JP4619224B2 - Rotational analysis device - Google Patents

Rotational analysis device Download PDF

Info

Publication number
JP4619224B2
JP4619224B2 JP2005216736A JP2005216736A JP4619224B2 JP 4619224 B2 JP4619224 B2 JP 4619224B2 JP 2005216736 A JP2005216736 A JP 2005216736A JP 2005216736 A JP2005216736 A JP 2005216736A JP 4619224 B2 JP4619224 B2 JP 4619224B2
Authority
JP
Japan
Prior art keywords
chamber
analysis device
measuring
overflow
measuring chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005216736A
Other languages
Japanese (ja)
Other versions
JP2007033225A (en
Inventor
博司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005216736A priority Critical patent/JP4619224B2/en
Publication of JP2007033225A publication Critical patent/JP2007033225A/en
Application granted granted Critical
Publication of JP4619224B2 publication Critical patent/JP4619224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生物学的流体を光学的に分析する回転分析デバイスに関するものであり、より詳細には、光学的分析装置で生物学的流体の測定に使用する回転分析デバイスにおける生物学的流体の計量に関する。   The present invention relates to a rotational analysis device for optically analyzing a biological fluid, and more particularly, to a biological fluid in a rotational analysis device used for measurement of biological fluid in an optical analyzer. Concerning weighing.

従来、生物学的流体を光学的に分析する方法として液体流路を形成したマイクロデバイスを用いて分析する方法が知られている。マイクロデバイスは回転装置を使って流体の制御をすることが可能であり、遠心力を利用して試料の計量、細胞質材料の分離、分離された流体の移送分配等を行うことができるため、種々の生物化学的な分析を行うことが可能である。   2. Description of the Related Art Conventionally, as a method for optically analyzing a biological fluid, a method for analyzing using a microdevice having a liquid flow path is known. Microdevices can control fluids using a rotating device, and use centrifugal force to measure samples, separate cytoplasmic materials, transfer and distribute separated fluids, etc. It is possible to perform biochemical analysis.

遠心力を利用して試料を計量する方法としては、図7に示すように中心から周縁に向けて分析前に希釈すべき液体を収容する中央収容部71と、計量室72及び溢流室73と、混合室74と、測定セル75とを備え、計量室72が溢流室73とほぼ平行に配置され、且つ供給口76及び溢流口77以外に供給口76と対向する計量室壁面に設けられる開口78を有し、この開口が常時開放されると共に、供給口76及び溢流口77より遥かに小さい断面を有することを特徴とする回転分析デバイスがあり、このような構成にすることで計量室72の充填が高速で実施され、且つその溢流が即刻除去される。液体は計量室72が液体で満たされ始めるとすぐにこの室から流出し始める。そのため、流入口断面積対流出口断面積の比の関数たる供給時間対流出口からの流出時間の比を好きなだけ小さくすることができることから、測定に正確さが与えられる(特許文献1)。   As a method for measuring the sample using the centrifugal force, as shown in FIG. 7, a central storage portion 71 for storing a liquid to be diluted before analysis from the center to the periphery, a measurement chamber 72 and an overflow chamber 73. And a mixing chamber 74 and a measuring cell 75, the measuring chamber 72 is disposed substantially parallel to the overflow chamber 73, and is provided on the wall of the measuring chamber facing the supply port 76 in addition to the supply port 76 and the overflow port 77. There is a rotational analysis device characterized in that it has an opening 78 provided, this opening is always open and has a cross section much smaller than the supply port 76 and the overflow port 77, and this configuration Thus, the filling of the measuring chamber 72 is performed at high speed, and the overflow is immediately removed. Liquid begins to flow out of this chamber as soon as the metering chamber 72 begins to fill with liquid. Therefore, since the ratio of the supply time to the outflow time from the outflow outlet as a function of the ratio of the inflow cross-sectional area to the outflow outlet cross-sectional area can be reduced as much as desired, accuracy is given to measurement (Patent Document 1).

また、図8に示すように大型流体室81と、大型流体室81に連結されると共に大型流体室81に対して半径方向外方に配置された計量室82と、計量室82に連結された溢流室83と、計量室82に対して半径方向外方に配置された受容室84と、計量室82から受容室84に液体を供給するための毛細管連結手段85とを有する回転分析デバイスがあり、毛細管連結手段85は毛細管構造を有するサイフォン86を含み、サイフォン86の肘状屈曲部分が、回転分析デバイスの中心から、計量室82の半径方向再内方点と実質的に同じ距離になるように位置付けられることで、回転分析デバイスの回転中は毛細管力が遠心力に比べて小さいため、液体/空気の界面は回転分析デバイスの軸線と同じ軸線を有し、且つ回転分析デバイスの中心から計量室82の半径方向再内方点までの距離に等しい長さの半径を持つ回転円筒体の形状と合致して計量室82は充填され、過剰な液は溢流室83に流れ込む。回転分析デバイスを止めると、計量室82内に充填された液が、毛細管力で毛細管連結手段85に流入し、再度回転させることでサイフォンが始動し、計量室82内に存在する液は受容室84に排出される(特許文献2)。
特開昭61−167469号公報 特表平5−508709号公報
Further, as shown in FIG. 8, a large fluid chamber 81, a measuring chamber 82 connected to the large fluid chamber 81 and arranged radially outward with respect to the large fluid chamber 81, and connected to the measuring chamber 82. A rotational analysis device having an overflow chamber 83, a receiving chamber 84 disposed radially outward with respect to the measuring chamber 82, and capillary connection means 85 for supplying liquid from the measuring chamber 82 to the receiving chamber 84. Yes, the capillary connection means 85 includes a siphon 86 having a capillary structure, and the elbow bend of the siphon 86 is at substantially the same distance from the center of the rotational analysis device as the radial re-inward point of the metering chamber 82. The liquid / air interface has the same axis as the axis of the rotational analysis device, and the rotational analysis device has the same axis as the capillary force during rotation of the rotational analysis device is small compared to the centrifugal force. Consistent with the shape of the rotating cylinder having a radial distance equal to the length of up to radially re inward point of the metering chamber 82 is measuring chamber 82 is filled from the excess liquid flows into the overflow chamber 83. When the rotation analysis device is stopped, the liquid filled in the measuring chamber 82 flows into the capillary connecting means 85 by capillary force and is rotated again to start the siphon, and the liquid existing in the measuring chamber 82 is received in the receiving chamber. 84 (Patent Document 2).
JP 61-167469 A Japanese National Patent Publication No. 5-508709

しかしながら、前記従来の構成では、回転分析デバイスが回転中の時は、遠心力が液体と計量室壁面との間に働く表面張力より大きいため、溢流口の開口位置で液面が釣り合って所定の量を計量できているが、次工程に移るために回転を減速あるいは停止させた場合に、液体は遠心力から開放されると同時に液体と溢流口壁面の界面で表面張力が働き出し、その表面張力によって液体は溢流口の壁面を伝って溢流室に流出してしまい、精密な計量ができていなかった。また、液体の物性値の違いによって流出する量がばらつくため、分析する液体ごとに計量室の大きさを変える必要があった。   However, in the conventional configuration, when the rotational analysis device is rotating, since the centrifugal force is larger than the surface tension acting between the liquid and the wall surface of the measuring chamber, the liquid level is balanced at the opening position of the overflow port, and the predetermined value is obtained. However, when the rotation is decelerated or stopped to move to the next process, the liquid is released from the centrifugal force, and at the same time, the surface tension starts working at the interface between the liquid and the overflow wall, Due to the surface tension, the liquid flowed along the wall of the overflow port into the overflow chamber, and precise measurement was not possible. In addition, since the amount of liquid flowing out varies depending on the physical property values of the liquid, it is necessary to change the size of the measuring chamber for each liquid to be analyzed.

本発明は、前記従来の課題を解決するもので、液体の計量を精度よく行うことのできる回転分析デバイスを提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide a rotational analysis device capable of accurately measuring a liquid.

前記従来の課題を解決するために、本発明の回転分析デバイスは、分析するために必要な量の試料液を注入/収容するための液体収容室と、前記液体収容室に連結通路によって連結されるとともに前記液体収容室に対して半径方向外方に配置された前記試料液を一定量保持する計量室と、前記計量室に連結され当該計量室の容量よりも過剰な容量の試料液を受容するための溢流室を有する回転分析デバイスであって、前記計量室が少なくとも回転分析デバイスの半径方向内側に位置する壁面と回転分析デバイスの半径方向外側に位置する壁面とを有し、前記連結通路を介して液体収容室から前記試料液が流入する流入口と、前記計量室から前記溢流室への溢流口が、前記計量室の回転分析デバイスの半径方向内側に位置する壁面に離間して設けられ、前記計量室の溢流口からの試料液が流れ込む前記溢流室の流入口は、前記計量室の溢流口より半径方向内方に配置され、前記計量室の溢流口と毛細管通路で連結するとともに、前記計量室を構成する壁面のうち回転分析デバイスの半径方向内側に位置する前記壁面は、当該計量室の前記流入口から当該計量室の前記溢流口へ向かうに従って前記半径方向位置が回転中心へ近接するように形成されていることを特徴とする。 In order to solve the above-mentioned conventional problems, the rotational analysis device of the present invention is connected to a liquid storage chamber for injecting / accommodating a necessary amount of sample liquid for analysis, and to the liquid storage chamber by a connecting passage. And a measuring chamber for holding a certain amount of the sample liquid disposed radially outward with respect to the liquid storage chamber, and receiving a sample liquid having a volume exceeding the capacity of the measuring chamber connected to the measuring chamber. A rotating analysis device having an overflow chamber for performing the measurement , wherein the weighing chamber has at least a wall surface located radially inside the rotational analysis device and a wall surface located radially outside the rotational analysis device, and the connection An inlet through which the sample liquid flows from the liquid storage chamber through the passage and an overflow port from the measurement chamber to the overflow chamber are separated from a wall surface located radially inward of the rotational analysis device of the measurement chamber. Set up Is the inlet of the overflow chamber of the sample solution flows from the overflow port of the metering chamber is located radially inward from the overflow port of the metering chamber, the overflow opening and the capillary channel of the metering chamber And the wall surface located on the radially inner side of the rotational analysis device among the wall surfaces constituting the measurement chamber is in the radial direction from the inlet of the measurement chamber toward the overflow port of the measurement chamber. The position is formed so as to be close to the center of rotation .

また、さらに本発明は、前記計量室で計量された試料液を移送して該試料液の吸光度を測定するための測定セルと、前記計量室と前記測定セルをつなぐ連結通路の間に前記計量室の測定セル側出口より前記半径方向の外方に毛細管バルブを設けたことを特徴とする。 Still present invention, the weighing and measuring cell for measuring the absorbance of the sample solution and transferring the sample liquid that has been weighed in the weighing chamber, between the connecting passage connecting the measuring cell and the measuring chamber A capillary valve is provided outward from the measurement cell side outlet of the chamber in the radial direction.

本発明の回転分析デバイスによれば、回転分析デバイスを回転させて計量室に保持させた液体を、次工程に移るために回転を減速あるいは停止させても、計量室と溢流室を毛細管で連結させることで、液体はその毛細管内にトラップされて溢流室に流出しないため、正確な計量を行うことができる。また、表面張力の異なる液体も計量後の溢流室への流出が無くなるため、同じ量だけ計量することができる。   According to the rotational analysis device of the present invention, even if the liquid held in the measurement chamber by rotating the rotational analysis device is decelerated or stopped in order to move to the next step, the measurement chamber and the overflow chamber are separated by a capillary. By connecting, the liquid is trapped in the capillary and does not flow out into the overflow chamber, so that accurate measurement can be performed. In addition, liquids having different surface tensions can be measured by the same amount because there is no outflow to the overflow chamber after measurement.

以下に、本発明の回転分析デバイスの実施の形態を図面とともに詳細に説明する。   Embodiments of the rotational analysis device of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の第1の実施例における回転分析デバイスの構成を示す模式図である。また、図2は第1の実施例における回転分析デバイスのマイクロチャネルが形成された基板を示す斜視図である。   FIG. 1 is a schematic diagram showing the configuration of a rotational analysis device according to the first embodiment of the present invention. FIG. 2 is a perspective view showing the substrate on which the microchannel of the rotational analysis device in the first embodiment is formed.

図1において、本発明の回転分析デバイスは、マイクロチャネル4a、4bを有する基板1と、平坦な基板2と、接着層3で構成されている。   In FIG. 1, the rotational analysis device of the present invention includes a substrate 1 having microchannels 4 a and 4 b, a flat substrate 2, and an adhesive layer 3.

基板1に形成されるマイクロチャネル4a、4bは、図3に示すような凹凸のあるマイクロチャネルパターンを射出成形により作製しており、分析する試料液を回転分析デバイスに注入し、遠心力と毛細管力を利用して流体移動をさせることが可能となっている。   The microchannels 4a and 4b formed on the substrate 1 are produced by injection-molding a microchannel pattern having projections and depressions as shown in FIG. 3, and a sample solution to be analyzed is injected into a rotational analysis device, and centrifugal force and capillary tube are injected. It is possible to move the fluid using force.

本発明では、マイクロチャネル4aに透過光を照射して、検査すべき試料液と試薬の反応状態を光学的に分析する。測定時には、マイクロチャネル4a内に試料液と試薬とを反応させた反応溶液5が充填され、反応溶液5は試料液と試薬の反応の割合で吸光度が変化するため、光源部6からマイクロチャネル4aに透過光を照射し、受光部7にてその透過光の光量を測定することで、反応溶液5を透過した光量の変化を測定することができるため、反応状態を分析することができる。   In the present invention, the microchannel 4a is irradiated with transmitted light to optically analyze the reaction state between the sample liquid to be examined and the reagent. At the time of measurement, the reaction solution 5 obtained by reacting the sample solution and the reagent is filled in the microchannel 4a, and the absorbance of the reaction solution 5 changes depending on the reaction rate between the sample solution and the reagent. Since the change in the amount of light transmitted through the reaction solution 5 can be measured by irradiating the light with transmitted light and measuring the amount of the transmitted light at the light receiving unit 7, the reaction state can be analyzed.

本発明では、基板1および基板2の厚みは、1mm〜5mmで形成しているが、特に制限は無く、マイクロチャネル4a、4bを形成可能な厚みであればよい。基板1および基板2の形状についても特に限定する必要が無く、用途目的に応じた形状、例えば、シート状、板状、棒状、その他複雑な形状の成形物などの形状が可能である。   In this invention, although the thickness of the board | substrate 1 and the board | substrate 2 is formed at 1 mm-5 mm, there is no restriction | limiting in particular, What is necessary is just the thickness which can form microchannel 4a, 4b. The shapes of the substrate 1 and the substrate 2 are not particularly limited, and can be a shape according to the purpose of use, for example, a sheet shape, a plate shape, a rod shape, or other complicated shapes.

本発明では基板1および基板2の材料として、易成形性、高生産性、低価格の面からプラスチックを使用しているが、ガラス、シリコンウェハー、金属、セラミックなど接合できる材料であれば特に制限はない。   In the present invention, plastic is used as the material of the substrate 1 and the substrate 2 from the viewpoint of easy moldability, high productivity, and low cost. There is no.

本発明ではマイクロチャネル4a、4bを有する基板1および基板2にはマイクロチャネル4a、4b内の粘性抵抗を減らし流体移動をしやすくするために親水性処理を行っているが、ガラス等の親水性材料を用いたり、成形時に界面活性剤、親水性ポリマー、シリカゲルの如き親性粉末などの親水化剤を添加させて材料表面に親水性を付与させたりしてもかまわない。親水性処理方法としては、プラズマ、コロナ、オゾン、フッ素等の活性ガスを用いた表面処理方法や界面活性剤による表面処理が挙げられる。ここで、親水性とは水との接触角が90度未満のことをいい、より好ましくは接触角40度未満である。   In the present invention, the substrate 1 and the substrate 2 having the microchannels 4a and 4b are subjected to hydrophilic treatment in order to reduce the viscous resistance in the microchannels 4a and 4b and facilitate fluid movement. A material may be used, or a hydrophilic agent such as a surfactant, a hydrophilic polymer, or a hydrophilic powder such as silica gel may be added at the time of molding to impart hydrophilicity to the material surface. Examples of the hydrophilic treatment method include a surface treatment method using an active gas such as plasma, corona, ozone, and fluorine, and a surface treatment with a surfactant. Here, the hydrophilic property means that the contact angle with water is less than 90 degrees, and more preferably, the contact angle is less than 40 degrees.

本発明では、接着剤を用いて基板1と基板2を接合しているが、使用する材料に応じて溶融接合や陽極接合などの接合方法で接合してもかまわない。   In this invention, although the board | substrate 1 and the board | substrate 2 are joined using an adhesive agent, you may join by joining methods, such as a fusion | melting joining and anodic joining, according to the material to be used.

次に上記で説明した本発明の第1の実施例における回転分析デバイスのマイクロチャネル構成および試料液の移送プロセスについて説明する。   Next, the microchannel configuration of the rotational analysis device and the sample liquid transfer process in the first embodiment of the present invention described above will be described.

図3は第1の実施例における回転分析デバイスのマイクロチャネル構成を示す平面図である。また、図4(a)〜図4(d)は本発明の第1の実施例における回転分析デバイスの移送プロセスを示す図である。   FIG. 3 is a plan view showing the microchannel configuration of the rotational analysis device in the first embodiment. 4 (a) to 4 (d) are diagrams showing a transfer process of the rotational analysis device in the first embodiment of the present invention.

図2に示すように、本発明の回転分析デバイスのマイクロチャネル構成は、試料液を注入/収容するための液体収容室9と、試料液を一定量計量し保持する計量室10と、計量室10の容量よりも過剰な容量の試料液を受容するための溢流室11と、計量室10で計量された試料液を移送させて試薬と反応させ、その液の吸光度を測定するための測定セル12とで構成されている。ここで、本実施例では省略しているが、計量室10と測定セル12の間には細胞質を分離するための分離室や、試料液を希釈/混合するための混合室等を設けてもかまわない。   As shown in FIG. 2, the microchannel configuration of the rotational analysis device of the present invention includes a liquid storage chamber 9 for injecting / accommodating sample liquid, a measurement chamber 10 for measuring and holding a predetermined amount of sample liquid, and a measurement chamber. An overflow chamber 11 for receiving a sample liquid of an excess volume of 10 and a measurement for transferring the sample liquid measured in the measuring chamber 10 to react with the reagent and measuring the absorbance of the liquid It consists of a cell 12. Although omitted in the present embodiment, a separation chamber for separating the cytoplasm, a mixing chamber for diluting / mixing the sample liquid, etc. may be provided between the measuring chamber 10 and the measuring cell 12. It doesn't matter.

本発明では、液体試料室9、計量室10、溢流室11、測定セル12の深さを0.3mm〜2mmで形成しているが、試料液の量や吸光度測定するための条件(光路長、測定波長、試料液の反応濃度、試薬の種類等)によって調整可能である。   In the present invention, the depths of the liquid sample chamber 9, the measurement chamber 10, the overflow chamber 11, and the measurement cell 12 are formed to be 0.3 mm to 2 mm, but the conditions (optical path) for measuring the amount of the sample liquid and the absorbance. Length, measurement wavelength, reaction concentration of sample solution, type of reagent, etc.).

液体収容室9は計量室10と連結通路13を介してつながっており、図4(a)に示すように注入口8から試料液を注入/収容し、回転分析デバイスを回転させることで、図4(b)に示すように、試料液を計量室10に移送することができる。   The liquid storage chamber 9 is connected to the measuring chamber 10 via the connecting passage 13, and as shown in FIG. 4A, the sample liquid is injected / stored from the injection port 8, and the rotational analysis device is rotated to As shown in 4 (b), the sample liquid can be transferred to the measuring chamber 10.

本発明では、連結通路13の深さを液体収容室9や計量室10と同じ深さにしているが、計量室10に空気孔を設けることで、深さ50μm〜200μmの毛細管形状にすることも可能である。   In the present invention, the depth of the connecting passage 13 is the same as that of the liquid storage chamber 9 and the measuring chamber 10, but by providing an air hole in the measuring chamber 10, a capillary shape having a depth of 50 μm to 200 μm is formed. Is also possible.

計量室10は、計量室10より半径方向内方に配置された溢流室11の流入口16に、計量室10の半径方向最内方に位置する溢流口14から毛細管流路17を介して連結され、計量室10の半径方向最外方に位置する場所から連結通路15を介して測定セル12に連結されている。溢流室11には、試料液が流入しやすいように空気孔18が設けられており、測定セル12にも、試料液が連結通路15を流れやすいように空気孔19が設けられている。   The measuring chamber 10 is connected to the inlet 16 of the overflow chamber 11 arranged radially inward from the measuring chamber 10 and from the overflow port 14 located radially inward of the measuring chamber 10 through the capillary channel 17. And is connected to the measurement cell 12 through a connection passage 15 from a location located radially outward of the weighing chamber 10. The overflow chamber 11 is provided with an air hole 18 so that the sample liquid can easily flow in, and the measurement cell 12 is also provided with an air hole 19 so that the sample liquid can easily flow through the connecting passage 15.

連結通路15は、回転分析デバイスの回転中心から溢流室11の流入口16と、毛細管流路17の界面までの距離より内方に配置される曲管を備えたサイフォン形状である。本発明では、連結通路15の幅を0.5mm〜2mm、深さを50μm〜200μmで形成しているが、毛細管力で連結通路15内を試料液で充填できるのであれば特に制限はない。   The connection passage 15 has a siphon shape including a curved pipe disposed inward from the distance from the rotation center of the rotational analysis device to the inlet 16 of the overflow chamber 11 and the interface of the capillary channel 17. In the present invention, the width of the connecting passage 15 is 0.5 mm to 2 mm and the depth is 50 μm to 200 μm, but there is no particular limitation as long as the inside of the connecting passage 15 can be filled with the sample solution by capillary force.

このように計量室10と測定セル12を連結することで、液体収容室9内に収容された試料液を回転分析デバイスの回転によって計量室10に移送・充填させても、図4(b)に示すように、連結通路15内の試料液は、回転分析デバイスの回転中心から溢流室11の流入口16と、毛細管流路17の界面までの半径方向の距離に相当する位置までしか充填されない。計量室10の充填完了後に回転分析デバイスを停止させると、図4(c)に示すように、連結通路15内は毛細管力が働き、測定セル12の入口まで試料液で満たされる。このとき、試料液は測定セル12の深さが深く、毛細管力が連結通路15の毛細管力に比べて極めて小さいため、測定セル12内には流入しない。
連結通路15が満たされた後、回転分析デバイスを再度回転させることで計量室10内に保持されている試料液は、図4(d)に示すように、サイフォン効果で測定セルに移送される。
By connecting the measurement chamber 10 and the measurement cell 12 in this way, the sample liquid stored in the liquid storage chamber 9 can be transferred and filled into the measurement chamber 10 by rotation of the rotational analysis device, as shown in FIG. As shown in FIG. 5, the sample liquid in the connection passage 15 is filled only to a position corresponding to the radial distance from the rotation center of the rotational analysis device to the inlet 16 of the overflow chamber 11 and the interface of the capillary channel 17. Not. When the rotational analysis device is stopped after the filling of the measuring chamber 10, a capillary force acts in the connection passage 15 as shown in FIG. 4C, and the sample solution is filled up to the inlet of the measurement cell 12. At this time, the sample liquid does not flow into the measurement cell 12 because the depth of the measurement cell 12 is deep and the capillary force is extremely smaller than the capillary force of the connection passage 15.
After the connection passage 15 is filled, the sample solution held in the measuring chamber 10 by rotating the rotational analysis device again is transferred to the measurement cell by the siphon effect as shown in FIG. 4 (d). .

本発明では、計量室10を構成する壁面のうち、回転分析デバイスの半径方向内側に位置する壁面の形状が、計量室10の連結通路13付近から溢流口14付近にかけて半径方向内方に入り込むように形成される。即ち、計量室10を構成する壁面のうち、回転分析デバイスの半径方向内側に位置する壁面は、計量室10の試料液の流入口から溢流口へ向かうに従って半径方向位置が回転中心へ近接するように形成することで、液体収容室9から試料液を移送させた際に、計量室10内の空気が溢流口14に向かって選択的に抜けるため、計量室10の充填時に空気の混入による試料液の計量ばらつきが少なくなる。   In the present invention, among the wall surfaces constituting the measurement chamber 10, the shape of the wall surface located on the radially inner side of the rotation analysis device enters inward in the radial direction from the vicinity of the connecting passage 13 of the measurement chamber 10 to the vicinity of the overflow port 14. Formed as follows. That is, among the wall surfaces constituting the measuring chamber 10, the wall surface located radially inward of the rotational analysis device has a radial position closer to the center of rotation as it goes from the sample solution inlet to the overflow port in the measuring chamber 10. In this way, when the sample liquid is transferred from the liquid storage chamber 9, air in the measuring chamber 10 is selectively removed toward the overflow port 14, so that air is mixed when the measuring chamber 10 is filled. Dispersion of sample liquid due to is reduced.

本発明では、毛細管流路17の深さは50μm〜200μmで形成されており、このようにすることで、回転分析デバイスの回転中は、溢流室11の流入口16と、毛細管流路17の界面までの半径方向の距離に相当する位置で液面が安定して計量され、回転の減速/停止時には、試料液は毛細管流路17の毛細管力によって毛細管流路17内にトラップされているため、溢流室11への流出を防ぐことができ、精密な計量が可能となる。また、毛細管流路17内にトラップされている試料液は、次の回転時に遠心力によって計量室10に戻されるため、計量された試料液を全て次の工程に移送することが可能となる。   In the present invention, the depth of the capillary channel 17 is 50 μm to 200 μm. By doing so, the inlet 16 of the overflow chamber 11 and the capillary channel 17 are rotated during rotation of the rotational analysis device. The liquid level is stably measured at a position corresponding to the radial distance to the interface of the liquid crystal, and the sample liquid is trapped in the capillary channel 17 by the capillary force of the capillary channel 17 when the rotation is decelerated / stopped. Therefore, the outflow to the overflow chamber 11 can be prevented, and precise measurement is possible. Further, since the sample liquid trapped in the capillary channel 17 is returned to the measuring chamber 10 by the centrifugal force at the next rotation, all the measured sample liquid can be transferred to the next step.

図5は、本発明の第2の実施例における回転分析デバイスの構成を示す模式図である。また、図6は第2の実施例における回転分析デバイスのマイクロチャネルが形成された基板を示す斜視図である。   FIG. 5 is a schematic diagram showing the configuration of the rotational analysis device in the second embodiment of the present invention. FIG. 6 is a perspective view showing a substrate on which microchannels of the rotational analysis device in the second embodiment are formed.

図5において、実施例1の構成と異なるところは、計量室10の溢流口14と溢流室11の流入口16との間に溢流制御室20を設け、溢流室11の流入口16と溢流制御室20を深さ50μm〜200μmの毛細管流路21を介して連結した点である。   In FIG. 5, the difference from the configuration of the first embodiment is that an overflow control chamber 20 is provided between the overflow port 14 of the measuring chamber 10 and the inlet 16 of the overflow chamber 11, and the inlet of the overflow chamber 11 is provided. 16 and the overflow control chamber 20 are connected through a capillary channel 21 having a depth of 50 μm to 200 μm.

溢流制御室20は計量室10および溢流室11より半径方向内方に配置されており、その深さは、図6に示すように0.3mm〜2mmで形成されている。このような構成にすることで、溢流室11に流入した試料液の表面張力が低い場合でも、回転停止時に毛細管流路21の毛細管力で毛細管流路21内にトラップされるため、試料液が計量室10に逆流するのを抑制することが可能となる。   The overflow control chamber 20 is disposed radially inward from the measuring chamber 10 and the overflow chamber 11 and has a depth of 0.3 mm to 2 mm as shown in FIG. With this configuration, even when the surface tension of the sample liquid flowing into the overflow chamber 11 is low, the sample liquid is trapped in the capillary flow path 21 by the capillary force of the capillary flow path 21 when the rotation is stopped. Can be prevented from flowing back into the measuring chamber 10.

同じように、連結通路15を計量室10の半径方向最外方より外側の距離に相当する位置と測定セル12の間に設けた、深さ0.3mm〜2mmの毛細管バルブ22を介して計量室10と測定セル12を連結することで、測定セル12に移送させた試料液は、毛細管力の極めて小さい毛細管バルブ22があるため、毛細管バルブ22の流出口までしか毛細管力で戻ることができず、計量室10に逆流するのを抑制することが可能となる。   Similarly, the connecting passage 15 is measured via a capillary valve 22 having a depth of 0.3 mm to 2 mm provided between the measurement cell 12 and a position corresponding to a distance outside the radially outermost position of the measuring chamber 10. By connecting the chamber 10 and the measurement cell 12, the sample liquid transferred to the measurement cell 12 has a capillary valve 22 having a very small capillary force, and can return only to the outlet of the capillary valve 22 by the capillary force. Therefore, it is possible to suppress backflow into the measuring chamber 10.

本発明にかかる回転分析デバイスは、回転分析デバイスを回転させて計量室に保持させた液体を、次工程に移るために回転を減速あるいは停止させても、計量室と溢流室を毛細管で連結させることで、液体はその毛細管内にトラップされて溢流室に流出しないため、正確な計量を行うことができるという効果を有し、光学的分析装置で生物学的流体の測定に使用する回転分析デバイスにおける生物学的流体の計量方法等として有用である。   The rotational analysis device according to the present invention connects the measurement chamber and the overflow chamber with a capillary even when the rotation analysis device is rotated and the liquid held in the measurement chamber is decelerated or stopped to move to the next process. Since the liquid is trapped in the capillary tube and does not flow into the overflow chamber, the liquid can be accurately measured, and the rotation used for measuring the biological fluid in the optical analyzer is effective. This is useful as a method for measuring a biological fluid in an analytical device.

本発明の第1の実施例における回転分析デバイスの構成を示す模式図The schematic diagram which shows the structure of the rotation analysis device in 1st Example of this invention. 第1の実施例における回転分析デバイスのマイクロチャネルが形成された基板を示す斜視図The perspective view which shows the board | substrate with which the microchannel of the rotation analysis device in a 1st Example was formed. 第1の実施例における回転分析デバイスのマイクロチャネル構成を示す平面図The top view which shows the microchannel structure of the rotation analysis device in a 1st Example 第1の実施例における回転分析デバイスの移送プロセスを説明するための図The figure for demonstrating the transfer process of the rotation analysis device in 1st Example 第2の実施例における回転分析デバイスのマイクロチャネル構成を示す平面図The top view which shows the microchannel structure of the rotation analysis device in 2nd Example 第2の実施例における回転分析デバイスのマイクロチャネルが形成された基板を示す斜視図The perspective view which shows the board | substrate with which the microchannel of the rotation analysis device in 2nd Example was formed. 従来例の遠心力を利用して試料の計量を説明するための図Diagram for explaining sample weighing using centrifugal force of conventional example 従来例の他の遠心力を利用して試料の計量を説明するための図Diagram for explaining sample weighing using another centrifugal force of the conventional example

符号の説明Explanation of symbols

1、2 基板
3 接着層
4a、4b マイクロチャネル
5 反応溶液
6 光源部
7 受光部
8 注入口
9 液体収容室
10 計量室
11 溢流室
12 測定セル
13 連結通路
14 溢流口
15 連結通路
16 流入口
17 毛細管流路
18、19 空気孔
20 溢流制御室
21 毛細管流路
22 毛細管バルブ
71 中央収容部
72 計量室
73 溢流室
74 混合室
75 測定セル
76 供給口
77 溢流口
78 開口
81 大型流体室
82 計量室
83 溢流室
84 受容室
85 毛細管連結手段
86 サイフォン
DESCRIPTION OF SYMBOLS 1, 2 Substrate 3 Adhesive layer 4a, 4b Microchannel 5 Reaction solution 6 Light source part 7 Light receiving part 8 Inlet 9 Liquid storage chamber 10 Measurement room 11 Overflow chamber 12 Measurement cell 13 Connection channel 14 Overflow port 15 Connection channel 16 Flow Inlet 17 Capillary flow path 18, 19 Air hole 20 Overflow control chamber 21 Capillary flow path 22 Capillary valve 71 Central housing 72 Measuring chamber 73 Overflow chamber 74 Mixing chamber 75 Measurement cell 76 Supply port 77 Overflow port 78 Opening 81 Large Fluid chamber 82 Measuring chamber 83 Overflow chamber 84 Receiving chamber 85 Capillary connection means 86 Siphon

Claims (4)

分析するために必要な量の試料液を注入/収容するための液体収容室と、
前記液体収容室に連結通路によって連結されるとともに前記液体収容室に対して半径方向外方に配置された前記試料液を一定量保持する計量室と、
前記計量室に連結され当該計量室の容量よりも過剰な容量の試料液を受容するための溢流室を有する回転分析デバイスであって、
前記計量室が少なくとも回転分析デバイスの半径方向内側に位置する壁面と回転分析デバイスの半径方向外側に位置する壁面とを有し、前記連結通路を介して液体収容室から前記試料液が流入する流入口と、前記計量室から前記溢流室への溢流口が、前記計量室の回転分析デバイスの半径方向内側に位置する壁面に離間して設けられ、前記計量室の溢流口からの試料液が流れ込む前記溢流室の流入口は、前記計量室の溢流口より半径方向内方に配置され、前記計量室の溢流口と毛細管通路で連結するとともに、前記計量室を構成する壁面のうち回転分析デバイスの半径方向内側に位置する前記壁面は、当該計量室の前記流入口から当該計量室の前記溢流口へ向かうに従って前記半径方向位置が回転中心へ近接するように形成されている
回転分析デバイス。
A liquid storage chamber for injecting / accommodating the amount of sample liquid required for analysis;
A measuring chamber connected to the liquid storage chamber by a connecting passage and holding a certain amount of the sample liquid disposed radially outward with respect to the liquid storage chamber;
A rotational analysis device connected to the weighing chamber and having an overflow chamber for receiving an excess volume of sample liquid than the volume of the weighing chamber;
The measurement chamber has at least a wall surface located radially inward of the rotational analysis device and a wall surface located radially outward of the rotational analysis device, and the flow of the sample liquid from the liquid storage chamber through the connection passage An inlet and an overflow port from the measuring chamber to the overflow chamber are provided on a wall surface located radially inward of the rotational analysis device of the measuring chamber, and a sample from the overflow port of the measuring chamber is provided. The inlet of the overflow chamber into which the liquid flows is disposed radially inward from the overflow port of the measuring chamber, is connected to the overflow port of the measuring chamber by a capillary passage, and is a wall surface constituting the measuring chamber The wall surface located radially inward of the rotational analysis device is formed so that the radial position is closer to the center of rotation as it goes from the inlet of the measuring chamber to the overflow port of the measuring chamber. <br/> times you are Analysis device.
前記計量室の前記溢流口と前記溢流室の前記流入口を、前記計量室及び前記溢流室より前記半径方向内方に配置された溢流制御室を介して連結したThe overflow port of the measuring chamber and the inlet of the overflow chamber are connected via an overflow control chamber disposed radially inward from the measuring chamber and the overflow chamber.
請求項1記載の回転分析デバイス。The rotation analysis device according to claim 1.
前記計量室で計量された試料液を移送して該試料液の吸光度を測定するための測定セルと、
前記計量室と前記測定セルをつなぐ連結通路の間に前記計量室の測定セル側出口より前記半径方向の外方に毛細管バルブを設けた
請求項1記載の回転分析デバイス。
A measurement cell for transferring the sample solution weighed in the measurement chamber and measuring the absorbance of the sample solution;
A capillary valve is provided between the measuring chamber and the measurement cell side outlet in the radial direction between the connecting passage connecting the measuring chamber and the measuring cell.
The rotation analysis device according to claim 1.
前記毛細管バルブは、前記計量室への逆流を抑制するために毛細管力を前記計量室と前記測定セルをつなぐ連結通路の毛細管力より小さく設定したIn the capillary valve, the capillary force is set to be smaller than the capillary force of the connecting passage connecting the measuring chamber and the measuring cell in order to suppress the backflow to the measuring chamber.
請求項3記載の回転分析デバイス。The rotation analysis device according to claim 3.
JP2005216736A 2005-07-27 2005-07-27 Rotational analysis device Active JP4619224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216736A JP4619224B2 (en) 2005-07-27 2005-07-27 Rotational analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216736A JP4619224B2 (en) 2005-07-27 2005-07-27 Rotational analysis device

Publications (2)

Publication Number Publication Date
JP2007033225A JP2007033225A (en) 2007-02-08
JP4619224B2 true JP4619224B2 (en) 2011-01-26

Family

ID=37792674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216736A Active JP4619224B2 (en) 2005-07-27 2005-07-27 Rotational analysis device

Country Status (1)

Country Link
JP (1) JP4619224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175782A (en) * 2008-02-05 2013-06-26 松下电器产业株式会社 Analyzing device and analyzing method using the device
US10933415B2 (en) 2015-09-15 2021-03-02 Phc Holdings Corporation Analysis container

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963282B2 (en) * 2007-10-01 2012-06-27 ローム株式会社 Microchip and method of using microchip
JP5354947B2 (en) * 2008-04-24 2013-11-27 パナソニック株式会社 Bioanalytical device and sample quantitative stirring method using the same
JP5376430B2 (en) * 2008-11-19 2013-12-25 パナソニック株式会社 Analytical device and analytical method using this analytical device
JP5224961B2 (en) * 2008-07-31 2013-07-03 パナソニック株式会社 Analytical devices and methods
JP5376427B2 (en) * 2008-07-17 2013-12-25 パナソニック株式会社 Analytical device
US9046503B2 (en) 2008-07-17 2015-06-02 Panasonic Healthcare Co., Ltd. Analyzing device
JP2010145314A (en) 2008-12-22 2010-07-01 Rohm Co Ltd Microchip
GB2479139A (en) * 2010-03-29 2011-10-05 Biosurfit Sa A liquid distribution and metering device
JP5879611B2 (en) * 2011-10-16 2016-03-08 国立大学法人山梨大学 Microchannel valve structure, microdevice including the same, microsensor and microreactor, and liquid flow control method for microchannel
KR101868961B1 (en) * 2016-06-21 2018-06-19 울산과학기술원 Microfluidic devices
CN106124252B (en) * 2016-08-30 2017-10-24 博奥颐和健康科学技术(北京)有限公司 A kind of sample chip
TWI655417B (en) * 2017-05-05 2019-04-01 Feng Chia University Microfluidic testing device and microfluidic control method thereof
CN108444760A (en) * 2018-05-11 2018-08-24 石家庄禾柏生物技术股份有限公司 A kind of quantitative reagent acquisition CD
CN109211860B (en) * 2018-09-29 2023-11-17 厦门大学 Polynomial detection optical disc and detection method
CN110508335A (en) * 2019-03-27 2019-11-29 广州万孚生物技术股份有限公司 Micro-fluidic chip and vitro detection device containing the micro-fluidic chip

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167469A (en) * 1984-12-21 1986-07-29 イノヴエルフ Dynamic pipet operation rotor of centrifugal separation analyser
JPH0288970A (en) * 1988-07-28 1990-03-29 Jean Guigan Mini-laboratory for conducting biological analysis by chemical reaction of blood sample
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
JPH04507288A (en) * 1989-05-30 1992-12-17 マーチン・マリエッタ・エナジー・システムズ・インク Rotator and method for liquid handling
JPH05508709A (en) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド Analytical rotary device and biological fluid analysis method
JPH10501340A (en) * 1994-06-06 1998-02-03 アバクシス,インコーポレイテッド Improved siphon to improve measurement accuracy
JP2001512826A (en) * 1997-08-07 2001-08-28 ケアサイド・インコーポレーテッド Analysis cartridge
JP2002514755A (en) * 1998-05-14 2002-05-21 ケアサイド・インコーポレーテッド Cartridge for electrochemical analysis
WO2003052427A1 (en) * 2001-12-14 2003-06-26 Arkray, Inc. Sample measuring device
JP2003270252A (en) * 1997-05-23 2003-09-25 Gamera Bioscience Corp Device and method for using centripetal acceleration for driving flowing movement in micro-hydraulic engineering system
JP2004212050A (en) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp Chemical analysis apparatus and genetic diagnostic apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167469A (en) * 1984-12-21 1986-07-29 イノヴエルフ Dynamic pipet operation rotor of centrifugal separation analyser
JPH0288970A (en) * 1988-07-28 1990-03-29 Jean Guigan Mini-laboratory for conducting biological analysis by chemical reaction of blood sample
US5160702A (en) * 1989-01-17 1992-11-03 Molecular Devices Corporation Analyzer with improved rotor structure
JPH04507288A (en) * 1989-05-30 1992-12-17 マーチン・マリエッタ・エナジー・システムズ・インク Rotator and method for liquid handling
JPH05508709A (en) * 1990-06-04 1993-12-02 アバクシス,インコーポレイテッド Analytical rotary device and biological fluid analysis method
JPH10501340A (en) * 1994-06-06 1998-02-03 アバクシス,インコーポレイテッド Improved siphon to improve measurement accuracy
JP2003270252A (en) * 1997-05-23 2003-09-25 Gamera Bioscience Corp Device and method for using centripetal acceleration for driving flowing movement in micro-hydraulic engineering system
JP2001512826A (en) * 1997-08-07 2001-08-28 ケアサイド・インコーポレーテッド Analysis cartridge
JP2002514755A (en) * 1998-05-14 2002-05-21 ケアサイド・インコーポレーテッド Cartridge for electrochemical analysis
WO2003052427A1 (en) * 2001-12-14 2003-06-26 Arkray, Inc. Sample measuring device
JP2004212050A (en) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp Chemical analysis apparatus and genetic diagnostic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175782A (en) * 2008-02-05 2013-06-26 松下电器产业株式会社 Analyzing device and analyzing method using the device
CN103175782B (en) * 2008-02-05 2015-05-13 松下健康医疗器械株式会社 Analyzing device and analyzing method using the device
US10933415B2 (en) 2015-09-15 2021-03-02 Phc Holdings Corporation Analysis container

Also Published As

Publication number Publication date
JP2007033225A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4619224B2 (en) Rotational analysis device
US7938030B2 (en) Analytical device
US10159978B2 (en) Flow control in microfluidic systems
EP2226623B1 (en) Flow cell
JP4802925B2 (en) Analytical device and analytical apparatus using the same
CA2471686C (en) Reducing working fluid dilution in liquid systems
JP5213432B2 (en) Bioanalytical device and blood separation method using the same
JP2008064701A (en) A device for rotational analysis, measurement method, and testing method
KR100878229B1 (en) Chip for analysis of fluidic liquid
JP4973800B2 (en) Analytical device and analytical apparatus using the same
US20090155125A1 (en) Microchip
US20100255483A1 (en) Liquid-feeding chip and analysis method
JP4752546B2 (en) Centrifuge device and centrifuge method
JP2005181095A (en) Chip, reaction analyzer and reaction analyzing method
JP5376427B2 (en) Analytical device
JP2007163459A (en) Assay-use microchip
JP5255628B2 (en) Microchannels and analytical tools
JP2008527338A (en) Method and apparatus for dispensing and mixing small amounts of liquid
JP2012078115A (en) Inspection object acceptor
WO2015119072A1 (en) Flow cell and liquid delivery system
EP2226622B1 (en) Flow cell
JP2009174891A (en) Microchip
CN214346527U (en) Microfluid device
JP2016024145A (en) Blood coagulation inspection method and flow path chip for blood coagulation inspection
JP5483616B2 (en) Flow cell and flow cell feeding method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4619224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250