JP4619826B2 - Electric motor drive device, electric motor drive method, and compressor - Google Patents

Electric motor drive device, electric motor drive method, and compressor Download PDF

Info

Publication number
JP4619826B2
JP4619826B2 JP2005062362A JP2005062362A JP4619826B2 JP 4619826 B2 JP4619826 B2 JP 4619826B2 JP 2005062362 A JP2005062362 A JP 2005062362A JP 2005062362 A JP2005062362 A JP 2005062362A JP 4619826 B2 JP4619826 B2 JP 4619826B2
Authority
JP
Japan
Prior art keywords
electric motor
connection
motor
winding
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005062362A
Other languages
Japanese (ja)
Other versions
JP2006246674A (en
JP2006246674A5 (en
Inventor
智明 及川
庸賀 田島
修 風間
貴弘 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005062362A priority Critical patent/JP4619826B2/en
Publication of JP2006246674A publication Critical patent/JP2006246674A/en
Publication of JP2006246674A5 publication Critical patent/JP2006246674A5/ja
Application granted granted Critical
Publication of JP4619826B2 publication Critical patent/JP4619826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

この発明は、電動機駆動装置、電動機駆動方法及び前記電動機駆動装置を装備した圧縮機に関するものである。   The present invention relates to an electric motor driving device, an electric motor driving method, and a compressor equipped with the electric motor driving device.

いわゆるエアコンの冷房能力や暖房能力は、圧縮機に用いる電動機の回転速度によって可変調節できることが必要である。このとき、電動機は、エアコン立上げ時の急速冷房時や急速暖房時には、高速回転で運転でき、室温が要求温度に到達した後は、回転速度を落として省エネルギー運転ができること。そして、この低速で運転される省エネルギー運転の時間は長いので、電気代低減のためには、電動機は、低速運転時の効率が良いことが望ましい。一方、冷房や暖房の最大能力を上げるためには、電動機は、高速回転まで運転できるのが望ましい。   It is necessary that the cooling capacity and heating capacity of the so-called air conditioner can be variably adjusted depending on the rotation speed of the electric motor used for the compressor. At this time, the electric motor can be operated at a high speed during rapid cooling or rapid heating when the air conditioner is started up, and after the room temperature reaches the required temperature, the rotational speed must be reduced and energy saving operation can be performed. And since the time of the energy saving driving | running operated at this low speed is long, in order to reduce an electricity bill, it is desirable that the electric motor has good efficiency at the time of low-speed driving. On the other hand, in order to increase the maximum capacity of cooling and heating, it is desirable that the electric motor can be operated up to high speed rotation.

ところで、圧縮機用の電動機としては、高効率化のために、回転子に永久磁石を用いた永久磁石型電動機が使用されており、インバータにて駆動する方法が採用されている。圧縮機に用いる電動機に要求される上記の特性との関係は、次のようになっている。   By the way, as a motor for a compressor, a permanent magnet type motor using a permanent magnet as a rotor is used for high efficiency, and a method of driving with an inverter is employed. The relationship with the above-mentioned characteristics required for the electric motor used for the compressor is as follows.

すなわち、永久磁石型電動機は、固定子巻線の巻数を多くすると、少ない電流で運転できるので、電流に伴うインバータ損失が減少し、高効率運転ができる。その一方で、誘起電圧が上昇してしまうので、誘起電圧に支配される電動機電圧がより低い回転速度でインバータ最大出力電圧に達してしまうことが起こり、それ以上の回転速度で運転できないという問題が生じる。   That is, since the permanent magnet type motor can be operated with a small current when the number of stator windings is increased, the inverter loss associated with the current is reduced and high efficiency operation can be performed. On the other hand, since the induced voltage rises, the motor voltage governed by the induced voltage may reach the inverter maximum output voltage at a lower rotational speed, and there is a problem that the motor cannot be operated at a higher rotational speed. Arise.

逆に、永久磁石型電動機は、固定子巻線の巻数を少なくすると、誘起電圧が低減するので、誘起電圧に支配される固定子電圧がより高い回転速度までインバータ最大出力電圧に到達せず、高速回転まで運転できる。しかし、その結果、固定子電流が増加し、電流に伴うインバータ損失が増加し、インバータ効率が低下するという問題が生じる。   Conversely, in the permanent magnet type electric motor, when the number of stator windings is reduced, the induced voltage is reduced, so the stator voltage governed by the induced voltage does not reach the inverter maximum output voltage until a higher rotational speed, It can be operated up to high speed. However, as a result, the stator current increases, the inverter loss accompanying the current increases, and the inverter efficiency decreases.

このように、低速回転で効率の良い永久磁石型電動機は高速回転まで運転できず、高速回転まで運転できる永久磁石型電動機は、低速回転での効率が悪いものになっていた。そのため、従来では、上記したエアコンの冷暖房能力や運転に関する要求を充分に満足させることが困難な状況になっている。   As described above, a permanent magnet type electric motor that is efficient at low speeds cannot be operated up to high speeds, and a permanent magnet type motor that can be operated up to high speeds is inefficient at low speeds. For this reason, conventionally, it has been difficult to sufficiently satisfy the above-described requirements regarding the air conditioning capability and operation of the air conditioner.

この問題の解決のため、例えば、特許文献1では、永久磁石型電動機の固定子巻数は多くするが、弱め界磁制御を用いて回転速度限界値を拡大したり、インバータの出力電圧を上昇させ回転速度限界を拡大したりして、要求回転速度を満足させる方法が提案されている。   In order to solve this problem, for example, in Patent Document 1, although the number of stator turns of the permanent magnet type motor is increased, the rotational speed limit value is increased by using field weakening control, or the output voltage of the inverter is increased to increase the rotational speed. Methods have been proposed to satisfy the required rotational speed by expanding the limit.

特開2002−247876号公報JP 2002-247876 A

しかしながら、弱め界磁制御や、インバータ出力電圧を上昇させる方策では、回転速度限界を大きくするのには限度があり、低速運転時での高効率化のため巻数をより多くした場合に、要求される最大回転速度を満足できないという問題があった。   However, with field-weakening control and measures to increase the inverter output voltage, there is a limit to increasing the rotational speed limit, and the maximum required when increasing the number of turns for higher efficiency at low speed operation. There was a problem that the rotational speed could not be satisfied.

この発明は、上記に鑑みてなされたものであり、電動機を低速運転時の高効率と高速運転との両方を満足するように駆動できる電動機駆動装置及び電動機駆動方法を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain an electric motor driving device and an electric motor driving method capable of driving an electric motor so as to satisfy both high efficiency and high speed operation during low speed operation.

また、この発明は、低速運転時に高効率運転が可能で、かつ高速運転も可能な圧縮機を得ることを目的とする。   Another object of the present invention is to obtain a compressor capable of high-efficiency operation during low-speed operation and capable of high-speed operation.

上述した目的を達成するために、この発明にかかる電動機駆動装置は、永久磁石型の電動機をインバータ制御によって駆動するインバータ制御手段と、前記インバータ制御手段が供給する駆動電圧を受ける前記電動機の巻線の結線方式を、指令に従ってスター結線とデルタ結線とに切り替える結線切替手段と、前記電動機の運転状態を管理し、前記電動機の運転範囲が規定値以下の場合には前記結線切替手段に前記スター結線を行わせる前記指令を発行し、前記電動機の運転範囲が規定値以上の場合には前記結線切替手段に前記デルタ結線を行わせる前記指令を発行し、スター結線運転範囲及びデルタ結線運転範囲のそれぞれにおける所定の運転範囲において前記インバータ制御手段に対して弱め界磁制御による駆動を行わせる指令を発行する運転制御手段とを備えたことを特徴とする。   In order to achieve the above object, an electric motor drive device according to the present invention includes an inverter control means for driving a permanent magnet type electric motor by inverter control, and a winding of the electric motor that receives a drive voltage supplied by the inverter control means. The connection switching means for switching between the star connection and the delta connection in accordance with a command, and the operating state of the motor, and when the operating range of the motor is less than a specified value, the star switching is connected to the connection switching means. When the operating range of the motor is equal to or greater than a specified value, the command is issued to cause the connection switching means to perform the delta connection, and each of the star connection operation range and the delta connection operation range is issued. Issues a command to cause the inverter control means to drive by field-weakening control within a predetermined operating range at Characterized by comprising a driving control means.

この発明によれば、永久磁石型の電動機の運転範囲が規定値以下であるか以上であるかに応じて巻線をスター結線とデルタ結線とに切り替えて運転する。そして、スター結線運転範囲及びデルタ結線運転範囲のそれぞれにおける所定の運転範囲において弱め界磁制御による運転を行うことができる。   According to the present invention, the winding is operated by switching between the star connection and the delta connection depending on whether the operation range of the permanent magnet type motor is equal to or less than the specified value. And the operation | movement by field-weakening control can be performed in the predetermined | prescribed operation range in each of a star connection operation range and a delta connection operation range.

この発明によれば、電動機を低速運転時には高効率で運転することができ、同時に高速運転も行えるという効果を奏する。   According to the present invention, the electric motor can be operated with high efficiency during low speed operation, and at the same time, high speed operation can be performed.

以下に図面を参照して、この発明にかかる電動機駆動装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of an electric motor drive device according to the present invention will be explained below in detail with reference to the drawings.

図1は、この発明の一実施の形態による電動機駆動装置を構成する電動機、インバータ及び結線切替装置との関係を示す結線図である。図2は、図1に示す結線切替装置が実現するスター結線とデルタ結線とを示す模式図である。図3は、図1に示す電動機(永久磁石型電動機)の内部構造を説明する断面図である。   FIG. 1 is a connection diagram showing a relationship between an electric motor, an inverter, and a connection switching device that constitute an electric motor drive device according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a star connection and a delta connection realized by the connection switching device shown in FIG. FIG. 3 is a cross-sectional view illustrating the internal structure of the electric motor (permanent magnet type electric motor) shown in FIG.

図1において、電動機1は、3相の永久磁石型電動機である。電動機1には、3相「U、V、W」の各内部巻線の一端が接続される3つの端子2aと各内部巻線の他端が接続される3つの端子2bとが設けられている。3つの端子2aはインバータ4の出力端子に直接接続されている。そして、3つの端子2aと3つの端子2bとの間に結線切替装置3が設けられている。   In FIG. 1, an electric motor 1 is a three-phase permanent magnet type electric motor. The electric motor 1 is provided with three terminals 2a to which one end of each internal winding of the three-phase “U, V, W” is connected and three terminals 2b to which the other end of each internal winding is connected. Yes. The three terminals 2 a are directly connected to the output terminal of the inverter 4. A connection switching device 3 is provided between the three terminals 2a and the three terminals 2b.

結線切替装置3には、3個のスイッチを備えるスイッチA5及びスイッチB6が設けられている。スイッチA5が備える3個のスイッチの各一端側端子は共通に接続され、各他端側3端子が電動機1の3つの端子2bに接続されている。一方、スイッチB6が備える3個のスイッチは、3つの端子2aと3つの端子2bとの間において、U相とV相の間を接離するスイッチと、V相とW相の間を接離するスイッチと、W相とU相の間を接離するスイッチとで構成されている。   The connection switching device 3 is provided with a switch A5 and a switch B6 including three switches. The one end side terminals of the three switches provided in the switch A5 are connected in common, and the other end side three terminals are connected to the three terminals 2b of the electric motor 1. On the other hand, the three switches included in the switch B6 include a switch that connects and disconnects between the U phase and the V phase, and a connection and separation between the V phase and the W phase between the three terminals 2a and 3b. And a switch for connecting / separating between the W phase and the U phase.

したがって、スイッチA5が備える3個のスイッチが一斉に閉路し、スイッチB6が備える3個のスイッチが一斉に開路すると、電動機1の内部巻線は、図2(a)に示すスター結線となる。一方、スイッチA5が備える3個のスイッチが一斉に開路し、スイッチB6が備える3個のスイッチが一斉に閉路すると、電動機1の内部巻線は、図2(b)に示すデルタ結線となる。   Therefore, when the three switches provided in the switch A5 are closed simultaneously and the three switches provided in the switch B6 are opened simultaneously, the internal winding of the electric motor 1 becomes a star connection shown in FIG. On the other hand, when the three switches provided in the switch A5 are simultaneously opened and the three switches provided in the switch B6 are simultaneously closed, the internal winding of the electric motor 1 has a delta connection shown in FIG.

インバータ4は、結線切替装置3に対して、電動機1の運転範囲に応じた結線切替指令を発行し、結線切替装置3に、スイッチA5及びスイッチB6の閉路操作、開路操作によって、インバータ4から3相電圧の供給を受ける電動機1の巻線を、図2(a)に示すスター結線と、図2(b)に示すデルタ結線とに切り替えさせる運転制御を行うようになっている。   The inverter 4 issues a connection switching command corresponding to the operating range of the electric motor 1 to the connection switching device 3, and the connection switching device 3 is connected to the inverters 4 to 3 by the closing operation and the opening operation of the switch A 5 and the switch B 6. Operation control is performed to switch the winding of the electric motor 1 that receives the phase voltage to the star connection shown in FIG. 2A and the delta connection shown in FIG. 2B.

次に、図3において、固定子15の内部に回転子7を配置している。固定子15は、集中巻構造を取っており、ティース部8に絶縁材(図示せず)を介して巻線9が巻回されている。集中巻は、エアコン等の圧縮機電動機に採用されている方式で、従来一般的であった分布巻方式に対して巻線周長が短くできるため高効率となっている。   Next, in FIG. 3, the rotor 7 is disposed inside the stator 15. The stator 15 has a concentrated winding structure, and a winding 9 is wound around the tooth portion 8 via an insulating material (not shown). Concentrated winding is a method employed in compressor motors such as air conditioners, and is highly efficient because the winding circumference can be shortened compared to the conventional distributed winding method.

なお、図3では、固定子15は分割コアで構成され、各回動軸16を中心に各ティース8が開くことができる構造になっている。これによって、ティース8が開いた状態で巻線することにより巻線9を占積率良く巻くことができるので、更に高効率な電動機となっている。   In FIG. 3, the stator 15 is constituted by a split core, and has a structure in which each tooth 8 can be opened around each rotation shaft 16. As a result, the winding 9 can be wound with a high space factor by winding the teeth 8 in an open state, so that the motor is more efficient.

また、回転子7の内部には、永久磁石11が埋め込まれている。永久磁石としては希土類磁石またはフェライト磁石が採用される。永久磁石11の外周コア部には、スリット12が配置されている。このスリット12は、固定子巻線電流による電機子反作用の影響を弱め、磁束分布に高調波が重畳されるのを低減する作用を有し、高調波による効率低下、騒音、振動増加を防止する作用を行う。また、固定子15及び回転子7の鉄心には、ガス抜き穴13、14が設けられている。このガス抜き穴13、14は、電動機の冷却作用、また圧縮機用電動機の場合は、冷媒ガス通路または油戻し通路として作用する。   A permanent magnet 11 is embedded in the rotor 7. A rare earth magnet or a ferrite magnet is employed as the permanent magnet. A slit 12 is disposed in the outer core portion of the permanent magnet 11. This slit 12 has the effect of weakening the influence of the armature reaction caused by the stator winding current and reducing the superposition of harmonics on the magnetic flux distribution, and prevents the efficiency reduction, noise and vibration increase due to the harmonics. Perform the action. Further, gas vent holes 13 and 14 are provided in the iron cores of the stator 15 and the rotor 7. These vent holes 13 and 14 act as a cooling action for the electric motor, and in the case of an electric motor for a compressor, act as a refrigerant gas passage or an oil return passage.

ここで、電動機1の内部結線について説明する。図3では、各ティース8に、説明のためティース番号「U1、U2、U3」「V1、V2、V3」「W1、W2、W3」を示してある。これは、U相巻線はティース番号「U1、U2、U3」の位置に巻回され、V相巻線はティース番号「V1、V2、V3」の位置に巻回され、W相巻線はティース番号「W1、W2、W3」の位置に巻回されていることを示している。   Here, the internal connection of the electric motor 1 will be described. In FIG. 3, the teeth numbers “U 1, U 2, U 3” “V 1, V 2, V 3” “W 1, W 2, W 3” are shown for each tooth 8 for explanation. This is because the U-phase winding is wound at the position of teeth number “U1, U2, U3”, the V-phase winding is wound at the position of teeth number “V1, V2, V3”, and the W-phase winding is It shows that the wire is wound at the position of the teeth number “W1, W2, W3”.

図3は、6極電動機を示しているので、1相あたり3ティース分の巻線となっている。その他、例えば4極電動機の場合は、ティース数は6となり、1相あたりの巻線は2ティース分となる。また、8極電動機の場合は、ティース数は12となり、1相あたりの巻線は4ティース分となる。   Since FIG. 3 shows a 6-pole motor, there are 3 teeth of winding per phase. In addition, for example, in the case of a 4-pole motor, the number of teeth is 6, and the number of windings per phase is 2 teeth. In the case of an 8-pole motor, the number of teeth is 12, and the number of windings per phase is 4 teeth.

図4は、図1に示す電動機(永久磁石型電動機)の内部結線を説明する模式図である。図4(a)に示すように直列結線を行う場合と、図4(b)に示すように並列結線を行う場合とがある。巻線の線径や巻線を複数本巻きすることで、どちらの結線でも等価設計ができる。結局、製造設備や巻線材料等の制約によってどちらかの結線が選択される。図3に示す引出線10は、各相巻線群(例えばU相巻線群であればU1巻線とU2巻線とU3巻線が直列結線または並列結線されたもの)の入口側と出口側から2本ずつ、合計6本引き出されている。図1では、3つの端子2aと3つの端子2bとに接続されている。   FIG. 4 is a schematic diagram for explaining the internal connection of the electric motor (permanent magnet type electric motor) shown in FIG. There are a case where serial connection is performed as shown in FIG. 4A and a case where parallel connection is performed as shown in FIG. By winding a plurality of wire diameters and windings, an equivalent design can be achieved with either connection. Eventually, one of the connections is selected depending on the constraints of the manufacturing equipment and the winding material. The lead wire 10 shown in FIG. 3 includes an inlet side and an outlet of each phase winding group (for example, U1 winding, U2 winding, and U3 winding are connected in series or in parallel in the case of U phase winding group). Two are drawn from the side, for a total of six. In FIG. 1, it is connected to three terminals 2a and three terminals 2b.

次に、動作について説明する。まず、永久磁石型電動機の諸特性について説明する。図5は、図1に示す電動機(永久磁石型電動機)の回転速度に対する各特性を説明する特性図である。図5(a)は永久磁石型電動機の回転速度Nと電圧Vとの関係である。図5(b)は永久磁石型電動機の回転速度NとトルクTとの関係である。図5(c)は永久磁石型電動機の回転速度Nと効率ηとの関係である。図5(d)は永久磁石型電動機の電圧仕様と特性の関係である。   Next, the operation will be described. First, various characteristics of the permanent magnet type motor will be described. FIG. 5 is a characteristic diagram for explaining each characteristic with respect to the rotation speed of the electric motor (permanent magnet type electric motor) shown in FIG. FIG. 5A shows the relationship between the rotational speed N and the voltage V of the permanent magnet type motor. FIG. 5B shows the relationship between the rotational speed N and the torque T of the permanent magnet type motor. FIG. 5C shows the relationship between the rotational speed N of the permanent magnet type motor and the efficiency η. FIG. 5D shows the relationship between the voltage specifications and characteristics of the permanent magnet type motor.

図5(a)に示すように永久磁石型電動機の電圧Vは概略回転速度Nに比例し、電圧Vがインバータ最大出力電圧V1に到達する回転速度N1まで、図5(b)に示すように最大トルクTmax以下の負荷で運転が可能である。N1を越える回転速度で運転する場合は、電圧を押さえる弱め界磁制御によって運転可能である。しかし、図5(b)に示すように回転速度Nの増加とともに最大トルクTmaxが低下し、モータに要求される負荷トルクTLを下まわる回転速度N2以上の運転は不可能となる。   As shown in FIG. 5 (a), the voltage V of the permanent magnet type motor is approximately proportional to the rotational speed N, and until the rotational speed N1 at which the voltage V reaches the inverter maximum output voltage V1, as shown in FIG. 5 (b). Operation is possible with a load less than the maximum torque Tmax. When operating at a rotational speed exceeding N1, it is possible to operate by field-weakening control that suppresses the voltage. However, as shown in FIG. 5B, the maximum torque Tmax decreases with an increase in the rotational speed N, and it becomes impossible to operate at a rotational speed N2 or lower that is lower than the load torque TL required for the motor.

また、効率ηは、一般的に、図5(c)のように回転速度Nの増加と共に増加し、弱め界磁に入った後にピークを迎え、その後低下する。インバータ効率を含めた総合効率(モータ効率×インバータ効率)でも同様の曲線を示す。   Further, the efficiency η generally increases as the rotational speed N increases as shown in FIG. 5C, reaches a peak after entering the field weakening, and then decreases. A similar curve is shown for overall efficiency including motor efficiency (motor efficiency x inverter efficiency).

次に、図5(d)において、高電圧仕様は、電動機の結線をスター結線、直列結線、多巻数などにして誘起電圧を上げた仕様であり、低い回転速度でインバータの最大出力電圧に達する。一方、低電圧仕様は、デルタ結線、並列結線、少巻数などにして誘起電圧を下げたものであり、インバータの最大出力電圧に到達する回転速度は高くなる。   Next, in FIG. 5D, the high voltage specification is a specification in which the induction voltage is increased by setting the motor connection to star connection, series connection, multiple turns, etc., and reaches the maximum output voltage of the inverter at a low rotational speed. . On the other hand, in the low voltage specification, the induced voltage is lowered by delta connection, parallel connection, small number of turns, etc., and the rotation speed to reach the maximum output voltage of the inverter becomes high.

ここで、それぞれの効率であるが、電動機の発生トルクは誘起電圧と電流の積であるので、誘起電圧が高い高電圧仕様の方が低電流となり、低電流によってインバータ損失が低減し、インバータ効率が高効率となる。逆に、低電圧仕様は、電流が大きくなりインバータ効率が悪化する。また、電動機効率においても高電圧仕様の方がインバータスイッチングのデューティー比の関係で電流高調波成分が減少し高調波損失が低減し、電動機効率は良好となり、低電圧仕様では、電動機効率が低いものとなる。つまり、高効率な電動機は低速回転までしか運転できず、高速回転まで運転できる電動機は効率の低いものとなる。   Here, although the efficiency of each motor, the generated torque of the motor is the product of the induced voltage and the current, so the high voltage specification with a high induced voltage has a lower current, and the inverter loss is reduced by the low current. Is highly efficient. Conversely, in the low voltage specification, the current increases and the inverter efficiency deteriorates. Also in the motor efficiency, the high-voltage specification reduces current harmonic components and reduces harmonic loss due to the inverter switching duty ratio, resulting in better motor efficiency. The low-voltage specification has lower motor efficiency. It becomes. That is, a high-efficiency electric motor can be operated only up to low-speed rotation, and an electric motor that can be operated up to high-speed rotation has low efficiency.

そこで、この実施の形態では、電動機1とインバータ4との間に結線切替装置3を設けて、電動機1の結線方式をスター結線とデルタ結線とに切り替え得るようし、低速運転時の高効率と高速運転との両方を満足させるようにした。   Therefore, in this embodiment, the connection switching device 3 is provided between the electric motor 1 and the inverter 4 so that the connection method of the electric motor 1 can be switched between the star connection and the delta connection. Both high-speed driving and satisfaction were made.

結線切替装置3は、電動機1の運転状態がある規定値のときに、結線切替信号が入力され、スイッチA5とスイッチB6とが開閉操作される。例えば、回転速度がある回転速度よりも遅い時には、スイッチA5に閉路指示信号が入力され、スイッチB6に開路指示信号が入力され、電動機1の結線は図2(a)に示すスター結線となる。また、回転速度がある回転速度よりも速い時には、スイッチA5に開路指示信号が入力され、スイッチB6に閉路指示信号が入力され、電動機1の結線は図2(b)に示すデルタ結線となる。   When the operation state of the electric motor 1 is a predetermined value, the connection switching device 3 receives a connection switching signal and opens and closes the switch A5 and the switch B6. For example, when the rotational speed is lower than a certain rotational speed, a closing instruction signal is input to the switch A5, an opening instruction signal is input to the switch B6, and the connection of the electric motor 1 is a star connection shown in FIG. When the rotation speed is higher than a certain rotation speed, an opening instruction signal is input to the switch A5, a closing instruction signal is input to the switch B6, and the connection of the electric motor 1 is a delta connection shown in FIG.

図2(a)に示されるスター結線は、図2(b)に示されるデルタ結線に対し、線間誘起電圧が√3倍となるので、低速回転速度域での高効率化が達成できる。また、高速回転運転が必要になった場合は、デルタ結線に切り替えられるので、誘起電圧を低下させて高速回転運転も可能となる。スター結線とデルタ結線との切り替えは図6に示すようなタイミングで行うのが望ましい。   In the star connection shown in FIG. 2 (a), the induced voltage between the lines is √3 times that of the delta connection shown in FIG. 2 (b), so that high efficiency can be achieved in the low speed range. In addition, when high-speed rotation operation is necessary, switching to delta connection is possible, so that high-speed rotation operation can be performed by reducing the induced voltage. The switching between the star connection and the delta connection is preferably performed at the timing shown in FIG.

図6は、図1に示す電動機駆動装置によって得られる電動機の回転速度に対する電圧及び効率の関係特性を説明する特性図である。図6(a)は、回転速度Nと電圧Vとの関係を示し、図6(b)は、スター結線とデルタ結線時の回転速度Nと総合効率(電動機効率×インバータ効率)ηとの関係を示している。   FIG. 6 is a characteristic diagram for explaining the relational characteristics of the voltage and efficiency with respect to the rotational speed of the electric motor obtained by the electric motor driving device shown in FIG. 6A shows the relationship between the rotational speed N and the voltage V, and FIG. 6B shows the relationship between the rotational speed N at the star connection and the delta connection and the overall efficiency (motor efficiency × inverter efficiency) η. Is shown.

図6(a)に示すように、回転速度Nが規定回転速度N5以下ではスター結線され、規定回転速度N5以上ではデルタ結線される。そして、スター結線された場合では、回転速度がN5からN1に低下するまでの弱め界磁領域の期間では一定電圧(インバータ最大電圧)V1である。また、デルタ結線された場合では、回転速度がN5からN3に上昇した時点からN4に上昇するまでの弱め界磁領域の期間では一定電圧(インバータ最大電圧)V1である。   As shown in FIG. 6A, when the rotational speed N is equal to or lower than the specified rotational speed N5, star connection is performed, and when the rotational speed N is equal to or higher than the specified rotational speed N5, delta connection is performed. In the case of star connection, the voltage is constant (inverter maximum voltage) V1 during the field-weakening region until the rotation speed decreases from N5 to N1. In the case of delta connection, the voltage is constant (inverter maximum voltage) V1 during the field-weakening region from when the rotational speed increases from N5 to N3 until it increases to N4.

また、図6(b)に示すように、スター結線は低回転速度ではデルタ結線よりも高効率であるが、電圧がインバータ最大電圧V1に達する回転速度N1で弱め界磁制御に入り、効率ピークを迎えた後に低下し、規定回転速度N5にてデルタ結線での電動機効率に逆転され、回転速度N2で電動機発生トルクが負荷トルクを下回り、運転限界となる。一方、デルタ結線においては回転速度N3で弱め界磁制御に入り、その後効率ピークを迎え回転速度N4まで運転可能となる。   As shown in FIG. 6B, the star connection is more efficient than the delta connection at a low rotational speed, but the field weakening control starts at the rotational speed N1 at which the voltage reaches the inverter maximum voltage V1, and the efficiency peak is reached. Then, the motor efficiency is reversed to the motor efficiency in the delta connection at the specified rotational speed N5, and the motor generated torque falls below the load torque at the rotational speed N2 and becomes the operating limit. On the other hand, in the delta connection, the field weakening control is started at the rotational speed N3, and thereafter the operation reaches the efficiency peak and can be operated up to the rotational speed N4.

したがって、切り替えタイミングとしては規定回転速度N5以下ではスター結線とし、規定回転速度N5以上ではデルタ結線とするのが効率的には望ましい。   Therefore, as the switching timing, it is desirable that the star connection is effective when the rotation speed is N5 or less, and the delta connection is efficient when the rotation speed is N5 or more.

このとき、規定回転速度N5は、予め、実験的に求めておき、回転速度で制御する方法や、電流値、温度など電動機が使用される製品に最適な制御方法を採ることで定めることができる。また、効率以外の要素、例えば電流制約や切替制御の最適性に応じて規定回転速度N5以外の回転速度で切り替えることも可能である。   At this time, the prescribed rotational speed N5 can be determined experimentally in advance, and can be determined by adopting a control method based on the rotational speed or a control method that is optimal for a product in which the electric motor is used, such as current value and temperature. . It is also possible to switch at a rotational speed other than the specified rotational speed N5 in accordance with factors other than efficiency, such as current constraints and optimality of switching control.

また、制御性等の理由により、スター結線からデルタ結線に切り替えるタイミングとデルタ結線からスター結線に切り替えるタイミングとをずらすことも可能である。そして、この実施の形態による電動機駆動方法を適用する電動機1が搭載される製品の特性上問題がなければ、結線切替制御を確実にするために、一度電動機1を停止させるか、或いは切替制御上問題のない回転速度まで低下させて結線切り替えを行い、再度要求回転速度まで上昇させることも行うことができる。   Also, for reasons such as controllability, the timing for switching from star connection to delta connection and the timing for switching from delta connection to star connection can be shifted. If there is no problem in the characteristics of the product on which the electric motor 1 to which the electric motor driving method according to this embodiment is applied is mounted, the electric motor 1 is stopped once or the switching control is performed in order to ensure the connection switching control. It is also possible to switch the connection by lowering the rotation speed to a problem-free rotation speed and increase it to the required rotation speed again.

ここで、この実施の形態による電動機駆動方法を適用する電動機1は、図3に示すように、固定子15を集中巻としている。集中巻は、分布巻電動機よりも高効率であるので、低速回転時にスター結線とすれば更に高効率運転が可能となる。その一方で、集中巻は、磁束分布に高調波が乗る構造となっているので、磁束高調波に伴う騒音が発生する欠点がある。また、インバータキャリアによるキャリア周波数の騒音が分布巻よりも大きくなるという欠点もある。   Here, in the electric motor 1 to which the electric motor driving method according to this embodiment is applied, the stator 15 is concentrated winding as shown in FIG. Since concentrated winding is more efficient than distributed winding electric motors, even more efficient operation is possible if star connection is used during low-speed rotation. On the other hand, since the concentrated winding has a structure in which harmonics are superimposed on the magnetic flux distribution, there is a drawback that noise accompanying the magnetic flux harmonics is generated. In addition, there is a drawback that the carrier frequency noise caused by the inverter carrier is larger than that of the distributed winding.

このキャリア騒音は、インバータ4の出力電圧を調整するスイッチング比=ON時間/(ON時間+OFF時間)で表されるデューティー比が大きくなると、小さくなるという特性があるので、特にデューティー比が小さい低回転速度域で問題となる。このような特性を有する集中巻電動機にこの実施の形態による電動機駆動方法を適用すれば、低回転速域ではスター結線としてデューティー比を大きく採ることができるので、低騒音化に有効となる。   This carrier noise has a characteristic that it becomes smaller when the duty ratio expressed by the switching ratio for adjusting the output voltage of the inverter 4 = ON time / (ON time + OFF time) becomes larger. It becomes a problem in the speed range. If the motor driving method according to this embodiment is applied to a concentrated winding electric motor having such characteristics, a large duty ratio can be taken as a star connection in a low rotational speed range, which is effective in reducing noise.

また、この実施の形態による電動機駆動装置を構成するインバータ4としては、略正弦波電流駆動でキャリア周波数を4kHz以上とするのが良い。正弦波は、騒音低減に有効な電流波形であり、磁束高調波による騒音悪化を緩和することができる。なお、キャリア周波数を4kHz以上とする理由は、キャリア音に対してはエアコン等で一般的に遮音材として用いられるフェルト等の遮音特性が得られやすいこと、また圧縮機の固有値から外しやすいこと等によるものである。但し、キャリア周波数を上げ過ぎると、キャリアのスイッチングロスが増加しインバータ効率が悪化するので、4〜7kHzとするのが効率と騒音のバランスから最適である。   Moreover, as the inverter 4 which comprises the electric motor drive device by this embodiment, it is good to set a carrier frequency to 4 kHz or more by a substantially sinusoidal current drive. The sine wave is a current waveform effective for noise reduction, and can mitigate noise deterioration due to magnetic flux harmonics. The reason for setting the carrier frequency to 4 kHz or more is that it is easy to obtain a sound insulation characteristic such as a felt generally used as a sound insulation material in an air conditioner or the like for the carrier sound, and that it is easy to remove from the intrinsic value of the compressor. Is due to. However, if the carrier frequency is increased too much, the carrier switching loss increases and the inverter efficiency deteriorates. Therefore, the optimum frequency is 4 to 7 kHz from the balance of efficiency and noise.

そして、エアコンの圧縮機で用いる電動機及びそれを駆動するインバータを、以上説明した電動機1及びインバータ4で構成し、それに結線切替装置3を装備すれば、次のような優れた使い勝手を有するエアコンを実現することができる。   If the electric motor used in the compressor of the air conditioner and the inverter that drives the electric motor are constituted by the electric motor 1 and the inverter 4 described above and the connection switching device 3 is provided to the electric motor, the air conditioner having the following excellent usability is provided. Can be realized.

すなわち、前述したように、エアコンの圧縮機で用いる永久磁石型電動機は、低速回転での効率を良くすることと、高速回転まで運転できることとを両立させることができないので、従来では、エアコンの冷暖房能力や運転に関する要求を充分に満足させることが困難であったが、この実施の形態による電動機駆動法によれば、低速回転では、スター結線とし高効率運転を行い、高速回転ではデルタ結線に切り替えるので、エアコンの必要能力に応じた充分な回転速度で運転できるようになる。   That is, as described above, the permanent magnet type electric motor used in the compressor of the air conditioner cannot improve both the efficiency at the low speed rotation and the operation up to the high speed rotation. Although it was difficult to fully satisfy the requirements regarding capacity and operation, according to the motor drive method according to this embodiment, high-speed operation is performed with star connection at low speed rotation and switching to delta connection at high speed rotation. Therefore, it becomes possible to operate at a sufficient rotational speed according to the required capacity of the air conditioner.

このとき、この実施の形態による電動機駆動装置は、圧縮機に対して例えば図7に示すようにして装備することができる。図7は、図1に示す電動機駆動装置を装備する圧縮機の構成例を示す要部断面図である。   At this time, the electric motor drive device according to this embodiment can be installed on the compressor as shown in FIG. 7, for example. FIG. 7 is a cross-sectional view of an essential part showing a configuration example of a compressor equipped with the electric motor drive device shown in FIG.

図7において、圧縮機20に用いる電動機1は、図1では端子2a,2bと示してあるが、図3に示したように、各相2本ずつ合計6本の引出線10が出ているので、その6本の引出線10を圧縮機20のシェル21に設けたガラス端子22を介して外部に導出し、図7では示してないが、ガラス端子22から引き出される6本の線に結線切替装置3を外付けする。つまり、結線切替装置3は、圧縮機20の外部に設置し、スイッチ接点の火花等の影響が圧縮機内部に及ぼさないようにする。   In FIG. 7, the electric motor 1 used for the compressor 20 is shown as terminals 2a and 2b in FIG. 1, but as shown in FIG. Therefore, the six lead wires 10 are led out to the outside through the glass terminals 22 provided on the shell 21 of the compressor 20 and connected to the six wires drawn from the glass terminals 22 although not shown in FIG. The switching device 3 is externally attached. That is, the connection switching device 3 is installed outside the compressor 20 so that the influence of the sparks of the switch contacts does not affect the inside of the compressor.

これによって、この実施の形態による電動機駆動装置を装備した圧縮機では、ガラス端子22から6本の引出線を引き出すだけで、低速回転時にはスター結線とし、高速回転時にはデルタ結線とする切り替えが可能となるので、低回転速度時の高効率化と、高回転速度まで運転可能との両立化を達成できるようになる。   As a result, in the compressor equipped with the electric motor drive device according to this embodiment, it is possible to switch between star connection at low speed rotation and delta connection at high speed rotation by simply pulling out six lead lines from the glass terminal 22. As a result, it is possible to achieve both high efficiency at low rotational speed and compatibility with operation at high rotational speed.

このとき、通常、圧縮機から取り出される引出線は3本であり、引出本数が増えてしまうことになるが、スター・デルタ結線変換以外の結線切り替えが6本よりも多くの引出線が必要であるのに対し、この実施の形態の適用では6本という最小の引出線数で、結線切替が可能になるので、少ないコスト上昇のもとで、圧縮機の性能を大幅に向上させることができる。   At this time, there are usually three lead lines taken out from the compressor, and the number of lead lines increases. However, more than six lead lines are required for connection switching other than star / delta connection conversion. On the other hand, the application of this embodiment makes it possible to switch the connection with a minimum number of lead lines of six, so that the performance of the compressor can be greatly improved with a small increase in cost. .

以上のように、この発明にかかる電動機駆動装置及び方法は、低回転速度時の高効率化と、高回転速度まで運転可能との両立化を図るのに有用であり、特に、エアコン等の圧縮機で用いられる永久磁石型電動機を駆動するのに適している。   As described above, the electric motor drive device and method according to the present invention are useful for achieving both high efficiency at a low rotational speed and operation possible up to a high rotational speed. It is suitable for driving a permanent magnet type electric motor used in a machine.

この発明の一実施の形態による電動機駆動装置を構成する電動機、インバータ及び結線切替装置との関係を示す結線図である。It is a connection diagram which shows the relationship with the electric motor, inverter, and connection switching apparatus which comprise the electric motor drive device by one Embodiment of this invention. 図1に示す結線切替装置が実現するスター結線とデルタ結線とを示す模式図である。It is a schematic diagram which shows the star connection and delta connection which the connection switching apparatus shown in FIG. 1 implement | achieves. 図1に示す電動機(永久磁石型電動機)の内部構造を説明する断面図である。It is sectional drawing explaining the internal structure of the electric motor (permanent magnet type electric motor) shown in FIG. 図1に示す電動機(永久磁石型電動機)の内部結線を説明する模式図である。It is a schematic diagram explaining the internal connection of the electric motor (permanent magnet type electric motor) shown in FIG. 図1に示す電動機(永久磁石型電動機)の回転速度に対する各特性を説明する特性図である。It is a characteristic view explaining each characteristic with respect to the rotational speed of the electric motor (permanent magnet type electric motor) shown in FIG. 図1に示す電動機駆動装置によって得られる電動機の回転速度に対する電圧及び効率の関係特性を説明する特性図である。It is a characteristic view explaining the relational characteristic of the voltage and efficiency with respect to the rotational speed of the electric motor obtained by the electric motor drive device shown in FIG. 図1に示す電動機駆動装置を装備する圧縮機の構成例を示す要部断面図である。It is principal part sectional drawing which shows the structural example of the compressor equipped with the electric motor drive device shown in FIG.

符号の説明Explanation of symbols

1 電動機(永久磁石型電動機)
2a,2b 端子
3 結線切替装置
4 インバータ
5 スイッチA
6 スイッチB
7 回転子
8 ティース部
9 巻線
10 引出線
11 永久磁石
12 スリット
13,14 ガス抜き穴
15 固定子
16 回動軸
20 圧縮機
21 シェル
22 ガラス端子
1 Electric motor (permanent magnet type electric motor)
2a, 2b Terminal 3 Connection switching device 4 Inverter 5 Switch A
6 Switch B
DESCRIPTION OF SYMBOLS 7 Rotor 8 Teeth part 9 Winding 10 Lead wire 11 Permanent magnet 12 Slit 13, 14 Gas vent 15 Stator 16 Rotating shaft 20 Compressor 21 Shell 22 Glass terminal

Claims (5)

永久磁石型の電動機をインバータ制御によって駆動するインバータ制御手段と、
前記インバータ制御手段が供給する駆動電圧を受ける前記電動機の巻線の結線方式を、指令に従ってスター結線とデルタ結線とに切り替える結線切替手段と、
前記電動機の運転状態を管理し、前記電動機の運転範囲が規定値以下の場合には前記結線切替手段に前記スター結線を行わせる前記指令を発行し、前記電動機の運転範囲が規定値以上の場合には前記結線切替手段に前記デルタ結線を行わせる前記指令を発行し、スター結線運転範囲及びデルタ結線運転範囲のそれぞれにおける所定の運転範囲において前記インバータ制御手段に対して弱め界磁制御による駆動を行わせる指令を発行する運転制御手段と、
を備えたことを特徴とする電動機駆動装置。
Inverter control means for driving a permanent magnet motor by inverter control;
A connection switching means for switching the connection method of the winding of the motor that receives the drive voltage supplied by the inverter control means to a star connection and a delta connection according to a command;
When the operating state of the motor is managed, and when the operating range of the motor is less than a specified value, the command for issuing the star connection is issued to the connection switching means, and the operating range of the motor is more than a specified value Issues the command to cause the connection switching means to perform the delta connection, and causes the inverter control means to drive by field weakening control in a predetermined operation range in each of the star connection operation range and the delta connection operation range. An operation control means for issuing a command ;
An electric motor drive device comprising:
前記電動機の巻線は集中巻であることを特徴とする請求項1に記載の電動機駆動装置。 The electric motor drive device according to claim 1, wherein the winding of the electric motor is a concentrated winding. インバータ制御によって駆動される永久磁石型の電動機の運転状態を管理し、当該電動機の運転範囲が規定値以下の場合には巻線をスター結線に切り替えて運転する一方、運転範囲が規定値以上の場合にはデルタ結線に切り替えて運転する工程と、
スター結線運転範囲及びデルタ結線運転範囲のそれぞれにおける所定の運転範囲において弱め界磁制御による運転を行う工程と、
を含むことを特徴とする電動機駆動方法。
The operating state of a permanent magnet type motor driven by inverter control is managed, and when the operating range of the motor is less than a specified value, the winding is switched to star connection and operated, while the operating range exceeds the specified value. In some cases, a process of switching to delta connection and operating,
A step of performing operation by field weakening control in a predetermined operation range in each of the star connection operation range and the delta connection operation range;
An electric motor drive method comprising:
前記電動機の巻線は集中巻であることを特徴とする請求項に記載の電動機駆動方法。 The motor driving method according to claim 3 , wherein the winding of the electric motor is a concentrated winding. 請求項1または2に記載の電動機駆動装置を搭載したことを特徴とする圧縮機。 Compressor, characterized in that mounting the motor driving device according to claim 1 or 2.
JP2005062362A 2005-03-07 2005-03-07 Electric motor drive device, electric motor drive method, and compressor Active JP4619826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062362A JP4619826B2 (en) 2005-03-07 2005-03-07 Electric motor drive device, electric motor drive method, and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062362A JP4619826B2 (en) 2005-03-07 2005-03-07 Electric motor drive device, electric motor drive method, and compressor

Publications (3)

Publication Number Publication Date
JP2006246674A JP2006246674A (en) 2006-09-14
JP2006246674A5 JP2006246674A5 (en) 2007-09-06
JP4619826B2 true JP4619826B2 (en) 2011-01-26

Family

ID=37052476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062362A Active JP4619826B2 (en) 2005-03-07 2005-03-07 Electric motor drive device, electric motor drive method, and compressor

Country Status (1)

Country Link
JP (1) JP4619826B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078838A1 (en) 2016-10-31 2018-05-03 三菱電機株式会社 Drive device and air-conditioner, and compressor control method
WO2018078840A1 (en) 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and drive method of electric motor
EP3754836A1 (en) 2019-06-20 2020-12-23 LG Electronics Inc. Apparatus and method for controlling switching of high speed wiring mode of a motor
US11101763B2 (en) 2016-10-31 2021-08-24 Mitsubishi Electric Corporation Air conditioner and method for controlling air conditioner
DE102021201744A1 (en) 2020-02-25 2021-08-26 Lg Electronics Inc. Motor control device and air conditioning with it
US11139769B2 (en) 2016-10-31 2021-10-05 Mitsubishi Electric Corporation Driving device, air conditioner, and method for driving motor
JP2022125083A (en) * 2018-09-28 2022-08-26 三菱電機株式会社 Motor drive device and air conditioner
US11502634B2 (en) 2017-07-25 2022-11-15 Mitsubishi Electric Corporation Driving device, compressor, air conditioner, and driving method

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804381B2 (en) * 2007-02-28 2011-11-02 三菱電機株式会社 Electric motor drive control device and electric motor
JP4722069B2 (en) * 2007-03-15 2011-07-13 三菱電機株式会社 Electric motor drive device, electric motor drive method, and refrigeration air conditioner
KR100883507B1 (en) 2007-07-06 2009-02-16 박운양 Electric power saving apparatus to control the three phase induction motor
JP5117218B2 (en) * 2008-02-18 2013-01-16 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
JP2009203839A (en) * 2008-02-27 2009-09-10 Hitachi Appliances Inc Refrigeration apparatus
JP5319139B2 (en) * 2008-03-18 2013-10-16 株式会社安川電機 Winding switching device and winding switching method for three-phase AC motor
JP5243869B2 (en) * 2008-07-14 2013-07-24 株式会社安川電機 AC motor winding switching device and inverter device
JP5276638B2 (en) * 2010-09-27 2013-08-28 日立アプライアンス株式会社 Compressor and hermetic rotary electric machine
JP6530174B2 (en) * 2014-10-28 2019-06-12 シャープ株式会社 Refrigeration cycle device
JP2016099029A (en) * 2014-11-19 2016-05-30 シャープ株式会社 Air conditioner
CN104676840B (en) * 2015-02-28 2017-06-06 广东美的制冷设备有限公司 The control method and control device of compressor in air-conditioner
CN104935223A (en) * 2015-07-01 2015-09-23 上海电机学院 Switching control system and method for permanent-magnet synchronous motor winding
JP6727320B2 (en) * 2016-10-31 2020-07-22 三菱電機株式会社 Electric motor drive and air conditioner
WO2018078843A1 (en) 2016-10-31 2018-05-03 三菱電機株式会社 Electric motor drive device and air conditioner
JP6918818B2 (en) * 2016-10-31 2021-08-11 三菱電機株式会社 Air conditioner
US11199351B2 (en) * 2017-05-10 2021-12-14 Mitsubishi Electric Corporation Air conditioner and method for controlling operation of air conditioner
EP3657668B1 (en) 2017-07-21 2024-02-14 Mitsubishi Electric Corporation Electric motor driving device, compressor, and air conditioner
JP6710336B2 (en) 2017-07-25 2020-06-17 三菱電機株式会社 Driving device, air conditioner, and driving method
WO2019026282A1 (en) 2017-08-04 2019-02-07 三菱電機株式会社 Electric motor drive device and air conditioner
CN110945776B (en) 2017-08-08 2023-04-18 三菱电机株式会社 Motor drive device and air conditioner
CN111033143B (en) * 2017-08-17 2021-06-11 三菱电机株式会社 Air conditioner
JP2019047574A (en) * 2017-08-30 2019-03-22 シャープ株式会社 Motor driving control device, air blower, and apparatus having air blower
EP3644476A4 (en) * 2017-08-31 2020-07-15 Guangdong Meizhi Compressor Co., Ltd. Motor and compressor
CN107592054B (en) * 2017-08-31 2019-10-01 广东美芝制冷设备有限公司 Motor control method, motor control assembly and storage medium
WO2019082255A1 (en) 2017-10-24 2019-05-02 三菱電機株式会社 Compressor and refrigeration cycle device
JP7341136B2 (en) * 2018-01-03 2023-09-08 広東美芝制冷設備有限公司 Compressor and cooling equipment
CN108336934B (en) * 2018-01-03 2020-05-08 广东美芝制冷设备有限公司 Switching method and device for stator winding of permanent magnet synchronous motor and permanent magnet synchronous motor
JP6456529B1 (en) * 2018-01-05 2019-01-23 三菱電機株式会社 Rotating electrical machine equipment
US11226127B2 (en) 2018-01-26 2022-01-18 Mitsubishi Electric Corporation Control system, air conditioner, and server
US11506437B2 (en) 2018-04-25 2022-11-22 Mitsubishi Electric Corporation Refrigerating cycle device having wiring switch part that switches between wiring states
JP2020145904A (en) * 2019-03-08 2020-09-10 三菱重工サーマルシステムズ株式会社 Demagnetization protection circuit, motor system, protection method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225588A (en) * 1993-01-21 1994-08-12 Toyota Motor Corp Controller for winding switching type permanent magnet motor
JPH10201148A (en) * 1997-01-06 1998-07-31 Okuma Mach Works Ltd Synchronous motor
JP2002291288A (en) * 2001-03-29 2002-10-04 Railway Technical Res Inst Permanent magnet synchronous motor and multi-contact simultaneous short-circuited contactor
JP2004064893A (en) * 2002-07-29 2004-02-26 Mitsubishi Electric Corp Motor and its drive unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225588A (en) * 1993-01-21 1994-08-12 Toyota Motor Corp Controller for winding switching type permanent magnet motor
JPH10201148A (en) * 1997-01-06 1998-07-31 Okuma Mach Works Ltd Synchronous motor
JP2002291288A (en) * 2001-03-29 2002-10-04 Railway Technical Res Inst Permanent magnet synchronous motor and multi-contact simultaneous short-circuited contactor
JP2004064893A (en) * 2002-07-29 2004-02-26 Mitsubishi Electric Corp Motor and its drive unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078838A1 (en) 2016-10-31 2018-05-03 三菱電機株式会社 Drive device and air-conditioner, and compressor control method
WO2018078840A1 (en) 2016-10-31 2018-05-03 三菱電機株式会社 Drive device, air conditioner and drive method of electric motor
US10763773B2 (en) 2016-10-31 2020-09-01 Mitsubishi Electric Corporation Driving device, air conditioner, and method for driving motor
US11101763B2 (en) 2016-10-31 2021-08-24 Mitsubishi Electric Corporation Air conditioner and method for controlling air conditioner
US11139769B2 (en) 2016-10-31 2021-10-05 Mitsubishi Electric Corporation Driving device, air conditioner, and method for driving motor
US11637521B2 (en) 2016-10-31 2023-04-25 Mitsubishi Electric Corporation Driving device, air conditioner, and method for controlling compressor
US11502634B2 (en) 2017-07-25 2022-11-15 Mitsubishi Electric Corporation Driving device, compressor, air conditioner, and driving method
JP2022125083A (en) * 2018-09-28 2022-08-26 三菱電機株式会社 Motor drive device and air conditioner
JP7337232B2 (en) 2018-09-28 2023-09-01 三菱電機株式会社 Motor drive device and air conditioner
EP3754836A1 (en) 2019-06-20 2020-12-23 LG Electronics Inc. Apparatus and method for controlling switching of high speed wiring mode of a motor
US11177758B2 (en) 2019-06-20 2021-11-16 Lg Electronics Inc. Apparatus and method for controlling switching of high speed wiring mode of a motor
DE102021201744A1 (en) 2020-02-25 2021-08-26 Lg Electronics Inc. Motor control device and air conditioning with it

Also Published As

Publication number Publication date
JP2006246674A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4619826B2 (en) Electric motor drive device, electric motor drive method, and compressor
JP4904989B2 (en) Rotating electrical machines, winding machines, rotating electrical machine systems, hybrid vehicles, fuel cell vehicles, and electric vehicles
CN104242521B (en) A kind of bimodulus motor generator
JP2007181305A (en) Permanent magnet type synchronous motor and compressor using the same
JP5334590B2 (en) Electrical equipment, especially AC current machines
US7508157B1 (en) Line synchronous air core motor
JPWO2018020631A1 (en) Electric motor, blower, and air conditioner
JP2011229221A (en) Hermetic type electric compressor and refrigeration cycle device
US20230231456A1 (en) Electric motor, driving device, compressor, and air conditioner
CN105576929A (en) AC brushless electro-magnetic starter generator employing concentrated windings
JP6235381B2 (en) Compressor
JP5822697B2 (en) Power generation system and operation control method thereof
Liu et al. Operation principle and topology structures of axial flux-switching hybrid excitation synchronous machine
WO2011104763A1 (en) Rotary machine
JP7019072B2 (en) Air conditioner and control method of air conditioner
CN102377309B (en) Brushless motor for electric vehicle
CN210780248U (en) Integrated CVT 64 pole switched reluctance motor
CN107425625A (en) A kind of motor and compressor
Arisawa et al. Motor and inverter technologies for air conditioner application
Mergiotti et al. Design of a turbo-expander driven generator for energy recovery in automotive systems
JP2005307867A (en) Compressor, compressor drive control device, and drive control method for compressor
CN110474450A (en) Integrated 64 pole switching reluctance motor of CVT
JP2010035294A (en) Permanent magnet synchronous motor
JP2001061248A (en) Motor
Komatsu et al. Elevator traction-machine motors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4619826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250