JP4618411B2 - Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer - Google Patents

Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer Download PDF

Info

Publication number
JP4618411B2
JP4618411B2 JP2004199480A JP2004199480A JP4618411B2 JP 4618411 B2 JP4618411 B2 JP 4618411B2 JP 2004199480 A JP2004199480 A JP 2004199480A JP 2004199480 A JP2004199480 A JP 2004199480A JP 4618411 B2 JP4618411 B2 JP 4618411B2
Authority
JP
Japan
Prior art keywords
coating layer
inclination angle
degrees
carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199480A
Other languages
Japanese (ja)
Other versions
JP2006021257A (en
Inventor
暁裕 近藤
裕介 田中
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004199480A priority Critical patent/JP4618411B2/en
Publication of JP2006021257A publication Critical patent/JP2006021257A/en
Application granted granted Critical
Publication of JP4618411B2 publication Critical patent/JP4618411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、特にAl合金やCu合金などの非鉄合金などの粘性が高く、切粉が工具切刃に溶着し易い被削材の高速切削加工に際して、潤滑被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention has excellent wear resistance with a lubricious coating layer for high-speed cutting of work materials that are particularly viscous, such as non-ferrous alloys such as Al alloys and Cu alloys, and chips are likely to weld to the tool cutting edge. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに切刃が断続切削加工形態をとる面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that can be used detachably attached to the tip of a cutting tool for turning and planing of various work materials, drills and miniature drills used for drilling, In addition, there are solid type end mills that are used for chamfering, grooving, shoulder processing, etc. in which the cutting blade takes an intermittent cutting form, and the throwaway tip is detachably attached in the same manner as the solid type end mill. A slow-away end mill tool that performs cutting is known.

また、上記の非鉄合金などの被削材の切削加工に用いられる代表的被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して超硬基体という)の表面に、窒化クロム(以下、CrNで示す)層からなる潤滑被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が提案されている。   Moreover, as a typical coated cemented carbide tool used for cutting work materials such as the above-mentioned non-ferrous alloys, tungsten carbide (hereinafter referred to as WC) group cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) group On the surface of a substrate made of cermet (hereinafter collectively referred to as a carbide substrate), a lubricating coating layer composed of a chromium nitride (hereinafter referred to as CrN) layer is physically vapor-deposited with an average layer thickness of 1 to 15 μm. A coated carbide tool is proposed.

さらに、上記の被覆超硬工具が、例えば図5に概略説明図で示され、カソード電極(蒸発源)として金属クロム(Cr)が装着された物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装着し、まず、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:300〜500℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
上記カソード電極である金属Crとアノード電極間のアーク放電電流:60〜100A、
処理時間:1〜10分、
の条件で、アノード電極と上記金属Crのカソード電極との間にアーク放電を発生させて、上記超硬基体の表面をCrボンバード洗浄処理した状態で、
ヒータで装置内を、例えば500℃の温度に加熱保持しながら、アノード電極と前記金属Crのカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記CrN層からなる潤滑被覆層を蒸着することにより製造されることも知られている。
特開平1−2907785号公報
Furthermore, the above-mentioned coated carbide tool is shown in a schematic explanatory view in FIG. 5, for example, and an arc ion plating apparatus which is a kind of physical vapor deposition apparatus equipped with metal chromium (Cr) as a cathode electrode (evaporation source). Attach the above carbide substrate to the
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 300-500 ° C
DC bias voltage applied to the carbide substrate: -600 to -1000 V,
Arc discharge current between the metal Cr as the cathode electrode and the anode electrode: 60 to 100 A,
Processing time: 1-10 minutes,
Under the conditions, arc discharge was generated between the anode electrode and the cathode electrode of the metal Cr, and the surface of the cemented carbide substrate was subjected to a Cr bombardment cleaning treatment,
While maintaining the inside of the apparatus with a heater at a temperature of, for example, 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) of the metal Cr, for example, at a current of 90 A, and at the same time, the apparatus Introducing nitrogen gas as a reaction gas into a reaction atmosphere of, for example, 2 Pa, while the cemented carbide substrate is applied with a bias voltage of, for example, −100 V, the CrN layer on the surface of the cemented carbide substrate. It is also known to be produced by depositing a lubricating coating layer comprising
Japanese Patent Laid-Open No. 1-2907785

近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴ない、切削加工は高速化の傾向にあるが、上記の潤滑被覆層がCrN層からなる従来被覆超硬工具においては、潤滑被覆層であるCrN層が、CrやCrN、さらにCrNなどの混合組成からなるために、潤滑効果が局部的に不均一になるのが避けられず、特に高速加工では、前記組成不均一が原因で摩耗進行が著しく促進され、比較的短時間で摩滅状態となり、CrN層が摩滅状態では切刃部に切粉粘着が原因でチッピングが発生し、この結果使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting tends to be faster, but the above-mentioned lubricated coating layer is a conventional coated carbide consisting of a CrN layer. In tools, the CrN layer, which is a lubricating coating layer, is composed of a mixed composition such as Cr, CrN, and Cr 2 N, so it is inevitable that the lubrication effect is locally uneven, especially in high-speed machining. The progress of wear is remarkably accelerated due to the non-uniform composition, and the wear state is relatively short, and when the CrN layer is worn, chipping occurs on the cutting edge due to chip adhesion, resulting in a service life. This is the current situation.

そこで、本発明者等は、上述のような観点から、上記の従来被覆超硬工具の潤滑被覆層に着目し、これの一段の耐摩耗性向上をはかるべく研究を行った結果、
(a)例えば図4に概略説明図で示される通り、カソード電極として、金属クロム(Cr)の外に、金属タングステン(W)を装着したアークイオンプレーティング装置を用い、上記の従来の超硬基体表面に対するCrボンバード洗浄処理に代って、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:550〜700℃、
超硬基体に印加する直流バイアス電圧:−600〜−1000V、
上記カソード電極である金属Wとアノード電極間のアーク放電電流:60〜100A、
処理時間:1〜10分、
の条件で、上記の超硬基体表面をWボンバード処理する基体表面改質処理を施した状態で、通常の条件で、潤滑被覆層としてCrN層を形成すると、この結果形成されたCrN層は、組成的に均質となり、摩耗進行が均一化することから、高速切削で長期に亘ってすぐれた耐摩耗性を発揮するようになること。
Therefore, the present inventors, from the above viewpoint, paying attention to the lubricating coating layer of the above-mentioned conventional coated carbide tool, as a result of conducting research to improve this one-stage wear resistance,
(A) For example, as shown in a schematic explanatory diagram in FIG. 4, an arc ion plating apparatus in which metal tungsten (W) is mounted in addition to metal chromium (Cr) as a cathode electrode is used. Instead of Cr bombardment cleaning treatment for the substrate surface,
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 550 to 700 ° C.
DC bias voltage applied to the carbide substrate: -600 to -1000 V,
Arc discharge current between the metal W as the cathode electrode and the anode electrode: 60 to 100A,
Processing time: 1-10 minutes,
When the CrN layer is formed as a lubricating coating layer under normal conditions in a state where the substrate surface modification treatment for W bombarding the above-described carbide substrate surface is performed under the above conditions, the resulting CrN layer is: The composition is homogeneous and the progress of wear becomes uniform, so that high-speed cutting can provide excellent wear resistance over a long period of time.

(b)上記(a)のCrN層と上記の従来CrN層について、電界放出型走査電子顕微鏡を用い、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来CrN層は、図3に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記(a)のCrN層の傾斜角度数分布グラフは、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは超硬基体表面をWでボンバード処理する表面改質処理に際して、カソード電極である金属Wとアノード電極間のアーク放電電流を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変ること。 (B) For the CrN layer of (a) and the conventional CrN layer, using a field emission scanning electron microscope, as shown schematically in FIG. 1, cubic crystals existing within the measurement range of the surface polished surface Each crystal grain having a crystal lattice is irradiated with an electron beam, and a predetermined region is spaced by 0.1 μm / step with respect to the normal line of the surface-polished surface using an electron backscatter diffraction image apparatus. The tilt angle formed by the normal line of the {111} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees. In addition, when an inclination angle distribution graph is created by counting the frequencies existing in each section, the conventional CrN layer has a distribution of measured inclination angles on the {111} plane of 0 as illustrated in FIG. While showing an unbiased inclination angle distribution graph in the range of ~ 45 degrees In the slope angle distribution graph of the CrN layer of (a), as shown in FIG. 2, a sharp maximum peak appears at a specific position of the tilt angle section. When the surface modification treatment is performed by bombardment in Fig. 1, the position appearing in the tilt angle section of the horizontal axis of the graph is changed by changing the arc discharge current between the metal W as the cathode electrode and the anode electrode.

(c)多くの試験結果によれば、上記カソード電極とアノード電極間のアーク放電電流を上記の通り60〜100Aの範囲内で変化させると、上記シャープな最高ピークが傾斜角区分の3〜10度の範囲内に現れると共に、3〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すようになり、このような傾斜角度数分布グラフを示すCrN層を潤滑被覆層として形成してなる被覆超硬工具は高速切削でもすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) According to many test results, when the arc discharge current between the cathode electrode and the anode electrode is changed within the range of 60 to 100 A as described above, the sharp maximum peak is 3 to 10 of the inclination angle section. In addition to appearing in the range of degrees, the total number of frequencies existing in the range of 3 to 15 degrees shows an inclination angle number distribution graph occupying a proportion of 45 to 65% of the entire frequency in the inclination angle frequency distribution graph. The coated carbide tool formed by forming a CrN layer showing such an inclination angle number distribution graph as a lubricating coating layer will exhibit excellent wear resistance even during high-speed cutting over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された超硬基体の表面に、アークイオンプレーティング装置を用い
装置内雰囲気:0.1Pa以下の真空
装置内加熱温度:550〜700℃
超硬基体に印加する直流バイアス電圧:−600〜−1000V
カソード電極:金属W
上記カソード電極である金属Wとアノード電極間のアーク放電電流:60〜100A
処理時間:1〜10分
の条件で、Wボンバード処理(基体表面改質処理)を施した状態で、潤滑被覆層として1〜15μmの平均層厚を有するCrN層を蒸着形成してなり、かつ
上記潤滑被覆層を構成するCrN層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、3〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記3〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示してなる、潤滑被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and using an arc ion plating apparatus on the surface of a cemented carbide substrate made of a WC-based cemented carbide or TiCN-based cermet,
In-apparatus atmosphere: vacuum of 0.1 Pa or less ,
In-apparatus heating temperature: 550 to 700 ° C.
DC bias voltage applied to the carbide substrate: −600 to −1000 V
Cathode electrode: Metal W
Arc discharge current between the metal W as the cathode electrode and the anode electrode: 60 to 100A ,
Processing time: 1-10 minutes ,
The CrN layer having an average layer thickness of 1 to 15 μm is vapor-deposited as a lubricating coating layer in a state where the W bombard process (base surface modification process) is performed under the conditions
The CrN layer constituting the lubricating coating layer is irradiated with an electron beam to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope, and electron backscatter diffraction is performed. Using an imaging device, the inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface at a predetermined area of 0.1 μm / step. In addition, the measured inclination angle within the range of 0 to 45 degrees out of the measured inclination angles is divided into pitches of 0.25 degrees, and the inclination angle number distribution is obtained by counting the frequencies existing in each section. In the graph, the highest peak exists in the inclination angle section in the range of 3 to 10 degrees , and the total of the frequencies existing in the range of 3 to 15 degrees is 45 to 65 of the entire degrees in the inclination angle frequency distribution graph. Inclination angle number distribution graph occupying percentage Shown comprising, those characterized by a coating cemented carbide that exhibits wear resistance of the lubricating coating layer is excellent.

なお、この発明の被覆超硬工具の潤滑被覆層において、その平均層厚が1μm未満では、所望の潤滑効果を確保することができず、一方その平均層厚が15μmを越えると、潤滑被覆層自体にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めたのである。   In the lubricating coating layer of the coated carbide tool of the present invention, if the average layer thickness is less than 1 μm, the desired lubricating effect cannot be ensured, whereas if the average layer thickness exceeds 15 μm, the lubricating coating layer Since chipping tends to occur in itself, the average layer thickness is set to 1 to 15 μm.

また、上記の通り、この発明の被覆超硬工具の潤滑被覆層であるCrN層の傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、カソード電極(金属Cr)とアノード電極間のアーク放電電流を変化させることによって変化するが、多くの試験の結果、前記アーク放電電流を60〜100Aとした場合に、最高ピークが3〜10度の範囲内の傾斜角区分に現れると共に、3〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフが得られるようになる、という結論に達したものであり、したがって、前記アーク放電電流が60A未満でも、100Aを越えても、測定傾斜角の最高ピーク位置は3〜10度の範囲から外れる場合が生じ、このような場合には所望のすぐれた耐摩耗性を発揮することができないものである。 Further, as described above, the highest peak position of the measured inclination angle in the inclination angle number distribution graph of the CrN layer that is the lubricating coating layer of the coated carbide tool of the present invention is the arc discharge between the cathode electrode (metal Cr) and the anode electrode. As a result of many tests, when the arc discharge current is set to 60 to 100 A, the maximum peak appears in the inclination angle section within the range of 3 to 10 degrees , and 3 to 15 The conclusion was reached that a slope angle distribution graph in which the sum of the frequencies existing in the range of degrees occupies a proportion of 45 to 65% of the whole frequency in the slope angle distribution graph will be obtained, Thus, even less than the arc discharge current is 60A, even beyond the 100A, the highest peak position of the measurement inclination angle occurs if outside the range from 3 to 10 degrees, such situ The one in which it is impossible to exert the desired excellent wear resistance.

この発明の被覆超硬工具は、特にAl合金やCu合金などの非鉄合金などの粘性が高く、切粉が工具切刃に溶着し易い被削材の高速切削加工に際して、潤滑被覆層が一段とすぐれた耐摩耗性を発揮し、使用寿命の延命化に寄与するものである。   The coated carbide tool of the present invention has a particularly superior lubricating coating layer for high-speed cutting of work materials that are highly viscous, such as non-ferrous alloys such as Al alloys and Cu alloys, and in which chips are likely to adhere to the tool cutting edge. It exhibits high wear resistance and contributes to prolonging the service life.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−3,A−6,A−9,A−10を形成した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 1, After wet mixing with a ball mill for 72 hours and drying, the green compact is press-molded into a green compact at a pressure of 100 MPa, and the green compact is sintered and sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After ligation, R: 0.03 honing is applied to the cutting edge portion to form a WC-based cemented carbide substrate A-1 to A-3, A-6, having a chip shape of ISO standard CNMG120408 . A-9 and A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1,B−2,B−5,B−6を形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 in weight ratio) powder, Mo 2 C powder, ZrC powder, TaC powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm. , And Ni powder, these raw material powders are blended in the blending composition shown in Table 2, wet mixed with a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The powder is sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.03 to form an ISO standard / CNMG120408 chip shape. TiCN-based cermet carbide substrates B-1, B-2, B-5, and B-6 were formed.

ついで、上記の超硬基体A−1〜A−3,A−6,A−9,A−10およびB−1,B−2,B−5,B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図4に例示される通り、カソード電極として、金属Cr(蒸発源)および金属W(超硬基体表面改質処理用)が装着されたアークイオンプレーティング装置に装着し、まず、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:600℃、
超硬基体に印加する直流バイアス電圧:−800V、
上記カソード電極である金属Wとアノード電極間のアーク放電電流:60〜100Aの範囲内の所定の電流、
処理時間:5分、
の条件で、上記のカソード電極の前記金属Wとアノード電極との間にアーク放電を発生させて、超硬基体表面をWボンバード処理する基体表面改質処理を施し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記超硬基体には−100Vの直流バイアス電圧を印加し、かつ前記カソード電極である金属Crとアノード電極との間には100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標層厚のCrN層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜10をそれぞれ製造した。
Subsequently, each of the above-mentioned superhard substrates A-1 to A-3, A-6, A-9, A-10 and B-1, B-2, B-5, and B-6 was superposed in acetone. In an arc ion plating apparatus equipped with metal Cr (evaporation source) and metal W (for carbide substrate surface modification treatment) as cathode electrodes, as illustrated in FIG. First of all,
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 600 ° C.
DC bias voltage applied to the carbide substrate: -800V,
Arc discharge current between the metal W as the cathode electrode and the anode electrode: a predetermined current in the range of 60 to 100A,
Processing time: 5 minutes
Under such conditions, an arc discharge is generated between the metal W and the anode electrode of the cathode electrode, and the substrate surface modification treatment is performed to treat the surface of the carbide substrate with W bombardment. Nitrogen gas is introduced to form a reaction atmosphere of 2 Pa, a DC bias voltage of −100 V is applied to the cemented carbide substrate, and a current of 100 A is applied between the metal Cr serving as the cathode electrode and the anode electrode. Arc discharge is caused to flow, and a CrN layer having a target layer thickness shown in Table 3 is deposited on the surface of the cemented carbide substrate, thereby producing the surface coated cemented carbide alloy of the present invention as the coated carbide tool of the present invention. Slow away tips (hereinafter referred to as the present coated carbide tips) 1 to 10 were produced.

また、比較の目的で、図5に例示される通り、カソード電極として金属Crを装着したアークイオンプレーティング装置を用い、上記の超硬基体表面を、上記のWボンバード処理による超硬表面改質処理に代って、
装置内雰囲気:0.1Pa以下の真空、
装置内加熱温度:500℃、
超硬基体に印加する直流バイアス電圧:−800V、
上記カソード電極である金属Crとアノード電極間のアーク放電電流:60〜100Aの範囲内の所定の電流、
処理時間:5分、
の条件で、超硬基体の表面をCrボンバード洗浄処理する以外は同一の条件でCrN層を蒸着することにより、表4に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜10をそれぞれ製造した。
For comparison purposes, as shown in FIG. 5, an arc ion plating apparatus equipped with metal Cr as a cathode electrode is used, and the surface of the above-mentioned carbide substrate is modified by the above-described W bombardment treatment. Instead of processing
In-apparatus atmosphere: vacuum of 0.1 Pa or less,
In-apparatus heating temperature: 500 ° C
DC bias voltage applied to the carbide substrate: -800V,
Arc discharge current between the metal Cr as the cathode electrode and the anode electrode: a predetermined current in the range of 60 to 100A,
Processing time: 5 minutes
The conventional surface-coated cemented carbide alloy as a conventional coated carbide tool as shown in Table 4 is formed by depositing a CrN layer under the same conditions except that the surface of the cemented carbide substrate is subjected to a Cr bombardment cleaning process. Slow away tips (hereinafter referred to as conventional coated carbide tips) 1 to 10 were produced.

つぎに、上記本発明被覆超硬チップ1〜10および従来被覆超硬チップ1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・AC3Aの丸棒、
切削速度:350m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件Aという)で、アルミニウム合金の乾式連続高速切削加工試験(通常の切削速度は200m/min.)、
被削材:JIS・C1020の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.8mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件Bという)で、無酸素銅の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、さらに、
被削材:JIS・C1100の丸棒、
切削速度:380m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件Cという)で、りん脱酸銅の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果をそれぞれ表3,表4に示した。
Next, for the above-described coated carbide chips 1 to 10 and the conventional coated carbide chips 1 to 10 in the state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / AC3A round bar,
Cutting speed: 350 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Under the above conditions (referred to as cutting conditions A), a dry continuous high-speed cutting test of an aluminum alloy (normal cutting speed is 200 m / min.),
Work material: JIS C1020 lengthwise equidistant 4 bars with round grooves,
Cutting speed: 300 m / min. ,
Cutting depth: 1.8mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
In the condition (referred to as cutting condition B), oxygen-free copper dry intermittent high-speed cutting test (normal cutting speed is 150 m / min.),
Work material: JIS C1100 round bar,
Cutting speed: 380 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Under the above conditions (referred to as cutting condition C), a dry continuous high-speed cutting test (normal cutting speed is 200 m / min.) Of phosphorous deoxidized copper is performed. It was measured. The measurement results are shown in Tables 3 and 4, respectively.

Figure 0004618411
Figure 0004618411

Figure 0004618411
Figure 0004618411

Figure 0004618411
Figure 0004618411

Figure 0004618411
Figure 0004618411

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表5に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、表5に示される組合せで直径が8mm、13mm、および26mmの6種の超硬基体形成用丸棒焼結体C−1,C−2,C−4,C−6〜C−8を形成し、さらに前記の6種の丸棒焼結体のうちの丸棒焼結体C−1,C−2,C−6,C−7から、研削加工にて、同じく表5に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)をそれぞれ製造した。
また、別途、上記の丸棒焼結体C−1,C−2,C−6,C−7から製造された超硬基体(エンドミル)とそれぞれ同じ組成をもち、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片を用意した。
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [50/50 by mass ratio] powder, and 1.8 μm Co Prepare powders, blend these raw material powders into the composition shown in Table 5, add wax, ball mill mix in acetone for 24 hours, dry under reduced pressure, and then press various pressures of a predetermined shape at a pressure of 100 MPa. The powder compact is press-molded, and these green compacts are heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, and this temperature is maintained for 1 hour. After holding, sintering under furnace cooling conditions, shown in Table 5 Combined in diameter and formed 8 mm, 13 mm, and carbide substrate for forming a round bar sintered body of six 26mm C-1, C-2 , C-4, a C-6~C-8 that further the From the round bar sintered bodies C-1, C-2, C-6, and C-7 among the six types of round bar sintered bodies , Manufacturing of carbide substrates (end mills) with a 4-blade square shape with a diameter x length of 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and a twist angle of 30 degrees. did.
Separately, it has the same composition as the cemented carbide substrate (end mill) manufactured from the above-described round bar sintered bodies C-1, C-2, C-6, and C-7 , and both are flat: 12 mm × A test piece for preparing a tilt angle number distribution graph using a field emission scanning electron microscope having dimensions of 12 mm and thickness: 6 mm was prepared.

ついで、これらの超硬基体(エンドミル)および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図4に例示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表6に示される目標層厚のCrN層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜4をそれぞれ製造した。 Then, these carbide substrates (end mills) and test pieces were ultrasonically cleaned in acetone and dried, and then charged into an arc ion plating apparatus similarly illustrated in FIG. Carbide substrate surface modification treatment under the same conditions, and by depositing a CrN layer having a target layer thickness shown in Table 6, the end mill made of the surface coated cemented carbide of the present invention as the coated carbide tool of the present invention (Hereinafter referred to as the present invention coated carbide end mill) 1-4 were produced.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体(エンドミル)の表面を、上記の超硬基体表面改質処理に代って、装置内加熱温度を500℃とした状態で、Crボンバード洗浄する以外は同一の条件でCrN層を蒸着することにより、同じく表6に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜4をそれぞれ製造した。 For the purpose of comparison, the surface of the above-mentioned carbide substrate (end mill) is heated to 500 ° C. in place of the above-mentioned carbide substrate surface modification treatment under the same conditions as in Example 1. In this state, by depositing a CrN layer under the same conditions except for cleaning by Cr bombardment, a conventional surface-coated cemented carbide end mill (hereinafter referred to as a conventional coated carbide tool) as a conventional coated carbide tool as shown in Table 6 is used. 1 to 4 were produced.

つぎに、上記本発明被覆超硬エンドミル1〜4および従来被覆超硬エンドミル1〜4のうち、本発明被覆超硬エンドミル1,2および従来被覆超硬エンドミル1,2については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C1020の板材、
切削速度:280m/min.、
溝深さ(切り込み):0.8mm、
テーブル送り:2500mm/分、
の条件で、無酸素銅の乾式高速溝切削加工試験(通常の切削速度は150m/min.)、本発明被覆超硬エンドミルおよび従来被覆超硬エンドミルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・AC3Aの板材、
切削速度:350m/min.、
溝深さ(切り込み):3mm、
テーブル送り:1600mm/分、
の条件で、アルミニウム合金の乾式高速溝切削加工試験(通常の切削速度は200m/min.)、本発明被覆超硬エンドミルおよび従来被覆超硬エンドミルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C1100の板材、
切削速度:300m/min.、
溝深さ(切り込み):3mm、
テーブル送り:1200mm/分、
の条件で、りん脱酸銅の乾式高速溝切削加工試験(通常の切削速度は150m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表6にそれぞれ示した。
Next, among the coated carbide end mills 1 to 4 and the conventional coated carbide end mills 1 to 4 of the present invention, the coated carbide end mills 1 and 2 and the conventional coated carbide end mills 1 and 2 are as follows.
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / C1020 plate material,
Cutting speed: 280 m / min. ,
Groove depth (cut): 0.8 mm,
Table feed: 2500 mm / min,
Under the conditions of oxygen-free copper dry high-speed grooving test (normal cutting speed is 150 m / min.), The present coated carbide end mill 3 and the conventional coated carbide end mill 3
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / AC3A plate material,
Cutting speed: 350 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 1600mm / min,
The dry high-speed grooving test of an aluminum alloy (normal cutting speed is 200 m / min.), The coated carbide end mill 4 of the present invention and the conventional coated carbide end mill 4
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / C1100 plate material,
Cutting speed: 300 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 1200mm / min,
Under the above conditions, a dry high-speed grooving test of phosphorous deoxidized copper (normal cutting speed is 150 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is used in each grooving test. The length of the cutting groove up to 0.1 mm, which is a standard of life, was measured. The measurement results are shown in Table 6, respectively.

Figure 0004618411
Figure 0004618411

Figure 0004618411
Figure 0004618411

上記の実施例2で製造した直径が8mm、13mm、および26mmの6種の丸棒焼結体のうちの丸棒焼結体C−1,C−2,C−4,C−8から、研削加工にて、表5に示される組合せで、溝形成部の直径×長さがそれぞれ4mm×13mm、8mm×22mm、および16mm×45mmの寸法、並びにいずれもねじれ角:30度の2枚刃形状をもった超硬基体(ドリル)をそれぞれ製造した。
また、同じく上記の丸棒焼結体C−1,C−2,C−4,C−8から製造された超硬基体(ドリル)とそれぞれ同じ組成を有し、かついずれも平面:12mm×12mm、厚さ:6mmの寸法をもった電界放出型走査電子顕微鏡による傾斜角度数分布グラフ作成用試験片も用意した。
From the round bar sintered bodies C-1, C-2, C-4, and C-8 among the 6 types of round bar sintered bodies having a diameter of 8 mm, 13 mm, and 26 mm manufactured in Example 2 above , In the grinding process, in the combinations shown in Table 5, the diameter and length of the groove forming part are 4 mm × 13 mm, 8 mm × 22 mm, and 16 mm × 45 mm, respectively, and each has a twist angle of 30 degrees and has two blades Carbide substrates (drills) each having a shape were produced.
Moreover, each has the same composition as the cemented carbide substrate (drill) manufactured from the round bar sintered bodies C-1, C-2, C-4, and C-8 , respectively, and both are flat: 12 mm × A test piece for preparing a tilt angle number distribution graph using a field emission scanning electron microscope having dimensions of 12 mm and thickness: 6 mm was also prepared.

ついで、これらの超硬基体(ドリル)の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図4に例示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、超硬基体表面改質処理を行い、かつ表7に示される目標層厚のCrN層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜4をそれぞれ製造した。 Next, the cutting edge of these carbide substrates (drills) is subjected to honing, ultrasonically cleaned in acetone together with the above test pieces, and dried, and the arc ion plating apparatus exemplified in FIG. As a coated carbide tool according to the present invention, a carbide substrate surface modification treatment is performed under the same conditions as in Example 1, and a CrN layer having a target layer thickness shown in Table 7 is deposited. Of the present invention surface-coated cemented carbide drill (hereinafter referred to as the present invention coated carbide drill) 1 to 4 , respectively.

また、比較の目的で、上記実施例1と同一の条件で、上記の超硬基体(ドリル)の表面を、上記の超硬基体表面改質処理に代って、装置内加熱温度を500℃とした状態で、Crボンバード洗浄する以外は同一の条件でCrN層を蒸着することにより、表7に示される通りの従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜4をそれぞれ製造した。 For the purpose of comparison, the surface of the above-mentioned carbide substrate (drill) is heated to 500 ° C. in place of the above-mentioned carbide substrate surface modification treatment under the same conditions as in Example 1. In this state, by depositing a CrN layer under the same conditions except for cleaning with Cr bombardment, a conventional surface-coated cemented carbide drill as a conventional coated carbide tool as shown in Table 7 (hereinafter referred to as conventional coating) 1 to 4 were manufactured.

つぎに、上記本発明被覆超硬ドリル1〜4および従来被覆超硬ドリル1〜4のうち、本発明被覆超硬ドリル1,2および従来被覆超硬ドリル1,2については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C1020の板材、
切削速度:160m/min.、
送り:0.18mm/rev、
穴深さ:8mm
の条件で、無酸素銅の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆超硬ドリルおよび従来被覆超硬ドリルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・AC3Aの板材、
切削速度:180m/min.、
送り:0.22mm/rev、
穴深さ:16mm
の条件で、アルミニウム合金の湿式高速穴あけ切削加工試験(通常の切削速度は90m/min.)、本発明被覆超硬ドリルおよび従来被覆超硬ドリルについては、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・C1100の板材、
切削速度:220m/min.、
送り:0.33mm/rev、
穴深さ:32mm
の条件で、りん脱酸銅の湿式高速穴あけ切削加工試験(通常の切削速度は110m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表7に示した。
Next, of the present invention coated carbide drills 1 to 4 and the conventional coated carbide drills 1 to 4 , the present invention coated carbide drills 1 and 2 and the conventional coated carbide drills 1 and 2 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / C1020 plate material,
Cutting speed: 160 m / min. ,
Feed: 0.18mm / rev,
Hole depth: 8mm
Under the conditions, oxygen-free copper wet high-speed drilling test (normal cutting speed is 80 m / min.), The present invention coated carbide drill 3 and the conventional coated carbide drill 3 ,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / AC3A plate material,
Cutting speed: 180 m / min. ,
Feed: 0.22mm / rev,
Hole depth: 16mm
Under the conditions, wet high speed drilling cutting test of aluminum alloy (normal cutting speed is 90 m / min.), The coated carbide drill 4 of the present invention and the conventional coated carbide drill 4
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / C1100 plate material,
Cutting speed: 220 m / min. ,
Feed: 0.33mm / rev,
Hole depth: 32mm
Under the above conditions, a wet high-speed drilling test of phosphorous deoxidized copper (normal cutting speed is 110 m / min.) Was performed, and the tip cutting edge was used in any wet high-speed drilling test (using water-soluble cutting oil). The number of drilling processes until the flank wear width of the surface reached 0.3 mm was measured. The measurement results are shown in Table 7.

Figure 0004618411
Figure 0004618411

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜10、本発明被覆超硬エンドミル1〜4、および本発明被覆超硬ドリル1〜4、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜10、従来被覆超硬エンドミル1〜4、および従来被覆超硬ドリル1〜4のCrN層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。 The present coated carbide tips 1-10 as the present coated carbide tools, the present coated carbide end mills 1-4 , the present coated carbide drills 1-4 , and the conventional coated carbide tool obtained as a result. The thickness of the CrN layer of the conventional coated carbide tips 1 to 10 , the conventional coated carbide end mills 1 to 4 , and the conventional coated carbide drills 1 to 4 was measured using a scanning electron microscope. Also showed an average layer thickness (average value of 5-point measurement) substantially the same as the target value.

さらに、上記の本発明被覆超硬工具と従来被覆超硬工具のCrN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記のCrN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Furthermore, the gradient angle number distribution graph was created for each CrN layer of the above-mentioned coated carbide tool of the present invention and the conventional coated carbide tool using a field emission scanning electron microscope.
That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surface of the CrN layer as a polished surface, and is 15 kV at an incident angle of 70 degrees on the polished surface. An electron beam with an accelerating voltage is irradiated to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface with an irradiation current of 1 nA, and 30 × 50 μm is irradiated using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface polished surface at an interval of 0.1 μm / step. Thus, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles were divided for each pitch of 0.25 degrees, and the frequencies existing in each division were totaled.

この結果得られた各種のCrN層の傾斜角度数分布グラフにおいて、本発明被覆超硬工具のCrN層は、表3、表6、および表7にそれぞれ示される通り、いずれも{111}面の測定傾斜角の分布が3〜10度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示すのに対して、従来被覆超硬工具のCrN層は、表4、表6、および表7にそれぞれ示される通り、いずれも{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表3、表4、表6、および表7には、上記の本発明被覆超硬工具および従来被覆超硬工具のCrN層の傾斜角度数分布グラフにおいて、3〜15度の範囲内の傾斜角区分に存在する傾斜角度数のグラフ全体の傾斜角度数に占める割合を示した。
なお、図2は、本発明被覆超硬チップ1のCrN層の傾斜角度数分布グラフ、図3は、従来被覆超硬チップ1のCrN層の傾斜角度数分布グラフをそれぞれ示すものである。
In the gradient angle distribution graphs of the various CrN layers obtained as a result, the CrN layer of the coated carbide tool of the present invention has a {111} plane as shown in Tables 3, 6, and 7, respectively. In contrast to the graph showing the inclination angle distribution in which the highest peak appears in the inclination angle section where the distribution of the measured inclination angle is in the range of 3 to 10 degrees, the CrN layer of the conventional coated carbide tool is shown in Tables 4 and 6; As shown in Table 7 and Table 7, each shows a gradient angle distribution graph in which the distribution of the measured inclination angle of the {111} plane is unbiased within the range of 0 to 45 degrees and there is no highest peak. .
In Table 3, Table 4, Table 6, and Table 7, the inclination angle number distribution graph of the CrN layer of the above-mentioned coated carbide tool of the present invention and the conventional coated carbide tool has an inclination within a range of 3 to 15 degrees. The ratio of the number of tilt angles existing in the angle section to the number of tilt angles of the entire graph is shown.
2 is a graph showing the inclination angle distribution of the CrN layer of the coated carbide tip 1 of the present invention, and FIG. 3 is a graph showing the inclination angle distribution graph of the CrN layer of the conventional coated carbide chip 1.

表3〜7に示される結果から、本発明被覆超硬工具は、いずれも潤滑被覆層を構成するCrN層の{111}面が傾斜角度数分布グラフで3〜10度の範囲内の傾斜角区分で最高ピークを示し、高速切削ですぐれた耐摩耗性を示すのに対して、硬質被覆が、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すCrN層で構成された従来被覆超硬工具においては、CrN層の摩耗進行が相対的に速く、CrN層が摩滅した時点で切刃部に切粉の粘着現象が発生し、この粘着現象が原因でチッピングが発生し、この時点で使用寿命に至ることが明らかである。 From the results shown in Tables 3-7, in the coated carbide tool of the present invention, the {111} plane of the CrN layer constituting the lubricating coating layer has an inclination angle within the range of 3 to 10 degrees in the inclination angle number distribution graph. The highest peak in the section and excellent wear resistance in high-speed cutting, whereas the hard coating is unbiased and the distribution of measured inclination angles on the {111} plane is unbiased within the range of 0 to 45 degrees. In a conventional coated carbide tool composed of a CrN layer showing an inclination angle number distribution graph in which no peak exists, the progress of wear of the CrN layer is relatively fast, and when the CrN layer is worn away, the cutting edge portion is free of chips. It is clear that the sticking phenomenon occurs, chipping occurs due to this sticking phenomenon, and the service life is reached at this point.

上述のように、この発明の被覆超硬工具は、特に潤滑被覆層であるCrN層がAl合金やCu合金などの非鉄合金などの粘性の高い被削材の高速切削加工ですぐれた耐摩耗性を示し、長期に亘ってすぐれた潤滑性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool according to the present invention has excellent wear resistance in high-speed cutting of a highly viscous work material such as a non-ferrous alloy such as an Al alloy or a Cu alloy, especially a CrN layer as a lubricating coating layer. Since it exhibits excellent lubricity over a long period of time, it can satisfactorily cope with labor saving and energy saving of cutting, and further cost reduction.

潤滑被覆層を構成するCrN層における結晶粒の結晶面である{111}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle with respect to the normal line of the surface polishing surface, with respect to the normal line of the {111} plane which is the crystal plane of the crystal grains in the CrN layer constituting the lubricating coating layer. 本発明被覆超硬チップ1の潤滑被覆層を構成するCrN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the CrN layer which comprises the lubricous coating layer of this invention coated carbide chip. 従来被覆超硬チップ1の潤滑被覆層を構成するCrN層の{111}面の傾斜角度数分布グラフである。4 is a graph showing the inclination angle number distribution of the {111} plane of the CrN layer constituting the lubricating coating layer of the conventional coated carbide tip 1. 本発明被覆超硬工具の潤滑被覆層を構成するCrN層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the CrN layer which comprises the lubricous coating layer of this invention coated carbide tool. 従来被覆超硬工具の潤滑被覆層を構成するCrN層の形成に用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used for formation of the CrN layer which comprises the lubricous coating layer of the conventional coated carbide tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された基体の表面に、アークイオンプレーティング装置を用い
装置内雰囲気:0.1Pa以下の真空
装置内加熱温度:550〜700℃
上記基体に印加する直流バイアス電圧:−600〜−1000V
カソード電極:金属タングステン
上記カソード電極である金属タングステンとアノード電極間のアーク放電電流:60〜100A
処理時間:1〜10分
の条件で、タングステンボンバード処理(基体表面改質処理)を施した状態で、潤滑被覆層として1〜15μmの平均層厚を有する窒化クロム層を蒸着形成してなり、かつ
上記潤滑被覆層を構成する窒化クロム層は、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、3〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記3〜15度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする潤滑被覆層がすぐれた耐摩耗性を発揮する被覆超硬合金製切削工具。
Using the arc ion plating device on the surface of the substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
In-apparatus atmosphere: vacuum of 0.1 Pa or less ,
In-apparatus heating temperature: 550 to 700 ° C.
DC bias voltage applied to the substrate: -600 to -1000 V
Cathode electrode: metallic tungsten ,
Arc discharge current between metallic tungsten as the cathode electrode and the anode electrode: 60 to 100A
Processing time: 1-10 minutes ,
The chromium nitride layer having an average layer thickness of 1 to 15 μm is vapor-deposited as the lubricating coating layer in a state where the tungsten bombardment treatment (substrate surface modification treatment) is performed under the conditions, and
The chromium nitride layer constituting the lubricating coating layer is irradiated with an electron beam to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope, and electron backscattering is performed. Using a diffraction image apparatus, the inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, is made with respect to the normal of the surface-polished surface at an interval of 0.1 μm / step in a predetermined region. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section In the distribution graph, the highest peak is present in the inclination angle section within the range of 3 to 10 degrees, and the total of the frequencies existing within the range of 3 to 15 degrees is 45 to 45 of the entire frequencies in the inclination angle distribution graph. Tilt angle number distribution group accounting for 65% To show off,
A coated cemented carbide cutting tool that exhibits excellent wear resistance due to its lubricating coating layer.
JP2004199480A 2004-07-06 2004-07-06 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer Expired - Fee Related JP4618411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199480A JP4618411B2 (en) 2004-07-06 2004-07-06 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199480A JP4618411B2 (en) 2004-07-06 2004-07-06 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer

Publications (2)

Publication Number Publication Date
JP2006021257A JP2006021257A (en) 2006-01-26
JP4618411B2 true JP4618411B2 (en) 2011-01-26

Family

ID=35794904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199480A Expired - Fee Related JP4618411B2 (en) 2004-07-06 2004-07-06 Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer

Country Status (1)

Country Link
JP (1) JP4618411B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029099B2 (en) * 2006-09-01 2012-09-19 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5099586B2 (en) * 2007-08-31 2012-12-19 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5099587B2 (en) * 2007-09-04 2012-12-19 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009220239A (en) * 2008-03-18 2009-10-01 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
WO2010007958A1 (en) * 2008-07-14 2010-01-21 株式会社タンガロイ Coated member
JP5287126B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
JP5287123B2 (en) * 2008-10-15 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
EP2463398B1 (en) * 2009-08-04 2018-04-04 Tungaloy Corporation Coated member
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293601A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293601A (en) * 2000-04-11 2001-10-23 Sumitomo Electric Ind Ltd Cutting tool, and manufacturing method and device for the same

Also Published As

Publication number Publication date
JP2006021257A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4747268B2 (en) Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
JP3969230B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under heavy cutting conditions
JP4618411B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to lubrication coating layer
JP2006346777A (en) Surface coated cemented carbide cutting tool having lubricative coating layer exhibiting excellent wear resistance
JP2009125832A (en) Surface-coated cutting tool
JP4725773B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4590940B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP4609631B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP4088831B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2009119550A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP4320714B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP2005034925A (en) Surface coated cemented carbide cutting tool having surface coating layer which is excellent in wear resistance in high speed cutting
JP2007015060A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance in cutting of material difficult to be cut
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4379907B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3962921B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees