鉛前駆体の水中での分散性を高めるために、公知の界面活性剤、分散剤、消泡剤などの添加剤を配合することもできる。これらの添加剤は、遷移金属化合物と同種または異種の金属化合物、半金属化合物を含んでいてもよい。   In the hydroxide adhesion step or the oxidation step, additives such as known surfactants, dispersants and antifoaming agents can be blended in order to increase the dispersibility of the graphite precursor in water. These additives may contain the same or different metal compound or metalloid compound as the transition metal compound.

前記水酸化物付着処理とその後の酸化処理、または、直接酸化処理により得られた遷移金属酸化物は、水に難溶性または不溶性の酸化物である。該遷移金属酸化物は実質的に酸化物の形態になっていればよく、水酸化物などの酸化物以外の化合物を一部含んでいてもよい。そして、遷移金属酸化物は黒鉛前駆体の表面に薄膜状に一様に強固に付着している。   The transition metal oxide obtained by the hydroxide adhesion treatment and subsequent oxidation treatment or direct oxidation treatment is an oxide that is hardly soluble or insoluble in water. The transition metal oxide only needs to be substantially in the form of an oxide, and may partially contain a compound other than an oxide such as a hydroxide. The transition metal oxide is uniformly and firmly attached to the surface of the graphite precursor in the form of a thin film.

(分離工程)
前記水酸化物付着工程とその後の酸化工程後、または、直接酸化工程後の水溶液には、水に難溶性または不溶性の遷移金属酸化物が一様に膜状に強固に付着する黒鉛前駆体が含有されているので、これを水中から分離する。分離方法は特に限定されないが、遠心分離式ろ過器、フィルタープレス、ヌッチェ式ろ過器などの公知のろ過器を用いて行うことができる。分離された遷移金属酸化物が表面に付着した黒鉛前駆体を水洗処理し、酸化工程によって生成した副生物(塩化ナトリウムなどのアルカリ塩類)を除去することが好ましい。該副生物の残存量は0.5質量%以下とすることが好ましい。さらに、残存する水を乾燥除去することが好ましい。また、残存するアルカリは水溶液としてほぼ完全に除去されるが、分離された遷移金属酸化物が表面に付着した黒鉛前駆体に微量付着していてもさしつかえない。
(Separation process)
In the aqueous solution after the hydroxide adhering step and the subsequent oxidation step, or after the direct oxidation step, a graphite precursor to which a poorly soluble or insoluble transition metal oxide uniformly adheres firmly to a film is formed. Since it is contained, it is separated from the water. The separation method is not particularly limited, but can be performed using a known filter such as a centrifugal filter, a filter press, a Nutsche filter, or the like. It is preferable to remove the by-products (alkali salts such as sodium chloride) generated by the oxidation process by washing the graphite precursor having the separated transition metal oxide attached to the surface with water. The residual amount of the by-product is preferably 0.5% by mass or less. Furthermore, it is preferable to remove the remaining water by drying. Further, the remaining alkali is almost completely removed as an aqueous solution, but the separated transition metal oxide may be attached in a trace amount to the graphite precursor attached to the surface.

(黒鉛化工程)
分離、乾燥された該黒鉛前駆体の黒鉛化処理は、アチェソン炉などの公知の高温炉を用いて1500℃以上の温度、好ましくは1500〜3300℃、より好ましくは2500〜3300℃、さらに好ましくは2800〜3300℃の温度に、0.1〜50時間、好ましくは1〜20時間加熱して行われる。1500℃未満の温度では黒鉛構造が生成しないばかりか、遷移金属による黒鉛化促進作用が発現されず、遷移金属酸化物または遷移金属炭化物として残存するため、これを負極材料に用いたリチウムイオン二次電池の放電容量が不足することがある。3300℃超の温度では黒鉛の一部が昇華することがある。黒鉛化処理は非酸化性雰囲気で行うことが好ましい。なお、遷移金属は黒鉛化処理の際に蒸発、昇華、分解などを起こすので、黒鉛質材料に実質的に混入することはない。
(Graphitization process)
The graphitized treatment of the separated and dried graphite precursor is performed at a temperature of 1500 ° C. or higher, preferably 1500 to 3300 ° C., more preferably 2500 to 3300 ° C., more preferably using a known high-temperature furnace such as an Acheson furnace. The heating is performed at a temperature of 2800 to 3300 ° C. for 0.1 to 50 hours, preferably 1 to 20 hours. When the temperature is less than 1500 ° C., not only the graphite structure is generated, but also the transition metal oxide or transition metal carbide does not exhibit the action of promoting the graphitization by the transition metal, and the lithium ion secondary used as the negative electrode material. Battery discharge capacity may be insufficient. At temperatures above 3300 ° C, some of the graphite may sublime. The graphitization treatment is preferably performed in a non-oxidizing atmosphere. In addition, since the transition metal causes evaporation, sublimation, decomposition, etc. during the graphitization treatment, the transition metal is not substantially mixed into the graphite material.

前記黒鉛化処理で得られた黒鉛質材料は、高温炉から取り出され、必要に応じて、粉砕、分級、篩分けなどの粒度調整や形状加工といった後処理を経て、リチウムイオン二次電池の負極材料や導電材などの材料として使用される。   The graphite material obtained by the graphitization treatment is taken out from the high-temperature furnace, and if necessary, undergoes post-treatment such as particle size adjustment and shape processing such as pulverization, classification, and sieving, and the negative electrode of the lithium ion secondary battery Used as a material such as a material or a conductive material.

(黒鉛質材料)
本発明の黒鉛質材料は、その形状、大きさは黒鉛前駆体の形状、大きさと事実上同じである。黒鉛前駆体の形状および平均粒子径については前述した。
本発明の黒鉛質材料の比表面積は0.5〜20m/g、特に1〜10m/gであることが好ましい。20m/gを超えると、負極合剤ペーストの粘度調整が不安定になったり、バインダーによる粘着力が低下することがある。
(Graphite material)
The shape and size of the graphite material of the present invention is substantially the same as the shape and size of the graphite precursor. The shape and average particle diameter of the graphite precursor have been described above.
The specific surface area of the graphite material of the present invention is preferably 0.5 to 20 m 2 / g, particularly 1 to 10 m 2 / g. If it exceeds 20 m 2 / g, the viscosity adjustment of the negative electrode mixture paste may become unstable, or the adhesive force due to the binder may decrease.

本発明の黒鉛質材料は、リチウムイオン二次電池の負極材料として用いたときに高い放電容量を得るために、また、各種導電材として用いたときに高い導電性を得るために、結晶性が高いことが好ましい。特にX線回折における格子面間隔d002が0.34nm以下、特に0.337nm以下、さらに0.3365nm以下であることが好ましい。ここで、格子面間隔d002とは、X線としてCuKα線を用い、高純度シリコンを標準物質とするX線回折法[大谷杉郎、炭素繊維、733−742頁(1986)、近代編集社]によって測定された値である。 The graphite material of the present invention has a crystallinity in order to obtain a high discharge capacity when used as a negative electrode material of a lithium ion secondary battery and to obtain a high conductivity when used as various conductive materials. High is preferred. In particular, the lattice spacing d 002 in X-ray diffraction is preferably 0.34 nm or less, particularly 0.337 nm or less, and more preferably 0.3365 nm or less. Here, the lattice spacing d 002 is an X-ray diffraction method using CuKα rays as X-rays and high-purity silicon as a standard material [Otani Sugirou, carbon fiber, pages 733-742 (1986), Modern Editing Co., Ltd. ] Is a value measured by.

なお、本発明の黒鉛質材料は、本発明の目的を損なわない範囲で、異種の黒鉛質材料、非晶質ハードカーボンなどの炭素質材料、有機物、金属、金属化合物などを配合してもよい。また、液相、気相、固相における各種化学的処理、加熱処理、物理的処理、酸化処理などを施してもよい。   The graphite material of the present invention may be blended with different types of graphite materials, carbonaceous materials such as amorphous hard carbon, organic substances, metals, metal compounds, etc., as long as the object of the present invention is not impaired. . Further, various chemical treatments in a liquid phase, a gas phase, and a solid phase, heat treatment, physical treatment, oxidation treatment, and the like may be performed.

(負極)
リチウムイオン二次電池用の負極の作製は、本発明の負極材料の電池特性を充分に引き出し、かつ賦型性が高く、化学的、電気化学的に安定な負極を得ることができる成型方法であればいずれでもよいが、本発明の負極材料と結合剤を溶剤および/または分散媒(以後、単に溶剤とも称す)中で混合して、ペースト化し、得られた負極合剤ペーストを集電材に塗布した後、溶剤を除去し、プレスなどにより固化および/または賦形する方法によるのが一般的である。すなわち、まず、本発明の負極材料を分級などにより所望の粒度に調整し、結合剤と混合して得た組成物を溶剤に分散させ、ペースト状にして負極合剤を調
製する。
(Negative electrode)
The production of a negative electrode for a lithium ion secondary battery is a molding method that can sufficiently draw out the battery characteristics of the negative electrode material of the present invention, and has a high moldability and a chemically and electrochemically stable negative electrode. The negative electrode material of the present invention and the binder may be mixed in a solvent and / or a dispersion medium (hereinafter simply referred to as a solvent) to form a paste, and the obtained negative electrode mixture paste is used as a current collector. In general, after coating, the solvent is removed, and solidification and / or shaping is performed by pressing or the like. That is, first, the negative electrode material of the present invention is adjusted to a desired particle size by classification or the like, and a composition obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste.

より具体的には、本発明の負極材料と、例えば、カルボキシメチルセルロース、スチレン−ブタジエンゴムなどの結合剤を、水、アルコールなどの溶剤中で混合して得たスラリー、またはポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末を、イソピロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、負極合剤ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは30〜100μmである。   More specifically, a slurry obtained by mixing the negative electrode material of the present invention and a binder such as carboxymethyl cellulose or styrene-butadiene rubber in a solvent such as water or alcohol, or polytetrafluoroethylene or polyfluoride. A slurry obtained by mixing a fluororesin powder such as vinylidene fluoride with a solvent such as isopropyl alcohol, N-methylpyrrolidone or dimethylformamide is stirred using a known stirrer, mixer, kneader, kneader or the like. A negative electrode mixture paste is prepared by mixing. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 30 to 100 μm.

また、負極合剤層は、本発明の負極材料と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。ただし、乾式混合では、十分な負極の強度を得るために多くの結合剤を必要とし、結合剤が過多の場合は、リチウムイオン二次電池の放電容量や急速充放電効率が低下することがある。   The negative electrode mixture layer can also be produced by dry-mixing the negative electrode material of the present invention and a resin powder such as polyethylene and polyvinyl alcohol and hot pressing in a mold. However, dry mixing requires a large amount of binder to obtain sufficient strength of the negative electrode, and if the binder is excessive, the discharge capacity and rapid charge / discharge efficiency of the lithium ion secondary battery may be reduced. .

負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電材との接
着強度をさらに高めることができる。
負極に用いる集電材の形状は、特に限定されないが、箔状、メッシュ、エキスパンドメタルなどの網状物などが好ましい。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電材の厚みは、箔状の場合は好ましくは5〜20μmである。
After the negative electrode mixture layer is formed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased by press bonding such as pressurization.
The shape of the current collector used for the negative electrode is not particularly limited, but is preferably a foil, a mesh, a net-like material such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably 5 to 20 μm in the case of a foil.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時には、リチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として本発明の負極材料を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要
素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. Each of the positive electrode and the negative electrode is composed of a lithium ion carrier, and during charging, lithium ions are occluded in the negative electrode and discharged. It depends on the battery mechanism that is detached from the negative electrode.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used as the negative electrode material, and other battery components conform to the elements of a general lithium ion secondary battery.

(正極)
正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電材の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/脱離し得るものを選択するのが好ましく、リチウムと遷移金属の複合カルコゲン化物、なかでもリチウムと遷移金属の複合酸化物(リチウ含有遷移金属酸化物とも称す)が好ましい。該複合酸化物は、リチウムと2種類以上の遷移金属を固溶したものであってもよい。
リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 2(式中Xは0≦X≦1の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)またはLiM1 2-Y2 4(式中Yは0≦Y≦2の範囲の数値であり、M1、M2は少なくとも一種の遷移金属元素である)で示される。Mで示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどである。好ましい具体例は、LiCoO2、LiNiO2、LiMnO2、LiNi0.9Co0.12、LiNi0.5Co0.52などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を混合し、酸素雰囲気下600〜1000℃の温度
で焼成することにより得ることができる。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / desorb a sufficient amount of lithium, and is a complex chalcogenide of lithium and transition metal, and in particular, a complex oxide of lithium and transition metal (containing lithium) (Also referred to as transition metal oxide) is preferred. The composite oxide may be a solid solution of lithium and two or more transition metals.
Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, and M 1 and M 2 are at least one kind of transition. A metal element) or LiM 1 2-Y M 2 Y O 4 (where Y is a numerical value in the range of 0 ≦ Y ≦ 2, and M 1 and M 2 are at least one transition metal element) It is. Transition metal elements represented by M are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, and the like. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 and the like.
The lithium-containing transition metal oxide is obtained by, for example, using lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, mixing these starting materials, and firing at a temperature of 600 to 1000 ° C. in an oxygen atmosphere. Can be obtained.

正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭素塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤などの各種添加剤を適宜に使用することができる。   The positive electrode active material may be used alone or in combination of two or more. For example, a carbon salt such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent, can be used suitably.

正極は、正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電材の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物など
公知のものが使用される。
集電材の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電材の材質は、アルミニウム、ステンレス、ニッケル等であ
る。その厚さは10〜40μmのものが好適である。
The positive electrode is manufactured by applying a positive electrode mixture made of a positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both surfaces of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known ones such as graphitized materials are used.
The shape of the current collector is not particularly limited, and a foil or mesh or net-like material such as expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電材に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に
集電材に接着される。
Similarly to the negative electrode, the positive electrode mixture may be dispersed in a solvent to form a paste, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After the layer is formed, pressure bonding such as press pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(電解質)
本発明に用いられる電解質としては、溶媒と電解質塩からなる有機系電解質や、高分子化合物と電解質塩とからなるポリマー電解質などが用いられる。電解質塩としては、例えば、LiPF、LiBF、LiAsF、LiClO、LiB(C、LiCl、LiBr、LiCFSO、LiCHSO、LiN(CFSO、LiC(CFSO、LiN(CFCHOSO、LiN(CFCFOSO、LiN(HCFCFCHOSO、LiN((CFCHOSO、LiB[C(CF、LiAlCl、LiSiFなどのリチウム塩を用いることができる。特にLiPF、LiBFが酸化安定性の点から好ましく用いられる。
有機系電解質中の電解質塩濃度は0.1〜5mol/lが好ましく、0.5〜3.0mol/l
がより好ましい。
(Electrolytes)
As the electrolyte used in the present invention, an organic electrolyte composed of a solvent and an electrolyte salt, a polymer electrolyte composed of a polymer compound and an electrolyte salt, and the like are used. Examples of the electrolyte salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2. , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 Lithium salts such as 2 CHOSO 2 ) 2 , LiB [C 5 H 3 (CF 3 ) 2 ] 4 , LiAlCl 4 , LiSiF 5 can be used. In particular, LiPF 5 and LiBF 4 are preferably used from the viewpoint of oxidation stability.
The electrolyte salt concentration in the organic electrolyte is preferably 0.1 to 5 mol / l, preferably 0.5 to 3.0 mol / l.
Is more preferable.

有機系電解質の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソフラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   Examples of the organic electrolyte solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran. , Γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxofuran, anisole, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane , Dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as dimethyl sulfite.

非水電解質をポリマー電解質とする場合には、可塑剤(非水電解液)でゲル化されたマトリックス高分子化合物を含むが、このマトリックス高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系樹脂、ポリメタクリレート系樹脂、ポリアクリレート系樹脂、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独、もしくは混合して用いることができる。
これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いること
が好ましい。
When a non-aqueous electrolyte is used as a polymer electrolyte, it includes a matrix polymer compound gelled with a plasticizer (non-aqueous electrolyte). Examples of the matrix polymer compound include ethers such as polyethylene oxide and cross-linked products thereof. Fluorine-based resins such as vinyl resins, polymethacrylate resins, polyacrylate resins, polyvinylidene fluoride and vinylidene fluoride-hexafluoropropylene copolymers can be used alone or in combination.
Among these, from the viewpoint of oxidation-reduction stability, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.

ポリマー電解質の作製は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および溶媒を混合し、加熱して溶融・溶解する方法が挙げられる。また、混合用有機溶媒に、高分子化合物、リチウム塩、および溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および溶媒を混合し、紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、ポリマーを得る方法な
どを挙げることができる。
ポリマー電解質中の溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。該範囲であると、導電率が高く、機械的強度が強く、フィルム化しやすい。
The production of the polymer electrolyte is not particularly limited, and examples thereof include a method in which a polymer compound constituting a matrix, a lithium salt, and a solvent are mixed and heated to melt and dissolve. In addition, after dissolving a polymer compound, a lithium salt, and a solvent in an organic solvent for mixing, the organic solvent for mixing is evaporated, a polymerizable monomer, a lithium salt, and a solvent are mixed, and ultraviolet rays, electron beams, or molecules are mixed. Examples include a method of polymerizing a polymerizable monomer by irradiating a line and the like to obtain a polymer.
10-90 mass% is preferable and, as for the ratio of the solvent in a polymer electrolyte, 30-80 mass% is more preferable. Within this range, the electrical conductivity is high, the mechanical strength is strong, and a film is easily formed.

本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。
セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
本発明のリチウムイオン二次電池においては、初期充放電効率が高いことから、ゲル電
解質を用いることも可能である。
In the lithium ion secondary battery of the present invention, a separator can also be used.
Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
In the lithium ion secondary battery of the present invention, a gel electrolyte can be used because of the high initial charge / discharge efficiency.

ポリマー電解質を用いたリチウムイオン二次電池は、一般にポリマー電池と呼ばれ、本発明の負極材料を用いてなる負極と、正極およびポリマー電解質から構成される。例えば、負極、ポリマー電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にポリマー電解質を配するようにしてもよい。本発明の負極材料を用いるポリマー電池では、ポリマー電解質にプロピレンカーボネートを含有させることができる。一般にプロピレンカーボネートは黒鉛に対して電気的分解反応が激しいが、本発明の負極材料に対しては分解反応性が低い。   A lithium ion secondary battery using a polymer electrolyte is generally called a polymer battery, and includes a negative electrode using the negative electrode material of the present invention, a positive electrode, and a polymer electrolyte. For example, the negative electrode, the polymer electrolyte, and the positive electrode are laminated in this order, and are housed in a battery outer packaging material. In addition to this, a polymer electrolyte may be further arranged outside the negative electrode and the positive electrode. In the polymer battery using the negative electrode material of the present invention, the polymer electrolyte can contain propylene carbonate. In general, propylene carbonate has a strong electrolysis reaction with respect to graphite, but has a low decomposition reactivity with respect to the negative electrode material of the present invention.

さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。ポリマー電解質を用いたポリマー電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Furthermore, the structure of the lithium ion secondary battery of the present invention is arbitrary, and the shape and form thereof are not particularly limited, and can be arbitrarily selected from a cylindrical shape, a square shape, a coin shape, a button shape, and the like. Can do. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging. In the case of a polymer battery using a polymer electrolyte, a structure enclosed in a laminate film can also be used.

次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、実施例における、黒鉛前駆体および黒鉛質材料の物性は以下の方法で測定した。 アスペクト比は、走査型電子顕微鏡観察において、その形状を確認できる倍率で100個のアスペクト比について計測して得た値の平均値である。
体積換算平均粒子径はレーザー回折式粒度分布計により測定した粒度分布の累積度数が体積百分率で50%となる粒子径である。
格子面間隔d002は前述したX線回折法により求めた。
比表面積は窒素ガス吸着によるBET法により求めた。
また、電池特性は、図1に示すような構成の評価用のボタン型二次電池を作製して評価した。実電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
In addition, the physical property of the graphite precursor and graphite material in an Example was measured with the following method. The aspect ratio is an average value of values obtained by measuring 100 aspect ratios with a magnification capable of confirming the shape in observation with a scanning electron microscope.
The volume-converted average particle size is a particle size at which the cumulative frequency of the particle size distribution measured with a laser diffraction particle size distribution meter is 50% by volume percentage.
The lattice spacing d 002 was determined by the X-ray diffraction method described above.
The specific surface area was determined by the BET method using nitrogen gas adsorption.
The battery characteristics were evaluated by producing a button-type secondary battery for evaluation having a configuration as shown in FIG. A real battery can be manufactured according to a well-known method based on the objective of this invention.

〔実施例1〕
(黒鉛前駆体の予備加熱)
コールタールピッチを450℃で3時間加熱して得たメソフェーズ小球体(平均粒子径25μm)を、窒素気体雰囲気下600℃で3時間焼成して球状のメソフェーズ小球体(黒鉛前駆体)を調製した。アスペクト比は1.2であった。
[Example 1]
(Preheating of graphite precursor)
Mesophase spherules (average particle size 25 μm) obtained by heating coal tar pitch at 450 ° C. for 3 hours were fired at 600 ° C. for 3 hours in a nitrogen gas atmosphere to prepare spherical mesophase spherules (graphite precursor). . The aspect ratio was 1.2.

(黒鉛前駆体の酸化)
攪拌機を備えた反応器に、窒素流通下、前記メソフェーズ小球体100質量部と2%水酸化ナトリウム水溶液136質量部を投入し、攪拌しながら塩化コバルト4.4質量%(コバルト換算で2質量%)を添加した。得られた水溶液を攪拌しながら70℃に昇温したところで、窒素を空気に切り替えて、反応器の底部から空気をバブリングして60分間酸化処理を行った。
空気をバブリングする前の水溶液を採取し、メソフェーズ小球体を取り出してX線回折による定性分析を行ったところ、該メソフェーズ小球体に由来する炭素の他に水酸化コバルトのピークが検出された。
(Oxidation of graphite precursor)
In a reactor equipped with a stirrer, 100 parts by mass of the mesophase spherules and 136 parts by mass of a 2% aqueous sodium hydroxide solution were charged under nitrogen flow, and 4.4 mass% of cobalt chloride (2 mass% in terms of cobalt) while stirring. ) Was added. When the temperature of the obtained aqueous solution was increased to 70 ° C. while stirring, the nitrogen was switched to air, and air was bubbled from the bottom of the reactor to carry out oxidation treatment for 60 minutes.
An aqueous solution before bubbling air was collected, and mesophase spherules were taken out and subjected to qualitative analysis by X-ray diffraction. As a result, a peak of cobalt hydroxide was detected in addition to carbon derived from the mesophase spherules.

(黒鉛前駆体の分離)
酸化処理終了後、水溶液を静置して該メソフェーズ小球体を沈降させ、上澄み液を分離した。該メソフェーズ小球体を吸引ろ過し、イオン交換水で洗浄後、60℃で8時間乾燥して、酸化コバルトが一面に付着した該メソフェーズ小球体を得た。
該メソフェーズ小球体を同様に分析したところ、炭素と酸化コバルトのピークが検出された。走査型電子顕微鏡やEDX(エネルギー分散型蛍光X線分析)で観察すると、酸化コバルトの凝集物は認められず、酸化コバルトに由来するコバルトが該メソフェーズ小球体の表面に薄膜状に付着していることが確認された(図2)。図2(a)は走査型電子顕微鏡写真、図2(b)はEDXでカーボンをマッピングした写真、図2(c)はEDXでコバルトをマッピングした写真である。
(Separation of graphite precursor)
After completion of the oxidation treatment, the aqueous solution was allowed to stand to precipitate the mesophase microspheres, and the supernatant was separated. The mesophase spherules were suction filtered, washed with ion-exchanged water, and then dried at 60 ° C. for 8 hours to obtain the mesophase spherules having cobalt oxide adhered to one surface.
When the mesophase microspheres were analyzed in the same manner, peaks of carbon and cobalt oxide were detected. When observed with a scanning electron microscope or EDX (energy dispersive X-ray fluorescence analysis), no aggregates of cobalt oxide are observed, and cobalt derived from cobalt oxide adheres to the surface of the mesophase spherules in the form of a thin film. (Fig. 2). 2A is a scanning electron micrograph, FIG. 2B is a photograph of carbon mapping with EDX, and FIG. 2C is a photograph of cobalt mapping with EDX.

(黒鉛前駆体の黒鉛化処理)
前記メソフェーズ小球体を窒素気体雰囲気下、3000℃で6時間かけて黒鉛化処理を行い、黒鉛質材料を得た。該黒鉛質材料の平均粒子径は24μmであったが、その形状は黒鉛化処理前の黒鉛前駆体とほぼ同じ球状であった。該黒鉛質材料のアスペクト比は1.2、比表面積は1.2m/g、格子面間隔d002は0.3356nmであった。なお、コバルトの含有量は元素分析の検出限界以下であった。
(Graphitization of graphite precursor)
The mesophase spherules were graphitized at 3000 ° C. for 6 hours in a nitrogen gas atmosphere to obtain a graphite material. The average particle diameter of the graphite material was 24 μm, but its shape was almost the same sphere as the graphite precursor before graphitization. The graphite material had an aspect ratio of 1.2, a specific surface area of 1.2 m 2 / g, and a lattice spacing d 002 of 0.3356 nm. The cobalt content was below the detection limit of elemental analysis.

(負極合剤ペーストの調製)
前記黒鉛黒鉛質材料98質量部、結合剤カルボキシメチルセルローズ1質量部およびスチレンブタジエンラバー1質量部を水に入れ、攪拌して負極合剤ペーストを調製した。
(Preparation of negative electrode mixture paste)
98 parts by mass of the graphite graphite material, 1 part by mass of the binder carboxymethyl cellulose and 1 part by mass of styrene butadiene rubber were placed in water and stirred to prepare a negative electrode mixture paste.

(作用電極の作製)
負極合剤ペーストを、銅箔上に均一な厚さで塗布し、さらに真空中で90℃で分散媒を揮発させて乾燥した。次に、この銅箔上に塗布された負極合剤をローラープレスによって加圧し、さらに直径15.5mmの円形状に打抜くことで、銅箔からなる集電材(厚み16μm)に密着した負極合剤層(厚み60μm)からなる作用電極2を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied on the copper foil with a uniform thickness, and further, the dispersion medium was volatilized at 90 ° C. in vacuum to be dried. Next, the negative electrode mixture applied on the copper foil is pressed by a roller press, and further punched into a circular shape having a diameter of 15.5 mm, thereby adhering to the current collector made of copper foil (thickness 16 μm). A working electrode 2 composed of an agent layer (thickness 60 μm) was produced.

(対極の作製)
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円形状に打抜いて、ニッケルネットからなる集電材と、該集電材に密着したリチウム金属箔(厚み0.5μm
)からなる対極を作製した。
(Production of counter electrode)
A lithium metal foil is pressed onto a nickel net and punched into a circular shape with a diameter of 15.5 mm, and a current collector made of nickel net, and a lithium metal foil in close contact with the current collector (thickness 0.5 μm)
) Was prepared.

(電解質・セパレータ)
エチレンカーボネート33vol%−メチルエチルカーボネート67vol%の混合溶媒に、LiPF6 を1mol/dmとなる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解質液が含浸されたセパ
レータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent of ethylene carbonate 33 vol% -methyl ethyl carbonate 67 vol% to prepare a non-aqueous electrolyte. The obtained non-aqueous electrolyte solution was impregnated into a polypropylene porous body (thickness 20 μm) to produce a separator impregnated with the electrolyte solution.

(評価電池の作製)
評価電池として図1に示すボタン型二次電池を作製した。
集電材7bに密着した作用電極2と集電材7aに密着した対極4との間に、電解質溶液を含浸させたセパレータ5を挟んで、積層した。その後、作用電極集電材7b側が外装カップ1内に、対極集電材7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在
させ、両周縁部をかしめて密閉した。
(Production of evaluation battery)
A button-type secondary battery shown in FIG. 1 was prepared as an evaluation battery.
The separator 5 impregnated with the electrolyte solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a. Then, the exterior cup 1 and the exterior can 3 were put together so that the working electrode current collector 7b side was accommodated in the exterior cup 1 and the counter electrode current collector 7a side was accommodated in the exterior can 3. In that case, the insulating gasket 6 was interposed in the peripheral part of the exterior cup 1 and the exterior can 3, and both peripheral parts were crimped and sealed.

前記のように作製された評価電池について、25℃の温度下で下記のような充放電試験を行い、放電容量、初期充放電効率を計算した。評価結果を表2に示した。   The evaluation battery produced as described above was subjected to the following charge / discharge test at a temperature of 25 ° C., and the discharge capacity and the initial charge / discharge efficiency were calculated. The evaluation results are shown in Table 2.

(放電容量、初期充放電効率)
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとし
た。次式(I)から初期充放電効率を計算した。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)
×100 (I)
なおこの試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離
脱する過程を放電とした。
表1に示すように、作用電極に実施例1の黒鉛質材料を負極材料として用いて得られる評価電池は、高い放電容量を示し、初期充放電効率にも優れている。これはコバルトが黒鉛化触媒として作用したためと推定される。
(Discharge capacity, initial charge / discharge efficiency)
After 0.9 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. This was the first cycle. The initial charge / discharge efficiency was calculated from the following formula (I).
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity)
× 100 (I)
In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharged.
As shown in Table 1, the evaluation battery obtained by using the graphite material of Example 1 as the negative electrode material for the working electrode exhibits a high discharge capacity and is excellent in initial charge / discharge efficiency. This is presumably because cobalt acted as a graphitization catalyst.

(比較例1)
実施例1において、メソフェーズ小球体に塩化コバルトと水酸化ナトリウムを配合せず、空気バブリングも行わずに、すなわち、酸化処理を行わずに、直接、メソフェーズ小球体を3000℃で6時間加熱して黒鉛化処理を行った。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は0.5m/g、格子面間隔d002は0.3360nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、コバルトによる黒鉛化触媒作用がないので、放電容量が低い。
(Comparative Example 1)
In Example 1, the mesophase spherules were directly heated at 3000 ° C. for 6 hours without adding cobalt chloride and sodium hydroxide and without performing air bubbling, that is, without oxidizing treatment. Graphitization was performed. The obtained graphite material had a spherical shape, an average particle size of 24 μm, an aspect ratio of 1.2, a specific surface area of 0.5 m 2 / g, and a lattice spacing d 002 of 0.3360 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, since there is no graphitization catalytic action by cobalt, the discharge capacity is low.

(比較例2)
実施例1において、塩化コバルト4.4質量%(コバルト換算2質量%)を添加するが、水酸化ナトリウムを配合せず、また、空気バブリングによる酸化処理を行わずに得た水溶液を静置し、メソフェーズ小球体を沈降させ、上澄み液を除去した。メソフェーズ小球体を吸引ろ過し、60℃で8時間乾燥した。
得られたメソフェーズ小球体について、走査型電子顕微鏡で観察すると、メソフェーズ小球体の表面に塩化コバルトの凝集物が認められた。
メソフェーズ小球体を実施例1と同様な方法と条件で黒鉛化処理を行った。実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、コバルトによる黒鉛化触媒作用が弱く、放電容量の向上は小さい。
(Comparative Example 2)
In Example 1, 4.4% by mass of cobalt chloride (2% by mass in terms of cobalt) was added, but the aqueous solution obtained without adding sodium hydroxide and without oxidizing by air bubbling was allowed to stand. The mesophase spherules were allowed to settle and the supernatant was removed. The mesophase spherules were suction filtered and dried at 60 ° C. for 8 hours.
When the obtained mesophase microspheres were observed with a scanning electron microscope, aggregates of cobalt chloride were observed on the surface of the mesophase microspheres.
The mesophase spherules were graphitized by the same method and conditions as in Example 1. Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, the graphitization catalytic action by cobalt is weak, and the improvement in discharge capacity is small.

(実施例2)
実施例1において、塩化コバルトの代わりに塩化ニッケルを用いる以外は、実施例1を繰返した。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は1.1m/g、格子面間隔d002は0.3356nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、ニッケルによる黒鉛化触媒作用により、放電容量が高い。
(Example 2)
In Example 1, Example 1 was repeated except that nickel chloride was used instead of cobalt chloride. The obtained graphite material had a spherical shape, an average particle diameter of 24 μm, an aspect ratio of 1.2, a specific surface area of 1.1 m 2 / g, and a lattice plane distance d 002 of 0.3356 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, the discharge capacity is high due to the graphitization catalytic action of nickel.

(実施例3)
実施例1において、塩化コバルトの代わりに硝酸コバルトの水和物を用いる以外は、実施例1を繰返した。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は1.4m/g、格子面間隔d002は0.3358nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、コバルトによる黒鉛化触媒作用により、放電容量が高い。
(Example 3)
In Example 1, Example 1 was repeated except that cobalt nitrate hydrate was used instead of cobalt chloride. The obtained graphite material had a spherical shape, an average particle diameter of 24 μm, an aspect ratio of 1.2, a specific surface area of 1.4 m 2 / g, and a lattice plane distance d 002 of 0.3358 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, the discharge capacity is high due to the graphitization catalytic action of cobalt.

(実施例4)
実施例1において、メソフェーズ小球体にコバルト水酸化物を窒素雰囲気下に付着した後に空気酸化する方法に代えて、攪拌機を備えた反応器に、メソフェーズ小球体100質量部と塩化コバルト4.4質量%(コバルト換算で2質量%)を添加し、攪拌しながら70℃に昇温したところで、2%水酸化ナトリウム水溶液136質量部を徐々に投入すると同時に、反応器の底部から空気をバブリングして60分かけて水酸化ナトリウム水溶液の投入と酸化処理を行う以外は、実施例1を繰返した。
空気をバブリングする前の水溶液を採取し、メソフェーズ小球体を取り出してX線回折による定性分析を行ったところ、該メソフェーズ小球体に由来する炭素の他に水酸化コバルトのピークが検出された。
得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は1.0m/g、格子面間隔d002は0.3356nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、水酸化ナトリウム水溶液の投入と酸化処理を同時行ってもコバルトによる黒鉛化触媒作用により、放電容量が高い。
Example 4
In Example 1, instead of the method of air oxidation after attaching cobalt hydroxide to mesophase spherules in a nitrogen atmosphere, 100 parts by mass of mesophase spherules and 4.4 parts of cobalt chloride were added to a reactor equipped with a stirrer. % (2% by mass in terms of cobalt) was added and the temperature was raised to 70 ° C. while stirring, and 136 parts by mass of a 2% aqueous sodium hydroxide solution was gradually added and air was bubbled from the bottom of the reactor. Example 1 was repeated except that sodium hydroxide aqueous solution was charged and oxidation treatment was performed over 60 minutes.
An aqueous solution before bubbling air was collected, and mesophase spherules were taken out and subjected to qualitative analysis by X-ray diffraction. As a result, a peak of cobalt hydroxide was detected in addition to carbon derived from the mesophase spherules.
The obtained graphite material had a spherical shape, an average particle size of 24 μm, an aspect ratio of 1.2, a specific surface area of 1.0 m 2 / g, and a lattice spacing d 002 of 0.3356 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, the discharge capacity is high due to the graphitization catalytic action of cobalt even when the sodium hydroxide aqueous solution is added and the oxidation treatment is performed simultaneously.

(実施例5)
(黒鉛前駆体の調製・予備加熱)
実施例1(黒鉛前駆体の予備加熱)で調製したメソフェーズ小球体(平均粒子径25μm)100質量部に、シリカ粒子(平均粒子径0.5μm)0.3質量部を混合し、得られた混合物にボールミルで機械的エネルギーを付与して、メソフェーズ小球体を粉砕すると同時に、シリカ粒子を埋設して、塊状粒子(平均粒子径17μm)を得た。これを窒素気体雰囲気下600℃で3時間焼成して塊状のメソフェーズ小球体(黒鉛前駆体)を調製した。アスペクト比は1.3であった。予備酸化後のメソフェーズ小球体100質量部の表面にはシリカ粒子が0.2質量部付着していた。
(Example 5)
(Preparation and preheating of graphite precursor)
It was obtained by mixing 0.3 parts by mass of silica particles (average particle diameter 0.5 μm) with 100 parts by mass of mesophase spherules (average particle diameter 25 μm) prepared in Example 1 (preliminary heating of graphite precursor). Mechanical energy was applied to the mixture with a ball mill to pulverize the mesophase spherules, and at the same time, silica particles were embedded to obtain massive particles (average particle diameter: 17 μm). This was calcined at 600 ° C. for 3 hours under a nitrogen gas atmosphere to prepare massive mesophase microspheres (graphite precursor). The aspect ratio was 1.3. 0.2 parts by mass of silica particles adhered to the surface of 100 parts by mass of mesophase spherules after preliminary oxidation.

(黒鉛前駆体の酸化)
攪拌機を備えた反応器に、窒素流通下、前記メソフェーズ小球体100質量部と32%水酸化ナトリウム水溶液24質量部を投入し、攪拌しながら塩化鉄9.1質量%(鉄換算で4質量%)を添加した。水溶液から採取したメソフェーズ小球体について、X線回折による定性分析を行ったところ、該メソフェーズ小球体に由来する炭素の他に水酸化鉄のピークが検出された。
得られた水溶液を攪拌しながら70℃に昇温したところで、反応器の底部から空気をバブリングして60分間酸化処理を行った。
酸化処理終了後に水溶液を静置し、メソフェーズ小球体を沈降させ、上澄み液を除去した。メソフェーズ小球体を吸引濾過し、イオン交換水で洗浄した後、60℃で8時間乾燥した。酸化鉄が一面に付着したメソフェーズ小球体を得た。得られたメソフェーズ小球体について、X線回折による定性分析を行ったところ、該メソフェーズ小球体に由来する炭素と酸化鉄のピークが検出された。また、走査型電子顕微鏡とEDXで観察すると、酸化鉄の凝集物は認められず、酸化鉄は黒鉛前駆体の表面に一様に膜状に強固に付着していることが確認された。
(Oxidation of graphite precursor)
In a reactor equipped with a stirrer, 100 parts by mass of the mesophase spherules and 24 parts by mass of a 32% aqueous sodium hydroxide solution were charged under nitrogen flow, and 9.1% by mass of iron chloride (4% by mass in terms of iron) while stirring. ) Was added. When mesophase microspheres collected from the aqueous solution were subjected to qualitative analysis by X-ray diffraction, iron hydroxide peaks were detected in addition to carbon derived from the mesophase microspheres.
When the obtained aqueous solution was heated to 70 ° C. with stirring, air was bubbled from the bottom of the reactor, and oxidation treatment was performed for 60 minutes.
After the oxidation treatment, the aqueous solution was allowed to stand, the mesophase spherules were allowed to settle, and the supernatant was removed. The mesophase spherules were filtered by suction, washed with ion-exchanged water, and then dried at 60 ° C. for 8 hours. Mesophase spherules with iron oxide attached on one side were obtained. When the obtained mesophase microspheres were subjected to qualitative analysis by X-ray diffraction, carbon and iron oxide peaks derived from the mesophase microspheres were detected. Further, when observed with a scanning electron microscope and EDX, no iron oxide aggregates were observed, and it was confirmed that the iron oxide was firmly and uniformly adhered to the surface of the graphite precursor.

(黒鉛化処理)
前記メソフェーズ小球体を窒素気体雰囲気下、3000℃で6時間かけて黒鉛化処理を行い、黒鉛質材料を得た。該黒鉛質材料の平均粒子径は16μmであったが、その形状は黒鉛化処理前の黒鉛前駆体とほぼ同じ塊状であった。該黒鉛質材料のアスペクト比は1.2、比表面積は1.9m/g、格子面間隔d002は0.3355nmであった。なお、鉄の含有量は元素分析の検出限界以下であった。
(Graphitization treatment)
The mesophase spherules were graphitized at 3000 ° C. for 6 hours in a nitrogen gas atmosphere to obtain a graphite material. The average particle diameter of the graphite material was 16 μm, but the shape thereof was almost the same as that of the graphite precursor before graphitization. The graphite material had an aspect ratio of 1.2, a specific surface area of 1.9 m 2 / g, and a lattice spacing d 002 of 0.3355 nm. The iron content was below the detection limit of elemental analysis.

前記黒鉛質材料を用いて、実施例1と同様に作用電極を作製して、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、鉄による黒鉛化触媒作用があるため、高い放電容量を示し、初期充放電効率にも優れる。   Using the graphite material, a working electrode was produced in the same manner as in Example 1, and the battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, since there is a graphitization catalytic action by iron, it exhibits a high discharge capacity and excellent initial charge / discharge efficiency.

(比較例3)
実施例5において、メソフェーズ小球体に塩化鉄と水酸化ナトリウム水溶液を配合せず、空気のバブリングも行わずに、すなわち、酸化処理を行うことなく、直接、メソフェーズ小球体を3000℃で6時間加熱して黒鉛化処理を行った。得られた黒鉛質材料の形状は塊状で、平均粒子径は17μmであり、アスペクト比は1.3、比表面積は1.2m/g、格子面間隔d002は0.3360nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、鉄による黒鉛化触媒作用がないので、放電容量が低い。
(Comparative Example 3)
In Example 5, the mesophase spherules were directly heated at 3000 ° C. for 6 hours without adding iron chloride and aqueous sodium hydroxide solution and without bubbling air, that is, without oxidation treatment. Then, graphitization was performed. The obtained graphite material had a lump shape, an average particle diameter of 17 μm, an aspect ratio of 1.3, a specific surface area of 1.2 m 2 / g, and a lattice spacing d 002 of 0.3360 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, since there is no graphitization catalytic action by iron, the discharge capacity is low.

(実施例6)
実施例5において、空気のバブリングの代わりに、硝酸ナトリウムを用いる以外は、実施例5を繰返した。得られた黒鉛質材料の形状は塊状で、平均粒子径は17μmであり、アスペクト比は1.3、比表面積は3.0m/g、格子面間隔d002は0.3355nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、酸化剤を変えても鉄による黒鉛化触媒作用により、放電容量が高い。
(Example 6)
In Example 5, Example 5 was repeated except that sodium nitrate was used instead of air bubbling. The obtained graphite material had a lump shape, an average particle diameter of 17 μm, an aspect ratio of 1.3, a specific surface area of 3.0 m 2 / g, and a lattice spacing d 002 of 0.3355 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, even if the oxidizing agent is changed, the discharge capacity is high due to the graphitization catalytic action of iron.

(実施例7)
実施例1において、窒素気体雰囲気下600℃で3時間焼成したメソフェーズ小球体に、ナフタレンカルボン酸ナトリウムを0,5質量%付着したメソフェーズ小球体を用いる以外は、実施例1を繰返した。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は1.0m/g、格子面間隔d002は0.3356nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、酸素含有化合物を予備付着したものは遷移金属酸化物が膜状に、かつ、強固に付着するため黒鉛前駆体が均一にかつ高度に黒鉛化されることにより、放電容量が高く、初期充放電効率が高い。
(Example 7)
In Example 1, Example 1 was repeated except that mesophase spherules with 0.5% by mass of sodium naphthalenecarboxylate adhered to mesophase spherules calcined at 600 ° C. for 3 hours in a nitrogen gas atmosphere were used. The obtained graphite material had a spherical shape, an average particle size of 24 μm, an aspect ratio of 1.2, a specific surface area of 1.0 m 2 / g, and a lattice spacing d 002 of 0.3356 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, in the case where the oxygen-containing compound is pre-adhered, the transition metal oxide adheres in a film-like manner and strongly, so that the graphite precursor is uniformly and highly graphitized, thereby increasing the discharge capacity. The initial charge / discharge efficiency is high.

(実施例8)
実施例1において、窒素気体雰囲気下600℃で3時間焼成したメソフェーズ小球体に、ポリアクリル酸を0.5質量%付着したメソフェーズ小球体を用いる以外は、実施例1を繰返した。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は0.9m/g、格子面間隔d002は0.3355nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、酸素含有化合物を予備付着したものは遷移金属酸化物が膜状に、かつ、強固に付着するため黒鉛前駆体が均一にかつ高度に黒鉛化されることにより、放電容量が高く、初期充放電効率が高い。
(Example 8)
In Example 1, Example 1 was repeated except that mesophase spherules having 0.5% by mass of polyacrylic acid adhered to mesophase spherules calcined at 600 ° C. for 3 hours in a nitrogen gas atmosphere were used. The obtained graphite material had a spherical shape, an average particle diameter of 24 μm, an aspect ratio of 1.2, a specific surface area of 0.9 m 2 / g, and a lattice spacing d 002 of 0.3355 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, in the case where the oxygen-containing compound is pre-adhered, the transition metal oxide adheres in a film-like manner and strongly, so that the graphite precursor is uniformly and highly graphitized, thereby increasing the discharge capacity. The initial charge / discharge efficiency is high.

(実施例9)
実施例1において、メソフェーズ小球体を、空気中で400℃で5分間加熱し酸化して得たメソフェーズ小球体を用いる以外は、実施例1を繰返した。得られた黒鉛質材料の形状は球状で、平均粒子径は24μmであり、アスペクト比は1.2、比表面積は1.3m/g、格子面間隔d002は0.3357nmであった。
実施例1と同様に作用電極を作製し、電池特性を評価した。放電容量と初期充放電効率を表1に示した。表1に示すように、予備酸化したものは遷移金属酸化物が膜状に、かつ、強固に付着するため黒鉛前駆体が均一にかつ高度に黒鉛化されることにより、放電容量が高く、初期充放電効率が高い。
Example 9
Example 1 was repeated except that mesophase spherules obtained by oxidizing the mesophase spherules in air at 400 ° C. for 5 minutes were used. The obtained graphite material had a spherical shape, an average particle diameter of 24 μm, an aspect ratio of 1.2, a specific surface area of 1.3 m 2 / g, and a lattice spacing d 002 of 0.3357 nm.
Working electrodes were prepared in the same manner as in Example 1, and battery characteristics were evaluated. The discharge capacity and initial charge / discharge efficiency are shown in Table 1. As shown in Table 1, in the pre-oxidized one, the transition metal oxide is film-like and firmly attached, so that the graphite precursor is uniformly and highly graphitized. High charge / discharge efficiency.

本発明の黒鉛質材料は、搭載する機器の小型化および高性能化に有効に寄与するリチウムイオン二次電池の負極材料に用いることができる。また、その特徴を活かして負極材料以外に、導電性や耐熱性を必要とする各種用途、例えば、樹脂添加用導電材、燃料電池セパレーター用導電材、耐火物用黒鉛などにも使用することができる。   The graphite material of the present invention can be used as a negative electrode material of a lithium ion secondary battery that contributes effectively to downsizing and high performance of equipment to be mounted. In addition to the negative electrode material, it can be used for various applications that require electrical conductivity and heat resistance, for example, conductive materials for resin addition, conductive materials for fuel cell separators, and graphite for refractories. it can.

本発明の黒鉛質材料の電池特性を評価するためボタン型評価電池の構造を示す断面図である。It is sectional drawing which shows the structure of a button type evaluation battery in order to evaluate the battery characteristic of the graphite material of this invention. 図2(a)は本発明の黒鉛質材料の一例(実施例1)の走査型電子顕微鏡写真である。 図2(b)はEDXでカーボンをマッピングした走査型電子顕微鏡写真である。 図2(c)はEDXでコバルトをマッピングした走査型電子顕微鏡写真である。FIG. 2A is a scanning electron micrograph of an example (Example 1) of the graphite material of the present invention. FIG. 2B is a scanning electron micrograph in which carbon is mapped by EDX. FIG. 2C is a scanning electron micrograph in which cobalt is mapped by EDX.

符号の説明Explanation of symbols

1:外装カップ
2:作用電極
3:外装缶
4:対極
5:セパレータ
6:絶縁ガスケット
7a、7b:集電体
1: exterior cup 2: working electrode 3: exterior can 4: counter electrode 5: separator 6: insulating gasket 7a, 7b: current collector

Claims (11)

黒鉛前駆体と水溶性遷移金属化合物とアルカリを水中で接触させて、生成した遷移金属水酸化物を前記黒鉛前駆体に付着させる水酸化物付着工程と、前記付着工程で付着した遷移金属水酸化物を酸化剤または酸化性気体により、遷移金属酸化物に酸化する酸化工程と、前記酸化工程で酸化された遷移金属酸化物が付着している黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含み、
前記水溶性遷移金属化合物の配合量が、前記黒鉛前駆体100質量部に対し、該水溶性遷移金属化合物に含まれる遷移金属として0.5〜10質量部であることを特徴とする黒鉛質材料の製造方法。
A hydroxide adhesion step in which a graphite precursor, a water-soluble transition metal compound and an alkali are brought into contact in water, and the produced transition metal hydroxide is adhered to the graphite precursor, and the transition metal hydroxylation adhered in the adhesion step An oxidation step of oxidizing the product into a transition metal oxide with an oxidizing agent or an oxidizing gas, and heating the graphite precursor to which the transition metal oxide oxidized in the oxidation step is attached to a temperature of 1500 ° C. or higher. viewing including the graphitization step of graphitization,
Graphite material characterized in that the amount of the water-soluble transition metal compound is 0.5 to 10 parts by mass as a transition metal contained in the water-soluble transition metal compound with respect to 100 parts by mass of the graphite precursor Manufacturing method.
黒鉛前駆体、水溶性遷移金属化合物およびアルカリを含有する水溶液中の前記遷移金属化合物を、酸化剤または酸化性気体により酸化し、生成した遷移金属酸化物を黒鉛前駆体に付着させる酸化工程と、前記酸化工程で得られた黒鉛前駆体を1500℃以上の温度に加熱して黒鉛化する黒鉛化工程を含み、
前記水溶性遷移金属化合物の配合量が、前記黒鉛前駆体100質量部に対し、該水溶性遷移金属化合物に含まれる遷移金属として0.5〜10質量部であることを特徴とする黒鉛質材料の製造方法。
An oxidation step of oxidizing the transition metal compound in an aqueous solution containing a graphite precursor, a water-soluble transition metal compound and an alkali with an oxidizing agent or an oxidizing gas, and attaching the generated transition metal oxide to the graphite precursor; look including graphitization step of graphitization by heating the graphite precursor obtained in the oxidation step to a temperature above 1500 ° C.,
Graphite material characterized in that the amount of the water-soluble transition metal compound is 0.5 to 10 parts by mass as a transition metal contained in the water-soluble transition metal compound with respect to 100 parts by mass of the graphite precursor Manufacturing method.
予め酸化処理または酸素含有化合物の付着処理を施した黒鉛前駆体を、前記水酸化物付着工程または前記酸化工程の原材料として用いることを特徴とする請求項1または2に記載の黒鉛質材料の製造方法。   3. The production of a graphite material according to claim 1, wherein a graphite precursor that has been previously subjected to oxidation treatment or adhesion treatment of an oxygen-containing compound is used as a raw material of the hydroxide adhesion step or the oxidation step. Method. 黒鉛前駆体に付着した前記遷移金属酸化物中の遷移金属が黒鉛化触媒として作用することを特徴とする請求項1〜3のいずれかに記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to any one of claims 1 to 3, wherein the transition metal in the transition metal oxide attached to the graphite precursor acts as a graphitization catalyst. 前記遷移金属化合物が鉄、コバルトおよびニッケルから選ばれる少なくとも1種の遷移金属の化合物であることを特徴とする請求項1〜4のいずれかに記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to any one of claims 1 to 4, wherein the transition metal compound is a compound of at least one transition metal selected from iron, cobalt, and nickel. 前記遷移金属化合物が遷移金属の塩化物、硝酸塩および硫化物から選ばれる少なくとも
1種であることを特徴とする請求項1〜5のいずれかに記載の黒鉛質材料の製造方法。
6. The method for producing a graphite material according to claim 1, wherein the transition metal compound is at least one selected from chlorides, nitrates and sulfides of transition metals.
前記酸化剤が亜硝酸ナトリウム、硝酸ナトリウムおよび過酸化水素から選ばれる少なく
とも1種であることを特徴とする請求項1〜6のいずれかに記載の黒鉛質材料の製造方法。
The method for producing a graphite material according to any one of claims 1 to 6, wherein the oxidizing agent is at least one selected from sodium nitrite, sodium nitrate, and hydrogen peroxide.
前記酸化性気体が空気または酸素であることを特徴とする請求項1〜7のいずれかに記載の黒鉛質材料の製造方法。   The method for producing a graphite material according to claim 1, wherein the oxidizing gas is air or oxygen. 前記黒鉛質材料がリチウムイオン二次電池負極材料用材料であることを特徴とする請求
項1〜8のいずれかに記載の黒鉛質材料の製造方法。
The method for producing a graphite material according to claim 1, wherein the graphite material is a material for a negative electrode material for a lithium ion secondary battery.
請求項1〜9のいずれか1項に記載の黒鉛質材料の製造方法で製造した黒鉛質材料を含有するリチウムイオン二次電池用負極材料。 The negative electrode material for lithium ion secondary batteries containing the graphite material manufactured with the manufacturing method of the graphite material of any one of Claims 1-9. 請求項10に記載のリチウムイオン二次電池用負極材料を用いてなるリチウムイオン二
次電池。
The lithium ion secondary battery which uses the negative electrode material for lithium ion secondary batteries of Claim 10.
JP2008114000A 2008-04-24 2008-04-24 Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP5173555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008114000A JP5173555B2 (en) 2008-04-24 2008-04-24 Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008114000A JP5173555B2 (en) 2008-04-24 2008-04-24 Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009263160A JP2009263160A (en) 2009-11-12
JP5173555B2 true JP5173555B2 (en) 2013-04-03

Family

ID=41389505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008114000A Expired - Fee Related JP5173555B2 (en) 2008-04-24 2008-04-24 Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5173555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723356B (en) * 2009-12-14 2011-09-14 同济大学 Method for graphitizing amorphous carbon material at low temperature
CN102515150A (en) * 2011-12-08 2012-06-27 同济大学 Method for preparing multilayer graphene-carbon material
JP2014194852A (en) * 2013-03-28 2014-10-09 Mt Carbon Co Ltd Amorphous carbon material for lithium ion secondary battery negative electrode, graphitic carbon material, lithium ion secondary battery arranged by use thereof, and method for manufacturing carbon material for lithium ion secondary battery negative electrode
JPWO2016121711A1 (en) * 2015-01-27 2017-11-02 昭和電工株式会社 Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2689509B2 (en) * 1988-08-16 1997-12-10 三菱化学株式会社 Method for producing needle coke for carbon molded body
JP3645063B2 (en) * 1997-03-14 2005-05-11 日本カーボン株式会社 Method for producing graphite material for battery and battery
JP2001011471A (en) * 1999-04-30 2001-01-16 Nippon Steel Chem Co Ltd Needle coke for graphite electrode and its production
WO2006022100A1 (en) * 2004-08-27 2006-03-02 Jfe Chemical Corporation Graphite material, method for producing same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2009263160A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4751138B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5831579B2 (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5322804B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014167906A (en) Carbonaceous material-coated graphite particle, manufacturing method thereof, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2004253379A (en) Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5173555B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP2016146343A (en) Carbon material for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and method of manufacturing lithium ion secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4707570B2 (en) Method for producing fine graphite particles
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP2015110506A (en) Carbonaceous material-coated graphite particle production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP5021979B2 (en) Mesocarbon microsphere graphitized material for lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4839202B2 (en) Method for producing mesophase microspheres and carbon material
JP2015153496A (en) Method for manufacturing carbonaceous substance-coated graphite particles for lithium ion secondary battery negative electrodes, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019160791A (en) Method for manufacturing carbon-coated graphite particles for lithium ion secondary battery negative electrode material, carbon-coated graphite particles for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP2013227189A (en) Method for manufacturing graphite material and lithium ion secondary battery thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees